research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
Volume 3| Part 2| March 2016| Pages 152-160
ISSN: 2052-2525

Binary and ternary cocrystals of sulfa drug acetazolamide with pyridine carboxamides and cyclic amides

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Central University PO, Hyderabad 500 046, India
*Correspondence e-mail: ashwini.nangia@gmail.com

Edited by M. Eddaoudi, King Abdullah University, Saudi Arabia (Received 18 November 2015; accepted 11 January 2016; online 25 February 2016)

A novel design strategy for cocrystals of a sulfonamide drug with pyridine carboxamides and cyclic amides is developed based on synthon identification as well as size and shape match of coformers. Binary adducts of acetazolamide (ACZ) with lactams (valerolactam and caprolactam, VLM, CPR), cyclic amides (2-pyridone, labeled as 2HP and its derivatives MeHP, OMeHP) and pyridine amides (nicotinamide and picolinamide, NAM, PAM) were obtained by manual grinding, and their single crystals by solution crystallization. The heterosynthons in the binary cocrystals of ACZ with these coformers suggested a ternary combination for ACZ with pyridone and nicotinamide. Novel supramolecular synthons of ACZ with lactams and pyridine carboxamides are reported together with binary and ternary cocrystals for a sulfonamide drug. This crystal engineering study resulted in the first ternary cocrystal of acetazolamide with amide coformers, ACZ–NAM–2HP (1:1:1).

1. Introduction

Hydrogen bonding is the key adhesive to construct supramolecular synthons for the design of crystalline architectures by using multiple functional groups (Desiraju, 1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.]). From a crystal engineering perspective, binary and ternary adducts are formed due to robust heterosynthons in the cocrystal, compared with homosynthons in the constituent molecules (Walsh et al., 2003[Walsh, R. D. B., Bradner, M. W., Fleischman, S., Morales, L. A., Moulton, B., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Chem. Commun. pp. 186-187.]). It has been shown over more than a decade that crystal engineering of multi-component phases offers rational approaches to systematically tune the physicochemical and pharmacokinetic properties of active pharmaceutical ingredients (APIs, Fig. 1[link]). The matching of functional groups and supramolecular synthons together with size and shape factors of molecules offers an approach to assemble three different molecules in the same crystal lattice (Tothadi & Desiraju, 2013[Tothadi, S. & Desiraju, G. R. (2013). Chem. Commun. 49, 7791-7793.], 2014[Tothadi, S. & Desiraju, G. (2014). Acc. Chem. Res. 47, 2514-2524.]; Chakraborty et al., 2014[Chakraborty, S., Rajput, L. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 2571-2577.]; Aakeröy et al., 2001[Aakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2001). Angew. Chem. Int. Ed. 40, 3240-3242.], 2005[Aakeröy, C. B., Desper, J. & Urbina, J. (2005). Chem. Commun. pp. 2820-2822.]; Seaton et al., 2013[Seaton, C., Blagden, N., Munshi, T. & Scowen, I. (2013). Chem. Eur. J. 19, 10663-10671.]; Aitipamula et al., 2013[Aitipamula, S., Wong, A. B. H., Chow, P. S. & Tan, R. B. H. (2013). CrystEngComm, 15, 5877-5887.]). Ternary cocrystals are relatively less studied and the sulfonamide group is a `structural gap', even as SO2NH2 is the key functional group in the most populated sulfa drugs category. These considerations encouraged us to systematically study binary and ternary cocrystals of the sulfonamide group (Bolla et al., 2015[Bolla, G., Mittapalli, S. & Nangia, A. (2015). IUCrJ, 2, 389-401.]). The assembly of three different molecular components in the same crystal lattice is challenging because it hinges on a balance of intermolecular interaction strengths, chemical recognition, geometric fit and overall shape complementarity (Tothadi & Desiraju, 2013[Tothadi, S. & Desiraju, G. R. (2013). Chem. Commun. 49, 7791-7793.]). There is more than one possible outcome of a three-component cocrystallization; it may result in one of the components, its solvates or hydrate, a new polymorph of the molecule, binary systems, starting materials, or the ternary product (Fig. 1[link]).

[Figure 1]
Figure 1
Multiple possibilities of solid forms during cocrystallization to give single, binary and ternary products.

Recent success in the deliberate construction of ternary cocrystals (Bolla & Nangia, 2015[Bolla, G. & Nangia, A. (2015). Chem. Commun. 51, 15578-15581.]) and our work on binary sulfonamide cocrystals (Bolla et al., 2014[Bolla, G., Mittapalli, S. & Nangia, A. (2014). CrystEngComm, 16, 24-27.], 2015[Bolla, G., Mittapalli, S. & Nangia, A. (2015). IUCrJ, 2, 389-401.]) served as the background for the present study. The Cambridge Structural Database (CSD version 5.36, May 2105 update) contains about 75 X-ray crystal structures of ternary systems. Recently, we reported the assembly of ternary components using amides and the sulfonamide group along with a carboxylic acid (Bolla & Nangia, 2015[Bolla, G. & Nangia, A. (2015). Chem. Commun. 51, 15578-15581.]). In the present work, the sulfonamide and acetamide groups of acetazolamide are the starting point to demonstrate the sulfonamide–lactam supramolecular synthon for the assembly of ternary systems.

Acetazolamide, 5-acetamido-1,3,4-thiadiazole-2-sulfon­amide (Fig. 2[link]), is an antiepileptic, diuretic drug for respiratory diseases (Arenas-García et al., 2010[Arenas-García, J. I., Herrera-Ruiz, D., Mondragón-Vásquez, K., Morales-Rojas, H. & Höpfl, H. (2010). Cryst. Growth Des. 10, 3732-3742.], 2012[Arenas-García, J., Herrera-Ruiz, D., Mondragón-Vásquez, K., Morales-Rojas, H. & Höpfl, H. (2012). Cryst. Growth Des. 12, 811-824.]; Grecu et al., 2014[Grecu, T., Hunter, C., Gardiner, E. & McCabe, J. (2014). Cryst. Growth Des. 14, 165-171.]). It is also used to prevent the symptoms of altitude sickness as this medication decreases headache, tiredness, nausea, dizziness and shortness of breath at high altitudes. This drug is also used to treat open-angle glaucoma by reducing the amount of fluid that can build up in the eye. The aqueous solubility of ACZ (0.72 mg ml−1 in water at 25°C) is low, has poor permeability and, according to the Biopharmaceutics Drug Disposition Classification System (BDDCS), ACZ belongs to the low solubility and poor permeability Class IV category (Granero et al., 2008[Granero, G. E., Longhi, M. R., Becker, C., Junginger, H. E., Kopp, S., Midha, K. K., Shah, V. P., Stavchansky, S., Dressman, J. B. & Barends, D. M. (2008). J. Pharm. Sci. 97, 3691-3699.]; Benet, 2010[Benet, L. Z. (2010). Basic Clin. Pharmacol. Toxicol. 106, 162-167.]). ACZ is administered as a 250 mg dose according to the World Health Organization's list (WHO) of essential medicines, a list of the most important medications needed in a basic healthcare system (WHO list dated April 2013, https://apps.who.Int/iris/bitstream/10665/93142/1/EML_18_eng.pdf?ua = 1, accessed 15 Nov. 2015). Two polymorphs of ACZ, forms (I) and (II), and cocrystals with 4-hydroxybenzoic acid, nicotinamide, 4-hydroxybenzamide, picolinamide, 2,3-dihydroxy benzoic acid, and a few inorganic coordination complexes with Ni, Cu, Zn are reported (Umeda et al., 1985[Umeda, T., Ohnishi, N., Yokoyama, T., Kuroda, T., Kita, Y., Kuroda, K., Tatsumi, E. & Matsuda, Y. (1985). Chem. Pharm. Bull. 33, 3422-3428.]; Baraldi et al., 2009[Baraldi, C., Gamberini, M., Tinti, A., Palazzoli, F. & Ferioli, V. (2009). J. Mol. Struct. 918, 88-96.]; Arenas-García et al., 2010[Arenas-García, J. I., Herrera-Ruiz, D., Mondragón-Vásquez, K., Morales-Rojas, H. & Höpfl, H. (2010). Cryst. Growth Des. 10, 3732-3742.], 2012[Arenas-García, J., Herrera-Ruiz, D., Mondragón-Vásquez, K., Morales-Rojas, H. & Höpfl, H. (2012). Cryst. Growth Des. 12, 811-824.]; Ferrer et al., 1989[Ferrer, S., Borris, J., Miratvilles, C. & Fuertes, A. (1989). Inorg. Chem. 28, 163-165.], 1990[Ferrer, S., Borras, J., Miratvilles, C. & Fuertes, A. (1990). Inorg. Chem. 29, 206-210.]; Hartmann & Vahrenkamp, 1991[Hartmann, U. & Vahrenkamp, H. (1991). Inorg. Chem. 30, 4676-4677.]).

[Figure 2]
Figure 2
Chemical structures of ACZ as A, coformers pyridine carboxamides and syn-amides, aromatic COOH compounds as B and C used in cocrystallization.

The work plan described in this paper was to first prepare binary cocrystals of ACZ with nicotinamide (ACZ–NAM, 1:1), valerolactam (ACZ–VLM, 1:2), caprolactam (ACZ–CPR hydrate, 1:1:1), 2-pyridone (ACZ–2HP, 1:1 and 1:2), 6-methyl-2-pyridone (ACZ–MeHP, 1:1) and 3-methoxy-2-pyridone (ACZ–OMeHP, 1:2), with the idea of assessing the hydrogen bond synthons and recognition modes. By using the moderate to weak association between pyridine amide and cyclic lactam coformers (Bolla & Nangia, 2015[Bolla, G. & Nangia, A. (2015). Chem. Commun. 51, 15578-15581.]), a successful ternary combination of ACZ, NAM and 2HP (ACZ–NAM–2HP, 1:1:1) was then derived from an analysis of the binary cocrystals. The molecules are classified as: A = ACZ; B = pyridine carboxamides, NAM, PAM; and C = cyclic lactams: VLM, CPR; syn amides: 2HP, MeHP, OMeHP (see Fig. 2[link]).

2. Experimental

All the coformers used in this study were purchased from Sigma-Aldrich, India. All chemicals are of analytical and chromatographic grade. Acetazolamide was purchased from Yarrow Chemicals, Mumbai, India, and its purity was confirmed by NMR and DSC.

2.1. ACZ–NAM (1:1)

ACZ (100 mg, 0.45 mmol) and NAM (54 mg, 0.45 mmol) were ground well in a mortar and pestle for 20–30 min by adding 4–5 drops of EtOAc. The ground material was kept for crystallization from a solvent mixture of EtOAc and THF (5 ml) as well as in individual solvents in a 25 ml conical flask at room temperature. Good quality crystals were harvested at ambient condition after a week; m.p. 180°C.

2.2. ACZ–VLM (1:2)

ACZ (100 mg, 0.45 mmol) and VLM (45 mg, 0.45 mmol) were taken in a 1:1 ratio and ground well in a mortar and pestle for 20–30 min by adding 4–5 drops of EtOAc. The ground material was kept for crystallization in EtOAc (5 ml) at room temperature. Good quality crystals were harvested at ambient conditions after a week. Even though the components were taken in an equal molar ratio, the product crystallized in a 1:2 ratio from solution; m.p. 93°C.

2.3. ACZ–CPR hydrate (1:1:1)

ACZ (100 mg, 0.45 mmol) and CPR (50 mg, 0.45 mmol) were taken in a 1:1 ratio and ground well in a mortar and pestle for 20–30 min by adding 4–7 drops of EtOAc. The ground material was kept for crystallization from a solvent mixture of EtOAc and THF (5 ml) as well as individual solvents at room temperature. The ground material crystallized from solution as a hydrate after one week; m.p. 80°C. Solvents used here are analytically pure and crystallization was carried out at room temperature (ca 30°C) in an open evaporation flask, which gave the cocrystal hydrate product.

2.4. ACZ–2HP (1:2)

ACZ (100 mg, 0.45 mmol) and 2HP (42 mg, 0.45 mmol) were taken in a 1:1 ratio and ground well in a mortar and pestle for 20–30 min by adding 4–7 drops of EtOAc. The ground material was kept for crystallization from a solvent mixture of EtOAc and THF (5 ml) as well as individual solvents at room temperature. Good quality crystals were harvested at ambient conditions after a week. The ground material crystallized from solution in a 1:2 ratio; m.p. 160°C.

2.5. ACZ–2HP (1:1)

ACZ (100 mg, 0.45 mmol) and 2HP (42 mg, 0.45 mmol) were ground well in a mortar and pestle for 20–30 min by adding 4–7 drops of EtOAc in the presence of NAM or INA to obtain a ternary system. Even though the attempts to obtain an ACZ binary cocrystal with isonicotinamide (INA) were not successful, experiments were carried out to obtain a ternary ACZ–INA–2HP adduct in a trial attempt. A binary product ACZ–2HP (1:1) was obtained. A unit cell check of randomly selected crystals showed that the majority are ACZ–2HP (1:1), while a few crystals had 1:2 stoichiometry. The ground material of 1:1 stoichiometry was kept for crystallization from a solvent mixture of EtOAc and THF (5 ml) as well as individual solvents at room temperature. Good quality crystals were harvested at ambient condition after a week; m.p. 180°C.

2.6. ACZ–MeHP (1:1)

ACZ (100 mg, 0.45 mmol) and MeHP (49 mg, 0.45 mmol) were ground well in a mortar and pestle for 20–30 min. The ground material was kept for crystallization in 5 ml of EtOAc at room temperature to obtain good quality single crystals at ambient conditions after 1 week; m.p. 130°C.

2.7. ACZ–OMeHP hydrate (1:1:1)

ACZ (100 mg, 0.45 mmol) and OMeHP (56 mg, 0.45 mmol) were ground well in a mortar and pestle for 25 min with a few drops of EtOAc added. The ground material was kept for crystallization in 5 ml of EtOAc and THF mixture or in the individual solvents at room temperature to give good quality single crystals after 4–5 d. The product crystallized as a monohydrate; m.p. 90°C.

2.8. ACZ–NAM–2HP (1:1:1)

ACZ (100 mg, 0.45 mmol), NAM (54 mg, 0.45 mmol) and 2HP (42 mg, 0.45 mmol) were ground well in a mortar and pestle for 20–30 min by adding 4–7 drops of EtOAc. The ground material was kept for crystallization from a solvent mixture of 5 ml EtOAc and THF as well as the individual solvents at room temperature to give good quality single crystals of the ternary adduct after 5–6 days. A few crystals of binary products ACZ−NAM and ACZ−2HP (1:1, 1:2) were also observed in the crystallization flask concomitantly based on a unit cell check. Single crystal data were collected of the ternary product by manual separation of their different morphology crystals as a plate and a block; m.p. 125°C.

2.9. Single-crystal X-ray diffraction

A single crystal was mounted on the goniometer of an Oxford Diffraction Gemini X-ray diffractometer equipped with Cu Kα radiation source (λ = 1.54184 Å) at 298 K. Data reduction was performed using CrysAlisPro 171.33.55 software (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlisPro. Oxford Diffraction Ltd, Yarnton, Oxfordshire UK.]). The crystal structure was solved and refined using Olex2-1.0 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) with anisotropic displacement parameters for non-H atoms. H atoms were experimentally located through the difference-Fourier electron density maps in all crystal structures. Data were reduced by SAINT-Plus (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) and further continued with SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]). A check of the final CIF file with PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) did not show any missed symmetry. X-Seed (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) was used to prepare the figures and packing diagrams. The crystallographic parameters of all the cocrystals are summarized in Table 1[link] and hydrogen-bond distances are listed in Table S1 . CIF files are deposited at CCDC Nos. 1436978–1436985. Single-crystal X-ray diffraction data were also collected at 298 K on a Bruker SMART APEX-1 CCD area-detector system equipped with a graphite monochromator Mo Kα fine-focus sealed tube (λ = 0.71073 Å) operating at 1500 power, 40 kV, 30 mA. The frames were integrated by SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) software using a narrow-frame integration algorithm. Data were corrected for absorption effects using the multi-scan method (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]). The structures were solved and refined using SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Table 1
Crystallographic parameters of cocrystals

  ACZ–NAM (1:1) ACZ–VLM (1:2) ACZ–CPR hydrate (1:1:1) ACZ–2HP (1:2) ACZ–2HP (1:1) ACZ–MeHP (1:1) ACZ–OMeHP hydrate (1:1:1) ACZ–NAM–2HP (1:1:1)
Empirical formula C4H6N4O3S2·C6H6N2O C4H6N4O3S2·2C5H9NO C4H6N4O3S2·C6H11NO·H2O C4H6N4O3S2·2C5H5NO C4H6N4O3S2·C5H5NO C4H6N4O3S2·C6H7NO C4H6N4O3S2·C6H7NO2·H2O C4H6N4O3S2·C6H6N2O·C5H5NO
Formula weight 344.38 420.51 353.42 412.45 317.35 994.12 775.22 (9) 439.48
Crystal system Triclinic Monoclinic Triclinic Triclinic Monoclinic Monoclinic Triclinic Triclinic
Space group [P\overline 1] P21/c [P\overline 1] [P\overline 1] P21/n Pc [P\overline 1] [P\overline 1]
T (K) 298 298 298 298 298 298 298 298
a (Å) 5.1477 (8) 9.66166 (19) 4.9969 (2) 6.8501 (3) 4.9138 (4) 11.3972 (7) 7.7872 (6) 7.0347 (3)
b (Å) 10.8147 (14) 23.4685 (4) 11.6983 (6) 11.3563 (6) 33.192 (3) 18.1641 (3) 10.2130 (7) 10.2539 (7)
c (Å) 14.2604 (16) 8.84352 (17) 14.6244 (8) 12.3387 (8) 8.3659 (7) 10.338 (3) 10.2464 (7) 13.7934 (9)
α (°) 69.797 (11) 90 70.868 (5) 82.288 (5) 90 90 88.192 (5) 81.685 (6)
β (°) 85.463 (12) 100.773 (1) 81.892 (4) 81.856 (4) 99.520 (1) 97.046 (16) 76.587 (6) 83.028 (5)
γ (°) 81.889 (12) 90 80.262 (4) 75.804 (4) 90 90 88.192 (5) 88.283 (5)
V3) 737.20 (18) 1969.88 (6) 792.65 (7) 916.19 (9) 1345.7 (2) 2124.0 (6) 775.22 (10) 977.14 (5)
Dx (g cm−3) 1.55 1.42 1.48 1.49 1.56 1.55 1.56 1.49
Z 2 4 2 2 4 6 2 2
R1 [I > 2σ(I)] 0.0631 0.0427 0.0378 0.0647 0.0378 0.0397 0.0492 0.0612
wR2 (all) 0.1944 3507 2792 0.1710 0.0984 4590 0.1408 0.1789
Goodness-of-fit 1.005 1.064 1.078 1.061 1.000 1.020 1.057 1.083
X-ray diffracto­meter Oxford CCD Oxford CCD Oxford CCD Oxford CCD Bruker APEX Oxford CCD Oxford CCD Oxford CCD

2.10. X-ray powder diffraction

Bulk samples were analyzed by X-ray powder diffraction on a Bruker AXS D8 diffractometer (Bruker-AXS, Karlsruhe, Germany). Experimental conditions: Cu Kα radiation (λ = 1.54056 Å), 40 kV, 30 mA, scanning interval 5–50° 2θ at a scan rate of 1° min−1, time per step 0.5 s.

3. Results and discussion

3.1. ACZ polymorphs and reported binary adducts

Acetazolamide (ACZ, Fig. 2[link]) consists of a primary sulfonamide group, thiadiazole heterocycle and acetamide groups. Both the sulfonamide and acetamido groups are sites for hydrogen bonding with complementary coformers listed under B and C. Crystal structures of two polymorphs (I) and (II) of ACZ are reported (Umeda et al., 1985[Umeda, T., Ohnishi, N., Yokoyama, T., Kuroda, T., Kita, Y., Kuroda, K., Tatsumi, E. & Matsuda, Y. (1985). Chem. Pharm. Bull. 33, 3422-3428.]). Form (I) exhibits multiple ring synthons such as N—H⋯N homodimers R22(8), sulfonamide dimer R22(8), sulfon­amide–amide macrocycle ring R22(20) (Fig. 3[link]a) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). Form (II) comprises sulfonamide catemer chains C(4) as well as amide–thiadiazole N—H⋯N ring motif R22(8) (Fig. 3[link]b). The hydrogen-bond motifs present in the reported cocrystals of ACZ (Baraldi et al., 2009[Baraldi, C., Gamberini, M., Tinti, A., Palazzoli, F. & Ferioli, V. (2009). J. Mol. Struct. 918, 88-96.]; Arenas-García et al., 2010[Arenas-García, J. I., Herrera-Ruiz, D., Mondragón-Vásquez, K., Morales-Rojas, H. & Höpfl, H. (2010). Cryst. Growth Des. 10, 3732-3742.], 2012[Arenas-García, J., Herrera-Ruiz, D., Mondragón-Vásquez, K., Morales-Rojas, H. & Höpfl, H. (2012). Cryst. Growth Des. 12, 811-824.]; Ferrer et al., 1989[Ferrer, S., Borris, J., Miratvilles, C. & Fuertes, A. (1989). Inorg. Chem. 28, 163-165.], 1990[Ferrer, S., Borras, J., Miratvilles, C. & Fuertes, A. (1990). Inorg. Chem. 29, 206-210.]; Hartmann & Vahrenkamp, 1991[Hartmann, U. & Vahrenkamp, H. (1991). Inorg. Chem. 30, 4676-4677.]) with 4-hydroxybenzoic acid (ACZ–4HBA; 1:1), a hydrate with nicotinamide (ACZ–NAM hydrate; 1:1:1), picolinamide (ACZ–PAM; 1:2) and 2,3-dihydroxy benzoic acid (ACZ–2,3DHBA; 3:1) are displayed in Figs. 3[link](c)–(f). The fact that the synthons in cocrystal structures are quite different from those in the two polymorphs of ACZ means that the coformer functional groups are able to disrupt the self-association to give stronger and newer motifs in the binary complexes. This is a positive indication for successful cocrystallization.

[Figure 3]
Figure 3
(a), (b) Supramolecular synthons in ACZ polymorphs Form (I) and (II). (c), (d), (e), (f) Binary cocrystals of ACZ with picolinamide, nicotinamide, 4-hydroxybenzoic acid and 2,3-dihydroxybenzoic acid.

The crystal structures and supramolecular synthons of binary systems with a few pharmaceutically acceptable coformers are discussed to understand the hydrogen bonding and stoichiometry in self-assembly: ACZ–NAM (1:1), ACZ–VLM (1:2), ACZ–CPR hydrate (1:1:1), ACZ–2HP (1:1 and 1:2), ACZ–MeHP (1:1) ACZ–OMeHP hydrate (1:1:1). The designed assembly of a ternary cocrystal ACZ–NAM–2HP (1:1:1) is as such rare for drug molecules.

3.2. Crystal structures of binary cocrystals

The crystal structure parameters are summarized in Table 1[link] and hydrogen-bond parameters in Table S1 of the supporting information . The synthons and molecular packing of binary cocrystals is presented first and then the build up to the ternary system is described.

3.2.1. ACZ–NAM (1:1)

The cocrystal structure (space group [P\overline 1]) contains N—H⋯N homodimers R22(8) of ACZ, similar to those observed in polymorph (II). However, the sulfonamide dimer of ACZ is replaced by N—H⋯O and N—H⋯N hydrogen bonds to nicotinamide. Two ACZ and two NAM molecules form a tetramer ring motif R44(16) via N—H⋯O and N—H⋯N hydrogen bonds (Fig. 4[link]a). The overall structure has a layered two-dimensional pattern (Fig. 4[link]b).

[Figure 4]
Figure 4
Supramolecular synthons and molecular packing in ACZ binary systems. (a), (b) ACZ–NAM (1:1) displays ACZ sulfonamide N—H⋯O and N—H⋯N hydrogen bonds with NAM amide dimers and pyridine N motifs. (c), (d) ACZ–VLM (1:2) where one VLM forms a hydrogen bond with the amidediazole–amide synthon and the second VLM connects such heterodimer units. (e), (f) CPR homodimers interact with sulfonamide hydrate dimer motifs via N—H⋯O and O—H⋯O hydrogen bonds. (g), (h) ACZ–2HP (1:2) shows one equivalent of 2HP to make the heterodimer which is connected by the second 2HP homodimers and sulfonamide N—H⋯O chain. (i), (j) Two-dimensional packing in ACZ–2HP (1:1) makes the binary heterosynthon similar to the previous structure as well as the sulfonamide C(4) catemer. (k), (l) ACZ–MeHP (1:1) is similar to that of ACZ–2HP (1:1). (m), (n) Water molecules are present in the crystal lattice of ACZ–OMeHP hydrate (1:1:1) which connect the binary components of aminodiazole–amide. H atoms are removed in a few diagrams for clarity.
3.2.2. ACZ–VLM (1:2)

In the crystal structure (P21/c) VLM forms a R22(9) motif of sulfonamide, thiadiazole and amide groups (Fig. 4[link]c). A second equivalent of VLM connects such heterosynthon units via N—H⋯O hydrogen bonds. Such one-dimensional chains extended parallel to the c-axis via N—H⋯O hydrogen bonds in a two-dimensional array (Fig. 4[link]d). The inclusion of a second VLM in the cocrystal structure suggested that if this latter molecule could be replaced by a different amide, then a ternary system will result. In other words, the binary system has a tendency to include a third partner from solution. The same phenomenon is observed in the next structure.

3.2.3. ACZ–CPR hydrate (1:1:1)

The ground material of ACZ and CPR in a 1:1 ratio was crystallized as a hydrate (1:1:1) in space group [P\overline 1]. CPR homodimers R22(8) are sandwiched between the SO2NH2 and water molecules in a R44(12) ring motif (Fig. 4[link]e). Such discrete clusters extend via the water O—H donor (Fig. 4[link]f). Even though the water is serendipitously included, it makes three components in the crystal lattice.

3.2.4. ACZ–2HP (1:2)

The ground product of ACZ–2HP (1:2) was solved in space group [P\overline 1]. One equivalent of 2HP breaks the strong N—H⋯N homodimer R22(8) between ACZ molecules and forms an amide(2HP)–imino (ACZ) heterosynthon. The sulfonamide–carboxamide dimer motif R22(20) previously noted in ACZ Form (I) (Fig. 3[link]a) is present in this binary system (Fig. 4[link]g). The second equivalent of 2HP homodimers connect ACZ−2HP units via N—H⋯O hydrogen bonds to give the 1:2 composition (Fig. 4[link]h). Again, the 2HP dimers could be replaced by a structural mimic to give a ternary system.

3.2.5. ACZ–2HP (1:1)

The cyclic ring motifs, such as the N—H⋯N dimer of ACZ polymorphs (Figs. 3[link]a and b), are interrupted in the presence of 2HP to give an amide–iminodiazole R22(8) motif (Fig. 4[link]i), similar to the previous structure. The extended motifs via N—H⋯O catemer chain C(4) in this structure (Fig. 4[link]j) obviate the need for the 2HP dimer noted in the 1:2 structure (Fig. 4[link]g). This binary structure suggests that 2HP should be a good partner for ternary assembly because the crystal structure is heavily disturbed compared with the ACZ structure, as well as other cocrystals. Moreover, both 1:1 and 1:2 combinations were routinely observed. A strong heterodimer between the two components is a prerequisite for ternary assembly (Aakeröy et al., 2001[Aakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2001). Angew. Chem. Int. Ed. 40, 3240-3242.]; Aakeröy & Salmon, 2005[Aakeröy, C. B. & Salmon, D. (2005). CrystEngComm, 7, 439-448.]). The presence of the symmetry-independent 2HP dimer in the 1:2 structure appears to be optional and it could be replaced by another component of similar size, shape and hydrogen-bonding groups to yield a ternary cocrystal. We note that there is a similar NAM amide dimer in the ACZ–NAM (1:1) structure (Fig. 4[link]a) and this gives a logical lead towards the ternary combination.

3.2.6. ACZ–MeHP (1:1)

The centrosymmetric R22(8) dimers of ACZ−MeHP are formed with N—H⋯O and N—H⋯N bonds between aminodiazole–amide groups (Fig. 4[link]k), which is similar to the heterosynthon in ACZ–2HP. The sulfonamide N—H donors connect molecules to make extended arrays (Fig. 4[link]l).

3.2.7. ACZ–OMeHP hydrate (1:1:1)

The ground product of ACZ and OMeHP in a 1:1 ratio crystallized as a hydrate (1:1:1) in space group [P\overline 1]. The dimer of ACZ diazole and OMeHP amide in ring motif R22(8) (Fig. 3[link]a) and water molecules connect such units (Fig. 4[link]m) in the inter-layer region (Fig. 4[link]n). It appears that the inclusion of water was mandated as a spacer between the ACZ−OMeHP dimer units to accommodate the OMe group. This means that the bonding between ACZ and 2HP is strong enough to override steric groups which were overcome by the inclusion of a water molecule in the binary cocrystal.

The above crystal structures are described in the natural sequence of crystallization being carried out and the experimental results analyzed.

3.3. Crystal structure of ternary cocrystal ACZ–NAM–2HP (1:1:1)

After screening several binary combinations and their crystal structures, we have decided to replace the second equivalent of the coformer in ACZ−2HP (1:2) with NAM, given that nicotinamide can form an amide R22(8) dimer similar to 2HP. Moreover such dimers are present in ACZ–NAM (1:1). Grinding of ACZ, NAM and 2HP in an equimolar ratio and recrystallization of the crystalline product gave the ternary cocrystal ACZ–NAM–2HP, as confirmed by single-crystal X-ray diffraction (1:1:1 stoichiometry). The ternary cocrystal structure has resemblances with the binary structure ACZ–2HP (1:2) as expected. Hydrogen bonds between the sulfonamide NH and acetamide C=O groups of ACZ result in dimer pairs R22(20) (Fig. 5[link]a), which were noted previously in polymorph (I) of ACZ as well as in ACZ−2HP (1:2). The R22(8) dimers of 2HP are also present here. The link between these ring motifs is that the amide NH of ACZ bonds to the pyridine N of NAM and the NH of NAM is bonded to the 2HP amide dimer. Thus, while the A and C dimers are repeating motifs, the linkage through the B molecule is somewhat different in the ternary structure compared with the previous binary cocrystals. Propagation of the centrosymmetric motifs via N—H⋯O and N—H⋯N hydrogen bonds is shown in Fig. 5[link](b). There is considerable `carry over' of synthons from the binary to the ternary cocrystal, yet there are unexpected motifs as well. Overall, the element of design and crystal engineering appears to be a consistent thread in this family of structures.

[Figure 5]
Figure 5
(a) Synthons in ternary cocrystal ACZ–NAM–2HP (1:1:1). The macrocycle ring motif R22(20) of ACZ are novel to the ternary structure and NAM further extends these units with hydrogen bonding to the dimers of 2HP. (b) Two-dimensional packing of the ternary cocrystal shows that ACZ molecules (green) are separated by NAM and 2HP (blue, red).

3.4. Supramoleculer synthons in this study

The three hydrogen bonding sites in ACZ are acetamide (donor–acceptor), sulfonamide group (donor–acceptor) and thiadiazole ring (acceptor only) (Fig. 6[link]a). The sulfonamide is flexible (Arenas-García et al., 2010[Arenas-García, J. I., Herrera-Ruiz, D., Mondragón-Vásquez, K., Morales-Rojas, H. & Höpfl, H. (2010). Cryst. Growth Des. 10, 3732-3742.], 2012[Arenas-García, J., Herrera-Ruiz, D., Mondragón-Vásquez, K., Morales-Rojas, H. & Höpfl, H. (2012). Cryst. Growth Des. 12, 811-824.]) while the other two moieties, acetamide and thiadiazole, are rigid functional groups for hydrogen bonding. The main synthons observed in different cocrystals are displayed in Figs. 6[link](b)–(d).

[Figure 6]
Figure 6
Hydrogen-bonding synthons of ACZ observed in this study. (a) Molecular diagram showing the hydrogen bonding groups as rigid or flexible (according to Arenas-García et al., 2010[Arenas-García, J. I., Herrera-Ruiz, D., Mondragón-Vásquez, K., Morales-Rojas, H. & Höpfl, H. (2010). Cryst. Growth Des. 10, 3732-3742.], 2012[Arenas-García, J., Herrera-Ruiz, D., Mondragón-Vásquez, K., Morales-Rojas, H. & Höpfl, H. (2012). Cryst. Growth Des. 12, 811-824.]). (b) Synthon 1 between the acetamide and thiadiazole ring of ACZ with carboxylic acid, carboxamide, syn-amide, respectively. (c) Synthon 2 between the sulfonamide group of ACZ and pyridine carboxamides, e.g. NAM, PAM, to give large ring motifs. (d) Synthon 3 connects sulfonamide, thiadiazole N and lactam conformer C. The graph-set notations of ring motifs are given for identification.

The main stream of our approach and objective was to understand the long-range synthon Aufbau modules (LSAM; Ganguly & Desiraju, 2010[Ganguly, P. & Desiraju, G. R. (2010). CrystEngComm, 12, 817-833.]; Mukherjee et al., 2014a[Mukherjee, A., Dixit, K., Sarma, S. P. & Desiraju, G. R. (2014a). IUCrJ, 1, 228-239.],b[Mukherjee, A., Tothadi, S. & Desiraju, G. R. (2014b). Acc. Chem. Res. 47, 2514-2524.]) in the ternary cocrystals (Bolla & Nangia, 2015[Bolla, G. & Nangia, A. (2015). Chem. Commun. 51, 15578-15581.]). However, because we were successful in crystallizing only a single ternary structure in this family, a supramolecular build-up or LSAM model for the ternary assembly of ACZ is difficult to analyze due to insufficient data. The ternary cocrystal suggests the ACZ amide bonds with NAM pyridine via N—H⋯N and the CONH2 donor of NAM connects to the pyridone via N—H⋯O to give the ternary adduct (Fig. 7[link]).

[Figure 7]
Figure 7
LSAM in the ternary assembly ACZ–NAM–2HP.

3.5. CSD analysis of heterosynthons in this study

A search of the Cambridge Structural Database (CSD Version 5.36, May 2015 update) was carried out to tabulate the reported supramolecular synthons of the sulfonamide functional group observed in this study (after eliminating hydrates, solvates, salts and duplicates) with those reported in previous structures. Relatively few hits are obtained on the sulfonamide functional group bonding to amide (25 hits), pyridine (4 hits) and carboxylic acids (3 hits); see Table 2[link] and Table S2 . The present study therefore is an early result on cocrystals of a sulfonamide drug with pyridine amide and lactam conformers (GRAS-type molecules; Bolla & Nangia, 2015[Bolla, G. & Nangia, A. (2015). Chem. Commun. 51, 15578-15581.]). The synthons extracted from the CSD for a sulfonamide bonding to an amide or pyridine group are displayed in Fig. 8[link]. Analogous to the carboxamide group (Nangia, 2010[Nangia, A. (2010). J. Chem. Sci. 122, 295-310.]), the occurrence of SO2NH2 bonding with an amide group is much more likely than to a pyridine (six times) due to the stronger amide acceptor nature.

Table 2
Frequency of sulfonamide synthons in the CSD

Supramolecular synthons of SO2NH2 group in crystal structure adducts Number of hits
Sulfonamide–amide 25
Sulfonamide–pyridine 4
Sulfonamide–acid 3
[Figure 8]
Figure 8
Different types of (a) sulfonamide–amide, (b) sulfonamide−pyridine and (c) sulfonamide−acid supramolecular synthons.

4. Conclusions

The first study of sulfonamide drug cocrystals with amide coformers is described leading to a ternary drug cocrystal. A library of supramolecular synthons was derived from binary adducts of ACZ with pyridine amide and lactam coformers (AB and AC cocrystals). There is competition and interplay of the hydrogen bonding functional groups during binary cocrystallization. The binary results suggest that the syn amides form reliable synthons to afford cocrystals with a sulfonamide drug. Using ACZ–NAM and ACZ–2HP cocrystals as leads, a ternary assembly was designed to give the 3-component cocrystal ACZ–NAM–2HP (1:1:1). Mechanochemistry, or grinding with solvent added, is necessary to hydrogen bond the components in the ternary adduct, which was then recrystallized to produce single crystals for X-ray diffraction. This is the first crystal structure report of a sulfa drug ternary cocrystal.

Supporting information


Computing details top

For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

(ACZ2HP11) top
Crystal data top
C4H6N4O3S2·C5H5NODx = 1.566 Mg m3
Mr = 317.35Melting point: 453 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.9138 (4) ÅCell parameters from 6192 reflections
b = 33.192 (3) Åθ = 2.5–25.9°
c = 8.3659 (7) ŵ = 0.42 mm1
β = 99.520 (1)°T = 298 K
V = 1345.7 (2) Å3Needle, colorles
Z = 40.21 × 0.19 × 0.18 mm
F(000) = 656
Data collection top
CCD area detector
diffractometer
2176 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 26.0°, θmin = 1.2°
phi and ω scansh = 66
13846 measured reflectionsk = 4040
2640 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0591P)2 + 0.2415P]
where P = (Fo2 + 2Fc2)/3
2640 reflections(Δ/σ)max < 0.001
198 parametersΔρmax = 0.35 e Å3
1 restraintΔρmin = 0.22 e Å3
Crystal data top
C4H6N4O3S2·C5H5NOV = 1345.7 (2) Å3
Mr = 317.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.9138 (4) ŵ = 0.42 mm1
b = 33.192 (3) ÅT = 298 K
c = 8.3659 (7) Å0.21 × 0.19 × 0.18 mm
β = 99.520 (1)°
Data collection top
CCD area detector
diffractometer
2176 reflections with I > 2σ(I)
13846 measured reflectionsRint = 0.038
2640 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.35 e Å3
2640 reflectionsΔρmin = 0.22 e Å3
198 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15925 (10)0.228595 (15)0.67680 (6)0.03577 (16)
S20.07309 (10)0.137123 (16)0.65477 (6)0.04162 (17)
N10.2548 (3)0.18467 (5)0.8351 (2)0.0383 (4)
N30.3114 (4)0.08084 (5)0.7764 (2)0.0448 (4)
N40.2949 (4)0.24391 (6)0.8236 (2)0.0385 (4)
C10.0263 (4)0.18371 (6)0.7336 (2)0.0339 (4)
O20.3746 (3)0.21585 (5)0.55101 (18)0.0548 (4)
C20.2258 (4)0.11980 (6)0.7721 (2)0.0367 (4)
N20.3729 (3)0.14739 (5)0.8588 (2)0.0402 (4)
O30.0387 (3)0.25754 (5)0.64635 (19)0.0518 (4)
O10.0546 (4)0.05834 (5)0.6013 (2)0.0689 (5)
O40.2082 (3)0.06497 (5)0.0152 (2)0.0612 (5)
C50.0597 (4)0.08755 (7)0.0815 (3)0.0478 (5)
N50.1277 (4)0.12714 (6)0.0950 (2)0.0467 (5)
C40.2896 (7)0.01022 (8)0.7138 (4)0.0812 (9)
H4A0.26670.00000.81800.122*
H4B0.48270.01200.70790.122*
H4C0.20110.00760.63060.122*
C60.1882 (5)0.07568 (8)0.1854 (3)0.0597 (7)
H60.24780.04910.18340.072*
C30.1627 (5)0.05098 (7)0.6901 (3)0.0538 (6)
C80.2571 (6)0.14215 (9)0.2911 (3)0.0648 (7)
H80.36300.16040.35910.078*
C90.0223 (5)0.15392 (8)0.1954 (3)0.0565 (6)
H90.03670.18050.19830.068*
C70.3371 (5)0.10210 (9)0.2859 (3)0.0648 (7)
H70.49620.09340.35310.078*
H4D0.186 (5)0.2539 (6)0.899 (3)0.038 (6)*
H4E0.432 (5)0.2307 (7)0.842 (3)0.049 (7)*
H3A0.470 (6)0.0766 (8)0.845 (3)0.061 (7)*
H5A0.274 (4)0.1352 (7)0.034 (3)0.056 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0334 (3)0.0423 (3)0.0300 (3)0.0064 (2)0.00046 (19)0.0022 (2)
S20.0339 (3)0.0442 (3)0.0426 (3)0.0019 (2)0.0061 (2)0.0087 (2)
N10.0317 (8)0.0365 (9)0.0435 (10)0.0013 (7)0.0031 (7)0.0006 (7)
N30.0363 (10)0.0374 (10)0.0568 (11)0.0015 (8)0.0042 (9)0.0055 (8)
N40.0299 (9)0.0454 (10)0.0398 (10)0.0050 (8)0.0046 (8)0.0078 (8)
C10.0298 (10)0.0383 (11)0.0328 (10)0.0017 (8)0.0028 (8)0.0007 (8)
O20.0542 (10)0.0625 (10)0.0398 (8)0.0179 (8)0.0152 (7)0.0094 (7)
C20.0301 (10)0.0390 (11)0.0401 (11)0.0003 (8)0.0030 (8)0.0019 (9)
N20.0308 (9)0.0350 (9)0.0512 (10)0.0011 (7)0.0040 (7)0.0012 (7)
O30.0510 (9)0.0525 (10)0.0552 (9)0.0040 (7)0.0187 (7)0.0173 (7)
O10.0629 (11)0.0560 (11)0.0777 (12)0.0010 (9)0.0180 (9)0.0198 (9)
O40.0505 (9)0.0490 (9)0.0770 (12)0.0052 (8)0.0104 (9)0.0027 (8)
C50.0386 (12)0.0516 (14)0.0517 (13)0.0007 (10)0.0034 (10)0.0047 (10)
N50.0366 (10)0.0481 (11)0.0525 (11)0.0022 (8)0.0008 (9)0.0055 (9)
C40.084 (2)0.0406 (14)0.108 (2)0.0017 (13)0.0140 (18)0.0138 (15)
C60.0455 (13)0.0599 (16)0.0703 (16)0.0113 (12)0.0007 (12)0.0125 (13)
C30.0535 (14)0.0426 (13)0.0624 (15)0.0022 (11)0.0014 (12)0.0095 (11)
C80.0540 (15)0.0794 (19)0.0569 (15)0.0074 (14)0.0032 (12)0.0052 (13)
C90.0548 (15)0.0549 (15)0.0582 (14)0.0046 (12)0.0049 (12)0.0029 (12)
C70.0461 (14)0.085 (2)0.0580 (16)0.0007 (13)0.0086 (12)0.0100 (14)
Geometric parameters (Å, º) top
S1—O31.4199 (16)C5—N51.365 (3)
S1—O21.4274 (15)C5—C61.430 (3)
S1—N41.5753 (18)N5—C91.354 (3)
S1—C11.7701 (19)N5—H5A0.853 (16)
S2—C11.7197 (19)C4—C31.489 (3)
S2—C21.725 (2)C4—H4A0.9600
N1—C11.291 (2)C4—H4B0.9600
N1—N21.367 (2)C4—H4C0.9600
N3—C21.359 (3)C6—C71.345 (4)
N3—C31.365 (3)C6—H60.9300
N3—H3A0.90 (3)C8—C91.349 (4)
N4—H4D0.83 (2)C8—C71.389 (4)
N4—H4E0.84 (3)C8—H80.9300
C2—N21.309 (2)C9—H90.9300
O1—C31.221 (3)C7—H70.9300
O4—C51.246 (3)
O3—S1—O2120.96 (10)C9—N5—C5124.6 (2)
O3—S1—N4108.20 (10)C9—N5—H5A118.8 (17)
O2—S1—N4108.22 (10)C5—N5—H5A116.6 (17)
O3—S1—C1106.26 (9)C3—C4—H4A109.5
O2—S1—C1103.56 (9)C3—C4—H4B109.5
N4—S1—C1109.15 (9)H4A—C4—H4B109.5
C1—S2—C285.44 (9)C3—C4—H4C109.5
C1—N1—N2112.04 (16)H4A—C4—H4C109.5
C2—N3—C3122.72 (19)H4B—C4—H4C109.5
C2—N3—H3A113.5 (17)C7—C6—C5121.4 (2)
C3—N3—H3A123.7 (17)C7—C6—H6119.3
S1—N4—H4D115.1 (15)C5—C6—H6119.3
S1—N4—H4E115.2 (16)O1—C3—N3121.0 (2)
H4D—N4—H4E121 (2)O1—C3—C4124.6 (2)
N1—C1—S2115.80 (14)N3—C3—C4114.4 (2)
N1—C1—S1120.59 (15)C9—C8—C7118.5 (2)
S2—C1—S1123.57 (11)C9—C8—H8120.7
N2—C2—N3120.73 (18)C7—C8—H8120.7
N2—C2—S2114.98 (15)C8—C9—N5120.2 (2)
N3—C2—S2124.29 (15)C8—C9—H9119.9
C2—N2—N1111.74 (16)N5—C9—H9119.9
O4—C5—N5120.5 (2)C6—C7—C8121.1 (2)
O4—C5—C6125.3 (2)C6—C7—H7119.5
N5—C5—C6114.2 (2)C8—C7—H7119.5
(ACZ2HP12) top
Crystal data top
C4H6N4O3S2·2(C5H5NO)F(000) = 428
Mr = 412.45Dx = 1.495 Mg m3
Triclinic, P1Melting point: 433 K
a = 6.8501 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.3563 (6) ÅCell parameters from 3198 reflections
c = 12.3387 (8) Åθ = 5.1–71.9°
α = 82.288 (5)°µ = 3.01 mm1
β = 81.856 (4)°T = 298 K
γ = 75.804 (4)°Block, colorles
V = 916.20 (8) Å30.23 × 0.22 × 0.22 mm
Z = 2
Data collection top
Xcalibur, Eos, Gemini
diffractometer
3268 independent reflections
Radiation source: fine-focus sealed tube3035 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 67.1°, θmin = 3.6°
Absorption correction: multi-scanh = 68
Tmin = 0.137, Tmax = 1.000k = 1213
5007 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.1265P)2 + 0.4073P]
where P = (Fo2 + 2Fc2)/3
3268 reflections(Δ/σ)max = 0.001
265 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
C4H6N4O3S2·2(C5H5NO)γ = 75.804 (4)°
Mr = 412.45V = 916.20 (8) Å3
Triclinic, P1Z = 2
a = 6.8501 (3) ÅCu Kα radiation
b = 11.3563 (6) ŵ = 3.01 mm1
c = 12.3387 (8) ÅT = 298 K
α = 82.288 (5)°0.23 × 0.22 × 0.22 mm
β = 81.856 (4)°
Data collection top
Xcalibur, Eos, Gemini
diffractometer
3268 independent reflections
Absorption correction: multi-scan3035 reflections with I > 2σ(I)
Tmin = 0.137, Tmax = 1.000Rint = 0.032
5007 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.47 e Å3
3268 reflectionsΔρmin = 0.80 e Å3
265 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.24089 (9)0.05772 (5)0.95947 (5)0.0335 (2)
S20.30061 (10)0.06609 (5)0.70910 (5)0.0379 (2)
O10.1813 (3)0.01581 (17)1.18019 (17)0.0462 (5)
O40.0236 (3)0.64656 (18)0.43750 (17)0.0493 (5)
O50.1665 (4)0.43570 (19)0.17745 (18)0.0543 (6)
N60.2348 (3)0.5258 (2)0.00544 (18)0.0368 (5)
N30.2022 (3)0.2086 (2)1.12119 (19)0.0360 (5)
N10.2786 (3)0.2507 (2)0.83158 (19)0.0383 (5)
N20.2504 (3)0.28428 (19)0.93644 (19)0.0376 (5)
O20.3320 (4)0.06083 (18)0.74606 (18)0.0517 (5)
C110.2201 (4)0.6368 (2)0.1559 (2)0.0398 (6)
H110.20110.64350.23120.048*
N50.1912 (4)0.5326 (2)0.57629 (18)0.0393 (5)
C50.1597 (4)0.6322 (2)0.4996 (2)0.0363 (6)
N40.0888 (4)0.1104 (2)0.6619 (2)0.0445 (6)
O30.4477 (3)0.1111 (2)0.63316 (19)0.0592 (6)
C100.2042 (4)0.5270 (2)0.1168 (2)0.0360 (5)
C30.1763 (4)0.1184 (2)1.2020 (2)0.0376 (6)
C20.2298 (3)0.1931 (2)1.0117 (2)0.0311 (5)
C60.2904 (4)0.7128 (3)0.4969 (3)0.0450 (6)
H60.27620.78250.44700.054*
C10.2781 (4)0.1371 (2)0.8312 (2)0.0325 (5)
C130.2904 (4)0.7245 (2)0.0287 (3)0.0428 (6)
H130.31880.78970.07750.051*
C140.2752 (4)0.6207 (3)0.0661 (2)0.0418 (6)
H140.29250.61440.14140.050*
C80.4615 (5)0.5844 (3)0.6420 (2)0.0499 (7)
H80.56120.56810.68940.060*
C120.2625 (4)0.7313 (2)0.0845 (3)0.0415 (6)
H120.27320.80170.11160.050*
C70.4350 (5)0.6892 (3)0.5661 (3)0.0489 (7)
H70.51830.74330.56330.059*
C40.1405 (5)0.1532 (3)1.3167 (3)0.0536 (8)
H4C0.00820.14451.34930.080*
H4D0.14890.23651.31540.080*
H4E0.24120.10101.35930.080*
C90.3372 (5)0.5079 (3)0.6441 (2)0.0483 (7)
H90.35280.43720.69290.058*
H5A0.118 (5)0.483 (3)0.580 (3)0.046 (9)*
H4A0.058 (5)0.183 (4)0.638 (3)0.058 (10)*
H4B0.001 (6)0.078 (4)0.706 (4)0.066 (11)*
H6A0.229 (5)0.457 (4)0.022 (3)0.057 (10)*
H3A0.191 (5)0.281 (3)1.138 (3)0.039 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0420 (4)0.0222 (3)0.0378 (4)0.0110 (2)0.0054 (3)0.0009 (2)
S20.0474 (4)0.0313 (4)0.0352 (4)0.0129 (3)0.0011 (3)0.0009 (3)
O10.0681 (13)0.0304 (10)0.0434 (10)0.0213 (9)0.0001 (9)0.0038 (8)
O40.0629 (12)0.0402 (11)0.0526 (12)0.0252 (9)0.0240 (10)0.0106 (9)
O50.0881 (16)0.0351 (11)0.0444 (11)0.0256 (10)0.0035 (10)0.0036 (8)
N60.0469 (12)0.0279 (11)0.0395 (11)0.0118 (9)0.0082 (9)0.0074 (9)
N30.0426 (11)0.0251 (11)0.0437 (12)0.0115 (8)0.0086 (9)0.0046 (9)
N10.0475 (12)0.0304 (11)0.0410 (12)0.0175 (9)0.0103 (9)0.0035 (9)
N20.0475 (12)0.0263 (10)0.0436 (12)0.0159 (9)0.0113 (9)0.0005 (8)
O20.0728 (13)0.0297 (10)0.0496 (11)0.0069 (9)0.0059 (10)0.0035 (8)
C110.0491 (14)0.0316 (13)0.0415 (14)0.0079 (11)0.0100 (11)0.0113 (11)
N50.0505 (13)0.0363 (12)0.0343 (11)0.0189 (10)0.0057 (9)0.0019 (9)
C50.0456 (14)0.0327 (13)0.0331 (12)0.0151 (11)0.0032 (10)0.0023 (10)
N40.0606 (15)0.0363 (13)0.0419 (13)0.0206 (11)0.0148 (11)0.0039 (10)
O30.0605 (13)0.0655 (15)0.0512 (13)0.0273 (11)0.0125 (10)0.0013 (11)
C100.0410 (13)0.0298 (12)0.0395 (13)0.0089 (10)0.0093 (10)0.0054 (10)
C30.0378 (12)0.0328 (13)0.0437 (14)0.0107 (10)0.0030 (10)0.0062 (10)
C20.0297 (11)0.0230 (11)0.0432 (13)0.0093 (8)0.0099 (9)0.0006 (9)
C60.0529 (15)0.0373 (14)0.0485 (15)0.0203 (12)0.0088 (12)0.0048 (11)
C10.0344 (11)0.0282 (12)0.0375 (13)0.0116 (9)0.0082 (9)0.0004 (9)
C130.0458 (14)0.0281 (13)0.0536 (16)0.0109 (11)0.0054 (12)0.0033 (11)
C140.0489 (15)0.0369 (14)0.0388 (14)0.0071 (11)0.0058 (11)0.0055 (11)
C80.0549 (17)0.0600 (19)0.0384 (14)0.0180 (14)0.0130 (12)0.0015 (13)
C120.0415 (13)0.0264 (12)0.0601 (17)0.0078 (10)0.0113 (12)0.0106 (11)
C70.0516 (16)0.0532 (17)0.0495 (16)0.0262 (13)0.0084 (13)0.0025 (13)
C40.071 (2)0.0458 (16)0.0443 (17)0.0181 (14)0.0043 (14)0.0100 (13)
C90.0625 (17)0.0483 (16)0.0348 (14)0.0157 (13)0.0103 (12)0.0041 (12)
Geometric parameters (Å, º) top
S1—C21.726 (2)N5—C51.368 (3)
S1—C11.731 (3)N5—H5A0.84 (4)
S2—O31.418 (2)C5—C61.423 (4)
S2—O21.425 (2)N4—H4A0.83 (4)
S2—N41.581 (3)N4—H4B0.88 (4)
S2—C11.773 (3)C3—C41.491 (4)
O1—C31.222 (3)C6—C71.352 (4)
O4—C51.256 (3)C6—H60.9300
O5—C101.253 (3)C13—C141.354 (4)
N6—C141.356 (4)C13—C121.393 (4)
N6—C101.361 (4)C13—H130.9300
N6—H6A0.90 (4)C14—H140.9300
N3—C31.356 (4)C8—C91.353 (5)
N3—C21.366 (4)C8—C71.403 (4)
N3—H3A0.85 (3)C8—H80.9300
N1—C11.292 (3)C12—H120.9300
N1—N21.372 (3)C7—H70.9300
N2—C21.316 (3)C4—H4C0.9600
C11—C121.356 (4)C4—H4D0.9600
C11—C101.429 (4)C4—H4E0.9600
C11—H110.9300C9—H90.9300
N5—C91.347 (4)
C2—S1—C185.81 (12)N2—C2—N3120.9 (2)
O3—S2—O2120.57 (14)N2—C2—S1114.39 (19)
O3—S2—N4108.47 (15)N3—C2—S1124.73 (18)
O2—S2—N4108.92 (14)C7—C6—C5120.8 (3)
O3—S2—C1107.07 (13)C7—C6—H6119.6
O2—S2—C1104.15 (12)C5—C6—H6119.6
N4—S2—C1106.84 (13)N1—C1—S1115.6 (2)
C14—N6—C10124.0 (2)N1—C1—S2123.4 (2)
C14—N6—H6A119 (2)S1—C1—S2120.98 (14)
C10—N6—H6A117 (2)C14—C13—C12118.3 (3)
C3—N3—C2123.3 (2)C14—C13—H13120.8
C3—N3—H3A120 (2)C12—C13—H13120.8
C2—N3—H3A117 (2)N6—C14—C13120.5 (3)
C1—N1—N2111.9 (2)N6—C14—H14119.7
C2—N2—N1112.4 (2)C13—C14—H14119.7
C12—C11—C10120.7 (3)C9—C8—C7117.9 (3)
C12—C11—H11119.7C9—C8—H8121.1
C10—C11—H11119.7C7—C8—H8121.1
C9—N5—C5124.0 (2)C11—C12—C13121.1 (2)
C9—N5—H5A118 (2)C11—C12—H12119.4
C5—N5—H5A118 (2)C13—C12—H12119.4
O4—C5—N5119.9 (2)C6—C7—C8121.1 (3)
O4—C5—C6124.9 (2)C6—C7—H7119.4
N5—C5—C6115.3 (2)C8—C7—H7119.4
S2—N4—H4A116 (3)C3—C4—H4C109.5
S2—N4—H4B109 (3)C3—C4—H4D109.5
H4A—N4—H4B119 (4)H4C—C4—H4D109.5
O5—C10—N6120.2 (2)C3—C4—H4E109.5
O5—C10—C11124.5 (2)H4C—C4—H4E109.5
N6—C10—C11115.3 (2)H4D—C4—H4E109.5
O1—C3—N3121.0 (3)N5—C9—C8120.9 (3)
O1—C3—C4123.1 (3)N5—C9—H9119.6
N3—C3—C4115.9 (2)C8—C9—H9119.6
(ACZCPRH111) top
Crystal data top
C4H6N4O3S2·C6H11NO·H2OF(000) = 372
Mr = 353.42Dx = 1.481 Mg m3
Triclinic, P1Melting point: 353 K
a = 4.9969 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.6983 (6) ÅCell parameters from 2588 reflections
c = 14.6244 (8) Åθ = 4.3–71.6°
α = 70.868 (5)°µ = 3.34 mm1
β = 81.892 (4)°T = 298 K
γ = 80.262 (4)°Block, colorles
V = 792.64 (7) Å30.22 × 0.20 × 0.18 mm
Z = 2
Data collection top
Xcalibur, Eos, Gemini
diffractometer
2792 independent reflections
Radiation source: fine-focus sealed tube2633 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ω scansθmax = 67.1°, θmin = 3.2°
Absorption correction: multi-scanh = 35
Tmin = 0.344, Tmax = 1.000k = 1313
4238 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0732P)2 + 0.2015P]
where P = (Fo2 + 2Fc2)/3
2792 reflections(Δ/σ)max = 0.001
224 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C4H6N4O3S2·C6H11NO·H2Oγ = 80.262 (4)°
Mr = 353.42V = 792.64 (7) Å3
Triclinic, P1Z = 2
a = 4.9969 (2) ÅCu Kα radiation
b = 11.6983 (6) ŵ = 3.34 mm1
c = 14.6244 (8) ÅT = 298 K
α = 70.868 (5)°0.22 × 0.20 × 0.18 mm
β = 81.892 (4)°
Data collection top
Xcalibur, Eos, Gemini
diffractometer
2792 independent reflections
Absorption correction: multi-scan2633 reflections with I > 2σ(I)
Tmin = 0.344, Tmax = 1.000Rint = 0.012
4238 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.24 e Å3
2792 reflectionsΔρmin = 0.34 e Å3
224 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.46604 (9)0.66085 (4)0.81893 (3)0.03689 (17)
S20.13348 (9)0.88093 (4)0.86580 (3)0.03464 (16)
N10.5296 (3)0.72165 (15)0.96732 (11)0.0366 (4)
O30.0206 (3)0.85828 (14)0.80014 (11)0.0457 (4)
O20.0081 (3)0.89119 (14)0.95736 (10)0.0466 (4)
N30.8821 (4)0.48098 (15)0.88493 (12)0.0368 (4)
N20.7199 (3)0.62081 (14)0.96965 (12)0.0371 (4)
N40.2778 (4)0.99761 (15)0.81091 (14)0.0429 (4)
O10.6895 (4)0.47394 (14)0.75737 (12)0.0539 (4)
C20.7098 (4)0.58016 (16)0.89711 (13)0.0328 (4)
C10.3890 (4)0.75179 (16)0.89379 (13)0.0324 (4)
C30.8640 (4)0.43117 (17)0.81336 (14)0.0390 (4)
C41.0735 (5)0.3246 (2)0.81105 (18)0.0528 (5)
H4A1.02300.28430.76970.079*
H4B1.08470.26850.87560.079*
H4C1.24740.35230.78640.079*
O50.4198 (4)0.88908 (18)0.10029 (14)0.0568 (4)
O40.5211 (4)0.97154 (16)0.38384 (11)0.0561 (4)
N50.2630 (4)0.88580 (17)0.51860 (14)0.0481 (4)
C50.3483 (4)0.90157 (19)0.42601 (15)0.0427 (5)
C90.1699 (7)0.6720 (3)0.5939 (2)0.0746 (8)
H9A0.35640.65640.61080.089*
H9B0.06080.62430.64890.089*
C60.2383 (5)0.8302 (2)0.37460 (17)0.0534 (6)
H6A0.30100.85790.30610.064*
H6B0.04070.84600.38050.064*
C70.3268 (6)0.6928 (2)0.4155 (2)0.0677 (7)
H7A0.31430.65540.36630.081*
H7B0.51660.67950.42840.081*
C100.0673 (6)0.8057 (2)0.57692 (19)0.0590 (6)
H10A0.09900.82600.54460.071*
H10B0.02310.82020.63930.071*
C80.1611 (7)0.6293 (2)0.5076 (3)0.0772 (9)
H8A0.02740.64020.49370.093*
H8B0.22520.54250.52550.093*
H4E0.367 (6)1.022 (3)0.850 (2)0.058 (7)*
H3A0.998 (5)0.455 (2)0.9228 (18)0.039 (6)*
H5A0.329 (6)0.923 (2)0.5448 (19)0.050 (7)*
H4D0.349 (5)1.006 (2)0.751 (2)0.050 (7)*
H5B0.287 (8)0.934 (3)0.076 (2)0.079 (10)*
H5C0.469 (10)0.853 (4)0.068 (3)0.127 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0384 (3)0.0384 (3)0.0366 (3)0.00291 (19)0.01233 (19)0.0158 (2)
S20.0302 (3)0.0381 (3)0.0352 (3)0.00124 (18)0.00382 (18)0.01345 (19)
N10.0373 (8)0.0387 (8)0.0349 (8)0.0013 (6)0.0063 (6)0.0136 (7)
O30.0389 (8)0.0512 (8)0.0501 (8)0.0014 (6)0.0124 (6)0.0186 (7)
O20.0409 (8)0.0547 (8)0.0426 (8)0.0022 (6)0.0022 (6)0.0197 (7)
N30.0365 (9)0.0349 (8)0.0396 (9)0.0027 (6)0.0127 (7)0.0123 (7)
N20.0387 (9)0.0371 (8)0.0362 (8)0.0006 (6)0.0093 (6)0.0127 (6)
N40.0493 (10)0.0381 (9)0.0410 (10)0.0035 (7)0.0069 (8)0.0122 (7)
O10.0611 (10)0.0526 (9)0.0560 (9)0.0082 (7)0.0247 (8)0.0277 (7)
C20.0309 (9)0.0341 (9)0.0326 (9)0.0045 (7)0.0062 (7)0.0078 (7)
C10.0309 (9)0.0325 (9)0.0340 (9)0.0018 (7)0.0029 (7)0.0119 (7)
C30.0416 (11)0.0344 (9)0.0409 (10)0.0035 (8)0.0059 (8)0.0114 (8)
C40.0578 (14)0.0464 (12)0.0569 (13)0.0064 (10)0.0091 (11)0.0245 (10)
O50.0546 (11)0.0621 (10)0.0618 (11)0.0095 (8)0.0177 (8)0.0334 (9)
O40.0656 (11)0.0634 (10)0.0453 (8)0.0290 (8)0.0041 (7)0.0186 (7)
N50.0575 (12)0.0494 (10)0.0454 (10)0.0205 (9)0.0012 (8)0.0212 (8)
C50.0447 (11)0.0414 (10)0.0435 (11)0.0061 (8)0.0062 (9)0.0141 (8)
C90.094 (2)0.0565 (15)0.0684 (17)0.0294 (15)0.0192 (16)0.0009 (13)
C60.0556 (14)0.0651 (14)0.0475 (12)0.0154 (11)0.0106 (10)0.0221 (11)
C70.0662 (16)0.0645 (16)0.093 (2)0.0017 (13)0.0225 (15)0.0497 (15)
C100.0631 (15)0.0655 (15)0.0523 (13)0.0263 (12)0.0078 (11)0.0202 (11)
C80.085 (2)0.0432 (13)0.111 (2)0.0118 (13)0.0362 (18)0.0211 (14)
Geometric parameters (Å, º) top
S1—C21.7259 (18)O1—C31.211 (3)
S1—C11.7276 (18)C3—C41.493 (3)
S2—O31.4247 (15)O4—C51.247 (3)
S2—O21.4295 (15)N5—C51.323 (3)
S2—N41.5745 (18)N5—C101.453 (3)
S2—C11.7804 (18)C5—C61.499 (3)
N1—C11.287 (2)C9—C81.510 (4)
N1—N21.378 (2)C9—C101.511 (4)
N3—C21.369 (3)C6—C71.530 (4)
N3—C31.374 (3)C7—C81.513 (4)
N2—C21.307 (2)
C2—S1—C185.27 (9)N1—C1—S2123.64 (14)
O3—S2—O2120.63 (9)S1—C1—S2120.19 (11)
O3—S2—N4108.90 (10)O1—C3—N3120.60 (19)
O2—S2—N4108.60 (10)O1—C3—C4124.51 (19)
O3—S2—C1104.01 (9)N3—C3—C4114.88 (18)
O2—S2—C1105.71 (9)C5—N5—C10126.3 (2)
N4—S2—C1108.33 (9)O4—C5—N5120.5 (2)
C1—N1—N2111.55 (15)O4—C5—C6121.2 (2)
C2—N3—C3123.01 (17)N5—C5—C6118.22 (19)
C2—N2—N1111.94 (15)C8—C9—C10114.0 (2)
N2—C2—N3121.76 (17)C5—C6—C7112.5 (2)
N2—C2—S1115.08 (14)C8—C7—C6114.5 (2)
N3—C2—S1123.16 (14)N5—C10—C9113.3 (2)
N1—C1—S1116.16 (14)C9—C8—C7115.7 (2)
(ACZDMSO) top
Crystal data top
2(C4H6N4O3S2)·C2H6OSDx = 1.607 Mg m3
Mr = 522.62Melting point: 423 K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 52.62 (3) ÅCell parameters from 8298 reflections
b = 4.816 (2) Åθ = 2.4–27.7°
c = 17.814 (9) ŵ = 0.59 mm1
β = 106.785 (13)°T = 298 K
V = 4322 (4) Å3Plate, colorles
Z = 80.20 × 0.18 × 0.18 mm
F(000) = 2160
Data collection top
CCD area detector
diffractometer
3834 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 26.5°, θmin = 1.6°
phi and ω scansh = 6464
21342 measured reflectionsk = 66
4378 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0543P)2 + 4.6734P]
where P = (Fo2 + 2Fc2)/3
4378 reflections(Δ/σ)max = 0.002
299 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
2(C4H6N4O3S2)·C2H6OSV = 4322 (4) Å3
Mr = 522.62Z = 8
Monoclinic, C2/cMo Kα radiation
a = 52.62 (3) ŵ = 0.59 mm1
b = 4.816 (2) ÅT = 298 K
c = 17.814 (9) Å0.20 × 0.18 × 0.18 mm
β = 106.785 (13)°
Data collection top
CCD area detector
diffractometer
3834 reflections with I > 2σ(I)
21342 measured reflectionsRint = 0.029
4378 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.43 e Å3
4378 reflectionsΔρmin = 0.25 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S30.006883 (10)0.05456 (11)0.15916 (3)0.03631 (14)
S40.063213 (11)0.27631 (11)0.21613 (3)0.03644 (14)
O40.04452 (3)0.0799 (3)0.12430 (9)0.0474 (4)
N70.02235 (3)0.3259 (4)0.05622 (10)0.0355 (4)
O60.04826 (3)0.4541 (3)0.25137 (10)0.0513 (4)
C60.00128 (4)0.1927 (4)0.08639 (11)0.0317 (4)
N50.04358 (3)0.0927 (4)0.09867 (10)0.0369 (4)
N80.08079 (4)0.0763 (4)0.28187 (12)0.0416 (4)
O50.07982 (3)0.3869 (4)0.17311 (10)0.0516 (4)
N60.02160 (3)0.2467 (4)0.06040 (10)0.0374 (4)
C70.04479 (4)0.2645 (5)0.07735 (12)0.0368 (5)
C50.03872 (4)0.0674 (4)0.15096 (11)0.0328 (4)
C80.06839 (5)0.4366 (6)0.03851 (15)0.0510 (6)
H8A0.08410.34760.04370.077*
H8B0.06970.45700.01610.077*
H8C0.06660.61630.06280.077*
S20.145927 (11)0.33975 (11)0.45615 (3)0.03771 (14)
S10.193875 (12)0.26355 (14)0.39428 (4)0.04959 (17)
N40.12674 (4)0.4870 (5)0.38253 (13)0.0435 (5)
O30.14239 (4)0.4519 (4)0.52612 (9)0.0549 (4)
N20.21778 (4)0.6305 (5)0.49380 (12)0.0495 (5)
C20.22078 (4)0.4699 (5)0.43775 (13)0.0423 (5)
C10.17893 (4)0.4219 (5)0.45742 (12)0.0383 (5)
N10.19316 (4)0.6020 (4)0.50505 (12)0.0467 (5)
O20.14364 (4)0.0484 (3)0.44237 (11)0.0542 (4)
N30.24391 (4)0.4683 (5)0.41755 (13)0.0484 (5)
C30.24843 (5)0.3005 (6)0.36117 (15)0.0576 (7)
O10.23177 (4)0.1342 (6)0.32735 (14)0.0918 (8)
C40.27461 (6)0.3372 (8)0.34596 (17)0.0676 (8)
H4A0.28270.15890.34490.101*
H4B0.28590.44850.38680.101*
H4C0.27210.42790.29640.101*
S50.134755 (13)0.27251 (13)0.18180 (4)0.04840 (17)
O70.13023 (4)0.1643 (4)0.25691 (9)0.0564 (5)
C90.11184 (5)0.0939 (6)0.10491 (13)0.0504 (6)
H9A0.11370.10240.11420.076*
H9B0.11520.13710.05610.076*
H9C0.09410.15000.10260.076*
C100.16389 (5)0.1016 (8)0.17402 (17)0.0722 (9)
H10A0.17900.16800.21440.108*
H10B0.16630.13970.12360.108*
H10C0.16210.09490.17990.108*
H4D0.1278 (5)0.415 (6)0.3405 (17)0.056 (8)*
H7A0.0230 (4)0.441 (5)0.0219 (12)0.029 (6)*
H4E0.1260 (5)0.634 (6)0.3891 (15)0.039 (8)*
H8D0.0928 (6)0.013 (6)0.2678 (15)0.052 (8)*
H8E0.0721 (6)0.010 (6)0.3084 (16)0.060 (9)*
H3A0.2545 (5)0.567 (6)0.4397 (15)0.050 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S30.0381 (3)0.0379 (3)0.0362 (3)0.0009 (2)0.0160 (2)0.0080 (2)
S40.0398 (3)0.0301 (3)0.0407 (3)0.0057 (2)0.0136 (2)0.0033 (2)
O40.0456 (9)0.0491 (10)0.0541 (9)0.0005 (7)0.0249 (7)0.0120 (8)
N70.0342 (9)0.0389 (10)0.0337 (9)0.0011 (7)0.0104 (7)0.0089 (8)
O60.0545 (10)0.0421 (9)0.0588 (10)0.0005 (8)0.0189 (8)0.0157 (8)
C60.0350 (10)0.0327 (10)0.0280 (9)0.0048 (8)0.0098 (8)0.0006 (8)
N50.0348 (9)0.0411 (10)0.0358 (9)0.0002 (8)0.0116 (7)0.0044 (8)
N80.0397 (10)0.0453 (11)0.0394 (10)0.0043 (9)0.0109 (8)0.0006 (9)
O50.0557 (10)0.0444 (9)0.0600 (10)0.0119 (8)0.0250 (8)0.0057 (8)
N60.0340 (9)0.0435 (10)0.0350 (9)0.0016 (7)0.0105 (7)0.0083 (7)
C70.0348 (11)0.0405 (12)0.0359 (11)0.0037 (9)0.0114 (9)0.0025 (9)
C50.0356 (10)0.0325 (10)0.0309 (10)0.0010 (8)0.0106 (8)0.0007 (8)
C80.0364 (12)0.0612 (16)0.0547 (14)0.0043 (11)0.0119 (10)0.0067 (12)
S20.0394 (3)0.0343 (3)0.0405 (3)0.0055 (2)0.0131 (2)0.0010 (2)
S10.0421 (3)0.0571 (4)0.0507 (4)0.0143 (3)0.0152 (3)0.0174 (3)
N40.0423 (11)0.0383 (12)0.0485 (13)0.0014 (9)0.0109 (9)0.0056 (10)
O30.0643 (11)0.0617 (11)0.0448 (9)0.0113 (9)0.0254 (8)0.0059 (8)
N20.0350 (10)0.0523 (12)0.0563 (12)0.0047 (9)0.0055 (9)0.0129 (10)
C20.0349 (11)0.0426 (12)0.0443 (12)0.0049 (9)0.0034 (9)0.0007 (10)
C10.0362 (11)0.0378 (12)0.0386 (11)0.0016 (9)0.0071 (9)0.0003 (9)
N10.0347 (10)0.0490 (12)0.0515 (11)0.0018 (8)0.0047 (8)0.0095 (9)
O20.0596 (10)0.0334 (9)0.0693 (11)0.0064 (8)0.0184 (9)0.0019 (8)
N30.0354 (10)0.0558 (13)0.0515 (12)0.0096 (9)0.0085 (9)0.0068 (10)
C30.0494 (15)0.0767 (19)0.0479 (14)0.0093 (13)0.0157 (12)0.0072 (13)
O10.0690 (14)0.130 (2)0.0859 (15)0.0363 (14)0.0367 (12)0.0586 (16)
C40.0557 (16)0.098 (2)0.0542 (16)0.0054 (16)0.0240 (13)0.0036 (16)
S50.0511 (4)0.0509 (4)0.0475 (3)0.0027 (3)0.0210 (3)0.0054 (3)
O70.0606 (11)0.0700 (12)0.0417 (9)0.0001 (9)0.0195 (8)0.0046 (8)
C90.0455 (13)0.0634 (16)0.0425 (13)0.0000 (12)0.0131 (10)0.0031 (11)
C100.0413 (14)0.118 (3)0.0572 (16)0.0113 (16)0.0136 (12)0.0061 (17)
Geometric parameters (Å, º) top
S3—C61.722 (2)S2—N41.574 (2)
S3—C51.724 (2)S2—C11.775 (2)
S4—O51.4217 (17)S1—C21.720 (2)
S4—O61.4252 (17)S1—C11.725 (2)
S4—N81.590 (2)N2—C21.308 (3)
S4—C51.777 (2)N2—N11.374 (3)
O4—C71.218 (3)C2—N31.365 (3)
N7—C61.364 (3)C1—N11.291 (3)
N7—C71.371 (3)N3—C31.363 (3)
C6—N61.308 (3)C3—O11.211 (3)
N5—C51.290 (3)C3—C41.489 (4)
N5—N61.378 (2)S5—O71.5172 (19)
C7—C81.487 (3)S5—C91.765 (3)
S2—O31.4192 (18)S5—C101.780 (3)
S2—O21.4235 (19)
C6—S3—C585.43 (10)O2—S2—N4107.36 (12)
O5—S4—O6121.06 (11)O3—S2—C1106.27 (11)
O5—S4—N8107.84 (12)O2—S2—C1104.81 (11)
O6—S4—N8108.49 (12)N4—S2—C1107.46 (11)
O5—S4—C5107.61 (10)C2—S1—C185.53 (11)
O6—S4—C5103.86 (10)C2—N2—N1112.29 (19)
N8—S4—C5107.22 (11)N2—C2—N3121.2 (2)
C6—N7—C7123.36 (19)N2—C2—S1114.83 (18)
N6—C6—N7120.83 (18)N3—C2—S1123.97 (19)
N6—C6—S3115.10 (16)N1—C1—S1116.01 (17)
N7—C6—S3124.07 (15)N1—C1—S2122.54 (18)
C5—N5—N6111.46 (17)S1—C1—S2121.45 (13)
C6—N6—N5111.91 (17)C1—N1—N2111.32 (19)
O4—C7—N7120.4 (2)C3—N3—C2123.8 (2)
O4—C7—C8124.7 (2)O1—C3—N3120.2 (3)
N7—C7—C8114.93 (19)O1—C3—C4124.2 (3)
N5—C5—S3116.08 (15)N3—C3—C4115.5 (2)
N5—C5—S4123.54 (16)O7—S5—C9105.72 (12)
S3—C5—S4120.27 (12)O7—S5—C10105.53 (13)
O3—S2—O2120.03 (11)C9—S5—C1097.18 (14)
O3—S2—N4110.19 (13)
(ACZMeHP11) top
Crystal data top
C4H6N4O3S2·C6H7NODx = 1.554 Mg m3
Mr = 331.37Melting point: 403 K
Monoclinic, p_1_c_1Cu Kα radiation, λ = 1.54184 Å
a = 11.3972 (7) ÅCell parameters from 3599 reflections
b = 18.1641 (3) Åθ = 4.6–71.4°
c = 10.338 (3) ŵ = 3.65 mm1
β = 97.046 (16)°T = 298 K
V = 2124.0 (6) Å3BLOCK, colorles
Z = 60.22 × 0.20 × 0.20 mm
F(000) = 1032
Data collection top
Xcalibur, Eos, Gemini
diffractometer
4590 independent reflections
Radiation source: fine-focus sealed tube4295 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 67.1°, θmin = 3.9°
Absorption correction: multi-scanh = 1313
Tmin = 0.732, Tmax = 1.000k = 2120
7371 measured reflectionsl = 812
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0757P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4590 reflectionsΔρmax = 0.41 e Å3
583 parametersΔρmin = 0.29 e Å3
4 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.19 (2)
Crystal data top
C4H6N4O3S2·C6H7NOV = 2124.0 (6) Å3
Mr = 331.37Z = 6
Monoclinic, p_1_c_1Cu Kα radiation
a = 11.3972 (7) ŵ = 3.65 mm1
b = 18.1641 (3) ÅT = 298 K
c = 10.338 (3) Å0.22 × 0.20 × 0.20 mm
β = 97.046 (16)°
Data collection top
Xcalibur, Eos, Gemini
diffractometer
4590 independent reflections
Absorption correction: multi-scan4295 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 1.000Rint = 0.022
7371 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107Δρmax = 0.41 e Å3
S = 1.02Δρmin = 0.29 e Å3
4590 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
583 parametersAbsolute structure parameter: 0.19 (2)
4 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S40.28049 (9)0.44599 (6)0.01359 (11)0.0376 (3)
S30.30014 (9)0.27942 (6)0.02210 (11)0.0382 (3)
O40.2805 (3)0.13407 (19)0.0506 (4)0.0573 (10)
O60.1619 (3)0.4225 (2)0.0057 (4)0.0549 (9)
O50.3345 (3)0.50038 (19)0.0722 (4)0.0590 (9)
N50.4796 (3)0.3647 (2)0.0308 (4)0.0409 (9)
N60.5258 (3)0.2955 (2)0.0511 (4)0.0411 (8)
N70.4699 (3)0.1731 (2)0.0715 (4)0.0449 (9)
H410.54310.16060.08580.054*
N80.2915 (3)0.4716 (2)0.1575 (4)0.0424 (8)
H6A0.37180.49110.15960.051*
H6B0.25700.44840.21390.051*
C80.4348 (6)0.0452 (3)0.0997 (8)0.0729 (19)
H8A0.40060.02460.17200.109*
H8B0.51910.04840.12120.109*
H8C0.41670.01430.02460.109*
C60.4428 (3)0.2445 (3)0.0508 (4)0.0350 (9)
C70.3858 (4)0.1197 (3)0.0710 (5)0.0488 (12)
C50.3653 (4)0.3649 (2)0.0142 (4)0.0335 (9)
S50.10227 (8)0.22150 (6)0.72588 (10)0.0358 (2)
S60.12122 (10)0.05538 (6)0.75917 (11)0.0400 (3)
O70.1220 (3)0.36760 (19)0.6924 (4)0.0535 (9)
O90.0660 (4)0.00099 (19)0.6728 (4)0.0605 (10)
O80.2374 (3)0.0809 (2)0.7441 (4)0.0630 (11)
N90.0787 (4)0.1382 (2)0.7396 (4)0.0446 (10)
N110.0653 (3)0.3308 (2)0.7024 (4)0.0396 (8)
H11A0.13800.34410.70050.047*
N120.1148 (4)0.0280 (2)0.9023 (4)0.0497 (10)
H12D0.06810.01580.90960.060*
H12E0.14120.05250.95280.060*
N100.1225 (3)0.2087 (2)0.7257 (4)0.0436 (9)
C100.0376 (4)0.2574 (2)0.7178 (4)0.0344 (9)
C120.0299 (5)0.4598 (3)0.6730 (7)0.0649 (17)
H12A0.07530.47130.74270.097*
H12B0.07960.46320.59120.097*
H12C0.03440.49400.67380.097*
C110.0178 (4)0.3835 (3)0.6906 (5)0.0431 (11)
C90.0359 (4)0.1375 (2)0.7408 (4)0.0347 (9)
S10.63545 (9)0.27176 (6)0.37991 (11)0.0397 (3)
S20.61804 (10)0.43922 (6)0.34541 (11)0.0385 (2)
O30.4989 (3)0.41432 (19)0.3455 (4)0.0573 (9)
O10.6167 (3)0.1249 (2)0.4129 (5)0.0682 (12)
O20.6675 (4)0.48895 (19)0.4430 (4)0.0617 (10)
N10.8152 (3)0.3555 (2)0.3680 (4)0.0420 (9)
N20.8596 (3)0.2849 (2)0.3864 (4)0.0418 (8)
N40.6389 (4)0.4712 (2)0.2079 (4)0.0446 (9)
H4D0.59830.45810.14030.054*
N30.8042 (3)0.1637 (2)0.4104 (4)0.0394 (8)
C20.7768 (4)0.2354 (2)0.3929 (4)0.0309 (9)
C40.7705 (6)0.0349 (3)0.4338 (8)0.080 (2)
H4A0.72130.00560.48260.119*
H4B0.84910.03690.47930.119*
H4C0.77270.01330.34940.119*
C30.7218 (4)0.1102 (3)0.4186 (6)0.0511 (12)
C10.7018 (4)0.3562 (2)0.3629 (4)0.0353 (9)
O120.7022 (3)0.37071 (18)0.6965 (4)0.0497 (8)
N140.6329 (3)0.2555 (2)0.7260 (4)0.0393 (8)
H80.70470.24020.73870.047*
C200.4947 (4)0.3514 (3)0.6817 (5)0.0454 (11)
H200.47570.40060.66500.054*
C190.6146 (4)0.3287 (2)0.7012 (4)0.0378 (9)
C220.4318 (5)0.2274 (3)0.7137 (5)0.0492 (12)
H220.37060.19400.71850.059*
C210.4078 (4)0.3010 (3)0.6876 (5)0.0502 (12)
H210.32940.31630.67370.060*
C240.5861 (6)0.1268 (3)0.7586 (6)0.0631 (15)
H24A0.51980.09710.77490.095*
H24B0.64490.12560.83350.095*
H24C0.61920.10780.68430.095*
C230.5461 (4)0.2048 (3)0.7322 (5)0.0430 (11)
O110.0398 (3)0.12277 (16)0.4260 (3)0.0455 (7)
N150.1045 (3)0.2370 (2)0.3838 (4)0.0389 (9)
H180.03260.25190.38050.047*
C280.3019 (5)0.2660 (3)0.3663 (6)0.0554 (14)
H280.36080.29950.35260.067*
C300.1456 (6)0.3648 (3)0.3433 (7)0.0648 (16)
H30A0.14240.38820.42610.097*
H30B0.06800.36440.29510.097*
H30C0.19860.39150.29520.097*
C250.1252 (4)0.1634 (2)0.4082 (4)0.0391 (9)
C290.1883 (4)0.2883 (3)0.3641 (5)0.0458 (11)
C260.2446 (5)0.1411 (3)0.4093 (6)0.0521 (13)
H260.26500.09190.42350.063*
C270.3292 (4)0.1909 (3)0.3897 (5)0.0597 (14)
H270.40720.17530.39180.072*
O100.6983 (3)0.86477 (19)0.6009 (4)0.0580 (9)
N130.7772 (3)0.7540 (2)0.5595 (4)0.0402 (8)
H13A0.70700.73590.55120.048*
C160.9796 (4)0.7358 (3)0.5538 (5)0.0500 (12)
H161.04360.70580.54240.060*
C130.7879 (4)0.8275 (3)0.5867 (5)0.0436 (10)
C140.9056 (5)0.8560 (3)0.5969 (5)0.0515 (13)
H140.91920.90570.61420.062*
C180.8373 (5)0.6291 (3)0.5169 (6)0.0533 (12)
H18A0.90420.60390.48980.080*
H18B0.77200.62630.44890.080*
H18C0.81570.60650.59450.080*
C170.8680 (4)0.7066 (3)0.5436 (5)0.0434 (10)
C150.9974 (4)0.8109 (3)0.5814 (5)0.0549 (13)
H151.07370.83000.58930.066*
H4E0.656 (5)0.5161 (13)0.204 (5)0.063 (16)*
H53A0.875 (4)0.155 (3)0.423 (5)0.048 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S40.0373 (5)0.0325 (5)0.0446 (6)0.0043 (4)0.0116 (4)0.0000 (4)
S30.0266 (5)0.0347 (5)0.0532 (6)0.0019 (4)0.0046 (4)0.0010 (5)
O40.0358 (19)0.042 (2)0.092 (3)0.0081 (14)0.0000 (17)0.0007 (19)
O60.0408 (17)0.054 (2)0.074 (2)0.0074 (15)0.0234 (16)0.0140 (18)
O50.075 (2)0.0427 (19)0.059 (2)0.0038 (17)0.0064 (18)0.0133 (17)
N50.0361 (19)0.031 (2)0.055 (2)0.0055 (14)0.0023 (16)0.0009 (16)
N60.0303 (17)0.0358 (19)0.056 (2)0.0024 (14)0.0005 (15)0.0000 (16)
N70.0289 (17)0.035 (2)0.069 (3)0.0006 (14)0.0018 (16)0.0047 (18)
N80.0440 (19)0.0385 (19)0.044 (2)0.0000 (16)0.0040 (16)0.0018 (16)
C80.057 (3)0.037 (3)0.122 (6)0.002 (2)0.002 (3)0.012 (3)
C60.0224 (19)0.046 (3)0.036 (2)0.0001 (18)0.0010 (15)0.0080 (19)
C70.043 (3)0.038 (2)0.065 (3)0.006 (2)0.007 (2)0.006 (2)
C50.030 (2)0.034 (2)0.036 (2)0.0008 (16)0.0018 (16)0.0020 (17)
S50.0318 (5)0.0285 (5)0.0478 (6)0.0017 (4)0.0078 (4)0.0019 (4)
S60.0446 (6)0.0259 (5)0.0518 (7)0.0001 (4)0.0144 (5)0.0006 (4)
O70.0367 (19)0.0381 (19)0.086 (3)0.0040 (14)0.0102 (17)0.0014 (17)
O90.092 (3)0.0371 (18)0.054 (2)0.0016 (18)0.0126 (19)0.0094 (16)
O80.0479 (19)0.042 (2)0.105 (3)0.0074 (15)0.034 (2)0.010 (2)
N90.038 (2)0.035 (2)0.062 (3)0.0059 (15)0.0093 (18)0.0023 (17)
N110.0310 (18)0.0321 (19)0.055 (2)0.0022 (15)0.0045 (16)0.0029 (16)
N120.065 (3)0.0335 (19)0.050 (2)0.0082 (19)0.0066 (19)0.0047 (18)
N100.0339 (19)0.0344 (19)0.062 (3)0.0035 (16)0.0051 (17)0.0040 (17)
C100.032 (2)0.032 (2)0.038 (2)0.0014 (18)0.0008 (17)0.0012 (18)
C120.050 (3)0.039 (3)0.107 (5)0.002 (2)0.015 (3)0.013 (3)
C110.040 (3)0.035 (2)0.053 (3)0.0039 (19)0.001 (2)0.000 (2)
C90.035 (2)0.026 (2)0.044 (2)0.0026 (16)0.0049 (18)0.0001 (17)
S10.0337 (5)0.0321 (5)0.0541 (7)0.0011 (4)0.0081 (5)0.0012 (5)
S20.0454 (6)0.0291 (5)0.0428 (6)0.0050 (4)0.0128 (4)0.0003 (4)
O30.0479 (19)0.0468 (19)0.083 (3)0.0108 (15)0.0301 (17)0.0156 (18)
O10.040 (2)0.050 (2)0.117 (4)0.0044 (16)0.018 (2)0.008 (2)
O20.092 (3)0.0418 (18)0.051 (2)0.0106 (18)0.0070 (18)0.0111 (15)
N10.041 (2)0.0315 (19)0.055 (2)0.0009 (14)0.0085 (16)0.0015 (16)
N20.0341 (17)0.0330 (18)0.058 (2)0.0013 (15)0.0047 (16)0.0040 (17)
N40.058 (2)0.0321 (19)0.043 (2)0.0051 (17)0.0035 (17)0.0032 (16)
N30.0329 (19)0.0300 (18)0.055 (2)0.0013 (15)0.0048 (15)0.0030 (16)
C20.031 (2)0.031 (2)0.032 (2)0.0027 (16)0.0071 (16)0.0037 (16)
C40.056 (3)0.034 (3)0.148 (7)0.002 (3)0.010 (4)0.000 (4)
C30.046 (3)0.034 (2)0.075 (4)0.001 (2)0.013 (2)0.002 (2)
C10.039 (2)0.031 (2)0.037 (2)0.0026 (17)0.0046 (17)0.0007 (17)
O120.0361 (16)0.0369 (17)0.076 (2)0.0010 (13)0.0081 (15)0.0028 (15)
N140.0323 (17)0.0343 (19)0.051 (2)0.0030 (15)0.0045 (15)0.0038 (17)
C200.037 (2)0.042 (2)0.056 (3)0.0099 (19)0.002 (2)0.001 (2)
C190.034 (2)0.034 (2)0.045 (2)0.0009 (17)0.0058 (17)0.0029 (18)
C220.039 (3)0.057 (3)0.053 (3)0.013 (2)0.009 (2)0.007 (2)
C210.033 (2)0.058 (3)0.059 (3)0.002 (2)0.0041 (19)0.006 (2)
C240.077 (4)0.039 (3)0.076 (4)0.010 (3)0.020 (3)0.006 (3)
C230.044 (2)0.041 (2)0.046 (3)0.009 (2)0.0126 (19)0.004 (2)
O110.0391 (15)0.0318 (14)0.066 (2)0.0012 (13)0.0090 (14)0.0051 (14)
N150.0346 (19)0.0341 (19)0.047 (2)0.0055 (15)0.0035 (16)0.0007 (16)
C280.050 (3)0.057 (3)0.060 (3)0.018 (2)0.010 (2)0.002 (3)
C300.076 (4)0.040 (3)0.079 (4)0.012 (3)0.010 (3)0.007 (3)
C250.039 (2)0.034 (2)0.044 (2)0.0032 (18)0.0058 (18)0.0021 (18)
C290.054 (3)0.040 (2)0.042 (2)0.013 (2)0.002 (2)0.0014 (19)
C260.044 (3)0.039 (3)0.072 (4)0.001 (2)0.004 (2)0.003 (2)
C270.035 (2)0.072 (4)0.073 (4)0.007 (2)0.008 (2)0.003 (3)
O100.0357 (16)0.0432 (19)0.094 (3)0.0010 (13)0.0013 (16)0.0068 (17)
N130.0284 (17)0.044 (2)0.047 (2)0.0040 (15)0.0031 (14)0.0029 (17)
C160.033 (2)0.058 (3)0.059 (3)0.000 (2)0.010 (2)0.009 (2)
C130.035 (2)0.044 (2)0.050 (3)0.0046 (19)0.0002 (18)0.0042 (19)
C140.043 (3)0.045 (3)0.064 (3)0.015 (2)0.001 (2)0.007 (2)
C180.052 (3)0.044 (3)0.064 (3)0.000 (2)0.011 (2)0.000 (2)
C170.039 (2)0.048 (3)0.044 (2)0.0016 (19)0.0090 (18)0.007 (2)
C150.033 (2)0.068 (3)0.064 (3)0.009 (2)0.008 (2)0.014 (3)
Geometric parameters (Å, º) top
S4—O51.417 (4)N3—C31.361 (6)
S4—O61.429 (3)N3—H53A0.82 (5)
S4—N81.579 (4)C4—C31.477 (7)
S4—C51.767 (4)C4—H4A0.9600
S3—C51.727 (4)C4—H4B0.9600
S3—C61.736 (4)C4—H4C0.9600
O4—C71.222 (6)O12—C191.262 (5)
N5—C51.293 (6)N14—C231.359 (6)
N5—N61.370 (5)N14—C191.365 (6)
N6—C61.324 (6)N14—H80.8598
N7—C61.344 (6)C20—C211.356 (7)
N7—C71.364 (6)C20—C191.419 (6)
N7—H410.8600C20—H200.9300
N8—H6A0.9839C22—C231.356 (7)
N8—H6B0.7845C22—C211.385 (7)
C8—C71.479 (7)C22—H220.9300
C8—H8A0.9600C21—H210.9300
C8—H8B0.9600C24—C231.504 (7)
C8—H8C0.9600C24—H24A0.9600
S5—C101.715 (5)C24—H24B0.9600
S5—C91.718 (4)C24—H24C0.9600
S6—O91.425 (4)O11—C251.253 (5)
S6—O81.429 (4)N15—C291.367 (6)
S6—N121.571 (4)N15—C251.376 (6)
S6—C91.778 (4)N15—H180.8601
O7—C111.220 (6)C28—C291.355 (8)
N9—C91.305 (6)C28—C271.413 (8)
N9—N101.375 (5)C28—H280.9300
N11—C111.363 (6)C30—C291.480 (7)
N11—C101.375 (6)C30—H30A0.9600
N11—H11A0.8600C30—H30B0.9600
N12—H12D0.9651C30—H30C0.9600
N12—H12E0.7225C25—C261.419 (7)
N10—C101.321 (6)C26—C271.356 (7)
C12—C111.492 (7)C26—H260.9300
C12—H12A0.9600C27—H270.9300
C12—H12B0.9600O10—C131.249 (5)
C12—H12C0.9600N13—C131.366 (6)
S1—C11.729 (4)N13—C171.371 (6)
S1—C21.731 (4)N13—H13A0.8600
S2—O21.418 (4)C16—C171.370 (7)
S2—O31.431 (3)C16—C151.403 (8)
S2—N41.581 (4)C16—H160.9300
S2—C11.782 (4)C13—C141.430 (6)
O1—C31.222 (6)C14—C151.354 (8)
N1—C11.287 (6)C14—H140.9300
N1—N21.382 (5)C18—C171.469 (7)
N2—C21.311 (6)C18—H18A0.9600
N4—H4D0.8244C18—H18B0.9600
N4—H4E0.84 (2)C18—H18C0.9600
N3—C21.347 (6)C15—H150.9300
O5—S4—O6120.9 (2)C3—C4—H4C109.5
O5—S4—N8107.8 (2)H4A—C4—H4C109.5
O6—S4—N8109.1 (2)H4B—C4—H4C109.5
O5—S4—C5107.0 (2)O1—C3—N3121.4 (4)
O6—S4—C5104.1 (2)O1—C3—C4124.1 (5)
N8—S4—C5107.1 (2)N3—C3—C4114.5 (5)
C5—S3—C686.4 (2)N1—C1—S1115.8 (3)
C5—N5—N6112.6 (4)N1—C1—S2122.4 (3)
C6—N6—N5112.4 (4)S1—C1—S2121.7 (3)
C6—N7—C7122.6 (4)C23—N14—C19125.0 (4)
C6—N7—H41118.7C23—N14—H8117.3
C7—N7—H41118.6C19—N14—H8117.6
S4—N8—H6A107.9C21—C20—C19119.5 (4)
S4—N8—H6B116.9C21—C20—H20120.2
H6A—N8—H6B124.0C19—C20—H20120.2
C7—C8—H8A109.5O12—C19—N14119.6 (4)
C7—C8—H8B109.5O12—C19—C20124.8 (4)
H8A—C8—H8B109.5N14—C19—C20115.6 (4)
C7—C8—H8C109.5C23—C22—C21118.9 (5)
H8A—C8—H8C109.5C23—C22—H22120.6
H8B—C8—H8C109.5C21—C22—H22120.6
N6—C6—N7121.6 (4)C20—C21—C22122.2 (5)
N6—C6—S3113.5 (4)C20—C21—H21118.9
N7—C6—S3124.9 (3)C22—C21—H21118.9
O4—C7—N7121.5 (5)C23—C24—H24A109.5
O4—C7—C8124.7 (5)C23—C24—H24B109.5
N7—C7—C8113.7 (5)H24A—C24—H24B109.5
N5—C5—S3115.1 (3)C23—C24—H24C109.5
N5—C5—S4123.0 (3)H24A—C24—H24C109.5
S3—C5—S4121.8 (2)H24B—C24—H24C109.5
C10—S5—C985.7 (2)C22—C23—N14118.7 (5)
O9—S6—O8120.0 (3)C22—C23—C24125.1 (5)
O9—S6—N12107.6 (2)N14—C23—C24116.2 (4)
O8—S6—N12110.9 (2)C29—N15—C25125.7 (4)
O9—S6—C9108.7 (2)C29—N15—H18117.3
O8—S6—C9102.6 (2)C25—N15—H18117.1
N12—S6—C9106.1 (2)C29—C28—C27118.8 (5)
C9—N9—N10111.1 (4)C29—C28—H28120.6
C11—N11—C10122.6 (4)C27—C28—H28120.6
C11—N11—H11A118.7C29—C30—H30A109.5
C10—N11—H11A118.7C29—C30—H30B109.5
S6—N12—H12D115.1H30A—C30—H30B109.5
S6—N12—H12E114.9C29—C30—H30C109.5
H12D—N12—H12E129.5H30A—C30—H30C109.5
C10—N10—N9111.8 (4)H30B—C30—H30C109.5
N10—C10—N11119.8 (4)O11—C25—N15118.7 (4)
N10—C10—S5115.2 (3)O11—C25—C26126.3 (4)
N11—C10—S5125.0 (3)N15—C25—C26115.0 (4)
C11—C12—H12A109.5C28—C29—N15118.5 (5)
C11—C12—H12B109.5C28—C29—C30125.4 (5)
H12A—C12—H12B109.5N15—C29—C30116.0 (5)
C11—C12—H12C109.5C27—C26—C25120.5 (5)
H12A—C12—H12C109.5C27—C26—H26119.8
H12B—C12—H12C109.5C25—C26—H26119.8
O7—C11—N11121.2 (4)C26—C27—C28121.6 (5)
O7—C11—C12124.2 (4)C26—C27—H27119.2
N11—C11—C12114.6 (4)C28—C27—H27119.2
N9—C9—S5116.2 (3)C13—N13—C17126.1 (4)
N9—C9—S6122.9 (3)C13—N13—H13A117.0
S5—C9—S6120.9 (3)C17—N13—H13A117.0
C1—S1—C286.1 (2)C17—C16—C15120.1 (5)
O2—S2—O3119.7 (2)C17—C16—H16119.9
O2—S2—N4108.4 (2)C15—C16—H16119.9
O3—S2—N4111.3 (2)O10—C13—N13120.0 (4)
O2—S2—C1107.8 (2)O10—C13—C14124.6 (4)
O3—S2—C1103.2 (2)N13—C13—C14115.4 (4)
N4—S2—C1105.3 (2)C15—C14—C13120.2 (5)
C1—N1—N2111.4 (4)C15—C14—H14119.9
C2—N2—N1112.9 (3)C13—C14—H14119.9
S2—N4—H4D121.6C17—C18—H18A109.5
S2—N4—H4E117 (4)C17—C18—H18B109.5
H4D—N4—H4E110.6H18A—C18—H18B109.5
C2—N3—C3123.2 (4)C17—C18—H18C109.5
C2—N3—H53A115 (4)H18A—C18—H18C109.5
C3—N3—H53A121 (4)H18B—C18—H18C109.5
N2—C2—N3120.9 (4)C16—C17—N13117.1 (5)
N2—C2—S1113.8 (3)C16—C17—C18125.6 (5)
N3—C2—S1125.3 (3)N13—C17—C18117.3 (4)
C3—C4—H4A109.5C14—C15—C16121.2 (4)
C3—C4—H4B109.5C14—C15—H15119.4
H4A—C4—H4B109.5C16—C15—H15119.4
C5—N5—N6—C60.8 (6)C1—S1—C2—N3179.9 (4)
N5—N6—C6—N7178.8 (4)C2—N3—C3—O11.5 (9)
N5—N6—C6—S31.0 (5)C2—N3—C3—C4178.2 (6)
C7—N7—C6—N6179.7 (4)N2—N1—C1—S10.1 (5)
C7—N7—C6—S30.5 (7)N2—N1—C1—S2177.8 (3)
C5—S3—C6—N60.8 (4)C2—S1—C1—N10.6 (4)
C5—S3—C6—N7179.0 (4)C2—S1—C1—S2178.3 (3)
C6—N7—C7—O40.5 (8)O2—S2—C1—N151.9 (5)
C6—N7—C7—C8178.3 (5)O3—S2—C1—N1179.5 (4)
N6—N5—C5—S30.2 (5)N4—S2—C1—N163.6 (4)
N6—N5—C5—S4179.8 (3)O2—S2—C1—S1125.7 (3)
C6—S3—C5—N50.3 (4)O3—S2—C1—S11.9 (3)
C6—S3—C5—S4179.3 (3)N4—S2—C1—S1118.8 (3)
O5—S4—C5—N542.1 (5)C23—N14—C19—O12179.3 (4)
O6—S4—C5—N5171.2 (4)C23—N14—C19—C200.4 (7)
N8—S4—C5—N573.3 (4)C21—C20—C19—O12179.2 (5)
O5—S4—C5—S3137.5 (3)C21—C20—C19—N140.5 (7)
O6—S4—C5—S38.4 (3)C19—C20—C21—C220.8 (8)
N8—S4—C5—S3107.1 (3)C23—C22—C21—C200.9 (8)
C9—N9—N10—C100.2 (6)C21—C22—C23—N140.8 (8)
N9—N10—C10—N11179.4 (4)C21—C22—C23—C24178.7 (5)
N9—N10—C10—S50.2 (6)C19—N14—C23—C220.6 (7)
C11—N11—C10—N10178.4 (4)C19—N14—C23—C24179.0 (5)
C11—N11—C10—S50.7 (7)C29—N15—C25—O11179.1 (4)
C9—S5—C10—N100.1 (4)C29—N15—C25—C261.5 (7)
C9—S5—C10—N11179.3 (4)C27—C28—C29—N150.5 (8)
C10—N11—C11—O70.4 (8)C27—C28—C29—C30178.8 (5)
C10—N11—C11—C12179.2 (5)C25—N15—C29—C281.2 (8)
N10—N9—C9—S50.1 (5)C25—N15—C29—C30178.2 (5)
N10—N9—C9—S6179.3 (3)O11—C25—C26—C27179.4 (5)
C10—S5—C9—N90.0 (4)N15—C25—C26—C271.3 (8)
C10—S5—C9—S6179.2 (3)C25—C26—C27—C280.8 (9)
O9—S6—C9—N947.4 (5)C29—C28—C27—C260.3 (9)
O8—S6—C9—N9175.5 (4)C17—N13—C13—O10178.9 (5)
N12—S6—C9—N968.1 (4)C17—N13—C13—C141.1 (7)
O9—S6—C9—S5133.5 (3)O10—C13—C14—C15179.2 (5)
O8—S6—C9—S55.4 (4)N13—C13—C14—C150.8 (7)
N12—S6—C9—S5111.0 (3)C15—C16—C17—N131.0 (8)
C1—N1—N2—C20.7 (6)C15—C16—C17—C18179.1 (5)
N1—N2—C2—N3179.9 (4)C13—N13—C17—C161.1 (8)
N1—N2—C2—S11.2 (5)C13—N13—C17—C18178.9 (5)
C3—N3—C2—N2179.6 (5)C13—C14—C15—C160.8 (8)
C3—N3—C2—S10.8 (7)C17—C16—C15—C140.8 (8)
C1—S1—C2—N21.0 (4)
(ACZNAM11) top
Crystal data top
C4H6N4O3S2·C6H6N2OF(000) = 356
Mr = 344.38Dx = 1.551 Mg m3
Triclinic, P1Melting point: 453 K
a = 5.1477 (8) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.8147 (14) ÅCell parameters from 1270 reflections
c = 14.2604 (16) Åθ = 4.4–71.7°
α = 69.797 (11)°µ = 3.55 mm1
β = 85.463 (12)°T = 298 K
γ = 81.889 (12)°BLOCK, colorles
V = 737.20 (17) Å30.22 × 0.21 × 0.20 mm
Z = 2
Data collection top
Xcalibur, Eos, Gemini
diffractometer
1906 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 67.1°, θmin = 3.3°
Detector resolution: ω scans pixels mm-1h = 36
multi–scank = 1212
4027 measured reflectionsl = 1616
2607 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.1157P)2]
where P = (Fo2 + 2Fc2)/3
2607 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.41 e Å3
2 restraintsΔρmin = 0.59 e Å3
Crystal data top
C4H6N4O3S2·C6H6N2Oγ = 81.889 (12)°
Mr = 344.38V = 737.20 (17) Å3
Triclinic, P1Z = 2
a = 5.1477 (8) ÅCu Kα radiation
b = 10.8147 (14) ŵ = 3.55 mm1
c = 14.2604 (16) ÅT = 298 K
α = 69.797 (11)°0.22 × 0.21 × 0.20 mm
β = 85.463 (12)°
Data collection top
Xcalibur, Eos, Gemini
diffractometer
1906 reflections with I > 2σ(I)
4027 measured reflectionsRint = 0.041
2607 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0632 restraints
wR(F2) = 0.194H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.41 e Å3
2607 reflectionsΔρmin = 0.59 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.1492 (2)0.93431 (10)0.78260 (8)0.0528 (4)
S20.5163 (2)0.78104 (10)0.67044 (7)0.0515 (3)
N20.7184 (7)0.9964 (3)0.5809 (2)0.0533 (9)
N30.9226 (8)0.8215 (4)0.5326 (3)0.0529 (9)
N10.5204 (7)1.0284 (3)0.6423 (3)0.0543 (9)
O10.8030 (8)0.6179 (3)0.5851 (3)0.0872 (12)
O30.0075 (6)1.0630 (3)0.7454 (3)0.0690 (9)
O20.0271 (6)0.8176 (3)0.7988 (2)0.0673 (9)
N40.2823 (9)0.9208 (5)0.8817 (3)0.0592 (10)
C20.7357 (8)0.8725 (4)0.5871 (3)0.0479 (10)
C30.9479 (10)0.6950 (5)0.5328 (4)0.0637 (12)
C10.4034 (8)0.9263 (4)0.6926 (3)0.0487 (10)
C41.1615 (13)0.6621 (5)0.4648 (5)0.0875 (19)
H4A1.25210.57570.49800.131*
H4B1.28290.72690.44770.131*
H4C1.08670.66270.40510.131*
O41.3130 (6)0.6472 (3)0.0123 (2)0.0590 (8)
N61.2270 (8)0.4391 (4)0.0931 (3)0.0561 (10)
C50.9382 (8)0.6198 (4)0.1226 (3)0.0479 (9)
C101.1739 (8)0.5686 (4)0.0720 (3)0.0481 (10)
N50.6488 (8)0.8116 (4)0.1285 (3)0.0655 (11)
C60.8526 (9)0.7547 (4)0.0894 (4)0.0623 (12)
H60.94490.80900.03600.075*
C90.8006 (9)0.5412 (5)0.2017 (3)0.0628 (12)
H90.85110.45010.22700.075*
C70.5195 (10)0.7322 (5)0.2058 (4)0.0676 (13)
H70.37730.77030.23510.081*
C80.5864 (11)0.5979 (5)0.2438 (4)0.0727 (15)
H80.48970.54570.29690.087*
H6B1.360 (6)0.411 (4)0.066 (3)0.052 (13)*
H3A1.028 (9)0.870 (4)0.506 (3)0.053 (13)*
H6A1.125 (7)0.384 (4)0.128 (3)0.058 (13)*
H4F0.328 (8)0.986 (5)0.885 (3)0.046 (13)*
H4E0.320 (10)0.845 (5)0.918 (4)0.071 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0489 (6)0.0520 (6)0.0493 (6)0.0077 (4)0.0116 (4)0.0090 (5)
S20.0566 (7)0.0445 (6)0.0463 (6)0.0127 (4)0.0127 (4)0.0071 (4)
N20.061 (2)0.047 (2)0.0454 (18)0.0128 (16)0.0146 (16)0.0083 (15)
N30.062 (2)0.045 (2)0.0479 (19)0.0186 (17)0.0178 (17)0.0105 (15)
N10.059 (2)0.048 (2)0.0508 (19)0.0099 (16)0.0117 (16)0.0122 (16)
O10.113 (3)0.054 (2)0.094 (3)0.032 (2)0.051 (2)0.0278 (19)
O30.059 (2)0.065 (2)0.070 (2)0.0068 (16)0.0079 (16)0.0145 (16)
O20.064 (2)0.069 (2)0.066 (2)0.0228 (16)0.0129 (16)0.0170 (16)
N40.080 (3)0.048 (2)0.046 (2)0.014 (2)0.0039 (18)0.0100 (18)
C20.054 (2)0.048 (2)0.0348 (18)0.0124 (18)0.0054 (17)0.0042 (16)
C30.074 (3)0.053 (3)0.061 (3)0.018 (2)0.021 (2)0.017 (2)
C10.051 (2)0.047 (2)0.043 (2)0.0118 (18)0.0073 (17)0.0088 (17)
C40.106 (4)0.063 (3)0.094 (4)0.024 (3)0.049 (4)0.033 (3)
O40.0586 (18)0.0482 (17)0.0567 (17)0.0069 (14)0.0210 (14)0.0054 (14)
N60.053 (2)0.045 (2)0.059 (2)0.0030 (17)0.0180 (18)0.0087 (17)
C50.050 (2)0.046 (2)0.044 (2)0.0077 (18)0.0063 (17)0.0108 (17)
C100.047 (2)0.048 (2)0.043 (2)0.0064 (18)0.0040 (17)0.0081 (17)
N50.064 (3)0.055 (2)0.070 (3)0.0044 (19)0.022 (2)0.0183 (19)
C60.066 (3)0.052 (3)0.061 (3)0.009 (2)0.023 (2)0.014 (2)
C90.064 (3)0.057 (3)0.053 (2)0.003 (2)0.017 (2)0.007 (2)
C70.065 (3)0.071 (3)0.063 (3)0.009 (2)0.025 (2)0.024 (2)
C80.074 (3)0.067 (3)0.064 (3)0.008 (2)0.033 (3)0.013 (2)
Geometric parameters (Å, º) top
S1—O31.419 (3)C4—H4B0.9600
S1—O21.429 (3)C4—H4C0.9600
S1—N41.572 (4)O4—C101.239 (5)
S1—C11.774 (4)N6—C101.319 (5)
S2—C21.719 (4)N6—H6B0.832 (19)
S2—C11.721 (4)N6—H6A0.846 (19)
N2—C21.302 (5)C5—C91.370 (6)
N2—N11.377 (5)C5—C61.386 (6)
N3—C31.355 (6)C5—C101.499 (6)
N3—C21.364 (5)N5—C61.323 (6)
N3—H3A0.79 (5)N5—C71.337 (6)
N1—C11.292 (5)C6—H60.9300
O1—C31.211 (6)C9—C81.382 (6)
N4—H4F0.79 (4)C9—H90.9300
N4—H4E0.81 (5)C7—C81.366 (7)
C3—C41.495 (7)C7—H70.9300
C4—H4A0.9600C8—H80.9300
O3—S1—O2121.4 (2)H4A—C4—H4B109.5
O3—S1—N4108.5 (2)C3—C4—H4C109.5
O2—S1—N4108.5 (2)H4A—C4—H4C109.5
O3—S1—C1106.4 (2)H4B—C4—H4C109.5
O2—S1—C1103.6 (2)C10—N6—H6B118 (3)
N4—S1—C1107.6 (2)C10—N6—H6A124 (3)
C2—S2—C185.42 (19)H6B—N6—H6A118 (4)
C2—N2—N1112.2 (3)C9—C5—C6116.9 (4)
C3—N3—C2124.2 (4)C9—C5—C10124.0 (4)
C3—N3—H3A122 (3)C6—C5—C10119.1 (4)
C2—N3—H3A113 (3)O4—C10—N6121.8 (4)
C1—N1—N2111.1 (3)O4—C10—C5120.1 (4)
S1—N4—H4F117 (3)N6—C10—C5118.2 (3)
S1—N4—H4E114 (4)C6—N5—C7117.0 (4)
H4F—N4—H4E128 (5)N5—C6—C5124.6 (4)
N2—C2—N3120.8 (4)N5—C6—H6117.7
N2—C2—S2115.1 (3)C5—C6—H6117.7
N3—C2—S2124.0 (3)C5—C9—C8119.7 (4)
O1—C3—N3120.3 (4)C5—C9—H9120.2
O1—C3—C4124.7 (5)C8—C9—H9120.2
N3—C3—C4115.0 (4)N5—C7—C8123.1 (4)
N1—C1—S2116.2 (3)N5—C7—H7118.5
N1—C1—S1121.7 (3)C8—C7—H7118.5
S2—C1—S1122.0 (2)C7—C8—C9118.7 (4)
C3—C4—H4A109.5C7—C8—H8120.6
C3—C4—H4B109.5C9—C8—H8120.6
(ACZNAM2HP111) top
Crystal data top
C4H6N4O3S2·C6H6N2O·C5H5NOF(000) = 456
Mr = 439.48Dx = 1.494 Mg m3
Triclinic, P1Melting point: 398 K
a = 7.0347 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.2539 (7) ÅCell parameters from 3059 reflections
c = 13.7934 (9) Åθ = 4.3–71.8°
α = 81.685 (6)°µ = 2.87 mm1
β = 83.028 (5)°T = 298 K
γ = 88.283 (5)°PLATE, colorles
V = 977.13 (10) Å30.20 × 0.18 × 0.18 mm
Z = 2
Data collection top
Xcalibur, Eos, Gemini
diffractometer
3493 independent reflections
Radiation source: fine-focus sealed tube3085 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 67.1°, θmin = 3.3°
Absorption correction: multi-scanh = 85
Tmin = 0.374, Tmax = 1.000k = 1212
5696 measured reflectionsl = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.1265P)2 + 0.1831P]
where P = (Fo2 + 2Fc2)/3
3493 reflections(Δ/σ)max < 0.001
269 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C4H6N4O3S2·C6H6N2O·C5H5NOγ = 88.283 (5)°
Mr = 439.48V = 977.13 (10) Å3
Triclinic, P1Z = 2
a = 7.0347 (3) ÅCu Kα radiation
b = 10.2539 (7) ŵ = 2.87 mm1
c = 13.7934 (9) ÅT = 298 K
α = 81.685 (6)°0.20 × 0.18 × 0.18 mm
β = 83.028 (5)°
Data collection top
Xcalibur, Eos, Gemini
diffractometer
3493 independent reflections
Absorption correction: multi-scan3085 reflections with I > 2σ(I)
Tmin = 0.374, Tmax = 1.000Rint = 0.019
5696 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.179H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.80 e Å3
3493 reflectionsΔρmin = 0.44 e Å3
269 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22992 (10)0.58018 (6)0.91819 (4)0.0443 (2)
S20.10956 (11)0.86219 (6)0.84318 (5)0.0509 (3)
N30.3772 (3)0.3583 (2)0.84479 (15)0.0432 (5)
H3A0.42760.32080.79580.052*
N40.1101 (4)0.8589 (3)0.83042 (18)0.0542 (6)
H4D0.135 (5)0.874 (4)0.765 (3)0.065*
H4E0.169 (5)0.809 (4)0.875 (3)0.065*
O40.2932 (3)0.3349 (2)1.00854 (14)0.0579 (6)
N10.2665 (4)0.6787 (2)0.73554 (17)0.0532 (6)
O20.1267 (4)0.8680 (2)0.94448 (18)0.0756 (7)
N20.3323 (4)0.5504 (2)0.73756 (17)0.0529 (6)
C20.3203 (4)0.4885 (3)0.82671 (17)0.0398 (5)
O30.1975 (4)0.9579 (2)0.7666 (2)0.0748 (7)
C30.3579 (4)0.2863 (3)0.93588 (19)0.0449 (6)
C10.2122 (4)0.7064 (3)0.82222 (19)0.0432 (6)
C40.4247 (6)0.1463 (3)0.9399 (2)0.0640 (9)
H4A0.52280.13010.98310.096*
H4B0.47550.12990.87500.096*
H4C0.31900.08890.96440.096*
O50.2092 (4)1.1295 (2)0.36200 (15)0.0630 (6)
N70.0777 (4)0.4994 (2)0.36778 (17)0.0498 (6)
H7A0.07560.44810.42310.060*
N60.2013 (3)1.0862 (2)0.52532 (17)0.0502 (6)
H6B0.15891.16420.53250.060*
H6A0.22101.03070.57620.060*
O10.0862 (4)0.6521 (2)0.44814 (15)0.0629 (6)
C60.3112 (4)0.9151 (3)0.42818 (18)0.0398 (5)
N50.4717 (3)0.7672 (2)0.32463 (16)0.0477 (5)
C120.0046 (5)0.7021 (3)0.2751 (2)0.0540 (7)
H120.04880.78660.27080.065*
C100.2361 (4)1.0519 (3)0.43622 (19)0.0424 (6)
C110.0067 (4)0.6203 (3)0.3685 (2)0.0491 (6)
C50.3970 (4)0.8856 (3)0.33832 (18)0.0444 (6)
H50.40320.95180.28430.053*
C140.1743 (5)0.5306 (3)0.1967 (2)0.0579 (7)
H140.23300.50000.14000.069*
C150.1651 (4)0.4540 (3)0.2854 (2)0.0521 (7)
H150.21890.36970.29020.063*
C130.0925 (5)0.6582 (3)0.1922 (2)0.0575 (7)
H130.09860.71290.13200.069*
C70.3000 (5)0.8162 (3)0.5076 (2)0.0555 (7)
H70.24220.83180.56920.067*
C80.3758 (6)0.6939 (3)0.4942 (2)0.0658 (9)
H80.36880.62550.54660.079*
C90.4616 (5)0.6739 (3)0.4030 (2)0.0547 (7)
H90.51530.59150.39540.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0696 (5)0.0335 (4)0.0282 (4)0.0075 (3)0.0027 (3)0.0030 (2)
S20.0774 (5)0.0294 (4)0.0448 (4)0.0050 (3)0.0058 (3)0.0038 (3)
N30.0577 (12)0.0366 (11)0.0318 (11)0.0107 (9)0.0030 (8)0.0025 (8)
N40.0779 (17)0.0439 (13)0.0353 (12)0.0137 (11)0.0025 (11)0.0029 (10)
O40.0930 (15)0.0422 (11)0.0336 (10)0.0111 (10)0.0032 (9)0.0007 (8)
N10.0773 (16)0.0404 (12)0.0358 (12)0.0141 (11)0.0048 (10)0.0026 (9)
O20.122 (2)0.0509 (13)0.0616 (15)0.0163 (13)0.0293 (14)0.0222 (11)
N20.0769 (16)0.0417 (13)0.0336 (11)0.0163 (11)0.0063 (10)0.0028 (9)
C20.0487 (13)0.0381 (13)0.0299 (12)0.0063 (10)0.0010 (9)0.0022 (9)
O30.0926 (17)0.0371 (11)0.0856 (18)0.0042 (11)0.0049 (13)0.0099 (11)
C30.0578 (15)0.0377 (13)0.0368 (13)0.0057 (11)0.0016 (11)0.0020 (10)
C10.0598 (15)0.0319 (12)0.0353 (13)0.0042 (10)0.0018 (10)0.0001 (10)
C40.099 (2)0.0414 (17)0.0458 (16)0.0157 (16)0.0004 (15)0.0013 (12)
O50.1071 (17)0.0416 (11)0.0384 (11)0.0224 (11)0.0126 (10)0.0005 (9)
N70.0734 (15)0.0398 (12)0.0368 (11)0.0072 (10)0.0077 (10)0.0080 (9)
N60.0714 (15)0.0380 (12)0.0418 (12)0.0150 (10)0.0086 (10)0.0091 (9)
O10.0994 (16)0.0466 (12)0.0427 (11)0.0234 (11)0.0076 (10)0.0127 (9)
C60.0465 (13)0.0368 (13)0.0347 (12)0.0067 (10)0.0020 (9)0.0041 (10)
N50.0618 (13)0.0444 (12)0.0349 (11)0.0118 (10)0.0023 (9)0.0080 (9)
C120.0746 (18)0.0397 (14)0.0487 (16)0.0032 (13)0.0145 (13)0.0040 (12)
C100.0512 (13)0.0365 (13)0.0388 (13)0.0057 (10)0.0058 (10)0.0036 (10)
C110.0672 (16)0.0400 (14)0.0430 (15)0.0075 (12)0.0126 (12)0.0125 (11)
C50.0578 (15)0.0414 (14)0.0318 (12)0.0078 (11)0.0024 (10)0.0021 (10)
C140.0686 (18)0.0632 (19)0.0425 (15)0.0006 (14)0.0004 (13)0.0159 (13)
C150.0656 (17)0.0440 (15)0.0483 (15)0.0063 (12)0.0040 (12)0.0154 (12)
C130.0710 (18)0.0577 (18)0.0420 (15)0.0062 (14)0.0086 (13)0.0013 (13)
C70.085 (2)0.0436 (15)0.0316 (13)0.0167 (13)0.0092 (12)0.0008 (11)
C80.105 (3)0.0426 (17)0.0405 (16)0.0237 (16)0.0094 (15)0.0050 (12)
C90.0780 (19)0.0385 (14)0.0438 (15)0.0180 (13)0.0020 (13)0.0049 (12)
Geometric parameters (Å, º) top
S1—C11.726 (2)N7—C151.361 (4)
S1—C21.730 (2)N6—C101.320 (3)
S2—O21.427 (2)O1—C111.253 (3)
S2—O31.428 (2)C6—C71.377 (4)
S2—N41.578 (3)C6—C51.381 (3)
S2—C11.781 (3)C6—C101.499 (3)
N3—C31.356 (3)N5—C91.332 (4)
N3—C21.379 (3)N5—C51.338 (3)
O4—C31.216 (3)C12—C131.361 (4)
N1—C11.279 (3)C12—C111.427 (4)
N1—N21.379 (3)C14—C151.351 (4)
N2—C21.294 (3)C14—C131.409 (5)
C3—C41.493 (4)C7—C81.376 (4)
O5—C101.233 (3)C8—C91.368 (4)
N7—C111.359 (4)
C1—S1—C284.93 (12)C11—N7—C15124.4 (3)
O2—S2—O3121.32 (18)C7—C6—C5117.9 (2)
O2—S2—N4108.37 (16)C7—C6—C10122.6 (2)
O3—S2—N4107.68 (15)C5—C6—C10119.5 (2)
O2—S2—C1104.20 (13)C9—N5—C5117.2 (2)
O3—S2—C1106.83 (14)C13—C12—C11120.8 (3)
N4—S2—C1107.75 (14)O5—C10—N6121.4 (3)
C3—N3—C2123.4 (2)O5—C10—C6121.0 (2)
C1—N1—N2111.9 (2)N6—C10—C6117.6 (2)
C2—N2—N1111.6 (2)O1—C11—N7119.5 (3)
N2—C2—N3120.8 (2)O1—C11—C12125.1 (3)
N2—C2—S1115.5 (2)N7—C11—C12115.4 (3)
N3—C2—S1123.76 (18)N5—C5—C6123.6 (2)
O4—C3—N3121.4 (2)C15—C14—C13118.2 (3)
O4—C3—C4123.2 (2)C14—C15—N7120.5 (3)
N3—C3—C4115.3 (2)C12—C13—C14120.8 (3)
N1—C1—S1116.1 (2)C8—C7—C6118.8 (3)
N1—C1—S2122.40 (19)C9—C8—C7119.4 (3)
S1—C1—S2121.40 (15)N5—C9—C8122.9 (3)
(ACZOMeHPH111) top
Crystal data top
C4H6N4O3S2·C6H7NO2·H2OF(000) = 380
Mr = 365.39Dx = 1.565 Mg m3
Triclinic, P1Melting point: 363 K
a = 7.7872 (6) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.2130 (7) ÅCell parameters from 2221 reflections
c = 10.2464 (7) Åθ = 4.4–71.6°
α = 88.192 (5)°µ = 3.49 mm1
β = 76.587 (6)°T = 298 K
γ = 77.996 (6)°PLATE, colorles
V = 775.22 (9) Å30.22 × 0.20 × 0.18 mm
Z = 2
Data collection top
Xcalibur, Eos, Gemini
diffractometer
2734 independent reflections
Radiation source: fine-focus sealed tube2406 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 67.1°, θmin = 4.4°
Absorption correction: multi-scanh = 79
Tmin = 0.530, Tmax = 1.000k = 1212
4182 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.1021P)2]
where P = (Fo2 + 2Fc2)/3
2734 reflections(Δ/σ)max < 0.001
234 parametersΔρmax = 0.41 e Å3
3 restraintsΔρmin = 0.48 e Å3
Crystal data top
C4H6N4O3S2·C6H7NO2·H2Oγ = 77.996 (6)°
Mr = 365.39V = 775.22 (9) Å3
Triclinic, P1Z = 2
a = 7.7872 (6) ÅCu Kα radiation
b = 10.2130 (7) ŵ = 3.49 mm1
c = 10.2464 (7) ÅT = 298 K
α = 88.192 (5)°0.22 × 0.20 × 0.18 mm
β = 76.587 (6)°
Data collection top
Xcalibur, Eos, Gemini
diffractometer
2734 independent reflections
Absorption correction: multi-scan2406 reflections with I > 2σ(I)
Tmin = 0.530, Tmax = 1.000Rint = 0.029
4182 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0503 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.41 e Å3
2734 reflectionsΔρmin = 0.48 e Å3
234 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.74682 (8)0.29948 (6)0.41441 (5)0.0401 (2)
S10.89362 (8)0.29672 (6)0.11297 (5)0.0375 (2)
O30.6751 (3)0.42953 (19)0.3709 (2)0.0599 (6)
O50.5802 (2)0.08098 (17)0.15601 (17)0.0447 (4)
O40.3422 (2)0.29976 (16)0.26201 (16)0.0444 (4)
N40.5914 (3)0.2185 (3)0.4532 (2)0.0460 (5)
N31.1399 (3)0.1432 (2)0.08603 (19)0.0364 (4)
N50.5962 (3)0.16290 (19)0.0548 (2)0.0378 (4)
O60.3340 (3)0.0077 (2)0.3844 (2)0.0602 (6)
C70.3504 (3)0.3883 (2)0.0383 (2)0.0375 (5)
H70.26580.46580.06970.045*
O10.9721 (3)0.3295 (2)0.1467 (2)0.0653 (6)
O20.8426 (3)0.2846 (2)0.51861 (19)0.0592 (5)
N21.1116 (3)0.0757 (2)0.1363 (2)0.0398 (5)
C50.4011 (3)0.2938 (2)0.1270 (2)0.0336 (5)
C10.8998 (3)0.2235 (2)0.2664 (2)0.0365 (5)
N11.0156 (3)0.1136 (2)0.2650 (2)0.0414 (5)
C31.0888 (3)0.2312 (3)0.1803 (2)0.0436 (6)
C21.0616 (3)0.1613 (2)0.0475 (2)0.0322 (5)
C80.4252 (4)0.3693 (2)0.1000 (3)0.0437 (6)
H80.38930.43330.16030.052*
C60.5303 (3)0.1729 (2)0.0796 (2)0.0338 (5)
C41.1868 (5)0.1965 (4)0.3222 (3)0.0627 (8)
H4A1.10120.19720.37640.094*
H4B1.26270.10890.32630.094*
H4C1.25960.26090.35530.094*
C90.5493 (4)0.2576 (3)0.1445 (2)0.0418 (5)
H90.60260.24500.23550.050*
C130.2285 (4)0.4222 (3)0.3220 (3)0.0506 (7)
H13A0.29200.49410.30080.076*
H13B0.19600.41300.41760.076*
H13C0.12130.44150.28780.076*
H4D0.620 (5)0.149 (4)0.489 (4)0.057 (9)*
H4E0.529 (5)0.211 (4)0.390 (4)0.078 (11)*
H5A0.683 (4)0.087 (3)0.081 (3)0.048 (8)*
H3A1.217 (4)0.076 (3)0.109 (3)0.042 (7)*
H6B0.220 (3)0.043 (4)0.379 (4)0.080 (12)*
H6A0.405 (4)0.045 (3)0.314 (3)0.060 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0419 (4)0.0430 (4)0.0311 (3)0.0038 (3)0.0039 (2)0.0028 (2)
S10.0348 (4)0.0377 (3)0.0338 (3)0.0016 (2)0.0040 (2)0.0020 (2)
O30.0725 (14)0.0416 (10)0.0502 (11)0.0010 (9)0.0055 (10)0.0007 (8)
O50.0497 (10)0.0350 (9)0.0407 (9)0.0050 (7)0.0057 (8)0.0038 (7)
O40.0552 (11)0.0357 (9)0.0347 (9)0.0039 (8)0.0071 (8)0.0008 (7)
N40.0402 (12)0.0567 (14)0.0375 (11)0.0061 (10)0.0063 (9)0.0079 (10)
N30.0340 (11)0.0374 (10)0.0326 (10)0.0006 (9)0.0031 (8)0.0007 (8)
N50.0427 (11)0.0302 (10)0.0378 (10)0.0029 (8)0.0076 (8)0.0028 (8)
O60.0564 (13)0.0674 (13)0.0529 (11)0.0058 (10)0.0136 (10)0.0228 (10)
C70.0392 (13)0.0285 (11)0.0445 (12)0.0046 (9)0.0115 (10)0.0018 (9)
O10.0630 (13)0.0660 (13)0.0457 (10)0.0249 (11)0.0053 (9)0.0097 (9)
O20.0592 (12)0.0803 (14)0.0407 (10)0.0134 (10)0.0160 (9)0.0114 (9)
N20.0410 (11)0.0374 (10)0.0356 (10)0.0006 (8)0.0047 (8)0.0018 (8)
C50.0352 (12)0.0299 (11)0.0367 (11)0.0079 (9)0.0086 (9)0.0022 (9)
C10.0333 (12)0.0406 (12)0.0342 (11)0.0062 (9)0.0064 (9)0.0007 (9)
N10.0395 (11)0.0433 (11)0.0359 (10)0.0025 (9)0.0033 (8)0.0020 (8)
C30.0379 (13)0.0531 (15)0.0359 (12)0.0022 (11)0.0075 (10)0.0041 (10)
C20.0293 (11)0.0314 (11)0.0355 (11)0.0068 (8)0.0063 (9)0.0008 (9)
C80.0546 (16)0.0366 (13)0.0418 (13)0.0086 (11)0.0163 (11)0.0090 (10)
C60.0353 (12)0.0309 (11)0.0364 (11)0.0083 (9)0.0094 (9)0.0014 (9)
C40.0592 (18)0.081 (2)0.0347 (14)0.0094 (15)0.0069 (12)0.0058 (13)
C90.0492 (15)0.0418 (13)0.0344 (11)0.0111 (10)0.0081 (10)0.0007 (10)
C130.0557 (17)0.0435 (14)0.0423 (13)0.0030 (12)0.0019 (12)0.0061 (11)
Geometric parameters (Å, º) top
S2—O21.4252 (19)C7—C51.366 (3)
S2—O31.430 (2)C7—C81.404 (3)
S2—N41.575 (2)C7—H70.9300
S2—C11.781 (2)O1—C31.204 (3)
S1—C21.724 (2)N2—C21.310 (3)
S1—C11.726 (2)N2—N11.380 (3)
O5—C61.260 (3)C5—C61.438 (3)
O4—C51.352 (3)C1—N11.284 (3)
O4—C131.436 (3)C3—C41.493 (4)
N4—H4D0.80 (4)C8—C91.347 (4)
N4—H4E0.91 (4)C8—H80.9300
N3—C21.363 (3)C4—H4A0.9600
N3—C31.369 (3)C4—H4B0.9600
N3—H3A0.81 (3)C4—H4C0.9600
N5—C61.352 (3)C9—H90.9300
N5—C91.366 (3)C13—H13A0.9600
N5—H5A0.92 (3)C13—H13B0.9600
O6—H6B0.902 (18)C13—H13C0.9600
O6—H6A0.923 (18)
O2—S2—O3120.66 (13)C1—N1—N2111.50 (19)
O2—S2—N4108.27 (13)O1—C3—N3120.2 (2)
O3—S2—N4109.07 (14)O1—C3—C4124.0 (2)
O2—S2—C1107.37 (12)N3—C3—C4115.7 (2)
O3—S2—C1103.16 (11)N2—C2—N3121.5 (2)
N4—S2—C1107.58 (12)N2—C2—S1114.94 (17)
C2—S1—C185.36 (11)N3—C2—S1123.57 (17)
C5—O4—C13117.92 (18)C9—C8—C7119.4 (2)
S2—N4—H4D114 (2)C9—C8—H8120.3
S2—N4—H4E117 (2)C7—C8—H8120.3
H4D—N4—H4E112 (3)O5—C6—N5121.3 (2)
C2—N3—C3122.3 (2)O5—C6—C5123.3 (2)
C2—N3—H3A118 (2)N5—C6—C5115.4 (2)
C3—N3—H3A120 (2)C3—C4—H4A109.5
C6—N5—C9125.0 (2)C3—C4—H4B109.5
C6—N5—H5A113.3 (19)H4A—C4—H4B109.5
C9—N5—H5A121.7 (19)C3—C4—H4C109.5
H6B—O6—H6A105 (3)H4A—C4—H4C109.5
C5—C7—C8120.5 (2)H4B—C4—H4C109.5
C5—C7—H7119.8C8—C9—N5119.5 (2)
C8—C7—H7119.8C8—C9—H9120.3
C2—N2—N1111.88 (19)N5—C9—H9120.3
O4—C5—C7126.7 (2)O4—C13—H13A109.5
O4—C5—C6112.98 (19)O4—C13—H13B109.5
C7—C5—C6120.3 (2)H13A—C13—H13B109.5
N1—C1—S1116.32 (18)O4—C13—H13C109.5
N1—C1—S2123.92 (18)H13A—C13—H13C109.5
S1—C1—S2119.75 (14)H13B—C13—H13C109.5
(ACZVLM12) top
Crystal data top
C4H6N4O3S2·2(C5H9NO)Dx = 1.418 Mg m3
Mr = 420.51Melting point: 366 K
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 9.66166 (19) ÅCell parameters from 3314 reflections
b = 23.4685 (4) Åθ = 4.7–71.6°
c = 8.84352 (17) ŵ = 2.80 mm1
β = 100.7730 (19)°T = 298 K
V = 1969.88 (7) Å3Needle, colorles
Z = 40.22 × 0.20 × 0.20 mm
F(000) = 888
Data collection top
Xcalibur, Eos, Gemini
diffractometer
3507 independent reflections
Radiation source: fine-focus sealed tube3068 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 67.1°, θmin = 3.8°
Absorption correction: multi-scanh = 1011
Tmin = 0.702, Tmax = 1.000k = 2824
6492 measured reflectionsl = 106
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0736P)2 + 0.4712P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3507 reflectionsΔρmax = 0.37 e Å3
266 parametersΔρmin = 0.40 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0017 (3)
Crystal data top
C4H6N4O3S2·2(C5H9NO)V = 1969.88 (7) Å3
Mr = 420.51Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.66166 (19) ŵ = 2.80 mm1
b = 23.4685 (4) ÅT = 298 K
c = 8.84352 (17) Å0.22 × 0.20 × 0.20 mm
β = 100.7730 (19)°
Data collection top
Xcalibur, Eos, Gemini
diffractometer
3507 independent reflections
Absorption correction: multi-scan3068 reflections with I > 2σ(I)
Tmin = 0.702, Tmax = 1.000Rint = 0.018
6492 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.37 e Å3
3507 reflectionsΔρmin = 0.40 e Å3
266 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.05603 (6)0.70069 (2)0.86906 (7)0.04789 (19)
S20.10589 (6)0.57207 (2)0.85192 (7)0.04876 (19)
N10.1709 (2)0.80103 (8)0.7959 (2)0.0458 (4)
O50.47643 (18)0.51554 (7)0.8041 (2)0.0573 (4)
O10.00847 (19)0.80761 (8)0.9245 (2)0.0648 (5)
C30.0787 (2)0.83161 (10)0.8649 (3)0.0477 (5)
N60.4989 (2)0.59455 (9)0.6701 (3)0.0540 (5)
O20.00146 (19)0.57761 (8)0.9450 (3)0.0687 (5)
N40.2449 (2)0.54589 (8)0.9520 (3)0.0490 (5)
N20.2659 (2)0.71498 (8)0.7328 (3)0.0545 (5)
C20.1729 (2)0.74257 (9)0.7927 (2)0.0422 (5)
N30.2489 (2)0.65681 (8)0.7445 (3)0.0547 (5)
C100.5413 (2)0.54307 (9)0.7199 (3)0.0437 (5)
O30.0768 (2)0.54194 (8)0.7106 (2)0.0722 (5)
C120.7225 (3)0.55117 (12)0.5462 (3)0.0606 (6)
H12A0.81880.54030.54300.073*
H12B0.66420.54170.44780.073*
C40.0960 (3)0.89508 (11)0.8610 (3)0.0607 (6)
H4A0.02850.91290.91270.091*
H4B0.08120.90780.75600.091*
H4C0.18950.90520.91180.091*
C10.1459 (2)0.64398 (9)0.8114 (3)0.0449 (5)
C110.6716 (3)0.51911 (10)0.6736 (3)0.0543 (6)
H11A0.65290.47990.64100.065*
H11B0.74660.51860.76340.065*
C130.7154 (3)0.61411 (12)0.5745 (4)0.0677 (7)
H13A0.75160.63480.49520.081*
H13B0.77330.62350.67320.081*
C140.5652 (3)0.63159 (11)0.5733 (4)0.0691 (8)
H14A0.56340.67050.60970.083*
H14B0.51240.63020.46870.083*
O40.36338 (16)0.63381 (7)0.1712 (2)0.0548 (4)
N50.5710 (2)0.60207 (8)0.1312 (2)0.0488 (5)
C90.4827 (2)0.64362 (9)0.1412 (3)0.0439 (5)
C50.7137 (3)0.60708 (11)0.1001 (4)0.0620 (7)
H5A0.72440.58110.01780.074*
H5B0.78060.59600.19130.074*
C80.5261 (3)0.70361 (10)0.1132 (4)0.0650 (7)
H8A0.46980.71700.01740.078*
H8B0.50530.72770.19520.078*
C70.6773 (4)0.71018 (14)0.1049 (9)0.152 (3)
H7A0.68530.74210.03750.182*
H7B0.72720.72060.20670.182*
C60.7463 (4)0.66532 (14)0.0560 (6)0.0999 (13)
H6A0.84630.67140.09190.120*
H6B0.72980.66680.05560.120*
H5C0.541 (3)0.5676 (11)0.145 (3)0.050 (7)*
H4E0.274 (3)0.5665 (12)1.040 (3)0.075 (9)*
H4D0.303 (3)0.5368 (11)0.902 (3)0.052 (7)*
H1A0.232 (3)0.8176 (12)0.753 (3)0.055 (7)*
H6C0.427 (3)0.6059 (13)0.700 (3)0.061 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0429 (3)0.0456 (3)0.0613 (4)0.0024 (2)0.0257 (3)0.0037 (2)
S20.0439 (3)0.0428 (3)0.0609 (4)0.0060 (2)0.0131 (2)0.0042 (2)
N10.0430 (10)0.0423 (10)0.0571 (11)0.0013 (8)0.0218 (9)0.0047 (8)
O50.0625 (10)0.0437 (8)0.0732 (11)0.0004 (7)0.0320 (9)0.0080 (8)
O10.0583 (10)0.0609 (11)0.0858 (13)0.0025 (8)0.0405 (10)0.0046 (9)
C30.0439 (11)0.0491 (12)0.0526 (12)0.0007 (10)0.0156 (10)0.0021 (10)
N60.0535 (11)0.0445 (11)0.0701 (13)0.0081 (9)0.0271 (10)0.0085 (9)
O20.0521 (9)0.0591 (10)0.1037 (15)0.0033 (8)0.0370 (10)0.0153 (10)
N40.0519 (11)0.0432 (10)0.0545 (12)0.0000 (8)0.0164 (10)0.0044 (9)
N20.0507 (11)0.0444 (10)0.0761 (14)0.0022 (8)0.0319 (10)0.0094 (10)
C20.0362 (10)0.0463 (11)0.0473 (11)0.0004 (9)0.0159 (8)0.0067 (9)
N30.0521 (11)0.0446 (10)0.0748 (13)0.0036 (8)0.0308 (10)0.0066 (9)
C100.0449 (11)0.0395 (11)0.0485 (12)0.0021 (9)0.0133 (9)0.0017 (9)
O30.0820 (13)0.0607 (11)0.0677 (12)0.0143 (10)0.0017 (10)0.0040 (9)
C120.0527 (13)0.0741 (17)0.0592 (15)0.0016 (12)0.0212 (12)0.0026 (13)
C40.0641 (15)0.0484 (13)0.0748 (17)0.0006 (11)0.0266 (13)0.0063 (12)
C10.0399 (10)0.0424 (11)0.0543 (12)0.0013 (9)0.0142 (9)0.0053 (9)
C110.0525 (13)0.0471 (12)0.0668 (15)0.0077 (10)0.0203 (11)0.0010 (11)
C130.0672 (16)0.0663 (17)0.0769 (18)0.0137 (13)0.0324 (14)0.0068 (14)
C140.0805 (18)0.0532 (14)0.0818 (19)0.0091 (13)0.0360 (15)0.0218 (13)
O40.0429 (8)0.0503 (9)0.0762 (11)0.0031 (7)0.0242 (8)0.0110 (8)
N50.0435 (10)0.0383 (10)0.0685 (13)0.0012 (8)0.0208 (9)0.0014 (9)
C90.0420 (10)0.0425 (11)0.0495 (12)0.0002 (9)0.0145 (9)0.0046 (9)
C50.0473 (13)0.0534 (14)0.093 (2)0.0055 (11)0.0319 (13)0.0005 (13)
C80.0570 (15)0.0399 (12)0.103 (2)0.0026 (10)0.0289 (15)0.0015 (13)
C70.095 (3)0.0478 (17)0.345 (9)0.0019 (18)0.125 (4)0.022 (3)
C60.074 (2)0.0688 (19)0.178 (4)0.0040 (16)0.078 (2)0.010 (2)
Geometric parameters (Å, º) top
S1—C11.718 (2)C4—H4B0.9600
S1—C21.727 (2)C4—H4C0.9600
S2—O31.418 (2)C11—H11A0.9700
S2—O21.4223 (19)C11—H11B0.9700
S2—N41.587 (2)C13—C141.506 (4)
S2—C11.782 (2)C13—H13A0.9700
N1—C21.373 (3)C13—H13B0.9700
N1—C31.373 (3)C14—H14A0.9700
N1—H1A0.85 (3)C14—H14B0.9700
O5—C101.240 (3)O4—C91.251 (3)
O1—C31.212 (3)N5—C91.309 (3)
C3—C41.500 (3)N5—C51.460 (3)
N6—C101.324 (3)N5—H5C0.87 (3)
N6—C141.451 (3)C9—C81.503 (3)
N6—H6C0.83 (3)C5—C61.471 (4)
N4—H4E0.913 (18)C5—H5A0.9700
N4—H4D0.81 (3)C5—H5B0.9700
N2—C21.297 (3)C8—C71.484 (4)
N2—N31.381 (3)C8—H8A0.9700
N3—C11.285 (3)C8—H8B0.9700
C10—C111.503 (3)C7—C61.359 (5)
C12—C131.502 (4)C7—H7A0.9700
C12—C111.512 (4)C7—H7B0.9700
C12—H12A0.9700C6—H6A0.9700
C12—H12B0.9700C6—H6B0.9700
C4—H4A0.9600
C1—S1—C285.48 (10)C10—C11—H11B108.5
O3—S2—O2120.72 (13)C12—C11—H11B108.5
O3—S2—N4107.82 (13)H11A—C11—H11B107.5
O2—S2—N4109.29 (13)C12—C13—C14109.9 (2)
O3—S2—C1108.04 (11)C12—C13—H13A109.7
O2—S2—C1103.50 (10)C14—C13—H13A109.7
N4—S2—C1106.61 (10)C12—C13—H13B109.7
C2—N1—C3123.02 (19)C14—C13—H13B109.7
C2—N1—H1A115.7 (19)H13A—C13—H13B108.2
C3—N1—H1A121.3 (19)N6—C14—C13111.3 (2)
O1—C3—N1120.8 (2)N6—C14—H14A109.4
O1—C3—C4124.1 (2)C13—C14—H14A109.4
N1—C3—C4115.1 (2)N6—C14—H14B109.4
C10—N6—C14126.8 (2)C13—C14—H14B109.4
C10—N6—H6C114 (2)H14A—C14—H14B108.0
C14—N6—H6C119 (2)C9—N5—C5127.1 (2)
S2—N4—H4E111.5 (19)C9—N5—H5C116.5 (17)
S2—N4—H4D113.4 (19)C5—N5—H5C116.4 (17)
H4E—N4—H4D118 (3)O4—C9—N5121.0 (2)
C2—N2—N3111.20 (18)O4—C9—C8120.3 (2)
N2—C2—N1121.41 (19)N5—C9—C8118.7 (2)
N2—C2—S1115.38 (17)N5—C5—C6112.4 (2)
N1—C2—S1123.20 (16)N5—C5—H5A109.1
C1—N3—N2112.29 (18)C6—C5—H5A109.1
O5—C10—N6121.0 (2)N5—C5—H5B109.1
O5—C10—C11120.7 (2)C6—C5—H5B109.1
N6—C10—C11118.3 (2)H5A—C5—H5B107.9
C13—C12—C11109.5 (2)C7—C8—C9114.4 (2)
C13—C12—H12A109.8C7—C8—H8A108.7
C11—C12—H12A109.8C9—C8—H8A108.7
C13—C12—H12B109.8C7—C8—H8B108.7
C11—C12—H12B109.8C9—C8—H8B108.7
H12A—C12—H12B108.2H8A—C8—H8B107.6
C3—C4—H4A109.5C6—C7—C8118.7 (3)
C3—C4—H4B109.5C6—C7—H7A107.6
H4A—C4—H4B109.5C8—C7—H7A107.6
C3—C4—H4C109.5C6—C7—H7B107.6
H4A—C4—H4C109.5C8—C7—H7B107.6
H4B—C4—H4C109.5H7A—C7—H7B107.1
N3—C1—S1115.65 (17)C7—C6—C5119.5 (3)
N3—C1—S2122.00 (17)C7—C6—H6A107.4
S1—C1—S2122.25 (12)C5—C6—H6A107.4
C10—C11—C12115.0 (2)C7—C6—H6B107.4
C10—C11—H11A108.5C5—C6—H6B107.4
C12—C11—H11A108.5H6A—C6—H6B107.0

Experimental details

(ACZ2HP11)(ACZ2HP12)(ACZCPRH111)(ACZDMSO)
Crystal data
Chemical formulaC4H6N4O3S2·C5H5NOC4H6N4O3S2·2(C5H5NO)C4H6N4O3S2·C6H11NO·H2O2(C4H6N4O3S2)·C2H6OS
Mr317.35412.45353.42522.62
Crystal system, space groupMonoclinic, P21/nTriclinic, P1Triclinic, P1Monoclinic, C2/c
Temperature (K)298298298298
a, b, c (Å)4.9138 (4), 33.192 (3), 8.3659 (7)6.8501 (3), 11.3563 (6), 12.3387 (8)4.9969 (2), 11.6983 (6), 14.6244 (8)52.62 (3), 4.816 (2), 17.814 (9)
α, β, γ (°)90, 99.520 (1), 9082.288 (5), 81.856 (4), 75.804 (4)70.868 (5), 81.892 (4), 80.262 (4)90, 106.785 (13), 90
V3)1345.7 (2)916.20 (8)792.64 (7)4322 (4)
Z4228
Radiation typeMo KαCu KαCu KαMo Kα
µ (mm1)0.423.013.340.59
Crystal size (mm)0.21 × 0.19 × 0.180.23 × 0.22 × 0.220.22 × 0.20 × 0.180.20 × 0.18 × 0.18
Data collection
DiffractometerCCD area detectorXcalibur, Eos, GeminiXcalibur, Eos, GeminiCCD area detector
Absorption correctionMulti-scanMulti-scan
Tmin, Tmax0.137, 1.0000.344, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13846, 2640, 2176 5007, 3268, 3035 4238, 2792, 2633 21342, 4378, 3834
Rint0.0380.0320.0120.029
(sin θ/λ)max1)0.6170.5970.5970.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.101, 1.05 0.065, 0.171, 1.03 0.038, 0.111, 1.08 0.038, 0.101, 1.04
No. of reflections2640326827924378
No. of parameters198265224299
No. of restraints1000
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.220.47, 0.800.24, 0.340.43, 0.25
Absolute structure????
Absolute structure parameter????


(ACZMeHP11)(ACZNAM11)(ACZNAM2HP111)(ACZOMeHPH111)
Crystal data
Chemical formulaC4H6N4O3S2·C6H7NOC4H6N4O3S2·C6H6N2OC4H6N4O3S2·C6H6N2O·C5H5NOC4H6N4O3S2·C6H7NO2·H2O
Mr331.37344.38439.48365.39
Crystal system, space groupMonoclinic, p_1_c_1Triclinic, P1Triclinic, P1Triclinic, P1
Temperature (K)298298298298
a, b, c (Å)11.3972 (7), 18.1641 (3), 10.338 (3)5.1477 (8), 10.8147 (14), 14.2604 (16)7.0347 (3), 10.2539 (7), 13.7934 (9)7.7872 (6), 10.2130 (7), 10.2464 (7)
α, β, γ (°)90, 97.046 (16), 9069.797 (11), 85.463 (12), 81.889 (12)81.685 (6), 83.028 (5), 88.283 (5)88.192 (5), 76.587 (6), 77.996 (6)
V3)2124.0 (6)737.20 (17)977.13 (10)775.22 (9)
Z6222
Radiation typeCu KαCu KαCu KαCu Kα
µ (mm1)3.653.552.873.49
Crystal size (mm)0.22 × 0.20 × 0.200.22 × 0.21 × 0.200.20 × 0.18 × 0.180.22 × 0.20 × 0.18
Data collection
DiffractometerXcalibur, Eos, GeminiXcalibur, Eos, GeminiXcalibur, Eos, GeminiXcalibur, Eos, Gemini
Absorption correctionMulti-scanMulti-scanMulti-scan
Tmin, Tmax0.732, 1.0000.374, 1.0000.530, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7371, 4590, 4295 4027, 2607, 1906 5696, 3493, 3085 4182, 2734, 2406
Rint0.0220.0410.0190.029
(sin θ/λ)max1)0.5970.5970.5970.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.02 0.063, 0.194, 1.01 0.061, 0.179, 1.08 0.050, 0.141, 1.06
No. of reflections4590260734932734
No. of parameters583220269234
No. of restraints4203
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.290.41, 0.590.80, 0.440.41, 0.48
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881???
Absolute structure parameter0.19 (2)???


(ACZVLM12)
Crystal data
Chemical formulaC4H6N4O3S2·2(C5H9NO)
Mr420.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.66166 (19), 23.4685 (4), 8.84352 (17)
α, β, γ (°)90, 100.7730 (19), 90
V3)1969.88 (7)
Z4
Radiation typeCu Kα
µ (mm1)2.80
Crystal size (mm)0.22 × 0.20 × 0.20
Data collection
DiffractometerXcalibur, Eos, Gemini
Absorption correctionMulti-scan
Tmin, Tmax0.702, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6492, 3507, 3068
Rint0.018
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.126, 1.08
No. of reflections3507
No. of parameters266
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.40
Absolute structure?
Absolute structure parameter?

Computer programs: SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997).

 

Acknowledgements

GB thanks the UGC for a fellowship. We thank the JC Bose Fellowship (SR/S2/JCB-06/2009), CSIR project on Pharmaceutical polymorphs and cocrystals [02(0223)/15/EMR-II], and SERB scheme on multi-component cocrystals (EMR/2015/002075) for funding. UGC and DST (UPE and PURSE programs) are thanked for providing instrumentation and infrastructure facilities.

References

First citationAakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2001). Angew. Chem. Int. Ed. 40, 3240–3242.  Web of Science CrossRef CAS Google Scholar
First citationAakeröy, C. B., Desper, J. & Urbina, J. (2005). Chem. Commun. pp. 2820–2822.  Google Scholar
First citationAakeröy, C. B. & Salmon, D. (2005). CrystEngComm, 7, 439–448.  Google Scholar
First citationAitipamula, S., Wong, A. B. H., Chow, P. S. & Tan, R. B. H. (2013). CrystEngComm, 15, 5877–5887.  Web of Science CSD CrossRef CAS Google Scholar
First citationArenas-García, J. I., Herrera-Ruiz, D., Mondragón-Vásquez, K., Morales-Rojas, H. & Höpfl, H. (2010). Cryst. Growth Des. 10, 3732–3742.  Google Scholar
First citationArenas-García, J., Herrera-Ruiz, D., Mondragón-Vásquez, K., Morales-Rojas, H. & Höpfl, H. (2012). Cryst. Growth Des. 12, 811–824.  Google Scholar
First citationBaraldi, C., Gamberini, M., Tinti, A., Palazzoli, F. & Ferioli, V. (2009). J. Mol. Struct. 918, 88–96.  CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBenet, L. Z. (2010). Basic Clin. Pharmacol. Toxicol. 106, 162–167.  CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBolla, G., Mittapalli, S. & Nangia, A. (2014). CrystEngComm, 16, 24–27.  Web of Science CSD CrossRef CAS Google Scholar
First citationBolla, G., Mittapalli, S. & Nangia, A. (2015). IUCrJ, 2, 389–401.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationBolla, G. & Nangia, A. (2015). Chem. Commun. 51, 15578–15581.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakraborty, S., Rajput, L. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 2571–2577.  Web of Science CSD CrossRef CAS Google Scholar
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFerrer, S., Borras, J., Miratvilles, C. & Fuertes, A. (1990). Inorg. Chem. 29, 206–210.  CSD CrossRef CAS Web of Science Google Scholar
First citationFerrer, S., Borris, J., Miratvilles, C. & Fuertes, A. (1989). Inorg. Chem. 28, 163–165.  CrossRef Google Scholar
First citationGanguly, P. & Desiraju, G. R. (2010). CrystEngComm, 12, 817–833.  Web of Science CrossRef CAS Google Scholar
First citationGranero, G. E., Longhi, M. R., Becker, C., Junginger, H. E., Kopp, S., Midha, K. K., Shah, V. P., Stavchansky, S., Dressman, J. B. & Barends, D. M. (2008). J. Pharm. Sci. 97, 3691–3699.  CrossRef PubMed CAS Google Scholar
First citationGrecu, T., Hunter, C., Gardiner, E. & McCabe, J. (2014). Cryst. Growth Des. 14, 165–171.  CrossRef CAS Google Scholar
First citationHartmann, U. & Vahrenkamp, H. (1991). Inorg. Chem. 30, 4676–4677.  CrossRef CAS Google Scholar
First citationMukherjee, A., Dixit, K., Sarma, S. P. & Desiraju, G. R. (2014a). IUCrJ, 1, 228–239.  CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMukherjee, A., Tothadi, S. & Desiraju, G. R. (2014b). Acc. Chem. Res. 47, 2514–2524.  CrossRef CAS PubMed Google Scholar
First citationNangia, A. (2010). J. Chem. Sci. 122, 295–310.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlisPro. Oxford Diffraction Ltd, Yarnton, Oxfordshire UK.  Google Scholar
First citationSeaton, C., Blagden, N., Munshi, T. & Scowen, I. (2013). Chem. Eur. J. 19, 10663–10671.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTothadi, S. & Desiraju, G. R. (2013). Chem. Commun. 49, 7791–7793.  Web of Science CSD CrossRef CAS Google Scholar
First citationTothadi, S. & Desiraju, G. (2014). Acc. Chem. Res. 47, 2514–2524.  PubMed Google Scholar
First citationUmeda, T., Ohnishi, N., Yokoyama, T., Kuroda, T., Kita, Y., Kuroda, K., Tatsumi, E. & Matsuda, Y. (1985). Chem. Pharm. Bull. 33, 3422–3428.  CrossRef CAS PubMed Google Scholar
First citationWalsh, R. D. B., Bradner, M. W., Fleischman, S., Morales, L. A., Moulton, B., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Chem. Commun. pp. 186–187.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

IUCrJ
Volume 3| Part 2| March 2016| Pages 152-160
ISSN: 2052-2525