research papers
Binary and ternary cocrystals of sulfa drug acetazolamide with pyridine
and cyclic amidesaSchool of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Central University PO, Hyderabad 500 046, India
*Correspondence e-mail: ashwini.nangia@gmail.com
A novel design strategy for cocrystals of a sulfonamide drug with pyridine
and cyclic is developed based on synthon identification as well as size and shape match of coformers. Binary adducts of acetazolamide (ACZ) with (valerolactam and caprolactam, VLM, CPR), cyclic (2-pyridone, labeled as 2HP and its derivatives MeHP, OMeHP) and pyridine (nicotinamide and picolinamide, NAM, PAM) were obtained by manual grinding, and their single crystals by solution crystallization. The heterosynthons in the binary cocrystals of ACZ with these coformers suggested a ternary combination for ACZ with pyridone and nicotinamide. Novel supramolecular synthons of ACZ with and pyridine are reported together with binary and ternary cocrystals for a sulfonamide drug. This crystal engineering study resulted in the first ternary cocrystal of acetazolamide with amide coformers, ACZ–NAM–2HP (1:1:1).1. Introduction
Hydrogen bonding is the key adhesive to construct supramolecular synthons for the design of crystalline architectures by using multiple functional groups (Desiraju, 1995). From a crystal engineering perspective, binary and ternary adducts are formed due to robust heterosynthons in the cocrystal, compared with homosynthons in the constituent molecules (Walsh et al., 2003). It has been shown over more than a decade that crystal engineering of multi-component phases offers rational approaches to systematically tune the physicochemical and pharmacokinetic properties of active pharmaceutical ingredients (APIs, Fig. 1). The matching of functional groups and supramolecular synthons together with size and shape factors of molecules offers an approach to assemble three different molecules in the same (Tothadi & Desiraju, 2013, 2014; Chakraborty et al., 2014; Aakeröy et al., 2001, 2005; Seaton et al., 2013; Aitipamula et al., 2013). Ternary cocrystals are relatively less studied and the sulfonamide group is a `structural gap', even as SO2NH2 is the key in the most populated sulfa drugs category. These considerations encouraged us to systematically study binary and ternary cocrystals of the sulfonamide group (Bolla et al., 2015). The assembly of three different molecular components in the same is challenging because it hinges on a balance of intermolecular interaction strengths, chemical recognition, geometric fit and overall shape complementarity (Tothadi & Desiraju, 2013). There is more than one possible outcome of a three-component cocrystallization; it may result in one of the components, its solvates or hydrate, a new polymorph of the molecule, binary systems, starting materials, or the ternary product (Fig. 1).
Recent success in the deliberate construction of ternary cocrystals (Bolla & Nangia, 2015) and our work on binary sulfonamide cocrystals (Bolla et al., 2014, 2015) served as the background for the present study. The Cambridge Structural Database (CSD version 5.36, May 2105 update) contains about 75 X-ray crystal structures of ternary systems. Recently, we reported the assembly of ternary components using and the sulfonamide group along with a carboxylic acid (Bolla & Nangia, 2015). In the present work, the sulfonamide and acetamide groups of acetazolamide are the starting point to demonstrate the sulfonamide–lactam supramolecular synthon for the assembly of ternary systems.
Acetazolamide, 5-acetamido-1,3,4-thiadiazole-2-sulfonamide (Fig. 2), is an antiepileptic, diuretic drug for respiratory diseases (Arenas-García et al., 2010, 2012; Grecu et al., 2014). It is also used to prevent the symptoms of altitude sickness as this medication decreases headache, tiredness, nausea, dizziness and shortness of breath at high altitudes. This drug is also used to treat open-angle glaucoma by reducing the amount of fluid that can build up in the eye. The aqueous solubility of ACZ (0.72 mg ml−1 in water at 25°C) is low, has poor permeability and, according to the Biopharmaceutics Drug Disposition Classification System (BDDCS), ACZ belongs to the low solubility and poor permeability Class IV category (Granero et al., 2008; Benet, 2010). ACZ is administered as a 250 mg dose according to the World Health Organization's list (WHO) of essential medicines, a list of the most important medications needed in a basic healthcare system (WHO list dated April 2013, https://apps.who.Int/iris/bitstream/10665/93142/1/EML_18_eng.pdf?ua = 1, accessed 15 Nov. 2015). Two polymorphs of ACZ, forms (I) and (II), and cocrystals with 4-hydroxybenzoic acid, nicotinamide, 4-hydroxybenzamide, picolinamide, 2,3-dihydroxy benzoic acid, and a few inorganic coordination complexes with Ni, Cu, Zn are reported (Umeda et al., 1985; Baraldi et al., 2009; Arenas-García et al., 2010, 2012; Ferrer et al., 1989, 1990; Hartmann & Vahrenkamp, 1991).
The work plan described in this paper was to first prepare binary cocrystals of ACZ with nicotinamide (ACZ–NAM, 1:1), valerolactam (ACZ–VLM, 1:2), caprolactam (ACZ–CPR hydrate, 1:1:1), 2-pyridone (ACZ–2HP, 1:1 and 1:2), 6-methyl-2-pyridone (ACZ–MeHP, 1:1) and 3-methoxy-2-pyridone (ACZ–OMeHP, 1:2), with the idea of assessing the hydrogen bond synthons and recognition modes. By using the moderate to weak association between pyridine amide and cyclic lactam coformers (Bolla & Nangia, 2015), a successful ternary combination of ACZ, NAM and 2HP (ACZ–NAM–2HP, 1:1:1) was then derived from an analysis of the binary cocrystals. The molecules are classified as: A = ACZ; B = pyridine NAM, PAM; and C = cyclic VLM, CPR; syn 2HP, MeHP, OMeHP (see Fig. 2).
2. Experimental
All the coformers used in this study were purchased from Sigma-Aldrich, India. All chemicals are of analytical and chromatographic grade. Acetazolamide was purchased from Yarrow Chemicals, Mumbai, India, and its purity was confirmed by NMR and DSC.
2.1. ACZ–NAM (1:1)
ACZ (100 mg, 0.45 mmol) and NAM (54 mg, 0.45 mmol) were ground well in a mortar and pestle for 20–30 min by adding 4–5 drops of EtOAc. The ground material was kept for crystallization from a solvent mixture of EtOAc and THF (5 ml) as well as in individual solvents in a 25 ml conical flask at room temperature. Good quality crystals were harvested at ambient condition after a week; m.p. 180°C.
2.2. ACZ–VLM (1:2)
ACZ (100 mg, 0.45 mmol) and VLM (45 mg, 0.45 mmol) were taken in a 1:1 ratio and ground well in a mortar and pestle for 20–30 min by adding 4–5 drops of EtOAc. The ground material was kept for crystallization in EtOAc (5 ml) at room temperature. Good quality crystals were harvested at ambient conditions after a week. Even though the components were taken in an equal molar ratio, the product crystallized in a 1:2 ratio from solution; m.p. 93°C.
2.3. ACZ–CPR hydrate (1:1:1)
ACZ (100 mg, 0.45 mmol) and CPR (50 mg, 0.45 mmol) were taken in a 1:1 ratio and ground well in a mortar and pestle for 20–30 min by adding 4–7 drops of EtOAc. The ground material was kept for crystallization from a solvent mixture of EtOAc and THF (5 ml) as well as individual solvents at room temperature. The ground material crystallized from solution as a hydrate after one week; m.p. 80°C. Solvents used here are analytically pure and crystallization was carried out at room temperature (ca 30°C) in an open evaporation flask, which gave the cocrystal hydrate product.
2.4. ACZ–2HP (1:2)
ACZ (100 mg, 0.45 mmol) and 2HP (42 mg, 0.45 mmol) were taken in a 1:1 ratio and ground well in a mortar and pestle for 20–30 min by adding 4–7 drops of EtOAc. The ground material was kept for crystallization from a solvent mixture of EtOAc and THF (5 ml) as well as individual solvents at room temperature. Good quality crystals were harvested at ambient conditions after a week. The ground material crystallized from solution in a 1:2 ratio; m.p. 160°C.
2.5. ACZ–2HP (1:1)
ACZ (100 mg, 0.45 mmol) and 2HP (42 mg, 0.45 mmol) were ground well in a mortar and pestle for 20–30 min by adding 4–7 drops of EtOAc in the presence of NAM or INA to obtain a ternary system. Even though the attempts to obtain an ACZ binary cocrystal with isonicotinamide (INA) were not successful, experiments were carried out to obtain a ternary ACZ–INA–2HP adduct in a trial attempt. A binary product ACZ–2HP (1:1) was obtained. A
check of randomly selected crystals showed that the majority are ACZ–2HP (1:1), while a few crystals had 1:2 stoichiometry. The ground material of 1:1 stoichiometry was kept for crystallization from a solvent mixture of EtOAc and THF (5 ml) as well as individual solvents at room temperature. Good quality crystals were harvested at ambient condition after a week; m.p. 180°C.2.6. ACZ–MeHP (1:1)
ACZ (100 mg, 0.45 mmol) and MeHP (49 mg, 0.45 mmol) were ground well in a mortar and pestle for 20–30 min. The ground material was kept for crystallization in 5 ml of EtOAc at room temperature to obtain good quality single crystals at ambient conditions after 1 week; m.p. 130°C.
2.7. ACZ–OMeHP hydrate (1:1:1)
ACZ (100 mg, 0.45 mmol) and OMeHP (56 mg, 0.45 mmol) were ground well in a mortar and pestle for 25 min with a few drops of EtOAc added. The ground material was kept for crystallization in 5 ml of EtOAc and THF mixture or in the individual solvents at room temperature to give good quality single crystals after 4–5 d. The product crystallized as a monohydrate; m.p. 90°C.
2.8. ACZ–NAM–2HP (1:1:1)
ACZ (100 mg, 0.45 mmol), NAM (54 mg, 0.45 mmol) and 2HP (42 mg, 0.45 mmol) were ground well in a mortar and pestle for 20–30 min by adding 4–7 drops of EtOAc. The ground material was kept for crystallization from a solvent mixture of 5 ml EtOAc and THF as well as the individual solvents at room temperature to give good quality single crystals of the ternary adduct after 5–6 days. A few crystals of binary products ACZ−NAM and ACZ−2HP (1:1, 1:2) were also observed in the crystallization flask concomitantly based on a
check. Single crystal data were collected of the ternary product by manual separation of their different morphology crystals as a plate and a block; m.p. 125°C.2.9. Single-crystal X-ray diffraction
A single crystal was mounted on the goniometer of an Oxford Diffraction Gemini X-ray diffractometer equipped with Cu Kα radiation source (λ = 1.54184 Å) at 298 K. Data reduction was performed using CrysAlisPro 171.33.55 software (Oxford Diffraction, 2008). The was solved and refined using Olex2-1.0 (Dolomanov et al., 2009) with anisotropic displacement parameters for non-H atoms. H atoms were experimentally located through the difference-Fourier electron density maps in all crystal structures. Data were reduced by SAINT-Plus (Bruker, 1998) and further continued with SHELXTL (Sheldrick, 2008). A check of the final file with PLATON (Spek, 2009) did not show any missed symmetry. X-Seed (Barbour, 2001) was used to prepare the figures and packing diagrams. The crystallographic parameters of all the cocrystals are summarized in Table 1 and hydrogen-bond distances are listed in Table S1 . files are deposited at CCDC Nos. 1436978–1436985. Single-crystal X-ray diffraction data were also collected at 298 K on a Bruker SMART APEX-1 CCD area-detector system equipped with a graphite monochromator Mo Kα fine-focus sealed tube (λ = 0.71073 Å) operating at 1500 power, 40 kV, 30 mA. The frames were integrated by SAINT (Bruker, 1998) software using a narrow-frame integration algorithm. Data were corrected for absorption effects using the multi-scan method (SADABS; Bruker, 1998). The structures were solved and refined using SHELXTL (Sheldrick, 2008).
|
2.10. X-ray powder diffraction
Bulk samples were analyzed by X-ray powder diffraction on a Bruker AXS D8 diffractometer (Bruker-AXS, Karlsruhe, Germany). Experimental conditions: Cu Kα radiation (λ = 1.54056 Å), 40 kV, 30 mA, scanning interval 5–50° 2θ at a scan rate of 1° min−1, time per step 0.5 s.
3. Results and discussion
3.1. ACZ polymorphs and reported binary adducts
Acetazolamide (ACZ, Fig. 2) consists of a primary sulfonamide group, thiadiazole heterocycle and acetamide groups. Both the sulfonamide and acetamido groups are sites for hydrogen bonding with complementary coformers listed under B and C. Crystal structures of two polymorphs (I) and (II) of ACZ are reported (Umeda et al., 1985). Form (I) exhibits multiple ring synthons such as N—H⋯N homodimers R22(8), sulfonamide dimer R22(8), sulfonamide–amide macrocycle ring R22(20) (Fig. 3a) (Etter, 1990; Bernstein et al., 1995). Form (II) comprises sulfonamide catemer chains C(4) as well as amide–thiadiazole N—H⋯N ring motif R22(8) (Fig. 3b). The hydrogen-bond motifs present in the reported cocrystals of ACZ (Baraldi et al., 2009; Arenas-García et al., 2010, 2012; Ferrer et al., 1989, 1990; Hartmann & Vahrenkamp, 1991) with 4-hydroxybenzoic acid (ACZ–4HBA; 1:1), a hydrate with nicotinamide (ACZ–NAM hydrate; 1:1:1), picolinamide (ACZ–PAM; 1:2) and 2,3-dihydroxy benzoic acid (ACZ–2,3DHBA; 3:1) are displayed in Figs. 3(c)–(f). The fact that the synthons in cocrystal structures are quite different from those in the two polymorphs of ACZ means that the coformer functional groups are able to disrupt the self-association to give stronger and newer motifs in the binary complexes. This is a positive indication for successful cocrystallization.
The crystal structures and supramolecular synthons of binary systems with a few pharmaceutically acceptable coformers are discussed to understand the hydrogen bonding and stoichiometry in self-assembly: ACZ–NAM (1:1), ACZ–VLM (1:2), ACZ–CPR hydrate (1:1:1), ACZ–2HP (1:1 and 1:2), ACZ–MeHP (1:1) ACZ–OMeHP hydrate (1:1:1). The designed assembly of a ternary cocrystal ACZ–NAM–2HP (1:1:1) is as such rare for drug molecules.
3.2. Crystal structures of binary cocrystals
The and hydrogen-bond parameters in Table S1 of the supporting information . The synthons and molecular packing of binary cocrystals is presented first and then the build up to the ternary system is described.
parameters are summarized in Table 13.2.1. ACZ–NAM (1:1)
The cocrystal structure (space group ) contains N—H⋯N homodimers R22(8) of ACZ, similar to those observed in polymorph (II). However, the sulfonamide dimer of ACZ is replaced by N—H⋯O and N—H⋯N hydrogen bonds to nicotinamide. Two ACZ and two NAM molecules form a tetramer ring motif R44(16) via N—H⋯O and N—H⋯N hydrogen bonds (Fig. 4a). The overall structure has a layered two-dimensional pattern (Fig. 4b).
3.2.2. ACZ–VLM (1:2)
In the P21/c) VLM forms a R22(9) motif of sulfonamide, thiadiazole and amide groups (Fig. 4c). A second equivalent of VLM connects such heterosynthon units via N—H⋯O hydrogen bonds. Such one-dimensional chains extended parallel to the c-axis via N—H⋯O hydrogen bonds in a two-dimensional array (Fig. 4d). The inclusion of a second VLM in the cocrystal structure suggested that if this latter molecule could be replaced by a different amide, then a ternary system will result. In other words, the binary system has a tendency to include a third partner from solution. The same phenomenon is observed in the next structure.
(3.2.3. ACZ–CPR hydrate (1:1:1)
The ground material of ACZ and CPR in a 1:1 ratio was crystallized as a hydrate (1:1:1) in R22(8) are sandwiched between the SO2NH2 and water molecules in a R44(12) ring motif (Fig. 4e). Such discrete clusters extend via the water O—H donor (Fig. 4f). Even though the water is serendipitously included, it makes three components in the crystal lattice.
. CPR homodimers3.2.4. ACZ–2HP (1:2)
The ground product of ACZ–2HP (1:2) was solved in R22(8) between ACZ molecules and forms an amide(2HP)–imino (ACZ) heterosynthon. The sulfonamide–carboxamide dimer motif R22(20) previously noted in ACZ Form (I) (Fig. 3a) is present in this binary system (Fig. 4g). The second equivalent of 2HP homodimers connect ACZ−2HP units via N—H⋯O hydrogen bonds to give the 1:2 composition (Fig. 4h). Again, the 2HP dimers could be replaced by a structural mimic to give a ternary system.
. One equivalent of 2HP breaks the strong N—H⋯N homodimer3.2.5. ACZ–2HP (1:1)
The cyclic ring motifs, such as the N—H⋯N dimer of ACZ polymorphs (Figs. 3a and b), are interrupted in the presence of 2HP to give an amide–iminodiazole R22(8) motif (Fig. 4i), similar to the previous structure. The extended motifs via N—H⋯O catemer chain C(4) in this structure (Fig. 4j) obviate the need for the 2HP dimer noted in the 1:2 structure (Fig. 4g). This binary structure suggests that 2HP should be a good partner for ternary assembly because the is heavily disturbed compared with the ACZ structure, as well as other cocrystals. Moreover, both 1:1 and 1:2 combinations were routinely observed. A strong heterodimer between the two components is a prerequisite for ternary assembly (Aakeröy et al., 2001; Aakeröy & Salmon, 2005). The presence of the symmetry-independent 2HP dimer in the 1:2 structure appears to be optional and it could be replaced by another component of similar size, shape and hydrogen-bonding groups to yield a ternary cocrystal. We note that there is a similar NAM amide dimer in the ACZ–NAM (1:1) structure (Fig. 4a) and this gives a logical lead towards the ternary combination.
3.2.6. ACZ–MeHP (1:1)
The centrosymmetric R22(8) dimers of ACZ−MeHP are formed with N—H⋯O and N—H⋯N bonds between aminodiazole–amide groups (Fig. 4k), which is similar to the heterosynthon in ACZ–2HP. The sulfonamide N—H donors connect molecules to make extended arrays (Fig. 4l).
3.2.7. ACZ–OMeHP hydrate (1:1:1)
The ground product of ACZ and OMeHP in a 1:1 ratio crystallized as a hydrate (1:1:1) in R22(8) (Fig. 3a) and water molecules connect such units (Fig. 4m) in the inter-layer region (Fig. 4n). It appears that the inclusion of water was mandated as a spacer between the ACZ−OMeHP dimer units to accommodate the OMe group. This means that the bonding between ACZ and 2HP is strong enough to override steric groups which were overcome by the inclusion of a water molecule in the binary cocrystal.
. The dimer of ACZ diazole and OMeHP amide in ring motifThe above crystal structures are described in the natural sequence of crystallization being carried out and the experimental results analyzed.
3.3. of ternary cocrystal ACZ–NAM–2HP (1:1:1)
After screening several binary combinations and their crystal structures, we have decided to replace the second equivalent of the coformer in ACZ−2HP (1:2) with NAM, given that nicotinamide can form an amide R22(8) dimer similar to 2HP. Moreover such dimers are present in ACZ–NAM (1:1). Grinding of ACZ, NAM and 2HP in an equimolar ratio and recrystallization of the crystalline product gave the ternary cocrystal ACZ–NAM–2HP, as confirmed by single-crystal X-ray diffraction (1:1:1 stoichiometry). The ternary cocrystal structure has resemblances with the binary structure ACZ–2HP (1:2) as expected. Hydrogen bonds between the sulfonamide NH and acetamide C=O groups of ACZ result in dimer pairs R22(20) (Fig. 5a), which were noted previously in polymorph (I) of ACZ as well as in ACZ−2HP (1:2). The R22(8) dimers of 2HP are also present here. The link between these ring motifs is that the amide NH of ACZ bonds to the pyridine N of NAM and the NH of NAM is bonded to the 2HP amide dimer. Thus, while the A and C dimers are repeating motifs, the linkage through the B molecule is somewhat different in the ternary structure compared with the previous binary cocrystals. Propagation of the centrosymmetric motifs via N—H⋯O and N—H⋯N hydrogen bonds is shown in Fig. 5(b). There is considerable `carry over' of synthons from the binary to the ternary cocrystal, yet there are unexpected motifs as well. Overall, the element of design and crystal engineering appears to be a consistent thread in this family of structures.
3.4. Supramoleculer synthons in this study
The three hydrogen bonding sites in ACZ are acetamide (donor–acceptor), sulfonamide group (donor–acceptor) and thiadiazole ring (acceptor only) (Fig. 6a). The sulfonamide is flexible (Arenas-García et al., 2010, 2012) while the other two moieties, acetamide and thiadiazole, are rigid functional groups for hydrogen bonding. The main synthons observed in different cocrystals are displayed in Figs. 6(b)–(d).
The main stream of our approach and objective was to understand the long-range synthon Aufbau modules (LSAM; Ganguly & Desiraju, 2010; Mukherjee et al., 2014a,b) in the ternary cocrystals (Bolla & Nangia, 2015). However, because we were successful in crystallizing only a single ternary structure in this family, a supramolecular build-up or LSAM model for the ternary assembly of ACZ is difficult to analyze due to insufficient data. The ternary cocrystal suggests the ACZ amide bonds with NAM pyridine via N—H⋯N and the CONH2 donor of NAM connects to the pyridone via N—H⋯O to give the ternary adduct (Fig. 7).
3.5. CSD analysis of heterosynthons in this study
A search of the Cambridge Structural Database (CSD Version 5.36, May 2015 update) was carried out to tabulate the reported supramolecular synthons of the sulfonamide and Table S2 . The present study therefore is an early result on cocrystals of a sulfonamide drug with pyridine amide and lactam conformers (GRAS-type molecules; Bolla & Nangia, 2015). The synthons extracted from the CSD for a sulfonamide bonding to an amide or pyridine group are displayed in Fig. 8. Analogous to the carboxamide group (Nangia, 2010), the occurrence of SO2NH2 bonding with an amide group is much more likely than to a pyridine (six times) due to the stronger amide acceptor nature.
observed in this study (after eliminating hydrates, solvates, salts and duplicates) with those reported in previous structures. Relatively few hits are obtained on the sulfonamide bonding to amide (25 hits), pyridine (4 hits) and (3 hits); see Table 2
|
4. Conclusions
The first study of sulfonamide drug cocrystals with amide coformers is described leading to a ternary drug cocrystal. A library of supramolecular synthons was derived from binary adducts of ACZ with pyridine amide and lactam coformers (A–B and A–C cocrystals). There is competition and interplay of the hydrogen bonding functional groups during binary cocrystallization. The binary results suggest that the syn form reliable synthons to afford cocrystals with a sulfonamide drug. Using ACZ–NAM and ACZ–2HP cocrystals as leads, a ternary assembly was designed to give the 3-component cocrystal ACZ–NAM–2HP (1:1:1). Mechanochemistry, or grinding with solvent added, is necessary to hydrogen bond the components in the ternary adduct, which was then recrystallized to produce single crystals for X-ray diffraction. This is the first report of a sulfa drug ternary cocrystal.
Supporting information
10.1107/S2052252516000543/ed5007sup1.cif
contains datablocks global, ACZ2HP11, ACZ2HP12, ACZCPRH111, ACZDMSO, ACZMeHP11, ACZNAM11, ACZNAM2HP111, ACZOMeHPH111, ACZVLM12. DOI:Structure factors: contains datablock ACZ2HP11. DOI: 10.1107/S2052252516000543/ed5007ACZ2HP11sup2.hkl
Structure factors: contains datablock ACZHP21. DOI: 10.1107/S2052252516000543/ed5007ACZ2HP12sup3.hkl
Structure factors: contains datablock ACZCPRH111. DOI: 10.1107/S2052252516000543/ed5007ACZCPRH111sup4.hkl
Structure factors: contains datablock ACZDMSO. DOI: 10.1107/S2052252516000543/ed5007ACZDMSOsup5.hkl
Structure factors: contains datablock ACZMeHP11. DOI: 10.1107/S2052252516000543/ed5007ACZMeHP11sup6.hkl
Structure factors: contains datablock ACZNAM11. DOI: 10.1107/S2052252516000543/ed5007ACZNAM11sup7.hkl
Structure factors: contains datablock ACZNAM2HP111. DOI: 10.1107/S2052252516000543/ed5007ACZNAM2HP111sup8.hkl
Structure factors: contains datablock ACZOMeHPH111. DOI: 10.1107/S2052252516000543/ed5007ACZOMeHPH111sup9.hkl
Structure factors: contains datablock ACZVLM12. DOI: 10.1107/S2052252516000543/ed5007ACZVLM12sup10.hkl
Supporting tables. DOI: 10.1107/S2052252516000543/ed5007sup11.pdf
For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).
C4H6N4O3S2·C5H5NO | Dx = 1.566 Mg m−3 |
Mr = 317.35 | Melting point: 453 K |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 4.9138 (4) Å | Cell parameters from 6192 reflections |
b = 33.192 (3) Å | θ = 2.5–25.9° |
c = 8.3659 (7) Å | µ = 0.42 mm−1 |
β = 99.520 (1)° | T = 298 K |
V = 1345.7 (2) Å3 | Needle, colorles |
Z = 4 | 0.21 × 0.19 × 0.18 mm |
F(000) = 656 |
CCD area detector diffractometer | 2176 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.038 |
Graphite monochromator | θmax = 26.0°, θmin = 1.2° |
phi and ω scans | h = −6→6 |
13846 measured reflections | k = −40→40 |
2640 independent reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0591P)2 + 0.2415P] where P = (Fo2 + 2Fc2)/3 |
2640 reflections | (Δ/σ)max < 0.001 |
198 parameters | Δρmax = 0.35 e Å−3 |
1 restraint | Δρmin = −0.22 e Å−3 |
C4H6N4O3S2·C5H5NO | V = 1345.7 (2) Å3 |
Mr = 317.35 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 4.9138 (4) Å | µ = 0.42 mm−1 |
b = 33.192 (3) Å | T = 298 K |
c = 8.3659 (7) Å | 0.21 × 0.19 × 0.18 mm |
β = 99.520 (1)° |
CCD area detector diffractometer | 2176 reflections with I > 2σ(I) |
13846 measured reflections | Rint = 0.038 |
2640 independent reflections |
R[F2 > 2σ(F2)] = 0.038 | 1 restraint |
wR(F2) = 0.101 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.35 e Å−3 |
2640 reflections | Δρmin = −0.22 e Å−3 |
198 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | −0.15925 (10) | 0.228595 (15) | 0.67680 (6) | 0.03577 (16) | |
S2 | −0.07309 (10) | 0.137123 (16) | 0.65477 (6) | 0.04162 (17) | |
N1 | 0.2548 (3) | 0.18467 (5) | 0.8351 (2) | 0.0383 (4) | |
N3 | 0.3114 (4) | 0.08084 (5) | 0.7764 (2) | 0.0448 (4) | |
N4 | −0.2949 (4) | 0.24391 (6) | 0.8236 (2) | 0.0385 (4) | |
C1 | 0.0263 (4) | 0.18371 (6) | 0.7336 (2) | 0.0339 (4) | |
O2 | −0.3746 (3) | 0.21585 (5) | 0.55101 (18) | 0.0548 (4) | |
C2 | 0.2258 (4) | 0.11980 (6) | 0.7721 (2) | 0.0367 (4) | |
N2 | 0.3729 (3) | 0.14739 (5) | 0.8588 (2) | 0.0402 (4) | |
O3 | 0.0387 (3) | 0.25754 (5) | 0.64635 (19) | 0.0518 (4) | |
O1 | −0.0546 (4) | 0.05834 (5) | 0.6013 (2) | 0.0689 (5) | |
O4 | −0.2082 (3) | 0.06497 (5) | −0.0152 (2) | 0.0612 (5) | |
C5 | −0.0597 (4) | 0.08755 (7) | 0.0815 (3) | 0.0478 (5) | |
N5 | −0.1277 (4) | 0.12714 (6) | 0.0950 (2) | 0.0467 (5) | |
C4 | 0.2896 (7) | 0.01022 (8) | 0.7138 (4) | 0.0812 (9) | |
H4A | 0.2667 | 0.0000 | 0.8180 | 0.122* | |
H4B | 0.4827 | 0.0120 | 0.7079 | 0.122* | |
H4C | 0.2011 | −0.0076 | 0.6306 | 0.122* | |
C6 | 0.1882 (5) | 0.07568 (8) | 0.1854 (3) | 0.0597 (7) | |
H6 | 0.2478 | 0.0491 | 0.1834 | 0.072* | |
C3 | 0.1627 (5) | 0.05098 (7) | 0.6901 (3) | 0.0538 (6) | |
C8 | 0.2571 (6) | 0.14215 (9) | 0.2911 (3) | 0.0648 (7) | |
H8 | 0.3630 | 0.1604 | 0.3591 | 0.078* | |
C9 | 0.0223 (5) | 0.15392 (8) | 0.1954 (3) | 0.0565 (6) | |
H9 | −0.0367 | 0.1805 | 0.1983 | 0.068* | |
C7 | 0.3371 (5) | 0.10210 (9) | 0.2859 (3) | 0.0648 (7) | |
H7 | 0.4962 | 0.0934 | 0.3531 | 0.078* | |
H4D | −0.186 (5) | 0.2539 (6) | 0.899 (3) | 0.038 (6)* | |
H4E | −0.432 (5) | 0.2307 (7) | 0.842 (3) | 0.049 (7)* | |
H3A | 0.470 (6) | 0.0766 (8) | 0.845 (3) | 0.061 (7)* | |
H5A | −0.274 (4) | 0.1352 (7) | 0.034 (3) | 0.056 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0334 (3) | 0.0423 (3) | 0.0300 (3) | 0.0064 (2) | 0.00046 (19) | 0.0022 (2) |
S2 | 0.0339 (3) | 0.0442 (3) | 0.0426 (3) | 0.0019 (2) | −0.0061 (2) | −0.0087 (2) |
N1 | 0.0317 (8) | 0.0365 (9) | 0.0435 (10) | 0.0013 (7) | −0.0031 (7) | 0.0006 (7) |
N3 | 0.0363 (10) | 0.0374 (10) | 0.0568 (11) | 0.0015 (8) | −0.0042 (9) | −0.0055 (8) |
N4 | 0.0299 (9) | 0.0454 (10) | 0.0398 (10) | −0.0050 (8) | 0.0046 (8) | −0.0078 (8) |
C1 | 0.0298 (10) | 0.0383 (11) | 0.0328 (10) | 0.0017 (8) | 0.0028 (8) | −0.0007 (8) |
O2 | 0.0542 (10) | 0.0625 (10) | 0.0398 (8) | 0.0179 (8) | −0.0152 (7) | −0.0094 (7) |
C2 | 0.0301 (10) | 0.0390 (11) | 0.0401 (11) | 0.0003 (8) | 0.0030 (8) | −0.0019 (9) |
N2 | 0.0308 (9) | 0.0350 (9) | 0.0512 (10) | 0.0011 (7) | −0.0040 (7) | −0.0012 (7) |
O3 | 0.0510 (9) | 0.0525 (10) | 0.0552 (9) | 0.0040 (7) | 0.0187 (7) | 0.0173 (7) |
O1 | 0.0629 (11) | 0.0560 (11) | 0.0777 (12) | 0.0010 (9) | −0.0180 (9) | −0.0198 (9) |
O4 | 0.0505 (9) | 0.0490 (9) | 0.0770 (12) | 0.0052 (8) | −0.0104 (9) | −0.0027 (8) |
C5 | 0.0386 (12) | 0.0516 (14) | 0.0517 (13) | 0.0007 (10) | 0.0034 (10) | 0.0047 (10) |
N5 | 0.0366 (10) | 0.0481 (11) | 0.0525 (11) | 0.0022 (8) | −0.0008 (9) | 0.0055 (9) |
C4 | 0.084 (2) | 0.0406 (14) | 0.108 (2) | 0.0017 (13) | −0.0140 (18) | −0.0138 (15) |
C6 | 0.0455 (13) | 0.0599 (16) | 0.0703 (16) | 0.0113 (12) | −0.0007 (12) | 0.0125 (13) |
C3 | 0.0535 (14) | 0.0426 (13) | 0.0624 (15) | −0.0022 (11) | 0.0014 (12) | −0.0095 (11) |
C8 | 0.0540 (15) | 0.0794 (19) | 0.0569 (15) | −0.0074 (14) | −0.0032 (12) | −0.0052 (13) |
C9 | 0.0548 (15) | 0.0549 (15) | 0.0582 (14) | −0.0046 (12) | 0.0049 (12) | −0.0029 (12) |
C7 | 0.0461 (14) | 0.085 (2) | 0.0580 (16) | 0.0007 (13) | −0.0086 (12) | 0.0100 (14) |
S1—O3 | 1.4199 (16) | C5—N5 | 1.365 (3) |
S1—O2 | 1.4274 (15) | C5—C6 | 1.430 (3) |
S1—N4 | 1.5753 (18) | N5—C9 | 1.354 (3) |
S1—C1 | 1.7701 (19) | N5—H5A | 0.853 (16) |
S2—C1 | 1.7197 (19) | C4—C3 | 1.489 (3) |
S2—C2 | 1.725 (2) | C4—H4A | 0.9600 |
N1—C1 | 1.291 (2) | C4—H4B | 0.9600 |
N1—N2 | 1.367 (2) | C4—H4C | 0.9600 |
N3—C2 | 1.359 (3) | C6—C7 | 1.345 (4) |
N3—C3 | 1.365 (3) | C6—H6 | 0.9300 |
N3—H3A | 0.90 (3) | C8—C9 | 1.349 (4) |
N4—H4D | 0.83 (2) | C8—C7 | 1.389 (4) |
N4—H4E | 0.84 (3) | C8—H8 | 0.9300 |
C2—N2 | 1.309 (2) | C9—H9 | 0.9300 |
O1—C3 | 1.221 (3) | C7—H7 | 0.9300 |
O4—C5 | 1.246 (3) | ||
O3—S1—O2 | 120.96 (10) | C9—N5—C5 | 124.6 (2) |
O3—S1—N4 | 108.20 (10) | C9—N5—H5A | 118.8 (17) |
O2—S1—N4 | 108.22 (10) | C5—N5—H5A | 116.6 (17) |
O3—S1—C1 | 106.26 (9) | C3—C4—H4A | 109.5 |
O2—S1—C1 | 103.56 (9) | C3—C4—H4B | 109.5 |
N4—S1—C1 | 109.15 (9) | H4A—C4—H4B | 109.5 |
C1—S2—C2 | 85.44 (9) | C3—C4—H4C | 109.5 |
C1—N1—N2 | 112.04 (16) | H4A—C4—H4C | 109.5 |
C2—N3—C3 | 122.72 (19) | H4B—C4—H4C | 109.5 |
C2—N3—H3A | 113.5 (17) | C7—C6—C5 | 121.4 (2) |
C3—N3—H3A | 123.7 (17) | C7—C6—H6 | 119.3 |
S1—N4—H4D | 115.1 (15) | C5—C6—H6 | 119.3 |
S1—N4—H4E | 115.2 (16) | O1—C3—N3 | 121.0 (2) |
H4D—N4—H4E | 121 (2) | O1—C3—C4 | 124.6 (2) |
N1—C1—S2 | 115.80 (14) | N3—C3—C4 | 114.4 (2) |
N1—C1—S1 | 120.59 (15) | C9—C8—C7 | 118.5 (2) |
S2—C1—S1 | 123.57 (11) | C9—C8—H8 | 120.7 |
N2—C2—N3 | 120.73 (18) | C7—C8—H8 | 120.7 |
N2—C2—S2 | 114.98 (15) | C8—C9—N5 | 120.2 (2) |
N3—C2—S2 | 124.29 (15) | C8—C9—H9 | 119.9 |
C2—N2—N1 | 111.74 (16) | N5—C9—H9 | 119.9 |
O4—C5—N5 | 120.5 (2) | C6—C7—C8 | 121.1 (2) |
O4—C5—C6 | 125.3 (2) | C6—C7—H7 | 119.5 |
N5—C5—C6 | 114.2 (2) | C8—C7—H7 | 119.5 |
C4H6N4O3S2·2(C5H5NO) | F(000) = 428 |
Mr = 412.45 | Dx = 1.495 Mg m−3 |
Triclinic, P1 | Melting point: 433 K |
a = 6.8501 (3) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 11.3563 (6) Å | Cell parameters from 3198 reflections |
c = 12.3387 (8) Å | θ = 5.1–71.9° |
α = 82.288 (5)° | µ = 3.01 mm−1 |
β = 81.856 (4)° | T = 298 K |
γ = 75.804 (4)° | Block, colorles |
V = 916.20 (8) Å3 | 0.23 × 0.22 × 0.22 mm |
Z = 2 |
Xcalibur, Eos, Gemini diffractometer | 3268 independent reflections |
Radiation source: fine-focus sealed tube | 3035 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
ω scans | θmax = 67.1°, θmin = 3.6° |
Absorption correction: multi-scan | h = −6→8 |
Tmin = 0.137, Tmax = 1.000 | k = −12→13 |
5007 measured reflections | l = −13→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.065 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.171 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.1265P)2 + 0.4073P] where P = (Fo2 + 2Fc2)/3 |
3268 reflections | (Δ/σ)max = 0.001 |
265 parameters | Δρmax = 0.47 e Å−3 |
0 restraints | Δρmin = −0.80 e Å−3 |
C4H6N4O3S2·2(C5H5NO) | γ = 75.804 (4)° |
Mr = 412.45 | V = 916.20 (8) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.8501 (3) Å | Cu Kα radiation |
b = 11.3563 (6) Å | µ = 3.01 mm−1 |
c = 12.3387 (8) Å | T = 298 K |
α = 82.288 (5)° | 0.23 × 0.22 × 0.22 mm |
β = 81.856 (4)° |
Xcalibur, Eos, Gemini diffractometer | 3268 independent reflections |
Absorption correction: multi-scan | 3035 reflections with I > 2σ(I) |
Tmin = 0.137, Tmax = 1.000 | Rint = 0.032 |
5007 measured reflections |
R[F2 > 2σ(F2)] = 0.065 | 0 restraints |
wR(F2) = 0.171 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.47 e Å−3 |
3268 reflections | Δρmin = −0.80 e Å−3 |
265 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.24089 (9) | 0.05772 (5) | 0.95947 (5) | 0.0335 (2) | |
S2 | 0.30061 (10) | 0.06609 (5) | 0.70910 (5) | 0.0379 (2) | |
O1 | 0.1813 (3) | 0.01581 (17) | 1.18019 (17) | 0.0462 (5) | |
O4 | 0.0236 (3) | 0.64656 (18) | 0.43750 (17) | 0.0493 (5) | |
O5 | 0.1665 (4) | 0.43570 (19) | 0.17745 (18) | 0.0543 (6) | |
N6 | 0.2348 (3) | 0.5258 (2) | 0.00544 (18) | 0.0368 (5) | |
N3 | 0.2022 (3) | 0.2086 (2) | 1.12119 (19) | 0.0360 (5) | |
N1 | 0.2786 (3) | 0.2507 (2) | 0.83158 (19) | 0.0383 (5) | |
N2 | 0.2504 (3) | 0.28428 (19) | 0.93644 (19) | 0.0376 (5) | |
O2 | 0.3320 (4) | −0.06083 (18) | 0.74606 (18) | 0.0517 (5) | |
C11 | 0.2201 (4) | 0.6368 (2) | 0.1559 (2) | 0.0398 (6) | |
H11 | 0.2011 | 0.6435 | 0.2312 | 0.048* | |
N5 | 0.1912 (4) | 0.5326 (2) | 0.57629 (18) | 0.0393 (5) | |
C5 | 0.1597 (4) | 0.6322 (2) | 0.4996 (2) | 0.0363 (6) | |
N4 | 0.0888 (4) | 0.1104 (2) | 0.6619 (2) | 0.0445 (6) | |
O3 | 0.4477 (3) | 0.1111 (2) | 0.63316 (19) | 0.0592 (6) | |
C10 | 0.2042 (4) | 0.5270 (2) | 0.1168 (2) | 0.0360 (5) | |
C3 | 0.1763 (4) | 0.1184 (2) | 1.2020 (2) | 0.0376 (6) | |
C2 | 0.2298 (3) | 0.1931 (2) | 1.0117 (2) | 0.0311 (5) | |
C6 | 0.2904 (4) | 0.7128 (3) | 0.4969 (3) | 0.0450 (6) | |
H6 | 0.2762 | 0.7825 | 0.4470 | 0.054* | |
C1 | 0.2781 (4) | 0.1371 (2) | 0.8312 (2) | 0.0325 (5) | |
C13 | 0.2904 (4) | 0.7245 (2) | −0.0287 (3) | 0.0428 (6) | |
H13 | 0.3188 | 0.7897 | −0.0775 | 0.051* | |
C14 | 0.2752 (4) | 0.6207 (3) | −0.0661 (2) | 0.0418 (6) | |
H14 | 0.2925 | 0.6144 | −0.1414 | 0.050* | |
C8 | 0.4615 (5) | 0.5844 (3) | 0.6420 (2) | 0.0499 (7) | |
H8 | 0.5612 | 0.5681 | 0.6894 | 0.060* | |
C12 | 0.2625 (4) | 0.7313 (2) | 0.0845 (3) | 0.0415 (6) | |
H12 | 0.2732 | 0.8017 | 0.1116 | 0.050* | |
C7 | 0.4350 (5) | 0.6892 (3) | 0.5661 (3) | 0.0489 (7) | |
H7 | 0.5183 | 0.7433 | 0.5633 | 0.059* | |
C4 | 0.1405 (5) | 0.1532 (3) | 1.3167 (3) | 0.0536 (8) | |
H4C | 0.0082 | 0.1445 | 1.3493 | 0.080* | |
H4D | 0.1489 | 0.2365 | 1.3154 | 0.080* | |
H4E | 0.2412 | 0.1010 | 1.3593 | 0.080* | |
C9 | 0.3372 (5) | 0.5079 (3) | 0.6441 (2) | 0.0483 (7) | |
H9 | 0.3528 | 0.4372 | 0.6929 | 0.058* | |
H5A | 0.118 (5) | 0.483 (3) | 0.580 (3) | 0.046 (9)* | |
H4A | 0.058 (5) | 0.183 (4) | 0.638 (3) | 0.058 (10)* | |
H4B | −0.001 (6) | 0.078 (4) | 0.706 (4) | 0.066 (11)* | |
H6A | 0.229 (5) | 0.457 (4) | −0.022 (3) | 0.057 (10)* | |
H3A | 0.191 (5) | 0.281 (3) | 1.138 (3) | 0.039 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0420 (4) | 0.0222 (3) | 0.0378 (4) | −0.0110 (2) | −0.0054 (3) | −0.0009 (2) |
S2 | 0.0474 (4) | 0.0313 (4) | 0.0352 (4) | −0.0129 (3) | −0.0011 (3) | −0.0009 (3) |
O1 | 0.0681 (13) | 0.0304 (10) | 0.0434 (10) | −0.0213 (9) | 0.0001 (9) | −0.0038 (8) |
O4 | 0.0629 (12) | 0.0402 (11) | 0.0526 (12) | −0.0252 (9) | −0.0240 (10) | 0.0106 (9) |
O5 | 0.0881 (16) | 0.0351 (11) | 0.0444 (11) | −0.0256 (10) | −0.0035 (10) | −0.0036 (8) |
N6 | 0.0469 (12) | 0.0279 (11) | 0.0395 (11) | −0.0118 (9) | −0.0082 (9) | −0.0074 (9) |
N3 | 0.0426 (11) | 0.0251 (11) | 0.0437 (12) | −0.0115 (8) | −0.0086 (9) | −0.0046 (9) |
N1 | 0.0475 (12) | 0.0304 (11) | 0.0410 (12) | −0.0175 (9) | −0.0103 (9) | 0.0035 (9) |
N2 | 0.0475 (12) | 0.0263 (10) | 0.0436 (12) | −0.0159 (9) | −0.0113 (9) | 0.0005 (8) |
O2 | 0.0728 (13) | 0.0297 (10) | 0.0496 (11) | −0.0069 (9) | −0.0059 (10) | −0.0035 (8) |
C11 | 0.0491 (14) | 0.0316 (13) | 0.0415 (14) | −0.0079 (11) | −0.0100 (11) | −0.0113 (11) |
N5 | 0.0505 (13) | 0.0363 (12) | 0.0343 (11) | −0.0189 (10) | −0.0057 (9) | 0.0019 (9) |
C5 | 0.0456 (14) | 0.0327 (13) | 0.0331 (12) | −0.0151 (11) | −0.0032 (10) | −0.0023 (10) |
N4 | 0.0606 (15) | 0.0363 (13) | 0.0419 (13) | −0.0206 (11) | −0.0148 (11) | 0.0039 (10) |
O3 | 0.0605 (13) | 0.0655 (15) | 0.0512 (13) | −0.0273 (11) | 0.0125 (10) | −0.0013 (11) |
C10 | 0.0410 (13) | 0.0298 (12) | 0.0395 (13) | −0.0089 (10) | −0.0093 (10) | −0.0054 (10) |
C3 | 0.0378 (12) | 0.0328 (13) | 0.0437 (14) | −0.0107 (10) | −0.0030 (10) | −0.0062 (10) |
C2 | 0.0297 (11) | 0.0230 (11) | 0.0432 (13) | −0.0093 (8) | −0.0099 (9) | −0.0006 (9) |
C6 | 0.0529 (15) | 0.0373 (14) | 0.0485 (15) | −0.0203 (12) | −0.0088 (12) | 0.0048 (11) |
C1 | 0.0344 (11) | 0.0282 (12) | 0.0375 (13) | −0.0116 (9) | −0.0082 (9) | 0.0004 (9) |
C13 | 0.0458 (14) | 0.0281 (13) | 0.0536 (16) | −0.0109 (11) | −0.0054 (12) | 0.0033 (11) |
C14 | 0.0489 (15) | 0.0369 (14) | 0.0388 (14) | −0.0071 (11) | −0.0058 (11) | −0.0055 (11) |
C8 | 0.0549 (17) | 0.0600 (19) | 0.0384 (14) | −0.0180 (14) | −0.0130 (12) | −0.0015 (13) |
C12 | 0.0415 (13) | 0.0264 (12) | 0.0601 (17) | −0.0078 (10) | −0.0113 (12) | −0.0106 (11) |
C7 | 0.0516 (16) | 0.0532 (17) | 0.0495 (16) | −0.0262 (13) | −0.0084 (13) | −0.0025 (13) |
C4 | 0.071 (2) | 0.0458 (16) | 0.0443 (17) | −0.0181 (14) | 0.0043 (14) | −0.0100 (13) |
C9 | 0.0625 (17) | 0.0483 (16) | 0.0348 (14) | −0.0157 (13) | −0.0103 (12) | 0.0041 (12) |
S1—C2 | 1.726 (2) | N5—C5 | 1.368 (3) |
S1—C1 | 1.731 (3) | N5—H5A | 0.84 (4) |
S2—O3 | 1.418 (2) | C5—C6 | 1.423 (4) |
S2—O2 | 1.425 (2) | N4—H4A | 0.83 (4) |
S2—N4 | 1.581 (3) | N4—H4B | 0.88 (4) |
S2—C1 | 1.773 (3) | C3—C4 | 1.491 (4) |
O1—C3 | 1.222 (3) | C6—C7 | 1.352 (4) |
O4—C5 | 1.256 (3) | C6—H6 | 0.9300 |
O5—C10 | 1.253 (3) | C13—C14 | 1.354 (4) |
N6—C14 | 1.356 (4) | C13—C12 | 1.393 (4) |
N6—C10 | 1.361 (4) | C13—H13 | 0.9300 |
N6—H6A | 0.90 (4) | C14—H14 | 0.9300 |
N3—C3 | 1.356 (4) | C8—C9 | 1.353 (5) |
N3—C2 | 1.366 (4) | C8—C7 | 1.403 (4) |
N3—H3A | 0.85 (3) | C8—H8 | 0.9300 |
N1—C1 | 1.292 (3) | C12—H12 | 0.9300 |
N1—N2 | 1.372 (3) | C7—H7 | 0.9300 |
N2—C2 | 1.316 (3) | C4—H4C | 0.9600 |
C11—C12 | 1.356 (4) | C4—H4D | 0.9600 |
C11—C10 | 1.429 (4) | C4—H4E | 0.9600 |
C11—H11 | 0.9300 | C9—H9 | 0.9300 |
N5—C9 | 1.347 (4) | ||
C2—S1—C1 | 85.81 (12) | N2—C2—N3 | 120.9 (2) |
O3—S2—O2 | 120.57 (14) | N2—C2—S1 | 114.39 (19) |
O3—S2—N4 | 108.47 (15) | N3—C2—S1 | 124.73 (18) |
O2—S2—N4 | 108.92 (14) | C7—C6—C5 | 120.8 (3) |
O3—S2—C1 | 107.07 (13) | C7—C6—H6 | 119.6 |
O2—S2—C1 | 104.15 (12) | C5—C6—H6 | 119.6 |
N4—S2—C1 | 106.84 (13) | N1—C1—S1 | 115.6 (2) |
C14—N6—C10 | 124.0 (2) | N1—C1—S2 | 123.4 (2) |
C14—N6—H6A | 119 (2) | S1—C1—S2 | 120.98 (14) |
C10—N6—H6A | 117 (2) | C14—C13—C12 | 118.3 (3) |
C3—N3—C2 | 123.3 (2) | C14—C13—H13 | 120.8 |
C3—N3—H3A | 120 (2) | C12—C13—H13 | 120.8 |
C2—N3—H3A | 117 (2) | N6—C14—C13 | 120.5 (3) |
C1—N1—N2 | 111.9 (2) | N6—C14—H14 | 119.7 |
C2—N2—N1 | 112.4 (2) | C13—C14—H14 | 119.7 |
C12—C11—C10 | 120.7 (3) | C9—C8—C7 | 117.9 (3) |
C12—C11—H11 | 119.7 | C9—C8—H8 | 121.1 |
C10—C11—H11 | 119.7 | C7—C8—H8 | 121.1 |
C9—N5—C5 | 124.0 (2) | C11—C12—C13 | 121.1 (2) |
C9—N5—H5A | 118 (2) | C11—C12—H12 | 119.4 |
C5—N5—H5A | 118 (2) | C13—C12—H12 | 119.4 |
O4—C5—N5 | 119.9 (2) | C6—C7—C8 | 121.1 (3) |
O4—C5—C6 | 124.9 (2) | C6—C7—H7 | 119.4 |
N5—C5—C6 | 115.3 (2) | C8—C7—H7 | 119.4 |
S2—N4—H4A | 116 (3) | C3—C4—H4C | 109.5 |
S2—N4—H4B | 109 (3) | C3—C4—H4D | 109.5 |
H4A—N4—H4B | 119 (4) | H4C—C4—H4D | 109.5 |
O5—C10—N6 | 120.2 (2) | C3—C4—H4E | 109.5 |
O5—C10—C11 | 124.5 (2) | H4C—C4—H4E | 109.5 |
N6—C10—C11 | 115.3 (2) | H4D—C4—H4E | 109.5 |
O1—C3—N3 | 121.0 (3) | N5—C9—C8 | 120.9 (3) |
O1—C3—C4 | 123.1 (3) | N5—C9—H9 | 119.6 |
N3—C3—C4 | 115.9 (2) | C8—C9—H9 | 119.6 |
C4H6N4O3S2·C6H11NO·H2O | F(000) = 372 |
Mr = 353.42 | Dx = 1.481 Mg m−3 |
Triclinic, P1 | Melting point: 353 K |
a = 4.9969 (2) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 11.6983 (6) Å | Cell parameters from 2588 reflections |
c = 14.6244 (8) Å | θ = 4.3–71.6° |
α = 70.868 (5)° | µ = 3.34 mm−1 |
β = 81.892 (4)° | T = 298 K |
γ = 80.262 (4)° | Block, colorles |
V = 792.64 (7) Å3 | 0.22 × 0.20 × 0.18 mm |
Z = 2 |
Xcalibur, Eos, Gemini diffractometer | 2792 independent reflections |
Radiation source: fine-focus sealed tube | 2633 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.012 |
ω scans | θmax = 67.1°, θmin = 3.2° |
Absorption correction: multi-scan | h = −3→5 |
Tmin = 0.344, Tmax = 1.000 | k = −13→13 |
4238 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.111 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0732P)2 + 0.2015P] where P = (Fo2 + 2Fc2)/3 |
2792 reflections | (Δ/σ)max = 0.001 |
224 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
C4H6N4O3S2·C6H11NO·H2O | γ = 80.262 (4)° |
Mr = 353.42 | V = 792.64 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 4.9969 (2) Å | Cu Kα radiation |
b = 11.6983 (6) Å | µ = 3.34 mm−1 |
c = 14.6244 (8) Å | T = 298 K |
α = 70.868 (5)° | 0.22 × 0.20 × 0.18 mm |
β = 81.892 (4)° |
Xcalibur, Eos, Gemini diffractometer | 2792 independent reflections |
Absorption correction: multi-scan | 2633 reflections with I > 2σ(I) |
Tmin = 0.344, Tmax = 1.000 | Rint = 0.012 |
4238 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.111 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.24 e Å−3 |
2792 reflections | Δρmin = −0.34 e Å−3 |
224 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.46604 (9) | 0.66085 (4) | 0.81893 (3) | 0.03689 (17) | |
S2 | 0.13348 (9) | 0.88093 (4) | 0.86580 (3) | 0.03464 (16) | |
N1 | 0.5296 (3) | 0.72165 (15) | 0.96732 (11) | 0.0366 (4) | |
O3 | −0.0206 (3) | 0.85828 (14) | 0.80014 (11) | 0.0457 (4) | |
O2 | 0.0081 (3) | 0.89119 (14) | 0.95736 (10) | 0.0466 (4) | |
N3 | 0.8821 (4) | 0.48098 (15) | 0.88493 (12) | 0.0368 (4) | |
N2 | 0.7199 (3) | 0.62081 (14) | 0.96965 (12) | 0.0371 (4) | |
N4 | 0.2778 (4) | 0.99761 (15) | 0.81091 (14) | 0.0429 (4) | |
O1 | 0.6895 (4) | 0.47394 (14) | 0.75737 (12) | 0.0539 (4) | |
C2 | 0.7098 (4) | 0.58016 (16) | 0.89711 (13) | 0.0328 (4) | |
C1 | 0.3890 (4) | 0.75179 (16) | 0.89379 (13) | 0.0324 (4) | |
C3 | 0.8640 (4) | 0.43117 (17) | 0.81336 (14) | 0.0390 (4) | |
C4 | 1.0735 (5) | 0.3246 (2) | 0.81105 (18) | 0.0528 (5) | |
H4A | 1.0230 | 0.2843 | 0.7697 | 0.079* | |
H4B | 1.0847 | 0.2685 | 0.8756 | 0.079* | |
H4C | 1.2474 | 0.3523 | 0.7864 | 0.079* | |
O5 | 0.4198 (4) | 0.88908 (18) | 0.10029 (14) | 0.0568 (4) | |
O4 | 0.5211 (4) | 0.97154 (16) | 0.38384 (11) | 0.0561 (4) | |
N5 | 0.2630 (4) | 0.88580 (17) | 0.51860 (14) | 0.0481 (4) | |
C5 | 0.3483 (4) | 0.90157 (19) | 0.42601 (15) | 0.0427 (5) | |
C9 | 0.1699 (7) | 0.6720 (3) | 0.5939 (2) | 0.0746 (8) | |
H9A | 0.3564 | 0.6564 | 0.6108 | 0.089* | |
H9B | 0.0608 | 0.6243 | 0.6489 | 0.089* | |
C6 | 0.2383 (5) | 0.8302 (2) | 0.37460 (17) | 0.0534 (6) | |
H6A | 0.3010 | 0.8579 | 0.3061 | 0.064* | |
H6B | 0.0407 | 0.8460 | 0.3805 | 0.064* | |
C7 | 0.3268 (6) | 0.6928 (2) | 0.4155 (2) | 0.0677 (7) | |
H7A | 0.3143 | 0.6554 | 0.3663 | 0.081* | |
H7B | 0.5166 | 0.6795 | 0.4284 | 0.081* | |
C10 | 0.0673 (6) | 0.8057 (2) | 0.57692 (19) | 0.0590 (6) | |
H10A | −0.0990 | 0.8260 | 0.5446 | 0.071* | |
H10B | 0.0231 | 0.8202 | 0.6393 | 0.071* | |
C8 | 0.1611 (7) | 0.6293 (2) | 0.5076 (3) | 0.0772 (9) | |
H8A | −0.0274 | 0.6402 | 0.4937 | 0.093* | |
H8B | 0.2252 | 0.5425 | 0.5255 | 0.093* | |
H4E | 0.367 (6) | 1.022 (3) | 0.850 (2) | 0.058 (7)* | |
H3A | 0.998 (5) | 0.455 (2) | 0.9228 (18) | 0.039 (6)* | |
H5A | 0.329 (6) | 0.923 (2) | 0.5448 (19) | 0.050 (7)* | |
H4D | 0.349 (5) | 1.006 (2) | 0.751 (2) | 0.050 (7)* | |
H5B | 0.287 (8) | 0.934 (3) | 0.076 (2) | 0.079 (10)* | |
H5C | 0.469 (10) | 0.853 (4) | 0.068 (3) | 0.127 (18)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0384 (3) | 0.0384 (3) | 0.0366 (3) | 0.00291 (19) | −0.01233 (19) | −0.0158 (2) |
S2 | 0.0302 (3) | 0.0381 (3) | 0.0352 (3) | 0.00124 (18) | −0.00382 (18) | −0.01345 (19) |
N1 | 0.0373 (8) | 0.0387 (8) | 0.0349 (8) | −0.0013 (6) | −0.0063 (6) | −0.0136 (7) |
O3 | 0.0389 (8) | 0.0512 (8) | 0.0501 (8) | −0.0014 (6) | −0.0124 (6) | −0.0186 (7) |
O2 | 0.0409 (8) | 0.0547 (8) | 0.0426 (8) | 0.0022 (6) | 0.0022 (6) | −0.0197 (7) |
N3 | 0.0365 (9) | 0.0349 (8) | 0.0396 (9) | 0.0027 (6) | −0.0127 (7) | −0.0123 (7) |
N2 | 0.0387 (9) | 0.0371 (8) | 0.0362 (8) | 0.0006 (6) | −0.0093 (6) | −0.0127 (6) |
N4 | 0.0493 (10) | 0.0381 (9) | 0.0410 (10) | −0.0035 (7) | −0.0069 (8) | −0.0122 (7) |
O1 | 0.0611 (10) | 0.0526 (9) | 0.0560 (9) | 0.0082 (7) | −0.0247 (8) | −0.0277 (7) |
C2 | 0.0309 (9) | 0.0341 (9) | 0.0326 (9) | −0.0045 (7) | −0.0062 (7) | −0.0078 (7) |
C1 | 0.0309 (9) | 0.0325 (9) | 0.0340 (9) | −0.0018 (7) | −0.0029 (7) | −0.0119 (7) |
C3 | 0.0416 (11) | 0.0344 (9) | 0.0409 (10) | −0.0035 (8) | −0.0059 (8) | −0.0114 (8) |
C4 | 0.0578 (14) | 0.0464 (12) | 0.0569 (13) | 0.0064 (10) | −0.0091 (11) | −0.0245 (10) |
O5 | 0.0546 (11) | 0.0621 (10) | 0.0618 (11) | 0.0095 (8) | −0.0177 (8) | −0.0334 (9) |
O4 | 0.0656 (11) | 0.0634 (10) | 0.0453 (8) | −0.0290 (8) | 0.0041 (7) | −0.0186 (7) |
N5 | 0.0575 (12) | 0.0494 (10) | 0.0454 (10) | −0.0205 (9) | 0.0012 (8) | −0.0212 (8) |
C5 | 0.0447 (11) | 0.0414 (10) | 0.0435 (11) | −0.0061 (8) | −0.0062 (9) | −0.0141 (8) |
C9 | 0.094 (2) | 0.0565 (15) | 0.0684 (17) | −0.0294 (15) | −0.0192 (16) | 0.0009 (13) |
C6 | 0.0556 (14) | 0.0651 (14) | 0.0475 (12) | −0.0154 (11) | −0.0106 (10) | −0.0221 (11) |
C7 | 0.0662 (16) | 0.0645 (16) | 0.093 (2) | −0.0017 (13) | −0.0225 (15) | −0.0497 (15) |
C10 | 0.0631 (15) | 0.0655 (15) | 0.0523 (13) | −0.0263 (12) | 0.0078 (11) | −0.0202 (11) |
C8 | 0.085 (2) | 0.0432 (13) | 0.111 (2) | −0.0118 (13) | −0.0362 (18) | −0.0211 (14) |
S1—C2 | 1.7259 (18) | O1—C3 | 1.211 (3) |
S1—C1 | 1.7276 (18) | C3—C4 | 1.493 (3) |
S2—O3 | 1.4247 (15) | O4—C5 | 1.247 (3) |
S2—O2 | 1.4295 (15) | N5—C5 | 1.323 (3) |
S2—N4 | 1.5745 (18) | N5—C10 | 1.453 (3) |
S2—C1 | 1.7804 (18) | C5—C6 | 1.499 (3) |
N1—C1 | 1.287 (2) | C9—C8 | 1.510 (4) |
N1—N2 | 1.378 (2) | C9—C10 | 1.511 (4) |
N3—C2 | 1.369 (3) | C6—C7 | 1.530 (4) |
N3—C3 | 1.374 (3) | C7—C8 | 1.513 (4) |
N2—C2 | 1.307 (2) | ||
C2—S1—C1 | 85.27 (9) | N1—C1—S2 | 123.64 (14) |
O3—S2—O2 | 120.63 (9) | S1—C1—S2 | 120.19 (11) |
O3—S2—N4 | 108.90 (10) | O1—C3—N3 | 120.60 (19) |
O2—S2—N4 | 108.60 (10) | O1—C3—C4 | 124.51 (19) |
O3—S2—C1 | 104.01 (9) | N3—C3—C4 | 114.88 (18) |
O2—S2—C1 | 105.71 (9) | C5—N5—C10 | 126.3 (2) |
N4—S2—C1 | 108.33 (9) | O4—C5—N5 | 120.5 (2) |
C1—N1—N2 | 111.55 (15) | O4—C5—C6 | 121.2 (2) |
C2—N3—C3 | 123.01 (17) | N5—C5—C6 | 118.22 (19) |
C2—N2—N1 | 111.94 (15) | C8—C9—C10 | 114.0 (2) |
N2—C2—N3 | 121.76 (17) | C5—C6—C7 | 112.5 (2) |
N2—C2—S1 | 115.08 (14) | C8—C7—C6 | 114.5 (2) |
N3—C2—S1 | 123.16 (14) | N5—C10—C9 | 113.3 (2) |
N1—C1—S1 | 116.16 (14) | C9—C8—C7 | 115.7 (2) |
2(C4H6N4O3S2)·C2H6OS | Dx = 1.607 Mg m−3 |
Mr = 522.62 | Melting point: 423 K |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 52.62 (3) Å | Cell parameters from 8298 reflections |
b = 4.816 (2) Å | θ = 2.4–27.7° |
c = 17.814 (9) Å | µ = 0.59 mm−1 |
β = 106.785 (13)° | T = 298 K |
V = 4322 (4) Å3 | Plate, colorles |
Z = 8 | 0.20 × 0.18 × 0.18 mm |
F(000) = 2160 |
CCD area detector diffractometer | 3834 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.029 |
Graphite monochromator | θmax = 26.5°, θmin = 1.6° |
phi and ω scans | h = −64→64 |
21342 measured reflections | k = −6→6 |
4378 independent reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0543P)2 + 4.6734P] where P = (Fo2 + 2Fc2)/3 |
4378 reflections | (Δ/σ)max = 0.002 |
299 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
2(C4H6N4O3S2)·C2H6OS | V = 4322 (4) Å3 |
Mr = 522.62 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 52.62 (3) Å | µ = 0.59 mm−1 |
b = 4.816 (2) Å | T = 298 K |
c = 17.814 (9) Å | 0.20 × 0.18 × 0.18 mm |
β = 106.785 (13)° |
CCD area detector diffractometer | 3834 reflections with I > 2σ(I) |
21342 measured reflections | Rint = 0.029 |
4378 independent reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.101 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.43 e Å−3 |
4378 reflections | Δρmin = −0.25 e Å−3 |
299 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S3 | 0.006883 (10) | −0.05456 (11) | 0.15916 (3) | 0.03631 (14) | |
S4 | 0.063213 (11) | −0.27631 (11) | 0.21613 (3) | 0.03644 (14) | |
O4 | −0.04452 (3) | 0.0799 (3) | 0.12430 (9) | 0.0474 (4) | |
N7 | −0.02235 (3) | 0.3259 (4) | 0.05622 (10) | 0.0355 (4) | |
O6 | 0.04826 (3) | −0.4541 (3) | 0.25137 (10) | 0.0513 (4) | |
C6 | 0.00128 (4) | 0.1927 (4) | 0.08639 (11) | 0.0317 (4) | |
N5 | 0.04358 (3) | 0.0927 (4) | 0.09867 (10) | 0.0369 (4) | |
N8 | 0.08079 (4) | −0.0763 (4) | 0.28187 (12) | 0.0416 (4) | |
O5 | 0.07982 (3) | −0.3869 (4) | 0.17311 (10) | 0.0516 (4) | |
N6 | 0.02160 (3) | 0.2467 (4) | 0.06040 (10) | 0.0374 (4) | |
C7 | −0.04479 (4) | 0.2645 (5) | 0.07735 (12) | 0.0368 (5) | |
C5 | 0.03872 (4) | −0.0674 (4) | 0.15096 (11) | 0.0328 (4) | |
C8 | −0.06839 (5) | 0.4366 (6) | 0.03851 (15) | 0.0510 (6) | |
H8A | −0.0841 | 0.3476 | 0.0437 | 0.077* | |
H8B | −0.0697 | 0.4570 | −0.0161 | 0.077* | |
H8C | −0.0666 | 0.6163 | 0.0628 | 0.077* | |
S2 | 0.145927 (11) | 0.33975 (11) | 0.45615 (3) | 0.03771 (14) | |
S1 | 0.193875 (12) | 0.26355 (14) | 0.39428 (4) | 0.04959 (17) | |
N4 | 0.12674 (4) | 0.4870 (5) | 0.38253 (13) | 0.0435 (5) | |
O3 | 0.14239 (4) | 0.4519 (4) | 0.52612 (9) | 0.0549 (4) | |
N2 | 0.21778 (4) | 0.6305 (5) | 0.49380 (12) | 0.0495 (5) | |
C2 | 0.22078 (4) | 0.4699 (5) | 0.43775 (13) | 0.0423 (5) | |
C1 | 0.17893 (4) | 0.4219 (5) | 0.45742 (12) | 0.0383 (5) | |
N1 | 0.19316 (4) | 0.6020 (4) | 0.50505 (12) | 0.0467 (5) | |
O2 | 0.14364 (4) | 0.0484 (3) | 0.44237 (11) | 0.0542 (4) | |
N3 | 0.24391 (4) | 0.4683 (5) | 0.41755 (13) | 0.0484 (5) | |
C3 | 0.24843 (5) | 0.3005 (6) | 0.36117 (15) | 0.0576 (7) | |
O1 | 0.23177 (4) | 0.1342 (6) | 0.32735 (14) | 0.0918 (8) | |
C4 | 0.27461 (6) | 0.3372 (8) | 0.34596 (17) | 0.0676 (8) | |
H4A | 0.2827 | 0.1589 | 0.3449 | 0.101* | |
H4B | 0.2859 | 0.4485 | 0.3868 | 0.101* | |
H4C | 0.2721 | 0.4279 | 0.2964 | 0.101* | |
S5 | 0.134755 (13) | 0.27251 (13) | 0.18180 (4) | 0.04840 (17) | |
O7 | 0.13023 (4) | 0.1643 (4) | 0.25691 (9) | 0.0564 (5) | |
C9 | 0.11184 (5) | 0.0939 (6) | 0.10491 (13) | 0.0504 (6) | |
H9A | 0.1137 | −0.1024 | 0.1142 | 0.076* | |
H9B | 0.1152 | 0.1371 | 0.0561 | 0.076* | |
H9C | 0.0941 | 0.1500 | 0.1026 | 0.076* | |
C10 | 0.16389 (5) | 0.1016 (8) | 0.17402 (17) | 0.0722 (9) | |
H10A | 0.1790 | 0.1680 | 0.2144 | 0.108* | |
H10B | 0.1663 | 0.1397 | 0.1236 | 0.108* | |
H10C | 0.1621 | −0.0949 | 0.1799 | 0.108* | |
H4D | 0.1278 (5) | 0.415 (6) | 0.3405 (17) | 0.056 (8)* | |
H7A | −0.0230 (4) | 0.441 (5) | 0.0219 (12) | 0.029 (6)* | |
H4E | 0.1260 (5) | 0.634 (6) | 0.3891 (15) | 0.039 (8)* | |
H8D | 0.0928 (6) | 0.013 (6) | 0.2678 (15) | 0.052 (8)* | |
H8E | 0.0721 (6) | −0.010 (6) | 0.3084 (16) | 0.060 (9)* | |
H3A | 0.2545 (5) | 0.567 (6) | 0.4397 (15) | 0.050 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S3 | 0.0381 (3) | 0.0379 (3) | 0.0362 (3) | 0.0009 (2) | 0.0160 (2) | 0.0080 (2) |
S4 | 0.0398 (3) | 0.0301 (3) | 0.0407 (3) | 0.0057 (2) | 0.0136 (2) | 0.0033 (2) |
O4 | 0.0456 (9) | 0.0491 (10) | 0.0541 (9) | −0.0005 (7) | 0.0249 (7) | 0.0120 (8) |
N7 | 0.0342 (9) | 0.0389 (10) | 0.0337 (9) | −0.0011 (7) | 0.0104 (7) | 0.0089 (8) |
O6 | 0.0545 (10) | 0.0421 (9) | 0.0588 (10) | 0.0005 (8) | 0.0189 (8) | 0.0157 (8) |
C6 | 0.0350 (10) | 0.0327 (10) | 0.0280 (9) | −0.0048 (8) | 0.0098 (8) | −0.0006 (8) |
N5 | 0.0348 (9) | 0.0411 (10) | 0.0358 (9) | 0.0002 (8) | 0.0116 (7) | 0.0044 (8) |
N8 | 0.0397 (10) | 0.0453 (11) | 0.0394 (10) | 0.0043 (9) | 0.0109 (8) | 0.0006 (9) |
O5 | 0.0557 (10) | 0.0444 (9) | 0.0600 (10) | 0.0119 (8) | 0.0250 (8) | −0.0057 (8) |
N6 | 0.0340 (9) | 0.0435 (10) | 0.0350 (9) | −0.0016 (7) | 0.0105 (7) | 0.0083 (7) |
C7 | 0.0348 (11) | 0.0405 (12) | 0.0359 (11) | −0.0037 (9) | 0.0114 (9) | −0.0025 (9) |
C5 | 0.0356 (10) | 0.0325 (10) | 0.0309 (10) | 0.0010 (8) | 0.0106 (8) | −0.0007 (8) |
C8 | 0.0364 (12) | 0.0612 (16) | 0.0547 (14) | 0.0043 (11) | 0.0119 (10) | 0.0067 (12) |
S2 | 0.0394 (3) | 0.0343 (3) | 0.0405 (3) | −0.0055 (2) | 0.0131 (2) | −0.0010 (2) |
S1 | 0.0421 (3) | 0.0571 (4) | 0.0507 (4) | −0.0143 (3) | 0.0152 (3) | −0.0174 (3) |
N4 | 0.0423 (11) | 0.0383 (12) | 0.0485 (13) | 0.0014 (9) | 0.0109 (9) | −0.0056 (10) |
O3 | 0.0643 (11) | 0.0617 (11) | 0.0448 (9) | −0.0113 (9) | 0.0254 (8) | −0.0059 (8) |
N2 | 0.0350 (10) | 0.0523 (12) | 0.0563 (12) | −0.0047 (9) | 0.0055 (9) | −0.0129 (10) |
C2 | 0.0349 (11) | 0.0426 (12) | 0.0443 (12) | −0.0049 (9) | 0.0034 (9) | −0.0007 (10) |
C1 | 0.0362 (11) | 0.0378 (12) | 0.0386 (11) | −0.0016 (9) | 0.0071 (9) | −0.0003 (9) |
N1 | 0.0347 (10) | 0.0490 (12) | 0.0515 (11) | −0.0018 (8) | 0.0047 (8) | −0.0095 (9) |
O2 | 0.0596 (10) | 0.0334 (9) | 0.0693 (11) | −0.0064 (8) | 0.0184 (9) | 0.0019 (8) |
N3 | 0.0354 (10) | 0.0558 (13) | 0.0515 (12) | −0.0096 (9) | 0.0085 (9) | −0.0068 (10) |
C3 | 0.0494 (15) | 0.0767 (19) | 0.0479 (14) | −0.0093 (13) | 0.0157 (12) | −0.0072 (13) |
O1 | 0.0690 (14) | 0.130 (2) | 0.0859 (15) | −0.0363 (14) | 0.0367 (12) | −0.0586 (16) |
C4 | 0.0557 (16) | 0.098 (2) | 0.0542 (16) | −0.0054 (16) | 0.0240 (13) | 0.0036 (16) |
S5 | 0.0511 (4) | 0.0509 (4) | 0.0475 (3) | −0.0027 (3) | 0.0210 (3) | −0.0054 (3) |
O7 | 0.0606 (11) | 0.0700 (12) | 0.0417 (9) | −0.0001 (9) | 0.0195 (8) | −0.0046 (8) |
C9 | 0.0455 (13) | 0.0634 (16) | 0.0425 (13) | 0.0000 (12) | 0.0131 (10) | 0.0031 (11) |
C10 | 0.0413 (14) | 0.118 (3) | 0.0572 (16) | 0.0113 (16) | 0.0136 (12) | −0.0061 (17) |
S3—C6 | 1.722 (2) | S2—N4 | 1.574 (2) |
S3—C5 | 1.724 (2) | S2—C1 | 1.775 (2) |
S4—O5 | 1.4217 (17) | S1—C2 | 1.720 (2) |
S4—O6 | 1.4252 (17) | S1—C1 | 1.725 (2) |
S4—N8 | 1.590 (2) | N2—C2 | 1.308 (3) |
S4—C5 | 1.777 (2) | N2—N1 | 1.374 (3) |
O4—C7 | 1.218 (3) | C2—N3 | 1.365 (3) |
N7—C6 | 1.364 (3) | C1—N1 | 1.291 (3) |
N7—C7 | 1.371 (3) | N3—C3 | 1.363 (3) |
C6—N6 | 1.308 (3) | C3—O1 | 1.211 (3) |
N5—C5 | 1.290 (3) | C3—C4 | 1.489 (4) |
N5—N6 | 1.378 (2) | S5—O7 | 1.5172 (19) |
C7—C8 | 1.487 (3) | S5—C9 | 1.765 (3) |
S2—O3 | 1.4192 (18) | S5—C10 | 1.780 (3) |
S2—O2 | 1.4235 (19) | ||
C6—S3—C5 | 85.43 (10) | O2—S2—N4 | 107.36 (12) |
O5—S4—O6 | 121.06 (11) | O3—S2—C1 | 106.27 (11) |
O5—S4—N8 | 107.84 (12) | O2—S2—C1 | 104.81 (11) |
O6—S4—N8 | 108.49 (12) | N4—S2—C1 | 107.46 (11) |
O5—S4—C5 | 107.61 (10) | C2—S1—C1 | 85.53 (11) |
O6—S4—C5 | 103.86 (10) | C2—N2—N1 | 112.29 (19) |
N8—S4—C5 | 107.22 (11) | N2—C2—N3 | 121.2 (2) |
C6—N7—C7 | 123.36 (19) | N2—C2—S1 | 114.83 (18) |
N6—C6—N7 | 120.83 (18) | N3—C2—S1 | 123.97 (19) |
N6—C6—S3 | 115.10 (16) | N1—C1—S1 | 116.01 (17) |
N7—C6—S3 | 124.07 (15) | N1—C1—S2 | 122.54 (18) |
C5—N5—N6 | 111.46 (17) | S1—C1—S2 | 121.45 (13) |
C6—N6—N5 | 111.91 (17) | C1—N1—N2 | 111.32 (19) |
O4—C7—N7 | 120.4 (2) | C3—N3—C2 | 123.8 (2) |
O4—C7—C8 | 124.7 (2) | O1—C3—N3 | 120.2 (3) |
N7—C7—C8 | 114.93 (19) | O1—C3—C4 | 124.2 (3) |
N5—C5—S3 | 116.08 (15) | N3—C3—C4 | 115.5 (2) |
N5—C5—S4 | 123.54 (16) | O7—S5—C9 | 105.72 (12) |
S3—C5—S4 | 120.27 (12) | O7—S5—C10 | 105.53 (13) |
O3—S2—O2 | 120.03 (11) | C9—S5—C10 | 97.18 (14) |
O3—S2—N4 | 110.19 (13) |
C4H6N4O3S2·C6H7NO | Dx = 1.554 Mg m−3 |
Mr = 331.37 | Melting point: 403 K |
Monoclinic, p_1_c_1 | Cu Kα radiation, λ = 1.54184 Å |
a = 11.3972 (7) Å | Cell parameters from 3599 reflections |
b = 18.1641 (3) Å | θ = 4.6–71.4° |
c = 10.338 (3) Å | µ = 3.65 mm−1 |
β = 97.046 (16)° | T = 298 K |
V = 2124.0 (6) Å3 | BLOCK, colorles |
Z = 6 | 0.22 × 0.20 × 0.20 mm |
F(000) = 1032 |
Xcalibur, Eos, Gemini diffractometer | 4590 independent reflections |
Radiation source: fine-focus sealed tube | 4295 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
ω scans | θmax = 67.1°, θmin = 3.9° |
Absorption correction: multi-scan | h = −13→13 |
Tmin = 0.732, Tmax = 1.000 | k = −21→20 |
7371 measured reflections | l = −8→12 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.107 | w = 1/[σ2(Fo2) + (0.0757P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
4590 reflections | Δρmax = 0.41 e Å−3 |
583 parameters | Δρmin = −0.29 e Å−3 |
4 restraints | Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881 |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.19 (2) |
C4H6N4O3S2·C6H7NO | V = 2124.0 (6) Å3 |
Mr = 331.37 | Z = 6 |
Monoclinic, p_1_c_1 | Cu Kα radiation |
a = 11.3972 (7) Å | µ = 3.65 mm−1 |
b = 18.1641 (3) Å | T = 298 K |
c = 10.338 (3) Å | 0.22 × 0.20 × 0.20 mm |
β = 97.046 (16)° |
Xcalibur, Eos, Gemini diffractometer | 4590 independent reflections |
Absorption correction: multi-scan | 4295 reflections with I > 2σ(I) |
Tmin = 0.732, Tmax = 1.000 | Rint = 0.022 |
7371 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.107 | Δρmax = 0.41 e Å−3 |
S = 1.02 | Δρmin = −0.29 e Å−3 |
4590 reflections | Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881 |
583 parameters | Absolute structure parameter: 0.19 (2) |
4 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S4 | 0.28049 (9) | 0.44599 (6) | −0.01359 (11) | 0.0376 (3) | |
S3 | 0.30014 (9) | 0.27942 (6) | 0.02210 (11) | 0.0382 (3) | |
O4 | 0.2805 (3) | 0.13407 (19) | 0.0506 (4) | 0.0573 (10) | |
O6 | 0.1619 (3) | 0.4225 (2) | −0.0057 (4) | 0.0549 (9) | |
O5 | 0.3345 (3) | 0.50038 (19) | 0.0722 (4) | 0.0590 (9) | |
N5 | 0.4796 (3) | 0.3647 (2) | 0.0308 (4) | 0.0409 (9) | |
N6 | 0.5258 (3) | 0.2955 (2) | 0.0511 (4) | 0.0411 (8) | |
N7 | 0.4699 (3) | 0.1731 (2) | 0.0715 (4) | 0.0449 (9) | |
H41 | 0.5431 | 0.1606 | 0.0858 | 0.054* | |
N8 | 0.2915 (3) | 0.4716 (2) | −0.1575 (4) | 0.0424 (8) | |
H6A | 0.3718 | 0.4911 | −0.1596 | 0.051* | |
H6B | 0.2570 | 0.4484 | −0.2139 | 0.051* | |
C8 | 0.4348 (6) | 0.0452 (3) | 0.0997 (8) | 0.0729 (19) | |
H8A | 0.4006 | 0.0246 | 0.1720 | 0.109* | |
H8B | 0.5191 | 0.0484 | 0.1212 | 0.109* | |
H8C | 0.4167 | 0.0143 | 0.0246 | 0.109* | |
C6 | 0.4428 (3) | 0.2445 (3) | 0.0508 (4) | 0.0350 (9) | |
C7 | 0.3858 (4) | 0.1197 (3) | 0.0710 (5) | 0.0488 (12) | |
C5 | 0.3653 (4) | 0.3649 (2) | 0.0142 (4) | 0.0335 (9) | |
S5 | 0.10227 (8) | 0.22150 (6) | 0.72588 (10) | 0.0358 (2) | |
S6 | 0.12122 (10) | 0.05538 (6) | 0.75917 (11) | 0.0400 (3) | |
O7 | 0.1220 (3) | 0.36760 (19) | 0.6924 (4) | 0.0535 (9) | |
O9 | 0.0660 (4) | 0.00099 (19) | 0.6728 (4) | 0.0605 (10) | |
O8 | 0.2374 (3) | 0.0809 (2) | 0.7441 (4) | 0.0630 (11) | |
N9 | −0.0787 (4) | 0.1382 (2) | 0.7396 (4) | 0.0446 (10) | |
N11 | −0.0653 (3) | 0.3308 (2) | 0.7024 (4) | 0.0396 (8) | |
H11A | −0.1380 | 0.3441 | 0.7005 | 0.047* | |
N12 | 0.1148 (4) | 0.0280 (2) | 0.9023 (4) | 0.0497 (10) | |
H12D | 0.0681 | −0.0158 | 0.9096 | 0.060* | |
H12E | 0.1412 | 0.0525 | 0.9528 | 0.060* | |
N10 | −0.1225 (3) | 0.2087 (2) | 0.7257 (4) | 0.0436 (9) | |
C10 | −0.0376 (4) | 0.2574 (2) | 0.7178 (4) | 0.0344 (9) | |
C12 | −0.0299 (5) | 0.4598 (3) | 0.6730 (7) | 0.0649 (17) | |
H12A | −0.0753 | 0.4713 | 0.7427 | 0.097* | |
H12B | −0.0796 | 0.4632 | 0.5912 | 0.097* | |
H12C | 0.0344 | 0.4940 | 0.6738 | 0.097* | |
C11 | 0.0178 (4) | 0.3835 (3) | 0.6906 (5) | 0.0431 (11) | |
C9 | 0.0359 (4) | 0.1375 (2) | 0.7408 (4) | 0.0347 (9) | |
S1 | 0.63545 (9) | 0.27176 (6) | 0.37991 (11) | 0.0397 (3) | |
S2 | 0.61804 (10) | 0.43922 (6) | 0.34541 (11) | 0.0385 (2) | |
O3 | 0.4989 (3) | 0.41432 (19) | 0.3455 (4) | 0.0573 (9) | |
O1 | 0.6167 (3) | 0.1249 (2) | 0.4129 (5) | 0.0682 (12) | |
O2 | 0.6675 (4) | 0.48895 (19) | 0.4430 (4) | 0.0617 (10) | |
N1 | 0.8152 (3) | 0.3555 (2) | 0.3680 (4) | 0.0420 (9) | |
N2 | 0.8596 (3) | 0.2849 (2) | 0.3864 (4) | 0.0418 (8) | |
N4 | 0.6389 (4) | 0.4712 (2) | 0.2079 (4) | 0.0446 (9) | |
H4D | 0.5983 | 0.4581 | 0.1403 | 0.054* | |
N3 | 0.8042 (3) | 0.1637 (2) | 0.4104 (4) | 0.0394 (8) | |
C2 | 0.7768 (4) | 0.2354 (2) | 0.3929 (4) | 0.0309 (9) | |
C4 | 0.7705 (6) | 0.0349 (3) | 0.4338 (8) | 0.080 (2) | |
H4A | 0.7213 | 0.0056 | 0.4826 | 0.119* | |
H4B | 0.8491 | 0.0369 | 0.4793 | 0.119* | |
H4C | 0.7727 | 0.0133 | 0.3494 | 0.119* | |
C3 | 0.7218 (4) | 0.1102 (3) | 0.4186 (6) | 0.0511 (12) | |
C1 | 0.7018 (4) | 0.3562 (2) | 0.3629 (4) | 0.0353 (9) | |
O12 | 0.7022 (3) | 0.37071 (18) | 0.6965 (4) | 0.0497 (8) | |
N14 | 0.6329 (3) | 0.2555 (2) | 0.7260 (4) | 0.0393 (8) | |
H8 | 0.7047 | 0.2402 | 0.7387 | 0.047* | |
C20 | 0.4947 (4) | 0.3514 (3) | 0.6817 (5) | 0.0454 (11) | |
H20 | 0.4757 | 0.4006 | 0.6650 | 0.054* | |
C19 | 0.6146 (4) | 0.3287 (2) | 0.7012 (4) | 0.0378 (9) | |
C22 | 0.4318 (5) | 0.2274 (3) | 0.7137 (5) | 0.0492 (12) | |
H22 | 0.3706 | 0.1940 | 0.7185 | 0.059* | |
C21 | 0.4078 (4) | 0.3010 (3) | 0.6876 (5) | 0.0502 (12) | |
H21 | 0.3294 | 0.3163 | 0.6737 | 0.060* | |
C24 | 0.5861 (6) | 0.1268 (3) | 0.7586 (6) | 0.0631 (15) | |
H24A | 0.5198 | 0.0971 | 0.7749 | 0.095* | |
H24B | 0.6449 | 0.1256 | 0.8335 | 0.095* | |
H24C | 0.6192 | 0.1078 | 0.6843 | 0.095* | |
C23 | 0.5461 (4) | 0.2048 (3) | 0.7322 (5) | 0.0430 (11) | |
O11 | 0.0398 (3) | 0.12277 (16) | 0.4260 (3) | 0.0455 (7) | |
N15 | 0.1045 (3) | 0.2370 (2) | 0.3838 (4) | 0.0389 (9) | |
H18 | 0.0326 | 0.2519 | 0.3805 | 0.047* | |
C28 | 0.3019 (5) | 0.2660 (3) | 0.3663 (6) | 0.0554 (14) | |
H28 | 0.3608 | 0.2995 | 0.3526 | 0.067* | |
C30 | 0.1456 (6) | 0.3648 (3) | 0.3433 (7) | 0.0648 (16) | |
H30A | 0.1424 | 0.3882 | 0.4261 | 0.097* | |
H30B | 0.0680 | 0.3644 | 0.2951 | 0.097* | |
H30C | 0.1986 | 0.3915 | 0.2952 | 0.097* | |
C25 | 0.1252 (4) | 0.1634 (2) | 0.4082 (4) | 0.0391 (9) | |
C29 | 0.1883 (4) | 0.2883 (3) | 0.3641 (5) | 0.0458 (11) | |
C26 | 0.2446 (5) | 0.1411 (3) | 0.4093 (6) | 0.0521 (13) | |
H26 | 0.2650 | 0.0919 | 0.4235 | 0.063* | |
C27 | 0.3292 (4) | 0.1909 (3) | 0.3897 (5) | 0.0597 (14) | |
H27 | 0.4072 | 0.1753 | 0.3918 | 0.072* | |
O10 | 0.6983 (3) | 0.86477 (19) | 0.6009 (4) | 0.0580 (9) | |
N13 | 0.7772 (3) | 0.7540 (2) | 0.5595 (4) | 0.0402 (8) | |
H13A | 0.7070 | 0.7359 | 0.5512 | 0.048* | |
C16 | 0.9796 (4) | 0.7358 (3) | 0.5538 (5) | 0.0500 (12) | |
H16 | 1.0436 | 0.7058 | 0.5424 | 0.060* | |
C13 | 0.7879 (4) | 0.8275 (3) | 0.5867 (5) | 0.0436 (10) | |
C14 | 0.9056 (5) | 0.8560 (3) | 0.5969 (5) | 0.0515 (13) | |
H14 | 0.9192 | 0.9057 | 0.6142 | 0.062* | |
C18 | 0.8373 (5) | 0.6291 (3) | 0.5169 (6) | 0.0533 (12) | |
H18A | 0.9042 | 0.6039 | 0.4898 | 0.080* | |
H18B | 0.7720 | 0.6263 | 0.4489 | 0.080* | |
H18C | 0.8157 | 0.6065 | 0.5945 | 0.080* | |
C17 | 0.8680 (4) | 0.7066 (3) | 0.5436 (5) | 0.0434 (10) | |
C15 | 0.9974 (4) | 0.8109 (3) | 0.5814 (5) | 0.0549 (13) | |
H15 | 1.0737 | 0.8300 | 0.5893 | 0.066* | |
H4E | 0.656 (5) | 0.5161 (13) | 0.204 (5) | 0.063 (16)* | |
H53A | 0.875 (4) | 0.155 (3) | 0.423 (5) | 0.048 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S4 | 0.0373 (5) | 0.0325 (5) | 0.0446 (6) | 0.0043 (4) | 0.0116 (4) | 0.0000 (4) |
S3 | 0.0266 (5) | 0.0347 (5) | 0.0532 (6) | −0.0019 (4) | 0.0046 (4) | 0.0010 (5) |
O4 | 0.0358 (19) | 0.042 (2) | 0.092 (3) | −0.0081 (14) | 0.0000 (17) | −0.0007 (19) |
O6 | 0.0408 (17) | 0.054 (2) | 0.074 (2) | 0.0074 (15) | 0.0234 (16) | 0.0140 (18) |
O5 | 0.075 (2) | 0.0427 (19) | 0.059 (2) | 0.0038 (17) | 0.0064 (18) | −0.0133 (17) |
N5 | 0.0361 (19) | 0.031 (2) | 0.055 (2) | −0.0055 (14) | 0.0023 (16) | 0.0009 (16) |
N6 | 0.0303 (17) | 0.0358 (19) | 0.056 (2) | −0.0024 (14) | 0.0005 (15) | 0.0000 (16) |
N7 | 0.0289 (17) | 0.035 (2) | 0.069 (3) | −0.0006 (14) | 0.0018 (16) | 0.0047 (18) |
N8 | 0.0440 (19) | 0.0385 (19) | 0.044 (2) | 0.0000 (16) | 0.0040 (16) | 0.0018 (16) |
C8 | 0.057 (3) | 0.037 (3) | 0.122 (6) | −0.002 (2) | 0.002 (3) | 0.012 (3) |
C6 | 0.0224 (19) | 0.046 (3) | 0.036 (2) | −0.0001 (18) | 0.0010 (15) | −0.0080 (19) |
C7 | 0.043 (3) | 0.038 (2) | 0.065 (3) | −0.006 (2) | 0.007 (2) | 0.006 (2) |
C5 | 0.030 (2) | 0.034 (2) | 0.036 (2) | −0.0008 (16) | 0.0018 (16) | 0.0020 (17) |
S5 | 0.0318 (5) | 0.0285 (5) | 0.0478 (6) | −0.0017 (4) | 0.0078 (4) | −0.0019 (4) |
S6 | 0.0446 (6) | 0.0259 (5) | 0.0518 (7) | 0.0001 (4) | 0.0144 (5) | −0.0006 (4) |
O7 | 0.0367 (19) | 0.0381 (19) | 0.086 (3) | −0.0040 (14) | 0.0102 (17) | 0.0014 (17) |
O9 | 0.092 (3) | 0.0371 (18) | 0.054 (2) | −0.0016 (18) | 0.0126 (19) | −0.0094 (16) |
O8 | 0.0479 (19) | 0.042 (2) | 0.105 (3) | 0.0074 (15) | 0.034 (2) | 0.010 (2) |
N9 | 0.038 (2) | 0.035 (2) | 0.062 (3) | −0.0059 (15) | 0.0093 (18) | 0.0023 (17) |
N11 | 0.0310 (18) | 0.0321 (19) | 0.055 (2) | 0.0022 (15) | 0.0045 (16) | 0.0029 (16) |
N12 | 0.065 (3) | 0.0335 (19) | 0.050 (2) | −0.0082 (19) | 0.0066 (19) | 0.0047 (18) |
N10 | 0.0339 (19) | 0.0344 (19) | 0.062 (3) | −0.0035 (16) | 0.0051 (17) | 0.0040 (17) |
C10 | 0.032 (2) | 0.032 (2) | 0.038 (2) | −0.0014 (18) | 0.0008 (17) | −0.0012 (18) |
C12 | 0.050 (3) | 0.039 (3) | 0.107 (5) | 0.002 (2) | 0.015 (3) | 0.013 (3) |
C11 | 0.040 (3) | 0.035 (2) | 0.053 (3) | −0.0039 (19) | 0.001 (2) | 0.000 (2) |
C9 | 0.035 (2) | 0.026 (2) | 0.044 (2) | −0.0026 (16) | 0.0049 (18) | −0.0001 (17) |
S1 | 0.0337 (5) | 0.0321 (5) | 0.0541 (7) | 0.0011 (4) | 0.0081 (5) | 0.0012 (5) |
S2 | 0.0454 (6) | 0.0291 (5) | 0.0428 (6) | 0.0050 (4) | 0.0128 (4) | 0.0003 (4) |
O3 | 0.0479 (19) | 0.0468 (19) | 0.083 (3) | 0.0108 (15) | 0.0301 (17) | 0.0156 (18) |
O1 | 0.040 (2) | 0.050 (2) | 0.117 (4) | −0.0044 (16) | 0.018 (2) | 0.008 (2) |
O2 | 0.092 (3) | 0.0418 (18) | 0.051 (2) | 0.0106 (18) | 0.0070 (18) | −0.0111 (15) |
N1 | 0.041 (2) | 0.0315 (19) | 0.055 (2) | 0.0009 (14) | 0.0085 (16) | 0.0015 (16) |
N2 | 0.0341 (17) | 0.0330 (18) | 0.058 (2) | 0.0013 (15) | 0.0047 (16) | 0.0040 (17) |
N4 | 0.058 (2) | 0.0321 (19) | 0.043 (2) | −0.0051 (17) | 0.0035 (17) | 0.0032 (16) |
N3 | 0.0329 (19) | 0.0300 (18) | 0.055 (2) | 0.0013 (15) | 0.0048 (15) | 0.0030 (16) |
C2 | 0.031 (2) | 0.031 (2) | 0.032 (2) | 0.0027 (16) | 0.0071 (16) | 0.0037 (16) |
C4 | 0.056 (3) | 0.034 (3) | 0.148 (7) | 0.002 (3) | 0.010 (4) | 0.000 (4) |
C3 | 0.046 (3) | 0.034 (2) | 0.075 (4) | −0.001 (2) | 0.013 (2) | 0.002 (2) |
C1 | 0.039 (2) | 0.031 (2) | 0.037 (2) | 0.0026 (17) | 0.0046 (17) | −0.0007 (17) |
O12 | 0.0361 (16) | 0.0369 (17) | 0.076 (2) | −0.0010 (13) | 0.0081 (15) | 0.0028 (15) |
N14 | 0.0323 (17) | 0.0343 (19) | 0.051 (2) | 0.0030 (15) | 0.0045 (15) | 0.0038 (17) |
C20 | 0.037 (2) | 0.042 (2) | 0.056 (3) | 0.0099 (19) | 0.002 (2) | −0.001 (2) |
C19 | 0.034 (2) | 0.034 (2) | 0.045 (2) | −0.0009 (17) | 0.0058 (17) | −0.0029 (18) |
C22 | 0.039 (3) | 0.057 (3) | 0.053 (3) | −0.013 (2) | 0.009 (2) | −0.007 (2) |
C21 | 0.033 (2) | 0.058 (3) | 0.059 (3) | 0.002 (2) | 0.0041 (19) | −0.006 (2) |
C24 | 0.077 (4) | 0.039 (3) | 0.076 (4) | −0.010 (3) | 0.020 (3) | 0.006 (3) |
C23 | 0.044 (2) | 0.041 (2) | 0.046 (3) | −0.009 (2) | 0.0126 (19) | −0.004 (2) |
O11 | 0.0391 (15) | 0.0318 (14) | 0.066 (2) | −0.0012 (13) | 0.0090 (14) | 0.0051 (14) |
N15 | 0.0346 (19) | 0.0341 (19) | 0.047 (2) | −0.0055 (15) | 0.0035 (16) | 0.0007 (16) |
C28 | 0.050 (3) | 0.057 (3) | 0.060 (3) | −0.018 (2) | 0.010 (2) | −0.002 (3) |
C30 | 0.076 (4) | 0.040 (3) | 0.079 (4) | −0.012 (3) | 0.010 (3) | 0.007 (3) |
C25 | 0.039 (2) | 0.034 (2) | 0.044 (2) | −0.0032 (18) | 0.0058 (18) | −0.0021 (18) |
C29 | 0.054 (3) | 0.040 (2) | 0.042 (2) | −0.013 (2) | 0.002 (2) | 0.0014 (19) |
C26 | 0.044 (3) | 0.039 (3) | 0.072 (4) | −0.001 (2) | 0.004 (2) | −0.003 (2) |
C27 | 0.035 (2) | 0.072 (4) | 0.073 (4) | −0.007 (2) | 0.008 (2) | −0.003 (3) |
O10 | 0.0357 (16) | 0.0432 (19) | 0.094 (3) | −0.0010 (13) | 0.0013 (16) | −0.0068 (17) |
N13 | 0.0284 (17) | 0.044 (2) | 0.047 (2) | −0.0040 (15) | 0.0031 (14) | 0.0029 (17) |
C16 | 0.033 (2) | 0.058 (3) | 0.059 (3) | 0.000 (2) | 0.010 (2) | 0.009 (2) |
C13 | 0.035 (2) | 0.044 (2) | 0.050 (3) | −0.0046 (19) | 0.0002 (18) | 0.0042 (19) |
C14 | 0.043 (3) | 0.045 (3) | 0.064 (3) | −0.015 (2) | 0.001 (2) | 0.007 (2) |
C18 | 0.052 (3) | 0.044 (3) | 0.064 (3) | 0.000 (2) | 0.011 (2) | 0.000 (2) |
C17 | 0.039 (2) | 0.048 (3) | 0.044 (2) | 0.0016 (19) | 0.0090 (18) | 0.007 (2) |
C15 | 0.033 (2) | 0.068 (3) | 0.064 (3) | −0.009 (2) | 0.008 (2) | 0.014 (3) |
S4—O5 | 1.417 (4) | N3—C3 | 1.361 (6) |
S4—O6 | 1.429 (3) | N3—H53A | 0.82 (5) |
S4—N8 | 1.579 (4) | C4—C3 | 1.477 (7) |
S4—C5 | 1.767 (4) | C4—H4A | 0.9600 |
S3—C5 | 1.727 (4) | C4—H4B | 0.9600 |
S3—C6 | 1.736 (4) | C4—H4C | 0.9600 |
O4—C7 | 1.222 (6) | O12—C19 | 1.262 (5) |
N5—C5 | 1.293 (6) | N14—C23 | 1.359 (6) |
N5—N6 | 1.370 (5) | N14—C19 | 1.365 (6) |
N6—C6 | 1.324 (6) | N14—H8 | 0.8598 |
N7—C6 | 1.344 (6) | C20—C21 | 1.356 (7) |
N7—C7 | 1.364 (6) | C20—C19 | 1.419 (6) |
N7—H41 | 0.8600 | C20—H20 | 0.9300 |
N8—H6A | 0.9839 | C22—C23 | 1.356 (7) |
N8—H6B | 0.7845 | C22—C21 | 1.385 (7) |
C8—C7 | 1.479 (7) | C22—H22 | 0.9300 |
C8—H8A | 0.9600 | C21—H21 | 0.9300 |
C8—H8B | 0.9600 | C24—C23 | 1.504 (7) |
C8—H8C | 0.9600 | C24—H24A | 0.9600 |
S5—C10 | 1.715 (5) | C24—H24B | 0.9600 |
S5—C9 | 1.718 (4) | C24—H24C | 0.9600 |
S6—O9 | 1.425 (4) | O11—C25 | 1.253 (5) |
S6—O8 | 1.429 (4) | N15—C29 | 1.367 (6) |
S6—N12 | 1.571 (4) | N15—C25 | 1.376 (6) |
S6—C9 | 1.778 (4) | N15—H18 | 0.8601 |
O7—C11 | 1.220 (6) | C28—C29 | 1.355 (8) |
N9—C9 | 1.305 (6) | C28—C27 | 1.413 (8) |
N9—N10 | 1.375 (5) | C28—H28 | 0.9300 |
N11—C11 | 1.363 (6) | C30—C29 | 1.480 (7) |
N11—C10 | 1.375 (6) | C30—H30A | 0.9600 |
N11—H11A | 0.8600 | C30—H30B | 0.9600 |
N12—H12D | 0.9651 | C30—H30C | 0.9600 |
N12—H12E | 0.7225 | C25—C26 | 1.419 (7) |
N10—C10 | 1.321 (6) | C26—C27 | 1.356 (7) |
C12—C11 | 1.492 (7) | C26—H26 | 0.9300 |
C12—H12A | 0.9600 | C27—H27 | 0.9300 |
C12—H12B | 0.9600 | O10—C13 | 1.249 (5) |
C12—H12C | 0.9600 | N13—C13 | 1.366 (6) |
S1—C1 | 1.729 (4) | N13—C17 | 1.371 (6) |
S1—C2 | 1.731 (4) | N13—H13A | 0.8600 |
S2—O2 | 1.418 (4) | C16—C17 | 1.370 (7) |
S2—O3 | 1.431 (3) | C16—C15 | 1.403 (8) |
S2—N4 | 1.581 (4) | C16—H16 | 0.9300 |
S2—C1 | 1.782 (4) | C13—C14 | 1.430 (6) |
O1—C3 | 1.222 (6) | C14—C15 | 1.354 (8) |
N1—C1 | 1.287 (6) | C14—H14 | 0.9300 |
N1—N2 | 1.382 (5) | C18—C17 | 1.469 (7) |
N2—C2 | 1.311 (6) | C18—H18A | 0.9600 |
N4—H4D | 0.8244 | C18—H18B | 0.9600 |
N4—H4E | 0.84 (2) | C18—H18C | 0.9600 |
N3—C2 | 1.347 (6) | C15—H15 | 0.9300 |
O5—S4—O6 | 120.9 (2) | C3—C4—H4C | 109.5 |
O5—S4—N8 | 107.8 (2) | H4A—C4—H4C | 109.5 |
O6—S4—N8 | 109.1 (2) | H4B—C4—H4C | 109.5 |
O5—S4—C5 | 107.0 (2) | O1—C3—N3 | 121.4 (4) |
O6—S4—C5 | 104.1 (2) | O1—C3—C4 | 124.1 (5) |
N8—S4—C5 | 107.1 (2) | N3—C3—C4 | 114.5 (5) |
C5—S3—C6 | 86.4 (2) | N1—C1—S1 | 115.8 (3) |
C5—N5—N6 | 112.6 (4) | N1—C1—S2 | 122.4 (3) |
C6—N6—N5 | 112.4 (4) | S1—C1—S2 | 121.7 (3) |
C6—N7—C7 | 122.6 (4) | C23—N14—C19 | 125.0 (4) |
C6—N7—H41 | 118.7 | C23—N14—H8 | 117.3 |
C7—N7—H41 | 118.6 | C19—N14—H8 | 117.6 |
S4—N8—H6A | 107.9 | C21—C20—C19 | 119.5 (4) |
S4—N8—H6B | 116.9 | C21—C20—H20 | 120.2 |
H6A—N8—H6B | 124.0 | C19—C20—H20 | 120.2 |
C7—C8—H8A | 109.5 | O12—C19—N14 | 119.6 (4) |
C7—C8—H8B | 109.5 | O12—C19—C20 | 124.8 (4) |
H8A—C8—H8B | 109.5 | N14—C19—C20 | 115.6 (4) |
C7—C8—H8C | 109.5 | C23—C22—C21 | 118.9 (5) |
H8A—C8—H8C | 109.5 | C23—C22—H22 | 120.6 |
H8B—C8—H8C | 109.5 | C21—C22—H22 | 120.6 |
N6—C6—N7 | 121.6 (4) | C20—C21—C22 | 122.2 (5) |
N6—C6—S3 | 113.5 (4) | C20—C21—H21 | 118.9 |
N7—C6—S3 | 124.9 (3) | C22—C21—H21 | 118.9 |
O4—C7—N7 | 121.5 (5) | C23—C24—H24A | 109.5 |
O4—C7—C8 | 124.7 (5) | C23—C24—H24B | 109.5 |
N7—C7—C8 | 113.7 (5) | H24A—C24—H24B | 109.5 |
N5—C5—S3 | 115.1 (3) | C23—C24—H24C | 109.5 |
N5—C5—S4 | 123.0 (3) | H24A—C24—H24C | 109.5 |
S3—C5—S4 | 121.8 (2) | H24B—C24—H24C | 109.5 |
C10—S5—C9 | 85.7 (2) | C22—C23—N14 | 118.7 (5) |
O9—S6—O8 | 120.0 (3) | C22—C23—C24 | 125.1 (5) |
O9—S6—N12 | 107.6 (2) | N14—C23—C24 | 116.2 (4) |
O8—S6—N12 | 110.9 (2) | C29—N15—C25 | 125.7 (4) |
O9—S6—C9 | 108.7 (2) | C29—N15—H18 | 117.3 |
O8—S6—C9 | 102.6 (2) | C25—N15—H18 | 117.1 |
N12—S6—C9 | 106.1 (2) | C29—C28—C27 | 118.8 (5) |
C9—N9—N10 | 111.1 (4) | C29—C28—H28 | 120.6 |
C11—N11—C10 | 122.6 (4) | C27—C28—H28 | 120.6 |
C11—N11—H11A | 118.7 | C29—C30—H30A | 109.5 |
C10—N11—H11A | 118.7 | C29—C30—H30B | 109.5 |
S6—N12—H12D | 115.1 | H30A—C30—H30B | 109.5 |
S6—N12—H12E | 114.9 | C29—C30—H30C | 109.5 |
H12D—N12—H12E | 129.5 | H30A—C30—H30C | 109.5 |
C10—N10—N9 | 111.8 (4) | H30B—C30—H30C | 109.5 |
N10—C10—N11 | 119.8 (4) | O11—C25—N15 | 118.7 (4) |
N10—C10—S5 | 115.2 (3) | O11—C25—C26 | 126.3 (4) |
N11—C10—S5 | 125.0 (3) | N15—C25—C26 | 115.0 (4) |
C11—C12—H12A | 109.5 | C28—C29—N15 | 118.5 (5) |
C11—C12—H12B | 109.5 | C28—C29—C30 | 125.4 (5) |
H12A—C12—H12B | 109.5 | N15—C29—C30 | 116.0 (5) |
C11—C12—H12C | 109.5 | C27—C26—C25 | 120.5 (5) |
H12A—C12—H12C | 109.5 | C27—C26—H26 | 119.8 |
H12B—C12—H12C | 109.5 | C25—C26—H26 | 119.8 |
O7—C11—N11 | 121.2 (4) | C26—C27—C28 | 121.6 (5) |
O7—C11—C12 | 124.2 (4) | C26—C27—H27 | 119.2 |
N11—C11—C12 | 114.6 (4) | C28—C27—H27 | 119.2 |
N9—C9—S5 | 116.2 (3) | C13—N13—C17 | 126.1 (4) |
N9—C9—S6 | 122.9 (3) | C13—N13—H13A | 117.0 |
S5—C9—S6 | 120.9 (3) | C17—N13—H13A | 117.0 |
C1—S1—C2 | 86.1 (2) | C17—C16—C15 | 120.1 (5) |
O2—S2—O3 | 119.7 (2) | C17—C16—H16 | 119.9 |
O2—S2—N4 | 108.4 (2) | C15—C16—H16 | 119.9 |
O3—S2—N4 | 111.3 (2) | O10—C13—N13 | 120.0 (4) |
O2—S2—C1 | 107.8 (2) | O10—C13—C14 | 124.6 (4) |
O3—S2—C1 | 103.2 (2) | N13—C13—C14 | 115.4 (4) |
N4—S2—C1 | 105.3 (2) | C15—C14—C13 | 120.2 (5) |
C1—N1—N2 | 111.4 (4) | C15—C14—H14 | 119.9 |
C2—N2—N1 | 112.9 (3) | C13—C14—H14 | 119.9 |
S2—N4—H4D | 121.6 | C17—C18—H18A | 109.5 |
S2—N4—H4E | 117 (4) | C17—C18—H18B | 109.5 |
H4D—N4—H4E | 110.6 | H18A—C18—H18B | 109.5 |
C2—N3—C3 | 123.2 (4) | C17—C18—H18C | 109.5 |
C2—N3—H53A | 115 (4) | H18A—C18—H18C | 109.5 |
C3—N3—H53A | 121 (4) | H18B—C18—H18C | 109.5 |
N2—C2—N3 | 120.9 (4) | C16—C17—N13 | 117.1 (5) |
N2—C2—S1 | 113.8 (3) | C16—C17—C18 | 125.6 (5) |
N3—C2—S1 | 125.3 (3) | N13—C17—C18 | 117.3 (4) |
C3—C4—H4A | 109.5 | C14—C15—C16 | 121.2 (4) |
C3—C4—H4B | 109.5 | C14—C15—H15 | 119.4 |
H4A—C4—H4B | 109.5 | C16—C15—H15 | 119.4 |
C5—N5—N6—C6 | −0.8 (6) | C1—S1—C2—N3 | 179.9 (4) |
N5—N6—C6—N7 | −178.8 (4) | C2—N3—C3—O1 | −1.5 (9) |
N5—N6—C6—S3 | 1.0 (5) | C2—N3—C3—C4 | 178.2 (6) |
C7—N7—C6—N6 | −179.7 (4) | N2—N1—C1—S1 | 0.1 (5) |
C7—N7—C6—S3 | 0.5 (7) | N2—N1—C1—S2 | 177.8 (3) |
C5—S3—C6—N6 | −0.8 (4) | C2—S1—C1—N1 | −0.6 (4) |
C5—S3—C6—N7 | 179.0 (4) | C2—S1—C1—S2 | −178.3 (3) |
C6—N7—C7—O4 | 0.5 (8) | O2—S2—C1—N1 | −51.9 (5) |
C6—N7—C7—C8 | −178.3 (5) | O3—S2—C1—N1 | −179.5 (4) |
N6—N5—C5—S3 | 0.2 (5) | N4—S2—C1—N1 | 63.6 (4) |
N6—N5—C5—S4 | 179.8 (3) | O2—S2—C1—S1 | 125.7 (3) |
C6—S3—C5—N5 | 0.3 (4) | O3—S2—C1—S1 | −1.9 (3) |
C6—S3—C5—S4 | −179.3 (3) | N4—S2—C1—S1 | −118.8 (3) |
O5—S4—C5—N5 | −42.1 (5) | C23—N14—C19—O12 | −179.3 (4) |
O6—S4—C5—N5 | −171.2 (4) | C23—N14—C19—C20 | 0.4 (7) |
N8—S4—C5—N5 | 73.3 (4) | C21—C20—C19—O12 | 179.2 (5) |
O5—S4—C5—S3 | 137.5 (3) | C21—C20—C19—N14 | −0.5 (7) |
O6—S4—C5—S3 | 8.4 (3) | C19—C20—C21—C22 | 0.8 (8) |
N8—S4—C5—S3 | −107.1 (3) | C23—C22—C21—C20 | −0.9 (8) |
C9—N9—N10—C10 | −0.2 (6) | C21—C22—C23—N14 | 0.8 (8) |
N9—N10—C10—N11 | 179.4 (4) | C21—C22—C23—C24 | −178.7 (5) |
N9—N10—C10—S5 | 0.2 (6) | C19—N14—C23—C22 | −0.6 (7) |
C11—N11—C10—N10 | −178.4 (4) | C19—N14—C23—C24 | 179.0 (5) |
C11—N11—C10—S5 | 0.7 (7) | C29—N15—C25—O11 | 179.1 (4) |
C9—S5—C10—N10 | −0.1 (4) | C29—N15—C25—C26 | −1.5 (7) |
C9—S5—C10—N11 | −179.3 (4) | C27—C28—C29—N15 | −0.5 (8) |
C10—N11—C11—O7 | 0.4 (8) | C27—C28—C29—C30 | 178.8 (5) |
C10—N11—C11—C12 | 179.2 (5) | C25—N15—C29—C28 | 1.2 (8) |
N10—N9—C9—S5 | 0.1 (5) | C25—N15—C29—C30 | −178.2 (5) |
N10—N9—C9—S6 | 179.3 (3) | O11—C25—C26—C27 | −179.4 (5) |
C10—S5—C9—N9 | 0.0 (4) | N15—C25—C26—C27 | 1.3 (8) |
C10—S5—C9—S6 | −179.2 (3) | C25—C26—C27—C28 | −0.8 (9) |
O9—S6—C9—N9 | 47.4 (5) | C29—C28—C27—C26 | 0.3 (9) |
O8—S6—C9—N9 | 175.5 (4) | C17—N13—C13—O10 | −178.9 (5) |
N12—S6—C9—N9 | −68.1 (4) | C17—N13—C13—C14 | 1.1 (7) |
O9—S6—C9—S5 | −133.5 (3) | O10—C13—C14—C15 | 179.2 (5) |
O8—S6—C9—S5 | −5.4 (4) | N13—C13—C14—C15 | −0.8 (7) |
N12—S6—C9—S5 | 111.0 (3) | C15—C16—C17—N13 | 1.0 (8) |
C1—N1—N2—C2 | 0.7 (6) | C15—C16—C17—C18 | −179.1 (5) |
N1—N2—C2—N3 | 179.9 (4) | C13—N13—C17—C16 | −1.1 (8) |
N1—N2—C2—S1 | −1.2 (5) | C13—N13—C17—C18 | 178.9 (5) |
C3—N3—C2—N2 | 179.6 (5) | C13—C14—C15—C16 | 0.8 (8) |
C3—N3—C2—S1 | 0.8 (7) | C17—C16—C15—C14 | −0.8 (8) |
C1—S1—C2—N2 | 1.0 (4) |
C4H6N4O3S2·C6H6N2O | F(000) = 356 |
Mr = 344.38 | Dx = 1.551 Mg m−3 |
Triclinic, P1 | Melting point: 453 K |
a = 5.1477 (8) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 10.8147 (14) Å | Cell parameters from 1270 reflections |
c = 14.2604 (16) Å | θ = 4.4–71.7° |
α = 69.797 (11)° | µ = 3.55 mm−1 |
β = 85.463 (12)° | T = 298 K |
γ = 81.889 (12)° | BLOCK, colorles |
V = 737.20 (17) Å3 | 0.22 × 0.21 × 0.20 mm |
Z = 2 |
Xcalibur, Eos, Gemini diffractometer | 1906 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.041 |
Graphite monochromator | θmax = 67.1°, θmin = 3.3° |
Detector resolution: ω scans pixels mm-1 | h = −3→6 |
multi–scan | k = −12→12 |
4027 measured reflections | l = −16→16 |
2607 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.063 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.194 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.1157P)2] where P = (Fo2 + 2Fc2)/3 |
2607 reflections | (Δ/σ)max < 0.001 |
220 parameters | Δρmax = 0.41 e Å−3 |
2 restraints | Δρmin = −0.59 e Å−3 |
C4H6N4O3S2·C6H6N2O | γ = 81.889 (12)° |
Mr = 344.38 | V = 737.20 (17) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.1477 (8) Å | Cu Kα radiation |
b = 10.8147 (14) Å | µ = 3.55 mm−1 |
c = 14.2604 (16) Å | T = 298 K |
α = 69.797 (11)° | 0.22 × 0.21 × 0.20 mm |
β = 85.463 (12)° |
Xcalibur, Eos, Gemini diffractometer | 1906 reflections with I > 2σ(I) |
4027 measured reflections | Rint = 0.041 |
2607 independent reflections |
R[F2 > 2σ(F2)] = 0.063 | 2 restraints |
wR(F2) = 0.194 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | Δρmax = 0.41 e Å−3 |
2607 reflections | Δρmin = −0.59 e Å−3 |
220 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.1492 (2) | 0.93431 (10) | 0.78260 (8) | 0.0528 (4) | |
S2 | 0.5163 (2) | 0.78104 (10) | 0.67044 (7) | 0.0515 (3) | |
N2 | 0.7184 (7) | 0.9964 (3) | 0.5809 (2) | 0.0533 (9) | |
N3 | 0.9226 (8) | 0.8215 (4) | 0.5326 (3) | 0.0529 (9) | |
N1 | 0.5204 (7) | 1.0284 (3) | 0.6423 (3) | 0.0543 (9) | |
O1 | 0.8030 (8) | 0.6179 (3) | 0.5851 (3) | 0.0872 (12) | |
O3 | 0.0075 (6) | 1.0630 (3) | 0.7454 (3) | 0.0690 (9) | |
O2 | 0.0271 (6) | 0.8176 (3) | 0.7988 (2) | 0.0673 (9) | |
N4 | 0.2823 (9) | 0.9208 (5) | 0.8817 (3) | 0.0592 (10) | |
C2 | 0.7357 (8) | 0.8725 (4) | 0.5871 (3) | 0.0479 (10) | |
C3 | 0.9479 (10) | 0.6950 (5) | 0.5328 (4) | 0.0637 (12) | |
C1 | 0.4034 (8) | 0.9263 (4) | 0.6926 (3) | 0.0487 (10) | |
C4 | 1.1615 (13) | 0.6621 (5) | 0.4648 (5) | 0.0875 (19) | |
H4A | 1.2521 | 0.5757 | 0.4980 | 0.131* | |
H4B | 1.2829 | 0.7269 | 0.4477 | 0.131* | |
H4C | 1.0867 | 0.6627 | 0.4051 | 0.131* | |
O4 | 1.3130 (6) | 0.6472 (3) | 0.0123 (2) | 0.0590 (8) | |
N6 | 1.2270 (8) | 0.4391 (4) | 0.0931 (3) | 0.0561 (10) | |
C5 | 0.9382 (8) | 0.6198 (4) | 0.1226 (3) | 0.0479 (9) | |
C10 | 1.1739 (8) | 0.5686 (4) | 0.0720 (3) | 0.0481 (10) | |
N5 | 0.6488 (8) | 0.8116 (4) | 0.1285 (3) | 0.0655 (11) | |
C6 | 0.8526 (9) | 0.7547 (4) | 0.0894 (4) | 0.0623 (12) | |
H6 | 0.9449 | 0.8090 | 0.0360 | 0.075* | |
C9 | 0.8006 (9) | 0.5412 (5) | 0.2017 (3) | 0.0628 (12) | |
H9 | 0.8511 | 0.4501 | 0.2270 | 0.075* | |
C7 | 0.5195 (10) | 0.7322 (5) | 0.2058 (4) | 0.0676 (13) | |
H7 | 0.3773 | 0.7703 | 0.2351 | 0.081* | |
C8 | 0.5864 (11) | 0.5979 (5) | 0.2438 (4) | 0.0727 (15) | |
H8 | 0.4897 | 0.5457 | 0.2969 | 0.087* | |
H6B | 1.360 (6) | 0.411 (4) | 0.066 (3) | 0.052 (13)* | |
H3A | 1.028 (9) | 0.870 (4) | 0.506 (3) | 0.053 (13)* | |
H6A | 1.125 (7) | 0.384 (4) | 0.128 (3) | 0.058 (13)* | |
H4F | 0.328 (8) | 0.986 (5) | 0.885 (3) | 0.046 (13)* | |
H4E | 0.320 (10) | 0.845 (5) | 0.918 (4) | 0.071 (17)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0489 (6) | 0.0520 (6) | 0.0493 (6) | −0.0077 (4) | 0.0116 (4) | −0.0090 (5) |
S2 | 0.0566 (7) | 0.0445 (6) | 0.0463 (6) | −0.0127 (4) | 0.0127 (4) | −0.0071 (4) |
N2 | 0.061 (2) | 0.047 (2) | 0.0454 (18) | −0.0128 (16) | 0.0146 (16) | −0.0083 (15) |
N3 | 0.062 (2) | 0.045 (2) | 0.0479 (19) | −0.0186 (17) | 0.0178 (17) | −0.0105 (15) |
N1 | 0.059 (2) | 0.048 (2) | 0.0508 (19) | −0.0099 (16) | 0.0117 (16) | −0.0122 (16) |
O1 | 0.113 (3) | 0.054 (2) | 0.094 (3) | −0.032 (2) | 0.051 (2) | −0.0278 (19) |
O3 | 0.059 (2) | 0.065 (2) | 0.070 (2) | 0.0068 (16) | 0.0079 (16) | −0.0145 (16) |
O2 | 0.064 (2) | 0.069 (2) | 0.066 (2) | −0.0228 (16) | 0.0129 (16) | −0.0170 (16) |
N4 | 0.080 (3) | 0.048 (2) | 0.046 (2) | −0.014 (2) | 0.0039 (18) | −0.0100 (18) |
C2 | 0.054 (2) | 0.048 (2) | 0.0348 (18) | −0.0124 (18) | 0.0054 (17) | −0.0042 (16) |
C3 | 0.074 (3) | 0.053 (3) | 0.061 (3) | −0.018 (2) | 0.021 (2) | −0.017 (2) |
C1 | 0.051 (2) | 0.047 (2) | 0.043 (2) | −0.0118 (18) | 0.0073 (17) | −0.0088 (17) |
C4 | 0.106 (4) | 0.063 (3) | 0.094 (4) | −0.024 (3) | 0.049 (4) | −0.033 (3) |
O4 | 0.0586 (18) | 0.0482 (17) | 0.0567 (17) | −0.0069 (14) | 0.0210 (14) | −0.0054 (14) |
N6 | 0.053 (2) | 0.045 (2) | 0.059 (2) | −0.0030 (17) | 0.0180 (18) | −0.0087 (17) |
C5 | 0.050 (2) | 0.046 (2) | 0.044 (2) | −0.0077 (18) | 0.0063 (17) | −0.0108 (17) |
C10 | 0.047 (2) | 0.048 (2) | 0.043 (2) | −0.0064 (18) | 0.0040 (17) | −0.0081 (17) |
N5 | 0.064 (3) | 0.055 (2) | 0.070 (3) | −0.0044 (19) | 0.022 (2) | −0.0183 (19) |
C6 | 0.066 (3) | 0.052 (3) | 0.061 (3) | −0.009 (2) | 0.023 (2) | −0.014 (2) |
C9 | 0.064 (3) | 0.057 (3) | 0.053 (2) | −0.003 (2) | 0.017 (2) | −0.007 (2) |
C7 | 0.065 (3) | 0.071 (3) | 0.063 (3) | −0.009 (2) | 0.025 (2) | −0.024 (2) |
C8 | 0.074 (3) | 0.067 (3) | 0.064 (3) | −0.008 (2) | 0.033 (3) | −0.013 (2) |
S1—O3 | 1.419 (3) | C4—H4B | 0.9600 |
S1—O2 | 1.429 (3) | C4—H4C | 0.9600 |
S1—N4 | 1.572 (4) | O4—C10 | 1.239 (5) |
S1—C1 | 1.774 (4) | N6—C10 | 1.319 (5) |
S2—C2 | 1.719 (4) | N6—H6B | 0.832 (19) |
S2—C1 | 1.721 (4) | N6—H6A | 0.846 (19) |
N2—C2 | 1.302 (5) | C5—C9 | 1.370 (6) |
N2—N1 | 1.377 (5) | C5—C6 | 1.386 (6) |
N3—C3 | 1.355 (6) | C5—C10 | 1.499 (6) |
N3—C2 | 1.364 (5) | N5—C6 | 1.323 (6) |
N3—H3A | 0.79 (5) | N5—C7 | 1.337 (6) |
N1—C1 | 1.292 (5) | C6—H6 | 0.9300 |
O1—C3 | 1.211 (6) | C9—C8 | 1.382 (6) |
N4—H4F | 0.79 (4) | C9—H9 | 0.9300 |
N4—H4E | 0.81 (5) | C7—C8 | 1.366 (7) |
C3—C4 | 1.495 (7) | C7—H7 | 0.9300 |
C4—H4A | 0.9600 | C8—H8 | 0.9300 |
O3—S1—O2 | 121.4 (2) | H4A—C4—H4B | 109.5 |
O3—S1—N4 | 108.5 (2) | C3—C4—H4C | 109.5 |
O2—S1—N4 | 108.5 (2) | H4A—C4—H4C | 109.5 |
O3—S1—C1 | 106.4 (2) | H4B—C4—H4C | 109.5 |
O2—S1—C1 | 103.6 (2) | C10—N6—H6B | 118 (3) |
N4—S1—C1 | 107.6 (2) | C10—N6—H6A | 124 (3) |
C2—S2—C1 | 85.42 (19) | H6B—N6—H6A | 118 (4) |
C2—N2—N1 | 112.2 (3) | C9—C5—C6 | 116.9 (4) |
C3—N3—C2 | 124.2 (4) | C9—C5—C10 | 124.0 (4) |
C3—N3—H3A | 122 (3) | C6—C5—C10 | 119.1 (4) |
C2—N3—H3A | 113 (3) | O4—C10—N6 | 121.8 (4) |
C1—N1—N2 | 111.1 (3) | O4—C10—C5 | 120.1 (4) |
S1—N4—H4F | 117 (3) | N6—C10—C5 | 118.2 (3) |
S1—N4—H4E | 114 (4) | C6—N5—C7 | 117.0 (4) |
H4F—N4—H4E | 128 (5) | N5—C6—C5 | 124.6 (4) |
N2—C2—N3 | 120.8 (4) | N5—C6—H6 | 117.7 |
N2—C2—S2 | 115.1 (3) | C5—C6—H6 | 117.7 |
N3—C2—S2 | 124.0 (3) | C5—C9—C8 | 119.7 (4) |
O1—C3—N3 | 120.3 (4) | C5—C9—H9 | 120.2 |
O1—C3—C4 | 124.7 (5) | C8—C9—H9 | 120.2 |
N3—C3—C4 | 115.0 (4) | N5—C7—C8 | 123.1 (4) |
N1—C1—S2 | 116.2 (3) | N5—C7—H7 | 118.5 |
N1—C1—S1 | 121.7 (3) | C8—C7—H7 | 118.5 |
S2—C1—S1 | 122.0 (2) | C7—C8—C9 | 118.7 (4) |
C3—C4—H4A | 109.5 | C7—C8—H8 | 120.6 |
C3—C4—H4B | 109.5 | C9—C8—H8 | 120.6 |
C4H6N4O3S2·C6H6N2O·C5H5NO | F(000) = 456 |
Mr = 439.48 | Dx = 1.494 Mg m−3 |
Triclinic, P1 | Melting point: 398 K |
a = 7.0347 (3) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 10.2539 (7) Å | Cell parameters from 3059 reflections |
c = 13.7934 (9) Å | θ = 4.3–71.8° |
α = 81.685 (6)° | µ = 2.87 mm−1 |
β = 83.028 (5)° | T = 298 K |
γ = 88.283 (5)° | PLATE, colorles |
V = 977.13 (10) Å3 | 0.20 × 0.18 × 0.18 mm |
Z = 2 |
Xcalibur, Eos, Gemini diffractometer | 3493 independent reflections |
Radiation source: fine-focus sealed tube | 3085 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
ω scans | θmax = 67.1°, θmin = 3.3° |
Absorption correction: multi-scan | h = −8→5 |
Tmin = 0.374, Tmax = 1.000 | k = −12→12 |
5696 measured reflections | l = −16→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.061 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.179 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.1265P)2 + 0.1831P] where P = (Fo2 + 2Fc2)/3 |
3493 reflections | (Δ/σ)max < 0.001 |
269 parameters | Δρmax = 0.80 e Å−3 |
0 restraints | Δρmin = −0.44 e Å−3 |
C4H6N4O3S2·C6H6N2O·C5H5NO | γ = 88.283 (5)° |
Mr = 439.48 | V = 977.13 (10) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.0347 (3) Å | Cu Kα radiation |
b = 10.2539 (7) Å | µ = 2.87 mm−1 |
c = 13.7934 (9) Å | T = 298 K |
α = 81.685 (6)° | 0.20 × 0.18 × 0.18 mm |
β = 83.028 (5)° |
Xcalibur, Eos, Gemini diffractometer | 3493 independent reflections |
Absorption correction: multi-scan | 3085 reflections with I > 2σ(I) |
Tmin = 0.374, Tmax = 1.000 | Rint = 0.019 |
5696 measured reflections |
R[F2 > 2σ(F2)] = 0.061 | 0 restraints |
wR(F2) = 0.179 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.80 e Å−3 |
3493 reflections | Δρmin = −0.44 e Å−3 |
269 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.22992 (10) | 0.58018 (6) | 0.91819 (4) | 0.0443 (2) | |
S2 | 0.10956 (11) | 0.86219 (6) | 0.84318 (5) | 0.0509 (3) | |
N3 | 0.3772 (3) | 0.3583 (2) | 0.84479 (15) | 0.0432 (5) | |
H3A | 0.4276 | 0.3208 | 0.7958 | 0.052* | |
N4 | −0.1101 (4) | 0.8589 (3) | 0.83042 (18) | 0.0542 (6) | |
H4D | −0.135 (5) | 0.874 (4) | 0.765 (3) | 0.065* | |
H4E | −0.169 (5) | 0.809 (4) | 0.875 (3) | 0.065* | |
O4 | 0.2932 (3) | 0.3349 (2) | 1.00854 (14) | 0.0579 (6) | |
N1 | 0.2665 (4) | 0.6787 (2) | 0.73554 (17) | 0.0532 (6) | |
O2 | 0.1267 (4) | 0.8680 (2) | 0.94448 (18) | 0.0756 (7) | |
N2 | 0.3323 (4) | 0.5504 (2) | 0.73756 (17) | 0.0529 (6) | |
C2 | 0.3203 (4) | 0.4885 (3) | 0.82671 (17) | 0.0398 (5) | |
O3 | 0.1975 (4) | 0.9579 (2) | 0.7666 (2) | 0.0748 (7) | |
C3 | 0.3579 (4) | 0.2863 (3) | 0.93588 (19) | 0.0449 (6) | |
C1 | 0.2122 (4) | 0.7064 (3) | 0.82222 (19) | 0.0432 (6) | |
C4 | 0.4247 (6) | 0.1463 (3) | 0.9399 (2) | 0.0640 (9) | |
H4A | 0.5228 | 0.1301 | 0.9831 | 0.096* | |
H4B | 0.4755 | 0.1299 | 0.8750 | 0.096* | |
H4C | 0.3190 | 0.0889 | 0.9644 | 0.096* | |
O5 | 0.2092 (4) | 1.1295 (2) | 0.36200 (15) | 0.0630 (6) | |
N7 | 0.0777 (4) | 0.4994 (2) | 0.36778 (17) | 0.0498 (6) | |
H7A | 0.0756 | 0.4481 | 0.4231 | 0.060* | |
N6 | 0.2013 (3) | 1.0862 (2) | 0.52532 (17) | 0.0502 (6) | |
H6B | 0.1589 | 1.1642 | 0.5325 | 0.060* | |
H6A | 0.2210 | 1.0307 | 0.5762 | 0.060* | |
O1 | −0.0862 (4) | 0.6521 (2) | 0.44814 (15) | 0.0629 (6) | |
C6 | 0.3112 (4) | 0.9151 (3) | 0.42818 (18) | 0.0398 (5) | |
N5 | 0.4717 (3) | 0.7672 (2) | 0.32463 (16) | 0.0477 (5) | |
C12 | 0.0046 (5) | 0.7021 (3) | 0.2751 (2) | 0.0540 (7) | |
H12 | −0.0488 | 0.7866 | 0.2708 | 0.065* | |
C10 | 0.2361 (4) | 1.0519 (3) | 0.43622 (19) | 0.0424 (6) | |
C11 | −0.0067 (4) | 0.6203 (3) | 0.3685 (2) | 0.0491 (6) | |
C5 | 0.3970 (4) | 0.8856 (3) | 0.33832 (18) | 0.0444 (6) | |
H5 | 0.4032 | 0.9518 | 0.2843 | 0.053* | |
C14 | 0.1743 (5) | 0.5306 (3) | 0.1967 (2) | 0.0579 (7) | |
H14 | 0.2330 | 0.5000 | 0.1400 | 0.069* | |
C15 | 0.1651 (4) | 0.4540 (3) | 0.2854 (2) | 0.0521 (7) | |
H15 | 0.2189 | 0.3697 | 0.2902 | 0.063* | |
C13 | 0.0925 (5) | 0.6582 (3) | 0.1922 (2) | 0.0575 (7) | |
H13 | 0.0986 | 0.7129 | 0.1320 | 0.069* | |
C7 | 0.3000 (5) | 0.8162 (3) | 0.5076 (2) | 0.0555 (7) | |
H7 | 0.2422 | 0.8318 | 0.5692 | 0.067* | |
C8 | 0.3758 (6) | 0.6939 (3) | 0.4942 (2) | 0.0658 (9) | |
H8 | 0.3688 | 0.6255 | 0.5466 | 0.079* | |
C9 | 0.4616 (5) | 0.6739 (3) | 0.4030 (2) | 0.0547 (7) | |
H9 | 0.5153 | 0.5915 | 0.3954 | 0.066* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0696 (5) | 0.0335 (4) | 0.0282 (4) | 0.0075 (3) | −0.0027 (3) | −0.0030 (2) |
S2 | 0.0774 (5) | 0.0294 (4) | 0.0448 (4) | 0.0050 (3) | −0.0058 (3) | −0.0038 (3) |
N3 | 0.0577 (12) | 0.0366 (11) | 0.0318 (11) | 0.0107 (9) | 0.0030 (8) | −0.0025 (8) |
N4 | 0.0779 (17) | 0.0439 (13) | 0.0353 (12) | 0.0137 (11) | 0.0025 (11) | 0.0029 (10) |
O4 | 0.0930 (15) | 0.0422 (11) | 0.0336 (10) | 0.0111 (10) | 0.0032 (9) | −0.0007 (8) |
N1 | 0.0773 (16) | 0.0404 (12) | 0.0358 (12) | 0.0141 (11) | 0.0048 (10) | 0.0026 (9) |
O2 | 0.122 (2) | 0.0509 (13) | 0.0616 (15) | 0.0163 (13) | −0.0293 (14) | −0.0222 (11) |
N2 | 0.0769 (16) | 0.0417 (13) | 0.0336 (11) | 0.0163 (11) | 0.0063 (10) | 0.0028 (9) |
C2 | 0.0487 (13) | 0.0381 (13) | 0.0299 (12) | 0.0063 (10) | 0.0010 (9) | −0.0022 (9) |
O3 | 0.0926 (17) | 0.0371 (11) | 0.0856 (18) | −0.0042 (11) | 0.0049 (13) | 0.0099 (11) |
C3 | 0.0578 (15) | 0.0377 (13) | 0.0368 (13) | 0.0057 (11) | −0.0016 (11) | −0.0020 (10) |
C1 | 0.0598 (15) | 0.0319 (12) | 0.0353 (13) | 0.0042 (10) | −0.0018 (10) | −0.0001 (10) |
C4 | 0.099 (2) | 0.0414 (17) | 0.0458 (16) | 0.0157 (16) | 0.0004 (15) | 0.0013 (12) |
O5 | 0.1071 (17) | 0.0416 (11) | 0.0384 (11) | 0.0224 (11) | −0.0126 (10) | −0.0005 (9) |
N7 | 0.0734 (15) | 0.0398 (12) | 0.0368 (11) | 0.0072 (10) | −0.0077 (10) | −0.0080 (9) |
N6 | 0.0714 (15) | 0.0380 (12) | 0.0418 (12) | 0.0150 (10) | −0.0086 (10) | −0.0091 (9) |
O1 | 0.0994 (16) | 0.0466 (12) | 0.0427 (11) | 0.0234 (11) | −0.0076 (10) | −0.0127 (9) |
C6 | 0.0465 (13) | 0.0368 (13) | 0.0347 (12) | 0.0067 (10) | −0.0020 (9) | −0.0041 (10) |
N5 | 0.0618 (13) | 0.0444 (12) | 0.0349 (11) | 0.0118 (10) | 0.0023 (9) | −0.0080 (9) |
C12 | 0.0746 (18) | 0.0397 (14) | 0.0487 (16) | 0.0032 (13) | −0.0145 (13) | −0.0040 (12) |
C10 | 0.0512 (13) | 0.0365 (13) | 0.0388 (13) | 0.0057 (10) | −0.0058 (10) | −0.0036 (10) |
C11 | 0.0672 (16) | 0.0400 (14) | 0.0430 (15) | 0.0075 (12) | −0.0126 (12) | −0.0125 (11) |
C5 | 0.0578 (15) | 0.0414 (14) | 0.0318 (12) | 0.0078 (11) | −0.0024 (10) | −0.0021 (10) |
C14 | 0.0686 (18) | 0.0632 (19) | 0.0425 (15) | −0.0006 (14) | 0.0004 (13) | −0.0159 (13) |
C15 | 0.0656 (17) | 0.0440 (15) | 0.0483 (15) | 0.0063 (12) | −0.0040 (12) | −0.0154 (12) |
C13 | 0.0710 (18) | 0.0577 (18) | 0.0420 (15) | −0.0062 (14) | −0.0086 (13) | 0.0013 (13) |
C7 | 0.085 (2) | 0.0436 (15) | 0.0316 (13) | 0.0167 (13) | 0.0092 (12) | −0.0008 (11) |
C8 | 0.105 (3) | 0.0426 (17) | 0.0405 (16) | 0.0237 (16) | 0.0094 (15) | 0.0050 (12) |
C9 | 0.0780 (19) | 0.0385 (14) | 0.0438 (15) | 0.0180 (13) | 0.0020 (13) | −0.0049 (12) |
S1—C1 | 1.726 (2) | N7—C15 | 1.361 (4) |
S1—C2 | 1.730 (2) | N6—C10 | 1.320 (3) |
S2—O2 | 1.427 (2) | O1—C11 | 1.253 (3) |
S2—O3 | 1.428 (2) | C6—C7 | 1.377 (4) |
S2—N4 | 1.578 (3) | C6—C5 | 1.381 (3) |
S2—C1 | 1.781 (3) | C6—C10 | 1.499 (3) |
N3—C3 | 1.356 (3) | N5—C9 | 1.332 (4) |
N3—C2 | 1.379 (3) | N5—C5 | 1.338 (3) |
O4—C3 | 1.216 (3) | C12—C13 | 1.361 (4) |
N1—C1 | 1.279 (3) | C12—C11 | 1.427 (4) |
N1—N2 | 1.379 (3) | C14—C15 | 1.351 (4) |
N2—C2 | 1.294 (3) | C14—C13 | 1.409 (5) |
C3—C4 | 1.493 (4) | C7—C8 | 1.376 (4) |
O5—C10 | 1.233 (3) | C8—C9 | 1.368 (4) |
N7—C11 | 1.359 (4) | ||
C1—S1—C2 | 84.93 (12) | C11—N7—C15 | 124.4 (3) |
O2—S2—O3 | 121.32 (18) | C7—C6—C5 | 117.9 (2) |
O2—S2—N4 | 108.37 (16) | C7—C6—C10 | 122.6 (2) |
O3—S2—N4 | 107.68 (15) | C5—C6—C10 | 119.5 (2) |
O2—S2—C1 | 104.20 (13) | C9—N5—C5 | 117.2 (2) |
O3—S2—C1 | 106.83 (14) | C13—C12—C11 | 120.8 (3) |
N4—S2—C1 | 107.75 (14) | O5—C10—N6 | 121.4 (3) |
C3—N3—C2 | 123.4 (2) | O5—C10—C6 | 121.0 (2) |
C1—N1—N2 | 111.9 (2) | N6—C10—C6 | 117.6 (2) |
C2—N2—N1 | 111.6 (2) | O1—C11—N7 | 119.5 (3) |
N2—C2—N3 | 120.8 (2) | O1—C11—C12 | 125.1 (3) |
N2—C2—S1 | 115.5 (2) | N7—C11—C12 | 115.4 (3) |
N3—C2—S1 | 123.76 (18) | N5—C5—C6 | 123.6 (2) |
O4—C3—N3 | 121.4 (2) | C15—C14—C13 | 118.2 (3) |
O4—C3—C4 | 123.2 (2) | C14—C15—N7 | 120.5 (3) |
N3—C3—C4 | 115.3 (2) | C12—C13—C14 | 120.8 (3) |
N1—C1—S1 | 116.1 (2) | C8—C7—C6 | 118.8 (3) |
N1—C1—S2 | 122.40 (19) | C9—C8—C7 | 119.4 (3) |
S1—C1—S2 | 121.40 (15) | N5—C9—C8 | 122.9 (3) |
C4H6N4O3S2·C6H7NO2·H2O | F(000) = 380 |
Mr = 365.39 | Dx = 1.565 Mg m−3 |
Triclinic, P1 | Melting point: 363 K |
a = 7.7872 (6) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 10.2130 (7) Å | Cell parameters from 2221 reflections |
c = 10.2464 (7) Å | θ = 4.4–71.6° |
α = 88.192 (5)° | µ = 3.49 mm−1 |
β = 76.587 (6)° | T = 298 K |
γ = 77.996 (6)° | PLATE, colorles |
V = 775.22 (9) Å3 | 0.22 × 0.20 × 0.18 mm |
Z = 2 |
Xcalibur, Eos, Gemini diffractometer | 2734 independent reflections |
Radiation source: fine-focus sealed tube | 2406 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
ω scans | θmax = 67.1°, θmin = 4.4° |
Absorption correction: multi-scan | h = −7→9 |
Tmin = 0.530, Tmax = 1.000 | k = −12→12 |
4182 measured reflections | l = −12→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.141 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.1021P)2] where P = (Fo2 + 2Fc2)/3 |
2734 reflections | (Δ/σ)max < 0.001 |
234 parameters | Δρmax = 0.41 e Å−3 |
3 restraints | Δρmin = −0.48 e Å−3 |
C4H6N4O3S2·C6H7NO2·H2O | γ = 77.996 (6)° |
Mr = 365.39 | V = 775.22 (9) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.7872 (6) Å | Cu Kα radiation |
b = 10.2130 (7) Å | µ = 3.49 mm−1 |
c = 10.2464 (7) Å | T = 298 K |
α = 88.192 (5)° | 0.22 × 0.20 × 0.18 mm |
β = 76.587 (6)° |
Xcalibur, Eos, Gemini diffractometer | 2734 independent reflections |
Absorption correction: multi-scan | 2406 reflections with I > 2σ(I) |
Tmin = 0.530, Tmax = 1.000 | Rint = 0.029 |
4182 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 3 restraints |
wR(F2) = 0.141 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.41 e Å−3 |
2734 reflections | Δρmin = −0.48 e Å−3 |
234 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S2 | 0.74682 (8) | 0.29948 (6) | 0.41441 (5) | 0.0401 (2) | |
S1 | 0.89362 (8) | 0.29672 (6) | 0.11297 (5) | 0.0375 (2) | |
O3 | 0.6751 (3) | 0.42953 (19) | 0.3709 (2) | 0.0599 (6) | |
O5 | 0.5802 (2) | 0.08098 (17) | 0.15601 (17) | 0.0447 (4) | |
O4 | 0.3422 (2) | 0.29976 (16) | 0.26201 (16) | 0.0444 (4) | |
N4 | 0.5914 (3) | 0.2185 (3) | 0.4532 (2) | 0.0460 (5) | |
N3 | 1.1399 (3) | 0.1432 (2) | −0.08603 (19) | 0.0364 (4) | |
N5 | 0.5962 (3) | 0.16290 (19) | −0.0548 (2) | 0.0378 (4) | |
O6 | 0.3340 (3) | 0.0077 (2) | 0.3844 (2) | 0.0602 (6) | |
C7 | 0.3504 (3) | 0.3883 (2) | 0.0383 (2) | 0.0375 (5) | |
H7 | 0.2658 | 0.4658 | 0.0697 | 0.045* | |
O1 | 0.9721 (3) | 0.3295 (2) | −0.1467 (2) | 0.0653 (6) | |
O2 | 0.8426 (3) | 0.2846 (2) | 0.51861 (19) | 0.0592 (5) | |
N2 | 1.1116 (3) | 0.0757 (2) | 0.1363 (2) | 0.0398 (5) | |
C5 | 0.4011 (3) | 0.2938 (2) | 0.1270 (2) | 0.0336 (5) | |
C1 | 0.8998 (3) | 0.2235 (2) | 0.2664 (2) | 0.0365 (5) | |
N1 | 1.0156 (3) | 0.1136 (2) | 0.2650 (2) | 0.0414 (5) | |
C3 | 1.0888 (3) | 0.2312 (3) | −0.1803 (2) | 0.0436 (6) | |
C2 | 1.0616 (3) | 0.1613 (2) | 0.0475 (2) | 0.0322 (5) | |
C8 | 0.4252 (4) | 0.3693 (2) | −0.1000 (3) | 0.0437 (6) | |
H8 | 0.3893 | 0.4333 | −0.1603 | 0.052* | |
C6 | 0.5303 (3) | 0.1729 (2) | 0.0796 (2) | 0.0338 (5) | |
C4 | 1.1868 (5) | 0.1965 (4) | −0.3222 (3) | 0.0627 (8) | |
H4A | 1.1012 | 0.1972 | −0.3764 | 0.094* | |
H4B | 1.2627 | 0.1089 | −0.3263 | 0.094* | |
H4C | 1.2596 | 0.2609 | −0.3553 | 0.094* | |
C9 | 0.5493 (4) | 0.2576 (3) | −0.1445 (2) | 0.0418 (5) | |
H9 | 0.6026 | 0.2450 | −0.2355 | 0.050* | |
C13 | 0.2285 (4) | 0.4222 (3) | 0.3220 (3) | 0.0506 (7) | |
H13A | 0.2920 | 0.4941 | 0.3008 | 0.076* | |
H13B | 0.1960 | 0.4130 | 0.4176 | 0.076* | |
H13C | 0.1213 | 0.4415 | 0.2878 | 0.076* | |
H4D | 0.620 (5) | 0.149 (4) | 0.489 (4) | 0.057 (9)* | |
H4E | 0.529 (5) | 0.211 (4) | 0.390 (4) | 0.078 (11)* | |
H5A | 0.683 (4) | 0.087 (3) | −0.081 (3) | 0.048 (8)* | |
H3A | 1.217 (4) | 0.076 (3) | −0.109 (3) | 0.042 (7)* | |
H6B | 0.220 (3) | 0.043 (4) | 0.379 (4) | 0.080 (12)* | |
H6A | 0.405 (4) | 0.045 (3) | 0.314 (3) | 0.060 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S2 | 0.0419 (4) | 0.0430 (4) | 0.0311 (3) | −0.0038 (3) | −0.0039 (2) | −0.0028 (2) |
S1 | 0.0348 (4) | 0.0377 (3) | 0.0338 (3) | 0.0016 (2) | −0.0040 (2) | 0.0020 (2) |
O3 | 0.0725 (14) | 0.0416 (10) | 0.0502 (11) | 0.0010 (9) | 0.0055 (10) | 0.0007 (8) |
O5 | 0.0497 (10) | 0.0350 (9) | 0.0407 (9) | 0.0050 (7) | −0.0057 (8) | 0.0038 (7) |
O4 | 0.0552 (11) | 0.0357 (9) | 0.0347 (9) | 0.0039 (8) | −0.0071 (8) | −0.0008 (7) |
N4 | 0.0402 (12) | 0.0567 (14) | 0.0375 (11) | −0.0061 (10) | −0.0063 (9) | 0.0079 (10) |
N3 | 0.0340 (11) | 0.0374 (10) | 0.0326 (10) | −0.0006 (9) | −0.0031 (8) | −0.0007 (8) |
N5 | 0.0427 (11) | 0.0302 (10) | 0.0378 (10) | −0.0029 (8) | −0.0076 (8) | −0.0028 (8) |
O6 | 0.0564 (13) | 0.0674 (13) | 0.0529 (11) | −0.0058 (10) | −0.0136 (10) | 0.0228 (10) |
C7 | 0.0392 (13) | 0.0285 (11) | 0.0445 (12) | −0.0046 (9) | −0.0115 (10) | 0.0018 (9) |
O1 | 0.0630 (13) | 0.0660 (13) | 0.0457 (10) | 0.0249 (11) | −0.0053 (9) | 0.0097 (9) |
O2 | 0.0592 (12) | 0.0803 (14) | 0.0407 (10) | −0.0134 (10) | −0.0160 (9) | −0.0114 (9) |
N2 | 0.0410 (11) | 0.0374 (10) | 0.0356 (10) | −0.0006 (8) | −0.0047 (8) | 0.0018 (8) |
C5 | 0.0352 (12) | 0.0299 (11) | 0.0367 (11) | −0.0079 (9) | −0.0086 (9) | −0.0022 (9) |
C1 | 0.0333 (12) | 0.0406 (12) | 0.0342 (11) | −0.0062 (9) | −0.0064 (9) | 0.0007 (9) |
N1 | 0.0395 (11) | 0.0433 (11) | 0.0359 (10) | −0.0025 (9) | −0.0033 (8) | 0.0020 (8) |
C3 | 0.0379 (13) | 0.0531 (15) | 0.0359 (12) | −0.0022 (11) | −0.0075 (10) | 0.0041 (10) |
C2 | 0.0293 (11) | 0.0314 (11) | 0.0355 (11) | −0.0068 (8) | −0.0063 (9) | 0.0008 (9) |
C8 | 0.0546 (16) | 0.0366 (13) | 0.0418 (13) | −0.0086 (11) | −0.0163 (11) | 0.0090 (10) |
C6 | 0.0353 (12) | 0.0309 (11) | 0.0364 (11) | −0.0083 (9) | −0.0094 (9) | 0.0014 (9) |
C4 | 0.0592 (18) | 0.081 (2) | 0.0347 (14) | 0.0094 (15) | −0.0069 (12) | 0.0058 (13) |
C9 | 0.0492 (15) | 0.0418 (13) | 0.0344 (11) | −0.0111 (10) | −0.0081 (10) | 0.0007 (10) |
C13 | 0.0557 (17) | 0.0435 (14) | 0.0423 (13) | 0.0030 (12) | −0.0019 (12) | −0.0061 (11) |
S2—O2 | 1.4252 (19) | C7—C5 | 1.366 (3) |
S2—O3 | 1.430 (2) | C7—C8 | 1.404 (3) |
S2—N4 | 1.575 (2) | C7—H7 | 0.9300 |
S2—C1 | 1.781 (2) | O1—C3 | 1.204 (3) |
S1—C2 | 1.724 (2) | N2—C2 | 1.310 (3) |
S1—C1 | 1.726 (2) | N2—N1 | 1.380 (3) |
O5—C6 | 1.260 (3) | C5—C6 | 1.438 (3) |
O4—C5 | 1.352 (3) | C1—N1 | 1.284 (3) |
O4—C13 | 1.436 (3) | C3—C4 | 1.493 (4) |
N4—H4D | 0.80 (4) | C8—C9 | 1.347 (4) |
N4—H4E | 0.91 (4) | C8—H8 | 0.9300 |
N3—C2 | 1.363 (3) | C4—H4A | 0.9600 |
N3—C3 | 1.369 (3) | C4—H4B | 0.9600 |
N3—H3A | 0.81 (3) | C4—H4C | 0.9600 |
N5—C6 | 1.352 (3) | C9—H9 | 0.9300 |
N5—C9 | 1.366 (3) | C13—H13A | 0.9600 |
N5—H5A | 0.92 (3) | C13—H13B | 0.9600 |
O6—H6B | 0.902 (18) | C13—H13C | 0.9600 |
O6—H6A | 0.923 (18) | ||
O2—S2—O3 | 120.66 (13) | C1—N1—N2 | 111.50 (19) |
O2—S2—N4 | 108.27 (13) | O1—C3—N3 | 120.2 (2) |
O3—S2—N4 | 109.07 (14) | O1—C3—C4 | 124.0 (2) |
O2—S2—C1 | 107.37 (12) | N3—C3—C4 | 115.7 (2) |
O3—S2—C1 | 103.16 (11) | N2—C2—N3 | 121.5 (2) |
N4—S2—C1 | 107.58 (12) | N2—C2—S1 | 114.94 (17) |
C2—S1—C1 | 85.36 (11) | N3—C2—S1 | 123.57 (17) |
C5—O4—C13 | 117.92 (18) | C9—C8—C7 | 119.4 (2) |
S2—N4—H4D | 114 (2) | C9—C8—H8 | 120.3 |
S2—N4—H4E | 117 (2) | C7—C8—H8 | 120.3 |
H4D—N4—H4E | 112 (3) | O5—C6—N5 | 121.3 (2) |
C2—N3—C3 | 122.3 (2) | O5—C6—C5 | 123.3 (2) |
C2—N3—H3A | 118 (2) | N5—C6—C5 | 115.4 (2) |
C3—N3—H3A | 120 (2) | C3—C4—H4A | 109.5 |
C6—N5—C9 | 125.0 (2) | C3—C4—H4B | 109.5 |
C6—N5—H5A | 113.3 (19) | H4A—C4—H4B | 109.5 |
C9—N5—H5A | 121.7 (19) | C3—C4—H4C | 109.5 |
H6B—O6—H6A | 105 (3) | H4A—C4—H4C | 109.5 |
C5—C7—C8 | 120.5 (2) | H4B—C4—H4C | 109.5 |
C5—C7—H7 | 119.8 | C8—C9—N5 | 119.5 (2) |
C8—C7—H7 | 119.8 | C8—C9—H9 | 120.3 |
C2—N2—N1 | 111.88 (19) | N5—C9—H9 | 120.3 |
O4—C5—C7 | 126.7 (2) | O4—C13—H13A | 109.5 |
O4—C5—C6 | 112.98 (19) | O4—C13—H13B | 109.5 |
C7—C5—C6 | 120.3 (2) | H13A—C13—H13B | 109.5 |
N1—C1—S1 | 116.32 (18) | O4—C13—H13C | 109.5 |
N1—C1—S2 | 123.92 (18) | H13A—C13—H13C | 109.5 |
S1—C1—S2 | 119.75 (14) | H13B—C13—H13C | 109.5 |
C4H6N4O3S2·2(C5H9NO) | Dx = 1.418 Mg m−3 |
Mr = 420.51 | Melting point: 366 K |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 9.66166 (19) Å | Cell parameters from 3314 reflections |
b = 23.4685 (4) Å | θ = 4.7–71.6° |
c = 8.84352 (17) Å | µ = 2.80 mm−1 |
β = 100.7730 (19)° | T = 298 K |
V = 1969.88 (7) Å3 | Needle, colorles |
Z = 4 | 0.22 × 0.20 × 0.20 mm |
F(000) = 888 |
Xcalibur, Eos, Gemini diffractometer | 3507 independent reflections |
Radiation source: fine-focus sealed tube | 3068 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
ω scans | θmax = 67.1°, θmin = 3.8° |
Absorption correction: multi-scan | h = −10→11 |
Tmin = 0.702, Tmax = 1.000 | k = −28→24 |
6492 measured reflections | l = −10→6 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.043 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.126 | w = 1/[σ2(Fo2) + (0.0736P)2 + 0.4712P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
3507 reflections | Δρmax = 0.37 e Å−3 |
266 parameters | Δρmin = −0.40 e Å−3 |
1 restraint | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0017 (3) |
C4H6N4O3S2·2(C5H9NO) | V = 1969.88 (7) Å3 |
Mr = 420.51 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 9.66166 (19) Å | µ = 2.80 mm−1 |
b = 23.4685 (4) Å | T = 298 K |
c = 8.84352 (17) Å | 0.22 × 0.20 × 0.20 mm |
β = 100.7730 (19)° |
Xcalibur, Eos, Gemini diffractometer | 3507 independent reflections |
Absorption correction: multi-scan | 3068 reflections with I > 2σ(I) |
Tmin = 0.702, Tmax = 1.000 | Rint = 0.018 |
6492 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 1 restraint |
wR(F2) = 0.126 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.37 e Å−3 |
3507 reflections | Δρmin = −0.40 e Å−3 |
266 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.05603 (6) | 0.70069 (2) | 0.86906 (7) | 0.04789 (19) | |
S2 | 0.10589 (6) | 0.57207 (2) | 0.85192 (7) | 0.04876 (19) | |
N1 | 0.1709 (2) | 0.80103 (8) | 0.7959 (2) | 0.0458 (4) | |
O5 | 0.47643 (18) | 0.51554 (7) | 0.8041 (2) | 0.0573 (4) | |
O1 | −0.00847 (19) | 0.80761 (8) | 0.9245 (2) | 0.0648 (5) | |
C3 | 0.0787 (2) | 0.83161 (10) | 0.8649 (3) | 0.0477 (5) | |
N6 | 0.4989 (2) | 0.59455 (9) | 0.6701 (3) | 0.0540 (5) | |
O2 | 0.00146 (19) | 0.57761 (8) | 0.9450 (3) | 0.0687 (5) | |
N4 | 0.2449 (2) | 0.54589 (8) | 0.9520 (3) | 0.0490 (5) | |
N2 | 0.2659 (2) | 0.71498 (8) | 0.7328 (3) | 0.0545 (5) | |
C2 | 0.1729 (2) | 0.74257 (9) | 0.7927 (2) | 0.0422 (5) | |
N3 | 0.2489 (2) | 0.65681 (8) | 0.7445 (3) | 0.0547 (5) | |
C10 | 0.5413 (2) | 0.54307 (9) | 0.7199 (3) | 0.0437 (5) | |
O3 | 0.0768 (2) | 0.54194 (8) | 0.7106 (2) | 0.0722 (5) | |
C12 | 0.7225 (3) | 0.55117 (12) | 0.5462 (3) | 0.0606 (6) | |
H12A | 0.8188 | 0.5403 | 0.5430 | 0.073* | |
H12B | 0.6642 | 0.5417 | 0.4478 | 0.073* | |
C4 | 0.0960 (3) | 0.89508 (11) | 0.8610 (3) | 0.0607 (6) | |
H4A | 0.0285 | 0.9129 | 0.9127 | 0.091* | |
H4B | 0.0812 | 0.9078 | 0.7560 | 0.091* | |
H4C | 0.1895 | 0.9052 | 0.9118 | 0.091* | |
C1 | 0.1459 (2) | 0.64398 (9) | 0.8114 (3) | 0.0449 (5) | |
C11 | 0.6716 (3) | 0.51911 (10) | 0.6736 (3) | 0.0543 (6) | |
H11A | 0.6529 | 0.4799 | 0.6410 | 0.065* | |
H11B | 0.7466 | 0.5186 | 0.7634 | 0.065* | |
C13 | 0.7154 (3) | 0.61411 (12) | 0.5745 (4) | 0.0677 (7) | |
H13A | 0.7516 | 0.6348 | 0.4952 | 0.081* | |
H13B | 0.7733 | 0.6235 | 0.6732 | 0.081* | |
C14 | 0.5652 (3) | 0.63159 (11) | 0.5733 (4) | 0.0691 (8) | |
H14A | 0.5634 | 0.6705 | 0.6097 | 0.083* | |
H14B | 0.5124 | 0.6302 | 0.4687 | 0.083* | |
O4 | 0.36338 (16) | 0.63381 (7) | 0.1712 (2) | 0.0548 (4) | |
N5 | 0.5710 (2) | 0.60207 (8) | 0.1312 (2) | 0.0488 (5) | |
C9 | 0.4827 (2) | 0.64362 (9) | 0.1412 (3) | 0.0439 (5) | |
C5 | 0.7137 (3) | 0.60708 (11) | 0.1001 (4) | 0.0620 (7) | |
H5A | 0.7244 | 0.5811 | 0.0178 | 0.074* | |
H5B | 0.7806 | 0.5960 | 0.1913 | 0.074* | |
C8 | 0.5261 (3) | 0.70361 (10) | 0.1132 (4) | 0.0650 (7) | |
H8A | 0.4698 | 0.7170 | 0.0174 | 0.078* | |
H8B | 0.5053 | 0.7277 | 0.1952 | 0.078* | |
C7 | 0.6773 (4) | 0.71018 (14) | 0.1049 (9) | 0.152 (3) | |
H7A | 0.6853 | 0.7421 | 0.0375 | 0.182* | |
H7B | 0.7272 | 0.7206 | 0.2067 | 0.182* | |
C6 | 0.7463 (4) | 0.66532 (14) | 0.0560 (6) | 0.0999 (13) | |
H6A | 0.8463 | 0.6714 | 0.0919 | 0.120* | |
H6B | 0.7298 | 0.6668 | −0.0556 | 0.120* | |
H5C | 0.541 (3) | 0.5676 (11) | 0.145 (3) | 0.050 (7)* | |
H4E | 0.274 (3) | 0.5665 (12) | 1.040 (3) | 0.075 (9)* | |
H4D | 0.303 (3) | 0.5368 (11) | 0.902 (3) | 0.052 (7)* | |
H1A | 0.232 (3) | 0.8176 (12) | 0.753 (3) | 0.055 (7)* | |
H6C | 0.427 (3) | 0.6059 (13) | 0.700 (3) | 0.061 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0429 (3) | 0.0456 (3) | 0.0613 (4) | −0.0024 (2) | 0.0257 (3) | 0.0037 (2) |
S2 | 0.0439 (3) | 0.0428 (3) | 0.0609 (4) | −0.0060 (2) | 0.0131 (2) | 0.0042 (2) |
N1 | 0.0430 (10) | 0.0423 (10) | 0.0571 (11) | −0.0013 (8) | 0.0218 (9) | 0.0047 (8) |
O5 | 0.0625 (10) | 0.0437 (8) | 0.0732 (11) | −0.0004 (7) | 0.0320 (9) | 0.0080 (8) |
O1 | 0.0583 (10) | 0.0609 (11) | 0.0858 (13) | −0.0025 (8) | 0.0405 (10) | −0.0046 (9) |
C3 | 0.0439 (11) | 0.0491 (12) | 0.0526 (12) | −0.0007 (10) | 0.0156 (10) | −0.0021 (10) |
N6 | 0.0535 (11) | 0.0445 (11) | 0.0701 (13) | 0.0081 (9) | 0.0271 (10) | 0.0085 (9) |
O2 | 0.0521 (9) | 0.0591 (10) | 0.1037 (15) | −0.0033 (8) | 0.0370 (10) | 0.0153 (10) |
N4 | 0.0519 (11) | 0.0432 (10) | 0.0545 (12) | 0.0000 (8) | 0.0164 (10) | 0.0044 (9) |
N2 | 0.0507 (11) | 0.0444 (10) | 0.0761 (14) | 0.0022 (8) | 0.0319 (10) | 0.0094 (10) |
C2 | 0.0362 (10) | 0.0463 (11) | 0.0473 (11) | −0.0004 (9) | 0.0159 (8) | 0.0067 (9) |
N3 | 0.0521 (11) | 0.0446 (10) | 0.0748 (13) | 0.0036 (8) | 0.0308 (10) | 0.0066 (9) |
C10 | 0.0449 (11) | 0.0395 (11) | 0.0485 (12) | −0.0021 (9) | 0.0133 (9) | −0.0017 (9) |
O3 | 0.0820 (13) | 0.0607 (11) | 0.0677 (12) | −0.0143 (10) | −0.0017 (10) | −0.0040 (9) |
C12 | 0.0527 (13) | 0.0741 (17) | 0.0592 (15) | 0.0016 (12) | 0.0212 (12) | −0.0026 (13) |
C4 | 0.0641 (15) | 0.0484 (13) | 0.0748 (17) | −0.0006 (11) | 0.0266 (13) | −0.0063 (12) |
C1 | 0.0399 (10) | 0.0424 (11) | 0.0543 (12) | 0.0013 (9) | 0.0142 (9) | 0.0053 (9) |
C11 | 0.0525 (13) | 0.0471 (12) | 0.0668 (15) | 0.0077 (10) | 0.0203 (11) | 0.0010 (11) |
C13 | 0.0672 (16) | 0.0663 (17) | 0.0769 (18) | −0.0137 (13) | 0.0324 (14) | 0.0068 (14) |
C14 | 0.0805 (18) | 0.0532 (14) | 0.0818 (19) | 0.0091 (13) | 0.0360 (15) | 0.0218 (13) |
O4 | 0.0429 (8) | 0.0503 (9) | 0.0762 (11) | −0.0031 (7) | 0.0242 (8) | −0.0110 (8) |
N5 | 0.0435 (10) | 0.0383 (10) | 0.0685 (13) | 0.0012 (8) | 0.0208 (9) | 0.0014 (9) |
C9 | 0.0420 (10) | 0.0425 (11) | 0.0495 (12) | 0.0002 (9) | 0.0145 (9) | −0.0046 (9) |
C5 | 0.0473 (13) | 0.0534 (14) | 0.093 (2) | 0.0055 (11) | 0.0319 (13) | 0.0005 (13) |
C8 | 0.0570 (15) | 0.0399 (12) | 0.103 (2) | 0.0026 (10) | 0.0289 (15) | 0.0015 (13) |
C7 | 0.095 (3) | 0.0478 (17) | 0.345 (9) | 0.0019 (18) | 0.125 (4) | 0.022 (3) |
C6 | 0.074 (2) | 0.0688 (19) | 0.178 (4) | −0.0040 (16) | 0.078 (2) | 0.010 (2) |
S1—C1 | 1.718 (2) | C4—H4B | 0.9600 |
S1—C2 | 1.727 (2) | C4—H4C | 0.9600 |
S2—O3 | 1.418 (2) | C11—H11A | 0.9700 |
S2—O2 | 1.4223 (19) | C11—H11B | 0.9700 |
S2—N4 | 1.587 (2) | C13—C14 | 1.506 (4) |
S2—C1 | 1.782 (2) | C13—H13A | 0.9700 |
N1—C2 | 1.373 (3) | C13—H13B | 0.9700 |
N1—C3 | 1.373 (3) | C14—H14A | 0.9700 |
N1—H1A | 0.85 (3) | C14—H14B | 0.9700 |
O5—C10 | 1.240 (3) | O4—C9 | 1.251 (3) |
O1—C3 | 1.212 (3) | N5—C9 | 1.309 (3) |
C3—C4 | 1.500 (3) | N5—C5 | 1.460 (3) |
N6—C10 | 1.324 (3) | N5—H5C | 0.87 (3) |
N6—C14 | 1.451 (3) | C9—C8 | 1.503 (3) |
N6—H6C | 0.83 (3) | C5—C6 | 1.471 (4) |
N4—H4E | 0.913 (18) | C5—H5A | 0.9700 |
N4—H4D | 0.81 (3) | C5—H5B | 0.9700 |
N2—C2 | 1.297 (3) | C8—C7 | 1.484 (4) |
N2—N3 | 1.381 (3) | C8—H8A | 0.9700 |
N3—C1 | 1.285 (3) | C8—H8B | 0.9700 |
C10—C11 | 1.503 (3) | C7—C6 | 1.359 (5) |
C12—C13 | 1.502 (4) | C7—H7A | 0.9700 |
C12—C11 | 1.512 (4) | C7—H7B | 0.9700 |
C12—H12A | 0.9700 | C6—H6A | 0.9700 |
C12—H12B | 0.9700 | C6—H6B | 0.9700 |
C4—H4A | 0.9600 | ||
C1—S1—C2 | 85.48 (10) | C10—C11—H11B | 108.5 |
O3—S2—O2 | 120.72 (13) | C12—C11—H11B | 108.5 |
O3—S2—N4 | 107.82 (13) | H11A—C11—H11B | 107.5 |
O2—S2—N4 | 109.29 (13) | C12—C13—C14 | 109.9 (2) |
O3—S2—C1 | 108.04 (11) | C12—C13—H13A | 109.7 |
O2—S2—C1 | 103.50 (10) | C14—C13—H13A | 109.7 |
N4—S2—C1 | 106.61 (10) | C12—C13—H13B | 109.7 |
C2—N1—C3 | 123.02 (19) | C14—C13—H13B | 109.7 |
C2—N1—H1A | 115.7 (19) | H13A—C13—H13B | 108.2 |
C3—N1—H1A | 121.3 (19) | N6—C14—C13 | 111.3 (2) |
O1—C3—N1 | 120.8 (2) | N6—C14—H14A | 109.4 |
O1—C3—C4 | 124.1 (2) | C13—C14—H14A | 109.4 |
N1—C3—C4 | 115.1 (2) | N6—C14—H14B | 109.4 |
C10—N6—C14 | 126.8 (2) | C13—C14—H14B | 109.4 |
C10—N6—H6C | 114 (2) | H14A—C14—H14B | 108.0 |
C14—N6—H6C | 119 (2) | C9—N5—C5 | 127.1 (2) |
S2—N4—H4E | 111.5 (19) | C9—N5—H5C | 116.5 (17) |
S2—N4—H4D | 113.4 (19) | C5—N5—H5C | 116.4 (17) |
H4E—N4—H4D | 118 (3) | O4—C9—N5 | 121.0 (2) |
C2—N2—N3 | 111.20 (18) | O4—C9—C8 | 120.3 (2) |
N2—C2—N1 | 121.41 (19) | N5—C9—C8 | 118.7 (2) |
N2—C2—S1 | 115.38 (17) | N5—C5—C6 | 112.4 (2) |
N1—C2—S1 | 123.20 (16) | N5—C5—H5A | 109.1 |
C1—N3—N2 | 112.29 (18) | C6—C5—H5A | 109.1 |
O5—C10—N6 | 121.0 (2) | N5—C5—H5B | 109.1 |
O5—C10—C11 | 120.7 (2) | C6—C5—H5B | 109.1 |
N6—C10—C11 | 118.3 (2) | H5A—C5—H5B | 107.9 |
C13—C12—C11 | 109.5 (2) | C7—C8—C9 | 114.4 (2) |
C13—C12—H12A | 109.8 | C7—C8—H8A | 108.7 |
C11—C12—H12A | 109.8 | C9—C8—H8A | 108.7 |
C13—C12—H12B | 109.8 | C7—C8—H8B | 108.7 |
C11—C12—H12B | 109.8 | C9—C8—H8B | 108.7 |
H12A—C12—H12B | 108.2 | H8A—C8—H8B | 107.6 |
C3—C4—H4A | 109.5 | C6—C7—C8 | 118.7 (3) |
C3—C4—H4B | 109.5 | C6—C7—H7A | 107.6 |
H4A—C4—H4B | 109.5 | C8—C7—H7A | 107.6 |
C3—C4—H4C | 109.5 | C6—C7—H7B | 107.6 |
H4A—C4—H4C | 109.5 | C8—C7—H7B | 107.6 |
H4B—C4—H4C | 109.5 | H7A—C7—H7B | 107.1 |
N3—C1—S1 | 115.65 (17) | C7—C6—C5 | 119.5 (3) |
N3—C1—S2 | 122.00 (17) | C7—C6—H6A | 107.4 |
S1—C1—S2 | 122.25 (12) | C5—C6—H6A | 107.4 |
C10—C11—C12 | 115.0 (2) | C7—C6—H6B | 107.4 |
C10—C11—H11A | 108.5 | C5—C6—H6B | 107.4 |
C12—C11—H11A | 108.5 | H6A—C6—H6B | 107.0 |
Experimental details
(ACZ2HP11) | (ACZ2HP12) | (ACZCPRH111) | (ACZDMSO) | |
Crystal data | ||||
Chemical formula | C4H6N4O3S2·C5H5NO | C4H6N4O3S2·2(C5H5NO) | C4H6N4O3S2·C6H11NO·H2O | 2(C4H6N4O3S2)·C2H6OS |
Mr | 317.35 | 412.45 | 353.42 | 522.62 |
Crystal system, space group | Monoclinic, P21/n | Triclinic, P1 | Triclinic, P1 | Monoclinic, C2/c |
Temperature (K) | 298 | 298 | 298 | 298 |
a, b, c (Å) | 4.9138 (4), 33.192 (3), 8.3659 (7) | 6.8501 (3), 11.3563 (6), 12.3387 (8) | 4.9969 (2), 11.6983 (6), 14.6244 (8) | 52.62 (3), 4.816 (2), 17.814 (9) |
α, β, γ (°) | 90, 99.520 (1), 90 | 82.288 (5), 81.856 (4), 75.804 (4) | 70.868 (5), 81.892 (4), 80.262 (4) | 90, 106.785 (13), 90 |
V (Å3) | 1345.7 (2) | 916.20 (8) | 792.64 (7) | 4322 (4) |
Z | 4 | 2 | 2 | 8 |
Radiation type | Mo Kα | Cu Kα | Cu Kα | Mo Kα |
µ (mm−1) | 0.42 | 3.01 | 3.34 | 0.59 |
Crystal size (mm) | 0.21 × 0.19 × 0.18 | 0.23 × 0.22 × 0.22 | 0.22 × 0.20 × 0.18 | 0.20 × 0.18 × 0.18 |
Data collection | ||||
Diffractometer | CCD area detector | Xcalibur, Eos, Gemini | Xcalibur, Eos, Gemini | CCD area detector |
Absorption correction | – | Multi-scan | Multi-scan | – |
Tmin, Tmax | – | 0.137, 1.000 | 0.344, 1.000 | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13846, 2640, 2176 | 5007, 3268, 3035 | 4238, 2792, 2633 | 21342, 4378, 3834 |
Rint | 0.038 | 0.032 | 0.012 | 0.029 |
(sin θ/λ)max (Å−1) | 0.617 | 0.597 | 0.597 | 0.627 |
Refinement | ||||
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.101, 1.05 | 0.065, 0.171, 1.03 | 0.038, 0.111, 1.08 | 0.038, 0.101, 1.04 |
No. of reflections | 2640 | 3268 | 2792 | 4378 |
No. of parameters | 198 | 265 | 224 | 299 |
No. of restraints | 1 | 0 | 0 | 0 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.35, −0.22 | 0.47, −0.80 | 0.24, −0.34 | 0.43, −0.25 |
Absolute structure | ? | ? | ? | ? |
Absolute structure parameter | ? | ? | ? | ? |
(ACZMeHP11) | (ACZNAM11) | (ACZNAM2HP111) | (ACZOMeHPH111) | |
Crystal data | ||||
Chemical formula | C4H6N4O3S2·C6H7NO | C4H6N4O3S2·C6H6N2O | C4H6N4O3S2·C6H6N2O·C5H5NO | C4H6N4O3S2·C6H7NO2·H2O |
Mr | 331.37 | 344.38 | 439.48 | 365.39 |
Crystal system, space group | Monoclinic, p_1_c_1 | Triclinic, P1 | Triclinic, P1 | Triclinic, P1 |
Temperature (K) | 298 | 298 | 298 | 298 |
a, b, c (Å) | 11.3972 (7), 18.1641 (3), 10.338 (3) | 5.1477 (8), 10.8147 (14), 14.2604 (16) | 7.0347 (3), 10.2539 (7), 13.7934 (9) | 7.7872 (6), 10.2130 (7), 10.2464 (7) |
α, β, γ (°) | 90, 97.046 (16), 90 | 69.797 (11), 85.463 (12), 81.889 (12) | 81.685 (6), 83.028 (5), 88.283 (5) | 88.192 (5), 76.587 (6), 77.996 (6) |
V (Å3) | 2124.0 (6) | 737.20 (17) | 977.13 (10) | 775.22 (9) |
Z | 6 | 2 | 2 | 2 |
Radiation type | Cu Kα | Cu Kα | Cu Kα | Cu Kα |
µ (mm−1) | 3.65 | 3.55 | 2.87 | 3.49 |
Crystal size (mm) | 0.22 × 0.20 × 0.20 | 0.22 × 0.21 × 0.20 | 0.20 × 0.18 × 0.18 | 0.22 × 0.20 × 0.18 |
Data collection | ||||
Diffractometer | Xcalibur, Eos, Gemini | Xcalibur, Eos, Gemini | Xcalibur, Eos, Gemini | Xcalibur, Eos, Gemini |
Absorption correction | Multi-scan | – | Multi-scan | Multi-scan |
Tmin, Tmax | 0.732, 1.000 | – | 0.374, 1.000 | 0.530, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7371, 4590, 4295 | 4027, 2607, 1906 | 5696, 3493, 3085 | 4182, 2734, 2406 |
Rint | 0.022 | 0.041 | 0.019 | 0.029 |
(sin θ/λ)max (Å−1) | 0.597 | 0.597 | 0.597 | 0.597 |
Refinement | ||||
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.107, 1.02 | 0.063, 0.194, 1.01 | 0.061, 0.179, 1.08 | 0.050, 0.141, 1.06 |
No. of reflections | 4590 | 2607 | 3493 | 2734 |
No. of parameters | 583 | 220 | 269 | 234 |
No. of restraints | 4 | 2 | 0 | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.41, −0.29 | 0.41, −0.59 | 0.80, −0.44 | 0.41, −0.48 |
Absolute structure | Flack H D (1983), Acta Cryst. A39, 876-881 | ? | ? | ? |
Absolute structure parameter | 0.19 (2) | ? | ? | ? |
(ACZVLM12) | |
Crystal data | |
Chemical formula | C4H6N4O3S2·2(C5H9NO) |
Mr | 420.51 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 9.66166 (19), 23.4685 (4), 8.84352 (17) |
α, β, γ (°) | 90, 100.7730 (19), 90 |
V (Å3) | 1969.88 (7) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 2.80 |
Crystal size (mm) | 0.22 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Xcalibur, Eos, Gemini |
Absorption correction | Multi-scan |
Tmin, Tmax | 0.702, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6492, 3507, 3068 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.126, 1.08 |
No. of reflections | 3507 |
No. of parameters | 266 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.37, −0.40 |
Absolute structure | ? |
Absolute structure parameter | ? |
Computer programs: SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997).
Acknowledgements
GB thanks the UGC for a fellowship. We thank the JC Bose Fellowship (SR/S2/JCB-06/2009), CSIR project on Pharmaceutical polymorphs and cocrystals [02(0223)/15/EMR-II], and SERB scheme on multi-component cocrystals (EMR/2015/002075) for funding. UGC and DST (UPE and PURSE programs) are thanked for providing instrumentation and infrastructure facilities.
References
Aakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2001). Angew. Chem. Int. Ed. 40, 3240–3242. Web of Science CrossRef CAS Google Scholar
Aakeröy, C. B., Desper, J. & Urbina, J. (2005). Chem. Commun. pp. 2820–2822. Google Scholar
Aakeröy, C. B. & Salmon, D. (2005). CrystEngComm, 7, 439–448. Google Scholar
Aitipamula, S., Wong, A. B. H., Chow, P. S. & Tan, R. B. H. (2013). CrystEngComm, 15, 5877–5887. Web of Science CSD CrossRef CAS Google Scholar
Arenas-García, J. I., Herrera-Ruiz, D., Mondragón-Vásquez, K., Morales-Rojas, H. & Höpfl, H. (2010). Cryst. Growth Des. 10, 3732–3742. Google Scholar
Arenas-García, J., Herrera-Ruiz, D., Mondragón-Vásquez, K., Morales-Rojas, H. & Höpfl, H. (2012). Cryst. Growth Des. 12, 811–824. Google Scholar
Baraldi, C., Gamberini, M., Tinti, A., Palazzoli, F. & Ferioli, V. (2009). J. Mol. Struct. 918, 88–96. CrossRef CAS Google Scholar
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Benet, L. Z. (2010). Basic Clin. Pharmacol. Toxicol. 106, 162–167. CrossRef CAS PubMed Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bolla, G., Mittapalli, S. & Nangia, A. (2014). CrystEngComm, 16, 24–27. Web of Science CSD CrossRef CAS Google Scholar
Bolla, G., Mittapalli, S. & Nangia, A. (2015). IUCrJ, 2, 389–401. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Bolla, G. & Nangia, A. (2015). Chem. Commun. 51, 15578–15581. Web of Science CSD CrossRef CAS Google Scholar
Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chakraborty, S., Rajput, L. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 2571–2577. Web of Science CSD CrossRef CAS Google Scholar
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Ferrer, S., Borras, J., Miratvilles, C. & Fuertes, A. (1990). Inorg. Chem. 29, 206–210. CSD CrossRef CAS Web of Science Google Scholar
Ferrer, S., Borris, J., Miratvilles, C. & Fuertes, A. (1989). Inorg. Chem. 28, 163–165. CrossRef Google Scholar
Ganguly, P. & Desiraju, G. R. (2010). CrystEngComm, 12, 817–833. Web of Science CrossRef CAS Google Scholar
Granero, G. E., Longhi, M. R., Becker, C., Junginger, H. E., Kopp, S., Midha, K. K., Shah, V. P., Stavchansky, S., Dressman, J. B. & Barends, D. M. (2008). J. Pharm. Sci. 97, 3691–3699. CrossRef PubMed CAS Google Scholar
Grecu, T., Hunter, C., Gardiner, E. & McCabe, J. (2014). Cryst. Growth Des. 14, 165–171. CrossRef CAS Google Scholar
Hartmann, U. & Vahrenkamp, H. (1991). Inorg. Chem. 30, 4676–4677. CrossRef CAS Google Scholar
Mukherjee, A., Dixit, K., Sarma, S. P. & Desiraju, G. R. (2014a). IUCrJ, 1, 228–239. CrossRef CAS PubMed IUCr Journals Google Scholar
Mukherjee, A., Tothadi, S. & Desiraju, G. R. (2014b). Acc. Chem. Res. 47, 2514–2524. CrossRef CAS PubMed Google Scholar
Nangia, A. (2010). J. Chem. Sci. 122, 295–310. CrossRef CAS Google Scholar
Oxford Diffraction (2008). CrysAlisPro. Oxford Diffraction Ltd, Yarnton, Oxfordshire UK. Google Scholar
Seaton, C., Blagden, N., Munshi, T. & Scowen, I. (2013). Chem. Eur. J. 19, 10663–10671. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tothadi, S. & Desiraju, G. R. (2013). Chem. Commun. 49, 7791–7793. Web of Science CSD CrossRef CAS Google Scholar
Tothadi, S. & Desiraju, G. (2014). Acc. Chem. Res. 47, 2514–2524. PubMed Google Scholar
Umeda, T., Ohnishi, N., Yokoyama, T., Kuroda, T., Kita, Y., Kuroda, K., Tatsumi, E. & Matsuda, Y. (1985). Chem. Pharm. Bull. 33, 3422–3428. CrossRef CAS PubMed Google Scholar
Walsh, R. D. B., Bradner, M. W., Fleischman, S., Morales, L. A., Moulton, B., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Chem. Commun. pp. 186–187. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.