research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
Volume 6| Part 6| November 2019| Pages 1032-1039
ISSN: 2052-2525

Diversifying molecular and topological space via a supramolecular solid-state synthesis: a purely organic mok net sustained by hydrogen bonds

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Iowa, Iowa City, IA 52242, USA, bDepartment of Biological Sciences, Webster University, St. Louis, MO 63119, USA, cDepartment of Chemistry and the W. M. Keck Foundation Center for Molecular Structure, California State University, San Marcos, CA 92096, USA, dDipartimento di Chimica, Università degli Studi di Milano, Milano 20133, Italy, and eSamara Center for Theoretical Materials Science (SCTMS), Samara State Technical University, Samara 443100, Russia
*Correspondence e-mail: ryangroeneman19@webster.edu, len-macgillivray@uiowa.edu

Edited by C.-Y. Su, Sun Yat-Sen University, China (Received 1 May 2019; accepted 13 August 2019; online 7 September 2019)

A three-dimensional hydrogen-bonded network based on a rare mok topology has been constructed using an organic molecule synthesized in the solid state. The molecule is obtained using a supramolecular protecting-group strategy that is applied to a solid-state [2+2] photodimerization. The photodimerization affords a novel head-to-head cyclo­butane product. The cyclo­butane possesses tetrahedrally disposed cis-hydrogen-bond donor (phenolic) and cis-hydrogen-bond acceptor (pyridyl) groups. The product self-assembles in the solid state to form a mok network that exhibits twofold interpenetration. The cyclo­butane adopts different conformations to provide combinations of hydrogen-bond donor and acceptor sites to conform to the structural requirements of the mok net.

1. Introduction

Efforts of chemists to develop new avenues to form covalent bonds and generate molecules that diversify chemical space are increasingly important (e.g. materials science, medicine; Dobson, 2004[Dobson, C. M. (2004). Nature, 432, 824-828.]). In this context, chemical reactions performed in organic crystals can be used to synthesize molecules that possess functional groups with stereochemical relationships which are not accessible in solution (Elacqua et al., 2012[Elacqua, E., Kaushik, P., Groeneman, R. H., Sumrak, J. C., Bučar, D.-K. & MacGillivray, L. R. (2012). Angew. Chem. Int. Ed. 51, 1037-1041.]; Oburn et al., 2017[Oburn, S. M., Swenson, D. C., Mariappan, S. V. S. & MacGillivray, L. R. (2017). J. Am. Chem. Soc. 139, 8452-8454.]). The stereochemical outcome of a reaction in the crystalline state is generally dictated by topological arrangement or supramolecular organization in a lattice (Biradha & Santra, 2013[Biradha, K. & Santra, R. (2013). Chem. Soc. Rev. 42, 950-967.]; Ramamurthy & Sivaguru, 2016[Ramamurthy, V. & Sivaguru, J. (2016). Chem. Rev. 116, 9914-9993.]; Vittal & Quah, 2017[Vittal, J. J. & Quah, H. S. (2017). Coord. Chem. Rev. 342, 1-18.]). A well established reaction to proceed in the solid state is the [2+2] photodimerization of alkenes that generates carbon–carbon single (C—C) bonds in the form of cyclo­butane rings. The reaction is a mainstay for crystal engineers that seek to form covalent bonds in solids. In recent years, cyclo­addition, when controlled by hydrogen bonds (e.g. resorcinol or res templates) and principles of self-assembly, has enabled the synthesis of complex organic molecules based on unique topologies (e.g. ladderanes; Sinnwell et al., 2015[Sinnwell, M. A., Baltrusaitis, J. & MacGillivray, L. R. (2015). Cryst. Growth Des. 15, 538-541.]; Lange et al., 2017[Lange, R. Z., Hofer, G., Weber, T. & Schlüter, A. D. (2017). J. Am. Chem. Soc. 139, 2053-2059.]; Gao et al., 2004[Gao, X., Friščić, T. & MacGillivray, L. R. (2004). Angew. Chem. Int. Ed. 43, 232-236.]).

A current goal of crystal engineers, and general efforts of solid-state chemists, is to design molecular building blocks that self-assemble to form extended (i.e. one-, two- and three-dimensional) network topologies. Of particular interest are entangled nets, wherein nodes are linked to form intertwined and self-catenated structures. The mok net, which is comprised of tetrahedral nodes linked in three-dimensions – akin to the well known diamondoid net – is one such example (Fig. 1[link]) (O'Keeffe, 1991[O'Keeffe, M. (1991). Z. Kristallogr. Cryst. Mater. 196, 21.]; Alexandrov et al., 2012[Alexandrov, E. V., Blatov, V. A. & Proserpio, D. M. (2012). Acta Cryst. A68, 484-493.]; Bonneau & O'Keeffe, 2015[Bonneau, C. & O'Keeffe, M. (2015). Acta Cryst. A71, 82-91.]). Self-catenation of the mok net is based on the shortest rings (six-membered rings, blue), with interpenetration of two hexagonal (hcb) subnets of the mok net effectively facilitating the self-catenation. A consequence of the self-catenation is the generation of two additional rings (six- and eight-membered, orange and purple, respectively). Importantly, the mok net has only been observed in assembly processes based on metal–organic components wherein the tetrahedral node is supplied by a metal center (Gong et al., 2011[Gong, Y., Zhou, Y. C., Liu, T. F., Lü, J., Proserpio, D. M. & Cao, R. (2011). Chem. Commun. 47, 5982-5984.]; Zhang et al., 2015[Zhang, X., Xing, P., Geng, X., Sun, D., Xiao, Z. & Wang, L. (2015). J. Solid State Chem. 229, 49-61.]; Liang et al., 2013[Liang, J., Wang, X.-L., Jiao, Y.-Q., Qin, C., Shao, K.-Z., Su, Z.-M. & Wu, Q.-Y. (2013). Chem. Commun. 49, 8555-8557.]). Moreover, the mok net has been recognized by O'Keeffe as `likely to be difficult to achieve chemically' in the solid state due to its intricacy. An organic molecule that fulfills the role of the tetrahedral nodes in a mok net has not yet been identified.

[Figure 1]
Figure 1
Post-installation of phenolic groups.

With this in mind, we report here the supramolecular solid-state construction of the organic molecule rctt-1,2-bis­(4-pyridyl)-3,4-bis­(4-phenol)cyclo­butane (1a), showing it self-assembles in the solid state to form a network that conforms to the mok topology. The synthesis is achieved using a novel supramolecular protecting-group strategy applied to phenols and utilizes 4,6-di­iodo-res (diI-res) as a hydrogen-bond donor template (Elacqua et al., 2012[Elacqua, E., Kaushik, P., Groeneman, R. H., Sumrak, J. C., Bučar, D.-K. & MacGillivray, L. R. (2012). Angew. Chem. Int. Ed. 51, 1037-1041.]). This strategy enables protection of terminal phenolic groups from participating in hydrogen bonds in the solid state and then post-installation of cis-phenolic groups onto a cyclo­butane ring system (Fig. 1[link]). We show that the head-to-head (HH) cyclo­butane 1a, following removal from the molecular template, self-assembles as a pure form to produce a hydrogen-bonded twofold interpenetrated net of mok topology. Within the network, the cyclo­butane ring of 1a acts as a node with the radial phenolic and pyridyl groups serving as hydrogen-bond donor and acceptor linkers, respectively, resulting in the first purely organic mok network (Gong et al., 2011[Gong, Y., Zhou, Y. C., Liu, T. F., Lü, J., Proserpio, D. M. & Cao, R. (2011). Chem. Commun. 47, 5982-5984.]; Liang et al., 2013[Liang, J., Wang, X.-L., Jiao, Y.-Q., Qin, C., Shao, K.-Z., Su, Z.-M. & Wu, Q.-Y. (2013). Chem. Commun. 49, 8555-8557.]; Zhang et al., 2015[Zhang, X., Xing, P., Geng, X., Sun, D., Xiao, Z. & Wang, L. (2015). J. Solid State Chem. 229, 49-61.]; Li et al., 2017[Li, Q., Yu, M.-H., Xu, J., Li, A.-L., Hu, T.-L. & Bu, X. (2017). Dalton Trans. 46, 3223-3228.]).

2. Results and discussion

The HH cyclo­butane 1a contains cis-4-phenolic and cis-4-pyridyl groups. Although cyclo­butanes functionalized with cis-4-pyridyl groups have been synthesized in the solid state using hydrogen bonds with res templates, the template-directed synthesis of a cyclo­butane lined with phenolic groups has not yet been reported. We note that the synthesis of 1a itself has not been reported in either solution or the solid state, although a photodimerization of protonated 1b (1b = trans-1-(4-phenol)-2-(4-pyridyl)­ethyl­ene) in HCl has been shown to yield a mixture of head-to-tail (HT) isomers (Zhang et al., 2000[Zhang, W.-Q., Zhang, X.-H., Zheng, Y., Shen, G. & Zhuang, J.-P. (2000). Ganguang Kexue Yu Guang Huaxue, 18, 144-149.]). To us, 1a was attractive as a building block in supramolecular chemistry given the presence of the radial and tetrahedrally disposed hydrogen-bond donor (phenol) and acceptor (pyridyl) groups. We expected the groups to equip 1a with a capacity to form 4-connected nets (e.g. diamondoid) (Ermer, 1988[Ermer, O. (1988). J. Am. Chem. Soc. 110, 3747-3754.]; Baburin et al., 2008[Baburin, I. A., Blatov, V. A., Carlucci, L., Ciani, G. & Proserpio, D. M. (2008). Cryst. Growth Des. 8, 519-539.]). Many conformations furnished by the hydrogen-bond donor groups would equip 1a with a capacity to form different 4-connected nets. While 1b has been a subject of numerous studies (e.g. liquid crystals), we were also surprised that the crystal structure of 1b had not been reported.

The ability of the symmetrical cyclo­butane rctt-tetra­kis­(4-pyridyl)­cyclo­butane (tpcb) (D2h symmetry) to serve as a tetrahedral node of extended nets composed of metal and organic building blocks was originally elucidated by Schroder and Champness (Blake et al., 1997[Blake, A. J., Champness, N. R., Chung, S. S. M., Li, W.-S. & Schröder, M. (1997). Chem. Commun. pp. 1675-1676.]). Specifically, tpcb served as a 4-connected node to support a net of composition [Ag(tpcb)]BF4 (Blake et al., 1997[Blake, A. J., Champness, N. R., Chung, S. S. M., Li, W.-S. & Schröder, M. (1997). Chem. Commun. pp. 1675-1676.]; Liu et al., 2011[Liu, D., Li, N.-Y. & Lang, J.-P. (2011). Dalton Trans. 40, 2170-2172.]). We expected the cyclo­butane 1a, being of lower symmetry (Cs), to be able to interact with itself, in contrast to tpcb, by way of complementary hydrogen-bond donor and acceptor groups. The presence of the donor and acceptor sites attached to the cyclo­butane ring would equip the molecule with a capacity to self-assemble into a net purely organic in composition.

2.1. Photostable parent alkene 1b

Plate-like single crystals of 1b were grown by slow evaporation in MeOH/ethyl acetate (1:1, v:v) over a period of 10 d, crystallizing in the orthorhombic space group Pca21. The molecule adopts a planar conformation (twist: 1.63°) with the hydroxyl and pyridyl groups participating in intermolecular O—H⋯N hydrogen bonds [O⋯N, O—H⋯N: 2.729 (5) Å, 177.8 (2)°] (Fig. 2[link]). The alkene self-assembles to form chains along the a axis that stack HH and edge-to-face. Nearest-neighbor C=C bonds are separated by 5.65 Å, which is beyond the limit of the work by Schmidt (1971[Schmidt, G. M. J. (1971). Pure Appl. Chem. 27, 647-678.]). When subjected to UV-radiation (450 W medium-pressure Hg lamp) for a period of up to 50 h, 1b was determined to be photostable.

[Figure 2]
Figure 2
X-ray structure of photostable 1b: (a) hydrogen-bonded chains and (b) stacked C=C bonds of nearest-neighbour alkenes.

2.2. Attempts to form cocrystals of 1b

While 1b is photostable, attempts to cocrystallize 1b with diI-res and, in doing so, form a cocrystal with 1b stacked HH, to react to form the cyclo­butane 1a were unsuccessful (Fig. 1[link]). Liquid-assisted grinding of 1b with diI-res afforded a mixture of the two solids, as demonstrated by powder X-ray diffraction. Attempts to grow cocrystals from solution were also unsuccessful. The solution crystallization experiments typically produced a powder that was identified as the alkene 1b. We attributed the inability of diI-res to form a cocrystal with 1b to the inability of diI-res to compete with the hydrogen bonding between the phenolic and pyridyl groups present in crystalline 1b [Fig. 2[link](a)] (Elacqua et al., 2012[Elacqua, E., Kaushik, P., Groeneman, R. H., Sumrak, J. C., Bučar, D.-K. & MacGillivray, L. R. (2012). Angew. Chem. Int. Ed. 51, 1037-1041.]).

2.3. Supramolecular protecting-group strategy

While 1b is photostable as a pure solid, we determined that the C=C bonds of 1b are made photoactive when the protected methyl ester 1c (1c = trans-1-(4-acet­oxy)-2-(4-pyridyl)­ethyl­ene) is cocrystallized with diI-res in a newly designed supramolecular protecting-group strategy (Elacqua et al., 2012[Elacqua, E., Kaushik, P., Groeneman, R. H., Sumrak, J. C., Bučar, D.-K. & MacGillivray, L. R. (2012). Angew. Chem. Int. Ed. 51, 1037-1041.]). For the strategy, we aimed to develop a method that would allow us to mask the hydrogen bonding ability of the OH group and, at the same time, have minimum steric impact on the requirement of the C=C bonds to stack parallel and on the order of 4.2 Å. Given that cinnamates are known to stack and photodimerize in the solid state (Lewis et al., 1984[Lewis, F. D., Oxman, J. D. & Huffman, J. C. (1984). J. Am. Chem. Soc. 106, 466-468.]), we targeted the ester linkage. Specifically, we expected acyl­ation of the phenol moiety of 1b to allow the C=C bonds of 1b in the form of 1c to stack in the solid state and conform to the topochemical postulate for a photoreaction. Acyl­ation of 1b was thus performed and afforded 1c in high yield (Yin et al., 2011[Yin, S., Sun, H., Yan, Y., Zhang, H., Li, W. & Wu, L. (2011). J. Colloid Interface Sci. 361, 548-555.]).

2.4. Photostable protected alkene 1c

Plate-like single crystals of 1c were generated by slow evaporation in ethyl acetate/ethanol (3:2, v:v) over a period of 2 d. As in the case of 1b, the alkene 1c is photostable [Fig. 3[link](a)] and crystallizes in the orthorhombic space group Pbca. The aromatic rings lie approximately coplanar (twist: 4.66°) with the acet­oxy group twisted from coplanarity (twist: 63.9°). The alkene packs HH and edge-to-face with the nearest C=C bonds separated by 4.74 Å, which is also beyond the limit of the work by Schmidt (1971[Schmidt, G. M. J. (1971). Pure Appl. Chem. 27, 647-678.]) [Fig. 3[link](b)]. UV-radiation for up to 50 h revealed 1c to be photostable.

[Figure 3]
Figure 3
X-ray structures of 1c and (diI-res)·2(1c): (a) edge-to-face forces of 1c, (b) C=C bond interactions of nearest-neighbour alkenes of 1c, (c) hydrogen-bonded three-component assembly (diI-res)·2(1c) (top) with C=C separations (bottom) and (d) two-dimensional sheets of (diI-res)·2(1c).

2.5. Photoreactive cocrystal 1c

Although 1c as a pure form is photostable, cocrystals of the alkene using the supramolecular protecting-group strategy with diI-res are photoactive and generate the cyclo­butane 1d [where: 1d = 1,2-bis­(4-pyridyl)-3,4-bis­(4-acet­oxy­phenyl) cyclo­butane] regioselectively and in quantitative yield.

Single crystals of (diI-res)·2(1c) in the form of colorless plates were formed by combining solutions of 1c (50 mg, 0.21 mmol) in ethyl acetate (3 ml) and diI-res (56 mg, 0.16 mmol) in EtOH (2 ml). The components of (diI-res)·2(1c) crystallize in the triclinic space group [P\bar1]. The molecules form three-component assemblies sustained by two O—H⋯N hydrogen bonds [O⋯N, O—H⋯N: 2.677 (5) Å, 167.1 (4)°; 2.725 (5) Å, 172.6 (3)°] [Fig. 3[link](c)]. The rings of the alkene, in contrast to 1b and pure 1c, stack HH and face-to-face with the acet­oxy groups twisted from planarity (twists: 41.8, 74.1°). The stacked C=C bonds lie parallel and are separated by 3.93 Å, which conforms to the geometry determined by Schmidt (1971[Schmidt, G. M. J. (1971). Pure Appl. Chem. 27, 647-678.]). The assemblies interact via a halogen bond (Metrangolo & Resnati, 2014[Metrangolo, P. & Resnati, G. (2014). IUCrJ, 1, 5-7.]) [I⋯O: 3.309 (3), 3.227 (4) Å, θ = 159.1 (1), 174.8 (1)°] to give two-dimensional sheets in the crystallographic ac plane with neighboring C=C bonds separated by 5.93 Å.

To determine the reactivity of (diI-res)·2(1c), a finely ground crystalline powder was spread between two glass plates and exposed to broadband UV irradiation. A 1H NMR spectrum revealed the complete disappearance of alkene signals (7.19 and 7.56 p.p.m.) and the appearance of a cyclo­butane signal (4.58 p.p.m.) following 100 h of UV-irradiation (see supporting information).

To determine the stereochemistry of the photoproduct, single crystals as colorless prisms were obtained by recrystallization of the reacted solid from ethanol/ethyl acetate (1:1, v:v) over a period of 3 d. The components of (diI-res)·(1d) crystallize in the monoclinic space group P21/c with the stereochemistry being confirmed as the rctt isomer 1d (Fig. 4[link]). The solid is composed of two-component assemblies sustained by two O—H⋯N hydrogen-bonds [O⋯N, O—H⋯N: 2.658 (6) Å, 153.4 (3)°; 2.704 (6) Å, 170.9 (3)°], with I⋯O halogen bonds also formed involving the carboxyl O atom of 1d [I⋯O: 3.442 (9) Å, θ = 144.9 (2)°]. Additionally, I⋯O halogen bonds are present involving a hydroxyl O atom [I⋯O: 3.436 (4) Å, θ = 152.6 (2)°] to generate ribbons along the crystallographic c axis.

[Figure 4]
Figure 4
X-ray structure of (diI-res)·(1d): (a) hydrogen bonds and (b) I⋯O halogen bonds.

2.6. Rare organic mok net

The synthesis of the targeted unsymmetrical cyclo­butane 1a was next achieved in the deprotection of 1d by treating the photoreacted solid of (diI-res)·(1d) with NaOH as base (see supporting information). Single crystals of 1a suitable for single-crystal X-ray diffraction were obtained by slow solvent evaporation from solution of aqueous MeOH over a period of 5 d.

The asymmetric unit of 1a consists of two unique cyclo­butanes (CB1 and CB2) that crystallize in the monoclinic space group I2/a. The deprotection of 1d with the removal of the acet­oxy protecting group confirmed the rctt stereochemistry of the cyclo­butane ring of 1a (Fig. 5[link]). A remarkable feature of the crystal structure of 1a is that the cyclo­butane self-assembles to generate a three-dimensioanl hydrogen-bonded framework of mok topology (point symbol 65.8). The nodes of the mok are defined by the centroids of the cyclo­butane rings of 1a (Fig. 6[link]) (Blatov et al., 2014[Blatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576-3586.]). The cyclo­butanes provide tetrahedrally disposed and cisoid hydrogen-bond donor and acceptor sites to form the 4-connected net.

[Figure 5]
Figure 5
X-ray structure of 1a: (a) anti–gauche 1a (CB1) and (b) syn–anti 1a (CB2). Note: anti and syn are designated relative to the pyridyl groups.
[Figure 6]
Figure 6
X-ray structure of mok topology of 1a: (a) interpenetration of hexagonal (hcb) sub-nets highlighted in green and blue, (b) building blocks of cyclo­butanes as nodes to form hydrogen-bonded hexagons numbered in a clockwise manner (hydrogens removed for clarity), (c) connections of two hcb nets (connection highlighted in orange and hcb nets in blue/green), and (d) twofold interpenetrated mok nets highlighted separately in tan and blue.

The pattern of hydrogen bonding that defines the mok net of 1a is complex. The complexity arises since the hydroxyl groups of 1a adopt two different conformations – CB1 and CB2 – within the net. Each conformation is based on the relative dispositions of the hydroxyl groups of each molecule (Fig. 5[link]). More specifically, CB1 adopts an antigauche conformation wherein the hydroxyl groups are anti and gauche relative to the cis-4-pyridyl groups [Fig. 5[link](a)]. The phenyl group related to the gauche orientation of CB1 is disordered [occupancies: site A 0.90 (1); site B 0.10 (1); see supporting information]. CB2 adopts an antisyn conformation whereby the hydroxyl groups are anti and syn relative to the cis-4-pyridyls [Fig. 5[link](b)]. The cyclo­butane self-assembles to form the mok network with all OH and N-pyridyl groups participating in O—H⋯N hydrogen bonds (Table 1[link]).

Table 1
Selected hydrogen-bond distances and angles

Molecule Distance (Å) O—H⋯N angle (°)
CB1
O1(anti)⋯N4 2.764 (3) 163.96 (3)
O2(gauche)⋯N3 2.676 (3) 167.71 (3)
     
CB2
O3(syn)⋯N1 2.812 (3) 174.94 (3)
O4(anti)⋯N2 2.733 (3) 166.49 (3)

The self-catenation of the mok net arises from interconnection of two twofold interpenetrated hcb layers [blue and green, Fig. 6[link](a)]. The self-assembly of the cyclo­butanes is manifested with CB1 and CB2 alternating as adjacent nodes throughout the net [Fig. 6[link](b)]. All rings of the mok network are thus composed of CB1 and CB2 which alternate via the O—H⋯N hydrogen bonds.

The compositions of the hydrogen bonds between adjacent cyclo­butanes are defined by the orientations (i.e. syn, anti, gauche) of the OH groups of the phenols. Specifically, a primary six-membered ring of the hcb subnet involves nodes with hydrogen bonds of alternating two anti orientations [11.53 Å (CB1), 11.49 Å (CB2)] and one syn orientation (12.15 Å). The phenol groups in the gauche (11.81 Å) orientation interconnect the twofold interpenetrated hcb subnets [orange, Fig. 6[link](c)] and complete the self-catenation. A secondary six-membered ring is generated from interconnection of the hcb subnets (Fig. 7[link]). The secondary six-membered ring involves nodes with hydrogen bonds of alternating two anti orientations (CB1, CB2) and one gauche orientation. Additionally, eight-membered rings are generated from the interconnection of three hcb subnets, involving nodes of alternating one anti (CB1 or CB2), one gauche and one syn orientation.

[Figure 7]
Figure 7
Hydrogen bonding and rings of mok net 1a: (a) three linkages with CB1 and CB2 (light blue = syn linkage; dark blue = anti linkage; orange = gauche linkage) of a primary six-membered ring, (b) space-filling of primary six-membered ring, (c) primary six-membered ring showing linkages within hcb subnet, (d) two types of linkages of a secondary six-membered ring, (e) space-filling view of secondary six-membered ring, (f) highlighted secondary six-membered ring within mok net, (g) three types of linkages within an eight-membered ring, (h) stick-view of eight-membered ring with anti-orientation from CB1, and (i) space-filling of eight-membered ring showing two interdigitated hcb subnets (hydrogen atoms omitted for clarity).

The mok framework of 1a also exhibits the overall twofold interpenetration [Fig. 6[link](d)]. Highly disordered electron density consistent with MeOH as solvent is located in lacunae (∼180 Å3) (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) at the intersection of the interpenetrated hcb and mok subnets and nets, respectively. The mok net of 1a was, before now, an unrealized network in structures of purely organic solids.

2.7. A mok net purely organic in origin

The mok net 1a represents a rare family of entanglements that have only been realized in coordination polymers and metal–organic frameworks. For metal–organic materials, the metal centers and organic linkers are nodes and bridges, respectively, Gong et al., 2011[Gong, Y., Zhou, Y. C., Liu, T. F., Lü, J., Proserpio, D. M. & Cao, R. (2011). Chem. Commun. 47, 5982-5984.]; Liang et al., 2013[Liang, J., Wang, X.-L., Jiao, Y.-Q., Qin, C., Shao, K.-Z., Su, Z.-M. & Wu, Q.-Y. (2013). Chem. Commun. 49, 8555-8557.]; Zhang et al., 2015[Zhang, X., Xing, P., Geng, X., Sun, D., Xiao, Z. & Wang, L. (2015). J. Solid State Chem. 229, 49-61.]). O'Keeffe has pointed out that a single mok net can be considered difficult to achieve chemically given that one distance between two nodes is shorter than the distance between linked nodes. The short distance of a mok net corresponds to two nodes between the interpenetrated hcb layers. For 1a the corresponding distances are 10.1 Å (non-linked nodes) and 11.5 Å (linked nodes); however, we note that here the twofold interpenetration generates much shorter distances between nodes of two separate nets of the interpenetrated structure (i.e. 6.07, 6.38 Å).

A major factor that defines how 1a supports the formation of the mok net relates to the different orientations that the cyclo­butane assumes to define the nodes and edges of the network. Two copies of the same molecule that are present in two different conformations (i.e. CB1 and CB2) self-assemble to form the network. The conformations support the four different types of linkages (i.e. anti (2), syn, gauche) to create six- and eight-membered rings. In doing so, the cyclo­butanes for both the six- and eight-membered rings act as either double hydrogen-bond donors (DD), double hydrogen-bond acceptors (AA) or a donor/acceptor (DA) (Table 2[link], Fig. 7[link]). The AA linkages involve acceptor pyridyls in the 3,4-position of the cyclo­butane ring, whereas the acceptors of the DA linkages are fixed in either the 3-position (3-acceptor) or 4-position (4-acceptor) of the ring. The cyclo­butane 1a effectively adapts to conform to the topology of the mok net by using chemical information stored at the molecular level (i.e. cyclo­butane and conformation) that is then expressed as required at the supramolecular (i.e. hydrogen-bond donor and acceptor capacities) level.

Table 2
Unique rings of 1a mok network

No. Cyclo­butane Overall type Donor type Acceptor type
Six-membered rings
Primary
1 CB2 DD syn, anti
2 CB1 DA anti 3-acceptor
3 CB2 DA syn 3-acceptor
4 CB1 DA anti 4-acceptor
5 CB2 DA anti 4-acceptor
6 CB1 AA 3,4-acceptor
Secondary
7 CB1 DD anti/gauche
8 CB2 DA anti 4-acceptor
9 CB1 DA gauche 4-acceptor
10 CB2 DA anti 3-acceptor
11 CB1 DA anti 3-acceptor
12 CB2 AA 3,4-acceptor
         
Eight-membered rings
1,5 CB1 DD anti, gauche
2,6 CB2 DA syn 4-acceptor
3,7 CB1 DA gauche 3-acceptor
4,8 CB2 AA 3,4-acceptor
†Cyclo­butane participation in six- and eight-membered rings as AA = double hydrogen-bond acceptors, DD = double hydrogen-bond donors, or DA = hydrogen-bond donor and acceptor.

3. Conclusions

We have reported the first mok network composed of purely organic components. The cyclo­butane 1a contains a combination of tetrahedrally disposed (Zhang et al., 2012[Zhang, D.-S., Chang, Z., Lv, Y., Hu, T. & Bu, X. (2012). RSC Adv. 2, 408-410.]) hydrogen-bond donor and acceptor sites synthesized in the solid state using a newly developed supramolecular protecting-group strategy. Hydroxyl donor sites, which add a second degree of flexibility, are used to achieve the unique topology. We believe our observation of the building block 1a to support different network linkages to form the mok net serves as an important example on how to achieve supramolecular complexity from redundant molecular information. The fact that the solid state can be exploited for such design, particularly given the high degree of control of directionality for covalent bond formation, can be expected to encourage further work in the field.

4. Related literature

The following references are cited in the supporting information: Sheldrick (2015a[Sheldrick G. (2015a). Acta Cryst. A71, 3-8.],b[Sheldrick G. (2015b). Acta Cryst. C71, 3-8.]); Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); Blatov et al. (2016[Blatov V. A. (2016). Struct. Chem. 27, 1605-1611.], 2010[Blatov, V. A., O'Keeffe, M. & Proserpio, D. M. (2010). CrystEngComm, 12, 44-48.]); Alexandrov et al. (2011[Alexandrov, E. V., Blatov, V. A., Kochetkov, A. V. & Proserpio, D. M. (2011). CrystEngComm, 13, 3947-3958.]); Kraus & Nolze (1996[Kraus, W. & Nolze, G., (1996). J. Appl. Cryst. 29, 301-303.]).

Supporting information


Computing details top

Data collection: Collect (Hooft, 1998) for mcg16180lt, mcg16122, web134, mcg16113; APEXII V2014.1 (Bruker AXS, Inc., 2014) for web006. Cell refinement: HKL SCALEPACK (Otwinowski and Minor, 1997) for mcg16180lt, mcg16122, web134, mcg16113; APEXII V2014.1 (Bruker AXS, Inc., 2014) for web006. Data reduction: DENZO (Otwinowski and Minor, 1997) for mcg16180lt, web134; SAINT V8.34A (Bruker AXS Inc., 2013) for mcg16122, web006, mcg16113. For all structures, program(s) used to solve structure: ShelXT (Sheldrick, 2015). Program(s) used to refine structure: SHELXL (Sheldrick, 2008) for mcg16180lt, web134; SHELXL (Sheldrick, 2015) for mcg16122, mcg16113; SHELXL2014/7 (Sheldrick, 2014) for web006. For all structures, molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

(mcg16180lt) top
Crystal data top
C13H11NODx = 1.284 Mg m3
Mr = 197.23Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 2440 reflections
a = 23.354 (3) Åθ = 22.4–3.5°
b = 5.6449 (7) ŵ = 0.08 mm1
c = 7.7373 (10) ÅT = 190 K
V = 1020.0 (2) Å3Colorless, plate
Z = 40.17 × 0.09 × 0.02 mm
F(000) = 416
Data collection top
Nonius Kappa CCD
diffractometer
1384 independent reflections
Radiation source: fine-focus sealed tube866 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.062
CCD rotation images, phi and ω scansθmax = 23.2°, θmin = 3.2°
Absorption correction: multi-scan
SADABS-2014/5 (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.0661 before and 0.0587 after correction. The Ratio of minimum to maximum transmission is 0.9249. The λ/2 correction factor is 0.00150.
h = 2525
Tmin = 0.991, Tmax = 0.999k = 66
11876 measured reflectionsl = 78
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0177P)2 + 0.2791P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.041(Δ/σ)max < 0.001
wR(F2) = 0.076Δρmax = 0.24 e Å3
S = 1.02Δρmin = 0.11 e Å3
1384 reflectionsExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
138 parametersExtinction coefficient: 0.0010 (6)
1 restraintAbsolute structure: Refined as a perfect inversion twin.
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.5
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component perfect inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.65531 (14)0.0963 (5)0.4799 (5)0.0659 (10)
H10.68330.00440.49280.099*
N10.24807 (17)0.8078 (6)0.5210 (5)0.0635 (13)
C130.6056 (2)0.0295 (8)0.4899 (6)0.0479 (12)
C80.5026 (2)0.2782 (8)0.5081 (6)0.0509 (12)
C120.6029 (2)0.2432 (8)0.5769 (6)0.0574 (14)
H120.63600.30530.63200.069*
C90.5062 (2)0.0624 (9)0.4221 (6)0.0548 (14)
H90.47300.00080.36840.066*
C110.5519 (2)0.3654 (8)0.5834 (6)0.0573 (14)
H110.55060.51380.64120.069*
C70.4496 (2)0.4210 (8)0.5265 (6)0.0595 (15)
H70.45300.56500.58920.071*
C40.3486 (2)0.7410 (10)0.5745 (6)0.0569 (14)
H40.38330.79720.62370.068*
C50.3474 (2)0.5250 (9)0.4899 (6)0.0578 (14)
C30.2990 (2)0.8752 (8)0.5873 (7)0.0602 (14)
H30.30101.02280.64600.072*
C60.3993 (2)0.3717 (8)0.4669 (6)0.0600 (15)
H60.39480.22810.40420.072*
C10.2481 (2)0.5981 (9)0.4422 (7)0.0708 (17)
H1A0.21280.54270.39620.085*
C20.2957 (2)0.4551 (9)0.4227 (6)0.0661 (16)
H20.29260.30870.36290.079*
C100.5571 (2)0.0621 (8)0.4132 (6)0.0566 (14)
H100.55870.20990.35460.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.072 (2)0.0469 (19)0.079 (3)0.0034 (17)0.001 (2)0.009 (2)
N10.072 (3)0.045 (2)0.074 (3)0.011 (2)0.022 (3)0.021 (3)
C130.066 (4)0.040 (3)0.038 (3)0.002 (3)0.001 (3)0.003 (3)
C80.068 (3)0.046 (3)0.038 (3)0.001 (3)0.003 (3)0.011 (3)
C120.069 (4)0.050 (3)0.053 (3)0.001 (3)0.021 (3)0.010 (3)
C90.067 (4)0.058 (4)0.039 (3)0.023 (3)0.000 (3)0.001 (3)
C110.083 (4)0.038 (3)0.050 (3)0.003 (3)0.022 (3)0.006 (3)
C70.083 (3)0.052 (3)0.044 (4)0.026 (3)0.016 (3)0.019 (3)
C40.049 (3)0.073 (4)0.049 (3)0.019 (3)0.009 (3)0.020 (3)
C50.074 (4)0.052 (4)0.047 (3)0.011 (3)0.006 (3)0.019 (3)
C30.078 (3)0.052 (3)0.051 (3)0.025 (3)0.012 (3)0.015 (3)
C60.082 (4)0.055 (3)0.044 (4)0.028 (3)0.003 (3)0.007 (3)
C10.070 (4)0.057 (3)0.085 (4)0.010 (3)0.038 (3)0.026 (4)
C20.086 (4)0.048 (3)0.064 (4)0.012 (3)0.026 (4)0.019 (3)
C100.079 (4)0.044 (3)0.047 (3)0.016 (3)0.008 (3)0.010 (3)
Geometric parameters (Å, º) top
O1—C131.364 (5)C7—C61.293 (6)
O1—H10.8400C7—H70.9500
N1—C11.331 (5)C4—C51.384 (6)
N1—C31.351 (5)C4—C31.387 (6)
C13—C101.379 (6)C4—H40.9500
C13—C121.383 (5)C5—C21.372 (6)
C8—C111.381 (6)C5—C61.500 (6)
C8—C91.390 (6)C3—H30.9500
C8—C71.484 (6)C6—H60.9500
C12—C111.377 (6)C1—C21.382 (6)
C12—H120.9500C1—H1A0.9500
C9—C101.383 (6)C2—H20.9500
C9—H90.9500C10—H100.9500
C11—H110.9500
C13—O1—H1109.5C5—C4—H4120.1
C1—N1—C3115.1 (4)C3—C4—H4120.1
O1—C13—C10118.6 (4)C2—C5—C4116.8 (5)
O1—C13—C12121.4 (4)C2—C5—C6120.0 (5)
C10—C13—C12119.9 (4)C4—C5—C6123.2 (5)
C11—C8—C9117.6 (5)N1—C3—C4123.7 (5)
C11—C8—C7117.5 (5)N1—C3—H3118.2
C9—C8—C7124.9 (5)C4—C3—H3118.2
C11—C12—C13119.6 (4)C7—C6—C5124.6 (5)
C11—C12—H12120.2C7—C6—H6117.7
C13—C12—H12120.2C5—C6—H6117.7
C10—C9—C8121.5 (5)N1—C1—C2124.7 (5)
C10—C9—H9119.3N1—C1—H1A117.7
C8—C9—H9119.3C2—C1—H1A117.7
C12—C11—C8121.8 (5)C5—C2—C1119.9 (5)
C12—C11—H11119.1C5—C2—H2120.1
C8—C11—H11119.1C1—C2—H2120.1
C6—C7—C8127.4 (5)C13—C10—C9119.6 (5)
C6—C7—H7116.3C13—C10—H10120.2
C8—C7—H7116.3C9—C10—H10120.2
C5—C4—C3119.8 (5)
O1—C13—C12—C11179.7 (4)C5—C4—C3—N10.0 (7)
C10—C13—C12—C111.3 (7)C8—C7—C6—C5179.8 (4)
C11—C8—C9—C100.5 (7)C2—C5—C6—C7179.4 (5)
C7—C8—C9—C10178.8 (5)C4—C5—C6—C71.8 (7)
C13—C12—C11—C81.4 (7)C3—N1—C1—C21.4 (7)
C9—C8—C11—C121.0 (7)C4—C5—C2—C10.3 (7)
C7—C8—C11—C12178.4 (4)C6—C5—C2—C1179.2 (5)
C11—C8—C7—C6179.8 (5)N1—C1—C2—C51.2 (8)
C9—C8—C7—C60.4 (8)O1—C13—C10—C9179.9 (4)
C3—C4—C5—C20.3 (7)C12—C13—C10—C90.8 (7)
C3—C4—C5—C6178.6 (4)C8—C9—C10—C130.5 (7)
C1—N1—C3—C40.8 (7)
(mcg16122) top
Crystal data top
C15H13NO2Dx = 1.307 Mg m3
Mr = 239.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 5803 reflections
a = 10.5366 (11) Åθ = 2.3–22.7°
b = 7.4255 (7) ŵ = 0.09 mm1
c = 31.091 (3) ÅT = 190 K
V = 2432.5 (4) Å3Plate, colorless
Z = 80.27 × 0.26 × 0.02 mm
F(000) = 1008
Data collection top
Nonius Kappa CCD
diffractometer
1517 reflections with I > 2σ(I)
phi and ω scansRint = 0.072
Absorption correction: multi-scan
SADABS-2014/5 (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.0790 before and 0.0685 after correction. The Ratio of minimum to maximum transmission is 0.9038. The λ/2 correction factor is 0.00150.
θmax = 25.3°, θmin = 2.3°
Tmin = 0.977, Tmax = 0.999h = 1212
30658 measured reflectionsk = 88
2205 independent reflectionsl = 3636
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057All H-atom parameters refined
wR(F2) = 0.180 w = 1/[σ2(Fo2) + (0.0899P)2 + 1.5926P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2205 reflectionsΔρmax = 0.21 e Å3
215 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.55896 (19)0.5816 (3)0.61256 (6)0.0375 (6)
O10.71992 (19)0.7630 (3)0.59268 (6)0.0422 (6)
N10.6330 (3)0.4960 (4)0.95677 (8)0.0459 (7)
C80.6347 (2)0.5899 (3)0.74464 (9)0.0265 (6)
C70.6587 (3)0.5732 (4)0.79076 (9)0.0289 (7)
C110.5237 (3)0.6678 (4)0.72741 (10)0.0296 (7)
C50.6071 (3)0.5865 (4)0.86888 (9)0.0302 (7)
C120.5024 (3)0.6703 (4)0.68374 (10)0.0312 (7)
C90.7223 (3)0.5178 (4)0.71563 (9)0.0308 (7)
C60.5869 (3)0.6275 (4)0.82330 (10)0.0325 (7)
C130.5901 (3)0.5941 (4)0.65610 (9)0.0295 (7)
C100.7018 (3)0.5193 (4)0.67174 (10)0.0324 (7)
C140.6350 (3)0.6640 (4)0.58275 (9)0.0356 (7)
C40.5135 (3)0.6248 (4)0.89887 (10)0.0364 (8)
C20.7160 (3)0.5030 (4)0.88478 (10)0.0361 (7)
C30.5289 (3)0.5773 (4)0.94109 (11)0.0428 (8)
C10.7242 (3)0.4615 (5)0.92774 (10)0.0427 (8)
C150.5977 (4)0.6138 (7)0.53839 (12)0.0548 (10)
H70.736 (3)0.504 (4)0.7978 (9)0.036 (8)*
H10.804 (3)0.403 (4)0.9377 (10)0.052 (10)*
H30.464 (3)0.599 (4)0.9626 (11)0.055 (10)*
H60.514 (3)0.690 (5)0.8171 (10)0.053 (10)*
H40.437 (3)0.679 (4)0.8895 (10)0.045 (9)*
H20.783 (3)0.466 (4)0.8665 (10)0.045 (9)*
H120.422 (3)0.717 (5)0.6708 (10)0.056 (10)*
H90.804 (3)0.468 (4)0.7279 (9)0.032 (8)*
H110.464 (3)0.709 (4)0.7476 (11)0.051 (10)*
H100.757 (4)0.468 (4)0.6517 (10)0.053 (10)*
H15A0.614 (6)0.495 (9)0.530 (2)0.16 (3)*
H15B0.639 (5)0.691 (7)0.5180 (16)0.113 (19)*
H15C0.507 (6)0.607 (7)0.5367 (17)0.12 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0348 (11)0.0453 (13)0.0323 (12)0.0043 (9)0.0047 (9)0.0043 (9)
O10.0378 (12)0.0480 (13)0.0409 (13)0.0060 (11)0.0039 (9)0.0009 (10)
N10.0491 (17)0.0517 (17)0.0367 (16)0.0026 (14)0.0039 (13)0.0020 (13)
C80.0249 (14)0.0190 (13)0.0358 (16)0.0022 (11)0.0006 (12)0.0023 (12)
C70.0241 (14)0.0235 (15)0.0391 (17)0.0028 (12)0.0003 (13)0.0033 (12)
C110.0254 (15)0.0275 (15)0.0359 (18)0.0012 (12)0.0042 (13)0.0005 (13)
C50.0302 (15)0.0261 (15)0.0343 (17)0.0044 (12)0.0012 (13)0.0025 (12)
C120.0242 (15)0.0270 (15)0.0423 (19)0.0013 (12)0.0026 (13)0.0007 (13)
C90.0256 (16)0.0264 (15)0.0403 (18)0.0028 (12)0.0005 (13)0.0006 (13)
C60.0284 (15)0.0297 (16)0.0395 (18)0.0001 (13)0.0022 (13)0.0026 (13)
C130.0301 (15)0.0265 (15)0.0318 (16)0.0019 (12)0.0012 (12)0.0011 (12)
C100.0281 (15)0.0289 (16)0.0402 (18)0.0015 (13)0.0034 (14)0.0034 (13)
C140.0347 (16)0.0382 (17)0.0339 (17)0.0054 (15)0.0035 (13)0.0010 (14)
C40.0305 (17)0.0399 (18)0.0389 (19)0.0029 (14)0.0036 (14)0.0053 (14)
C20.0317 (17)0.0398 (18)0.0368 (18)0.0024 (14)0.0045 (14)0.0016 (14)
C30.0413 (18)0.047 (2)0.040 (2)0.0053 (16)0.0080 (16)0.0082 (16)
C10.040 (2)0.048 (2)0.0395 (19)0.0042 (15)0.0011 (15)0.0025 (15)
C150.059 (3)0.074 (3)0.031 (2)0.001 (2)0.0083 (18)0.0095 (19)
Geometric parameters (Å, º) top
O2—C131.396 (3)C12—H121.00 (4)
O2—C141.369 (4)C9—C101.382 (4)
O1—C141.198 (3)C9—H91.01 (3)
N1—C31.343 (4)C6—H60.91 (4)
N1—C11.343 (4)C13—C101.388 (4)
C8—C71.461 (4)C10—H100.93 (4)
C8—C111.411 (4)C14—C151.482 (5)
C8—C91.397 (4)C4—C31.369 (5)
C7—C61.326 (4)C4—H40.95 (3)
C7—H70.99 (3)C2—C11.374 (4)
C11—C121.376 (4)C2—H20.95 (3)
C11—H110.94 (3)C3—H30.97 (4)
C5—C61.465 (4)C1—H11.00 (3)
C5—C41.387 (4)C15—H15A0.93 (7)
C5—C21.394 (4)C15—H15B0.96 (5)
C12—C131.383 (4)C15—H15C0.96 (6)
C14—O2—C13119.3 (2)C10—C13—O2120.8 (2)
C3—N1—C1115.2 (3)C9—C10—C13118.8 (3)
C11—C8—C7123.4 (3)C9—C10—H10124 (2)
C9—C8—C7119.1 (3)C13—C10—H10117 (2)
C9—C8—C11117.4 (3)O2—C14—C15111.2 (3)
C8—C7—H7113.9 (16)O1—C14—O2122.4 (3)
C6—C7—C8128.6 (3)O1—C14—C15126.3 (3)
C6—C7—H7117.3 (16)C5—C4—H4119.1 (19)
C8—C11—H11116 (2)C3—C4—C5120.5 (3)
C12—C11—C8121.0 (3)C3—C4—H4120.4 (19)
C12—C11—H11123 (2)C5—C2—H2122.0 (19)
C4—C5—C6120.3 (3)C1—C2—C5119.8 (3)
C4—C5—C2116.0 (3)C1—C2—H2118.1 (19)
C2—C5—C6123.7 (3)N1—C3—C4124.1 (3)
C11—C12—C13119.9 (3)N1—C3—H3114 (2)
C11—C12—H12122.5 (19)C4—C3—H3122 (2)
C13—C12—H12117.4 (19)N1—C1—C2124.4 (3)
C8—C9—H9117.2 (16)N1—C1—H1118.7 (19)
C10—C9—C8122.1 (3)C2—C1—H1116.8 (19)
C10—C9—H9120.7 (16)C14—C15—H15A117 (4)
C7—C6—C5126.3 (3)C14—C15—H15B110 (3)
C7—C6—H6118 (2)C14—C15—H15C109 (3)
C5—C6—H6115 (2)H15A—C15—H15B107 (5)
C12—C13—O2118.2 (2)H15A—C15—H15C97 (5)
C12—C13—C10120.8 (3)H15B—C15—H15C116 (4)
O2—C13—C10—C9173.2 (2)C9—C8—C11—C120.8 (4)
C8—C7—C6—C5171.3 (3)C6—C5—C4—C3176.2 (3)
C8—C11—C12—C130.6 (4)C6—C5—C2—C1176.7 (3)
C8—C9—C10—C130.3 (4)C13—O2—C14—O18.3 (4)
C7—C8—C11—C12176.0 (2)C13—O2—C14—C15171.7 (3)
C7—C8—C9—C10176.0 (3)C14—O2—C13—C12121.2 (3)
C11—C8—C7—C61.3 (5)C14—O2—C13—C1063.8 (3)
C11—C8—C9—C101.0 (4)C4—C5—C6—C7168.7 (3)
C11—C12—C13—O2173.1 (2)C4—C5—C2—C11.0 (4)
C11—C12—C13—C101.9 (4)C2—C5—C6—C78.9 (5)
C5—C4—C3—N11.4 (5)C2—C5—C4—C31.6 (4)
C5—C2—C1—N10.1 (5)C3—N1—C1—C20.2 (5)
C12—C13—C10—C91.7 (4)C1—N1—C3—C40.4 (5)
C9—C8—C7—C6178.1 (3)
(web134) top
Crystal data top
2(C15H13NO2)·C6H4I2O2Z = 2
Mr = 840.42F(000) = 828
Triclinic, P1Dx = 1.639 Mg m3
a = 9.3954 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.055 (2) ÅCell parameters from 7232 reflections
c = 19.911 (2) Åθ = 1.0–27.5°
α = 101.278 (5)°µ = 1.89 mm1
β = 92.285 (5)°T = 293 K
γ = 111.552 (5)°Plate, colourless
V = 1702.8 (4) Å30.20 × 0.16 × 0.03 mm
Data collection top
Nonius Kappa CCD
diffractometer
8137 independent reflections
Radiation source: fine-focus sealed tube4839 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.033
CCD rotation images, phi scansθmax = 28.0°, θmin = 1.1°
Absorption correction: multi-scan
SADABS-2012/1 (Bruker,2012) was used for absorption correction. wR2(int) was 0.1061 before and 0.0672 after correction. The Ratio of minimum to maximum transmission is 0.8044. The λ/2 correction factor is Not present.
h = 1211
Tmin = 0.702, Tmax = 0.945k = 1313
14414 measured reflectionsl = 2626
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.1166P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.120(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.80 e Å3
8137 reflectionsΔρmin = 0.48 e Å3
420 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0039 (5)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.16887 (4)0.25927 (3)0.79790 (2)0.05615 (13)
I20.43848 (3)0.25478 (4)0.68172 (2)0.06009 (13)
O50.2177 (3)0.2583 (4)0.64224 (16)0.0676 (9)
H50.23760.26970.60350.101*
O40.5336 (4)0.2285 (4)0.00296 (17)0.0689 (9)
O60.2722 (4)0.2324 (5)0.54844 (16)0.0708 (10)
H6A0.22620.24260.51450.106*
O20.8892 (4)0.2156 (4)0.06356 (17)0.0707 (10)
O30.3872 (5)0.2894 (5)0.06607 (19)0.0809 (11)
N20.1349 (5)0.2402 (5)0.4305 (2)0.0646 (11)
O11.0634 (5)0.4441 (5)0.0996 (3)0.1037 (14)
N10.2945 (5)0.2587 (6)0.5142 (2)0.0722 (13)
C320.0733 (5)0.2514 (5)0.6495 (2)0.0489 (10)
C350.2211 (5)0.2476 (5)0.6682 (2)0.0501 (11)
C360.1225 (5)0.2544 (4)0.7233 (2)0.0499 (11)
H360.15450.25880.76700.060*
C310.0217 (5)0.2547 (5)0.7145 (2)0.0474 (10)
C80.6486 (5)0.1997 (5)0.2355 (2)0.0503 (11)
C50.4354 (5)0.2700 (5)0.3922 (2)0.0557 (11)
C340.1749 (5)0.2403 (5)0.6019 (2)0.0540 (11)
C280.4338 (5)0.2222 (6)0.0541 (2)0.0566 (12)
C330.0269 (5)0.2435 (5)0.5942 (2)0.0555 (12)
H330.00580.24030.55060.067*
C290.4991 (6)0.2646 (5)0.0551 (2)0.0570 (12)
C130.8141 (5)0.2176 (5)0.1226 (2)0.0562 (12)
C70.5661 (5)0.1880 (5)0.2963 (2)0.0580 (12)
H70.54900.10370.31280.070*
C230.2557 (6)0.2027 (6)0.1627 (2)0.0605 (12)
C200.0329 (5)0.2629 (5)0.3166 (2)0.0555 (12)
C90.6857 (5)0.0829 (5)0.2027 (3)0.0619 (12)
H90.65490.00290.21900.074*
C60.5133 (5)0.2827 (6)0.3304 (2)0.0593 (12)
H60.52690.36590.31340.071*
C120.7803 (6)0.3357 (5)0.1532 (3)0.0629 (13)
H120.81130.42080.13650.075*
C110.6996 (6)0.3244 (5)0.2092 (2)0.0604 (12)
H110.67800.40470.23050.072*
C141.0103 (6)0.3359 (7)0.0565 (3)0.0715 (15)
C100.7678 (5)0.0924 (5)0.1463 (3)0.0613 (12)
H100.79100.01340.12470.074*
C270.4315 (6)0.3493 (6)0.0944 (3)0.0665 (13)
H270.48810.44080.08590.080*
C40.3757 (5)0.3730 (6)0.4200 (3)0.0638 (13)
H40.38230.44910.39860.077*
C250.3481 (6)0.0886 (6)0.0660 (3)0.0707 (14)
H250.34840.00370.03730.085*
C30.3075 (6)0.3622 (7)0.4787 (3)0.0723 (15)
H30.26670.43180.49550.087*
C20.4223 (6)0.1610 (6)0.4280 (3)0.0712 (14)
H20.46070.08910.41200.085*
C180.0906 (6)0.3586 (7)0.4053 (3)0.0721 (15)
H180.11640.43640.42620.087*
C170.0134 (6)0.1374 (6)0.3425 (3)0.0722 (15)
H170.01030.05780.32220.087*
C210.1248 (6)0.2816 (6)0.2580 (3)0.0658 (13)
H210.15760.37330.24720.079*
C220.1638 (6)0.1848 (6)0.2206 (3)0.0674 (14)
H220.13030.09300.23130.081*
C10.3527 (6)0.1606 (7)0.4865 (3)0.0784 (16)
H10.34500.08600.50920.094*
C160.0956 (6)0.1317 (6)0.3990 (3)0.0748 (15)
H160.12500.04670.41580.090*
C260.3407 (6)0.3354 (6)0.1485 (3)0.0691 (14)
H260.33780.42010.17620.083*
C300.6187 (6)0.2682 (6)0.1025 (3)0.0786 (16)
H30A0.71420.34740.08240.118*
H30B0.58590.28240.14590.118*
H30C0.63320.17690.10980.118*
C190.0076 (6)0.3744 (6)0.3493 (3)0.0682 (14)
H190.02050.46110.33380.082*
C240.2606 (7)0.0782 (6)0.1202 (3)0.0769 (15)
H240.20420.01360.12830.092*
C151.0673 (7)0.3074 (8)0.0112 (3)0.106 (2)
H15A1.07220.21190.02010.159*
H15B1.16830.38040.01030.159*
H15C0.99830.31140.04690.159*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0665 (2)0.0636 (2)0.0466 (2)0.03351 (17)0.00496 (14)0.01470 (15)
I20.0516 (2)0.0806 (3)0.0597 (2)0.03340 (17)0.02117 (14)0.02343 (17)
O50.0546 (19)0.114 (3)0.052 (2)0.0481 (19)0.0198 (15)0.026 (2)
O40.072 (2)0.103 (3)0.053 (2)0.051 (2)0.0222 (17)0.0282 (19)
O60.0572 (19)0.122 (3)0.0431 (19)0.042 (2)0.0108 (15)0.025 (2)
O20.068 (2)0.083 (2)0.056 (2)0.025 (2)0.0269 (17)0.0075 (18)
O30.082 (3)0.120 (3)0.063 (2)0.053 (2)0.0175 (19)0.043 (2)
N20.062 (3)0.087 (3)0.048 (2)0.031 (2)0.0154 (19)0.016 (2)
O10.078 (3)0.089 (3)0.119 (4)0.008 (2)0.044 (3)0.010 (3)
N10.058 (3)0.113 (4)0.047 (2)0.035 (3)0.018 (2)0.015 (3)
C320.049 (2)0.059 (3)0.048 (3)0.030 (2)0.013 (2)0.016 (2)
C350.041 (2)0.066 (3)0.050 (3)0.026 (2)0.0158 (19)0.016 (2)
C360.057 (3)0.065 (3)0.042 (2)0.034 (2)0.018 (2)0.017 (2)
C310.050 (2)0.052 (3)0.043 (2)0.022 (2)0.0088 (19)0.012 (2)
C80.046 (2)0.060 (3)0.044 (2)0.021 (2)0.0040 (19)0.010 (2)
C50.048 (3)0.069 (3)0.049 (3)0.019 (2)0.010 (2)0.014 (2)
C340.052 (3)0.074 (3)0.042 (2)0.032 (2)0.012 (2)0.014 (2)
C280.063 (3)0.082 (4)0.041 (3)0.042 (3)0.015 (2)0.021 (2)
C330.056 (3)0.076 (3)0.040 (2)0.032 (2)0.019 (2)0.011 (2)
C290.065 (3)0.057 (3)0.047 (3)0.020 (2)0.013 (2)0.015 (2)
C130.054 (3)0.067 (3)0.047 (3)0.024 (2)0.010 (2)0.007 (2)
C70.053 (3)0.065 (3)0.054 (3)0.018 (2)0.009 (2)0.019 (2)
C230.060 (3)0.076 (4)0.050 (3)0.028 (3)0.013 (2)0.018 (3)
C200.050 (3)0.069 (3)0.037 (2)0.012 (2)0.004 (2)0.008 (2)
C90.063 (3)0.058 (3)0.066 (3)0.021 (2)0.013 (2)0.021 (3)
C60.062 (3)0.075 (3)0.051 (3)0.032 (3)0.017 (2)0.023 (2)
C120.074 (3)0.059 (3)0.065 (3)0.030 (3)0.027 (3)0.022 (2)
C110.070 (3)0.064 (3)0.056 (3)0.035 (3)0.021 (2)0.015 (2)
C140.057 (3)0.096 (4)0.069 (4)0.033 (3)0.024 (3)0.025 (3)
C100.062 (3)0.060 (3)0.062 (3)0.026 (2)0.013 (2)0.009 (3)
C270.077 (3)0.067 (3)0.064 (3)0.031 (3)0.021 (3)0.022 (3)
C40.059 (3)0.078 (3)0.057 (3)0.029 (3)0.010 (2)0.016 (3)
C250.091 (4)0.071 (4)0.056 (3)0.039 (3)0.020 (3)0.011 (3)
C30.055 (3)0.105 (4)0.058 (3)0.037 (3)0.011 (2)0.008 (3)
C20.082 (4)0.093 (4)0.053 (3)0.043 (3)0.029 (3)0.028 (3)
C180.084 (4)0.085 (4)0.056 (3)0.048 (3)0.010 (3)0.006 (3)
C170.082 (4)0.077 (4)0.052 (3)0.028 (3)0.022 (3)0.004 (3)
C210.065 (3)0.073 (3)0.053 (3)0.020 (3)0.008 (2)0.012 (3)
C220.068 (3)0.069 (3)0.062 (3)0.025 (3)0.007 (3)0.010 (3)
C10.080 (4)0.102 (4)0.062 (3)0.034 (3)0.023 (3)0.035 (3)
C160.087 (4)0.067 (3)0.066 (4)0.020 (3)0.023 (3)0.023 (3)
C260.082 (4)0.076 (4)0.055 (3)0.043 (3)0.011 (3)0.002 (3)
C300.083 (4)0.093 (4)0.067 (4)0.033 (3)0.031 (3)0.031 (3)
C190.076 (3)0.077 (4)0.056 (3)0.031 (3)0.017 (3)0.019 (3)
C240.089 (4)0.074 (4)0.062 (3)0.024 (3)0.026 (3)0.012 (3)
C150.084 (4)0.167 (7)0.077 (4)0.050 (4)0.043 (3)0.037 (4)
Geometric parameters (Å, º) top
I1—C312.100 (4)C23—C241.384 (7)
I2—C352.097 (4)C20—C171.384 (7)
O5—H50.8200C20—C211.481 (7)
O5—C321.348 (5)C20—C191.369 (7)
O4—C281.406 (5)C9—H90.9300
O4—C291.340 (6)C9—C101.388 (7)
O6—H6A0.8200C6—H60.9300
O6—C341.346 (5)C12—H120.9300
O2—C131.396 (5)C12—C111.373 (7)
O2—C141.359 (7)C11—H110.9300
O3—C291.188 (6)C14—C151.484 (8)
N2—C181.315 (7)C10—H100.9300
N2—C161.330 (6)C27—H270.9300
O1—C141.171 (6)C27—C261.396 (7)
N1—C31.342 (7)C4—H40.9300
N1—C11.335 (7)C4—C31.358 (7)
C32—C311.398 (6)C25—H250.9300
C32—C331.391 (6)C25—C241.381 (7)
C35—C361.381 (6)C3—H30.9300
C35—C341.402 (6)C2—H20.9300
C36—H360.9300C2—C11.359 (7)
C36—C311.372 (5)C18—H180.9300
C8—C71.463 (6)C18—C191.387 (7)
C8—C91.395 (6)C17—H170.9300
C8—C111.384 (6)C17—C161.388 (7)
C5—C61.459 (6)C21—H210.9300
C5—C41.387 (7)C21—C221.279 (7)
C5—C21.392 (7)C22—H220.9300
C34—C331.394 (6)C1—H10.9300
C28—C271.379 (6)C16—H160.9300
C28—C251.362 (7)C26—H260.9300
C33—H330.9300C30—H30A0.9600
C29—C301.492 (7)C30—H30B0.9600
C13—C121.375 (6)C30—H30C0.9600
C13—C101.357 (7)C19—H190.9300
C7—H70.9300C24—H240.9300
C7—C61.318 (6)C15—H15A0.9600
C23—C221.468 (7)C15—H15B0.9600
C23—C261.371 (7)C15—H15C0.9600
C32—O5—H5109.5O2—C14—C15110.6 (5)
C29—O4—C28118.4 (4)O1—C14—O2123.5 (5)
C34—O6—H6A109.5O1—C14—C15125.9 (6)
C14—O2—C13120.9 (4)C13—C10—C9119.7 (4)
C18—N2—C16116.0 (5)C13—C10—H10120.1
C1—N1—C3114.5 (5)C9—C10—H10120.1
O5—C32—C31119.8 (4)C28—C27—H27121.3
O5—C32—C33121.9 (4)C28—C27—C26117.3 (5)
C33—C32—C31118.3 (4)C26—C27—H27121.3
C36—C35—I2121.3 (3)C5—C4—H4120.2
C36—C35—C34120.2 (4)C3—C4—C5119.6 (5)
C34—C35—I2118.5 (3)C3—C4—H4120.2
C35—C36—H36119.5C28—C25—H25119.8
C31—C36—C35121.0 (4)C28—C25—C24120.5 (5)
C31—C36—H36119.5C24—C25—H25119.8
C32—C31—I1118.7 (3)N1—C3—C4125.0 (5)
C36—C31—I1120.9 (3)N1—C3—H3117.5
C36—C31—C32120.4 (4)C4—C3—H3117.5
C9—C8—C7119.8 (4)C5—C2—H2120.3
C11—C8—C7123.7 (4)C1—C2—C5119.3 (5)
C11—C8—C9116.4 (4)C1—C2—H2120.3
C4—C5—C6120.2 (5)N2—C18—H18118.0
C4—C5—C2116.4 (5)N2—C18—C19124.0 (5)
C2—C5—C6123.3 (4)C19—C18—H18118.0
O6—C34—C35119.7 (4)C20—C17—H17120.4
O6—C34—C33122.3 (4)C20—C17—C16119.2 (5)
C33—C34—C35118.0 (4)C16—C17—H17120.4
C27—C28—O4120.5 (5)C20—C21—H21116.6
C25—C28—O4118.4 (4)C22—C21—C20126.8 (5)
C25—C28—C27120.9 (5)C22—C21—H21116.6
C32—C33—C34122.1 (4)C23—C22—H22116.5
C32—C33—H33119.0C21—C22—C23127.1 (5)
C34—C33—H33119.0C21—C22—H22116.5
O4—C29—C30110.8 (4)N1—C1—C2125.2 (6)
O3—C29—O4123.3 (5)N1—C1—H1117.4
O3—C29—C30125.9 (5)C2—C1—H1117.4
C12—C13—O2122.5 (5)N2—C16—C17124.1 (5)
C10—C13—O2116.1 (4)N2—C16—H16118.0
C10—C13—C12121.3 (5)C17—C16—H16118.0
C8—C7—H7116.2C23—C26—C27123.1 (5)
C6—C7—C8127.7 (5)C23—C26—H26118.4
C6—C7—H7116.2C27—C26—H26118.4
C26—C23—C22124.4 (5)C29—C30—H30A109.5
C26—C23—C24117.3 (5)C29—C30—H30B109.5
C24—C23—C22118.2 (5)C29—C30—H30C109.5
C17—C20—C21123.4 (5)H30A—C30—H30B109.5
C19—C20—C17116.5 (5)H30A—C30—H30C109.5
C19—C20—C21120.0 (5)H30B—C30—H30C109.5
C8—C9—H9119.5C20—C19—C18120.2 (5)
C10—C9—C8121.1 (5)C20—C19—H19119.9
C10—C9—H9119.5C18—C19—H19119.9
C5—C6—H6116.8C23—C24—H24119.6
C7—C6—C5126.4 (5)C25—C24—C23120.8 (5)
C7—C6—H6116.8C25—C24—H24119.6
C13—C12—H12120.9C14—C15—H15A109.5
C11—C12—C13118.2 (5)C14—C15—H15B109.5
C11—C12—H12120.9C14—C15—H15C109.5
C8—C11—H11118.4H15A—C15—H15B109.5
C12—C11—C8123.3 (4)H15A—C15—H15C109.5
C12—C11—H11118.4H15B—C15—H15C109.5
I2—C35—C36—C31177.7 (3)C7—C8—C11—C12178.3 (5)
I2—C35—C34—O62.6 (6)C20—C17—C16—N20.5 (8)
I2—C35—C34—C33176.6 (3)C20—C21—C22—C23179.6 (4)
O5—C32—C31—I13.2 (6)C9—C8—C7—C6175.0 (5)
O5—C32—C31—C36177.1 (4)C9—C8—C11—C121.0 (7)
O5—C32—C33—C34178.2 (4)C6—C5—C4—C3178.1 (4)
O4—C28—C27—C26173.9 (4)C6—C5—C2—C1177.6 (5)
O4—C28—C25—C24173.3 (5)C12—C13—C10—C90.5 (7)
O6—C34—C33—C32179.9 (5)C11—C8—C7—C67.9 (7)
O2—C13—C12—C11176.9 (4)C11—C8—C9—C100.8 (7)
O2—C13—C10—C9176.9 (4)C14—O2—C13—C1241.8 (7)
N2—C18—C19—C200.1 (8)C14—O2—C13—C10141.9 (5)
C35—C36—C31—I1178.3 (3)C10—C13—C12—C110.8 (7)
C35—C36—C31—C321.4 (7)C27—C28—C25—C242.1 (8)
C35—C34—C33—C320.9 (7)C4—C5—C6—C7175.3 (5)
C36—C35—C34—O6179.4 (4)C4—C5—C2—C10.4 (7)
C36—C35—C34—C331.4 (7)C25—C28—C27—C261.4 (7)
C31—C32—C33—C340.6 (7)C3—N1—C1—C20.8 (8)
C8—C7—C6—C5178.0 (4)C2—C5—C6—C77.5 (8)
C8—C9—C10—C130.5 (7)C2—C5—C4—C30.8 (7)
C5—C4—C3—N11.3 (8)C18—N2—C16—C170.3 (8)
C5—C2—C1—N10.4 (9)C17—C20—C21—C225.5 (8)
C34—C35—C36—C310.2 (7)C17—C20—C19—C180.1 (7)
C28—O4—C29—O31.2 (7)C21—C20—C17—C16178.1 (5)
C28—O4—C29—C30179.0 (4)C21—C20—C19—C18178.4 (4)
C28—C27—C26—C230.0 (8)C22—C23—C26—C27177.6 (5)
C28—C25—C24—C231.3 (8)C22—C23—C24—C25178.4 (5)
C33—C32—C31—I1177.9 (3)C1—N1—C3—C41.2 (8)
C33—C32—C31—C361.8 (7)C16—N2—C18—C190.0 (8)
C29—O4—C28—C2774.1 (6)C26—C23—C22—C2114.1 (8)
C29—O4—C28—C25110.5 (5)C26—C23—C24—C250.1 (8)
C13—O2—C14—O13.8 (8)C19—C20—C17—C160.3 (7)
C13—O2—C14—C15178.6 (5)C19—C20—C21—C22176.1 (5)
C13—C12—C11—C81.1 (8)C24—C23—C22—C21167.6 (5)
C7—C8—C9—C10178.1 (4)C24—C23—C26—C270.7 (8)
(web006) top
Crystal data top
C30H26N2O4·C6H4I2O2F(000) = 1656
Mr = 840.42Dx = 1.637 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 1.2399 Å
a = 21.7663 (10) ÅCell parameters from 6743 reflections
b = 9.8526 (5) Åθ = 3.5–49.2°
c = 16.2690 (7) ŵ = 8.37 mm1
β = 102.198 (2)°T = 150 K
V = 3410.2 (3) Å3Block, colorless
Z = 40.10 × 0.08 × 0.05 mm
Data collection top
Bruker D8
diffractometer
6120 independent reflections
Radiation source: synchrotron, Bend magnet, Station 11.3.1, ALS, LBNL5506 reflections with I > 2σ(I)
Silicon 111 monochromatorRint = 0.055
ω rotation scansθmax = 48.1°, θmin = 4.0°
Absorption correction: multi-scan
SADABS-2012/1 (Bruker,2012) was used for absorption correction. wR2(int) was 0.1061 before and 0.0672 after correction. The Ratio of minimum to maximum transmission is 0.8044. The λ/2 correction factor is Not present.
h = 2626
Tmin = 0.470, Tmax = 0.658k = 1111
23281 measured reflectionsl = 1919
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.168 w = 1/[σ2(Fo2) + (0.1005P)2 + 14.9743P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
6120 reflectionsΔρmax = 2.43 e Å3
395 parametersΔρmin = 1.87 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I20.74864 (2)0.57795 (5)0.28461 (3)0.04173 (17)
I10.64417 (2)0.87199 (4)0.03725 (3)0.04109 (17)
O60.60466 (19)0.5066 (5)0.2604 (3)0.0344 (9)
H6A0.56720.48070.25360.052*
O50.5198 (2)0.7509 (5)0.0048 (3)0.0410 (10)
H50.48580.73070.01820.062*
N10.4041 (2)0.6970 (5)0.0327 (3)0.0332 (11)
N20.4879 (2)0.4789 (6)0.2831 (3)0.0356 (11)
C360.6801 (3)0.7081 (6)0.1223 (4)0.0306 (12)
H360.72130.73540.11850.037*
C320.5681 (3)0.7100 (6)0.0656 (4)0.0307 (12)
C40.3418 (3)0.7290 (6)0.1363 (4)0.0330 (12)
H40.33330.78110.18180.040*
C350.6712 (3)0.6271 (6)0.1883 (4)0.0284 (12)
C310.6289 (3)0.7491 (6)0.0617 (3)0.0298 (12)
C30.3905 (3)0.7641 (6)0.0992 (4)0.0333 (13)
H30.41600.83940.12120.040*
C50.3044 (3)0.6152 (6)0.1068 (4)0.0344 (13)
O20.0500 (4)0.6232 (9)0.1021 (6)0.1040 (14)
C340.6112 (3)0.5856 (6)0.1951 (4)0.0290 (12)
C330.5599 (3)0.6264 (6)0.1329 (4)0.0306 (12)
H330.51880.59730.13600.037*
C180.4623 (3)0.5551 (7)0.3351 (4)0.0396 (15)
H180.48910.60700.37720.047*
C10.3661 (3)0.5945 (7)0.0016 (4)0.0369 (14)
H10.37310.54930.04710.044*
C200.3581 (3)0.4860 (6)0.2687 (4)0.0375 (14)
C170.3850 (3)0.4033 (7)0.2191 (4)0.0387 (14)
H170.35940.34610.17890.046*
C190.3976 (3)0.5607 (7)0.3297 (4)0.0406 (15)
H190.38090.61570.36760.049*
C20.3172 (3)0.5510 (6)0.0365 (4)0.0355 (13)
H20.29210.47650.01220.043*
C230.2150 (3)0.5721 (7)0.3490 (4)0.0413 (15)
C160.4491 (3)0.4026 (7)0.2273 (4)0.0375 (14)
H160.46670.34500.19150.045*
C60.2573 (3)0.5543 (6)0.1533 (4)0.0375 (14)
H60.23030.48460.11820.045*
C210.2860 (3)0.4983 (6)0.2447 (4)0.0357 (13)
H210.26660.40840.25230.043*
C240.1746 (3)0.4606 (8)0.3380 (5)0.0467 (16)
H240.17320.40310.29070.056*
C220.2525 (3)0.6108 (7)0.2850 (4)0.0385 (15)
H220.28380.68210.30930.046*
C70.2169 (3)0.6561 (7)0.1926 (4)0.0394 (14)
H70.22870.75140.18140.047*
C80.1460 (3)0.6391 (7)0.1688 (4)0.0407 (15)
O30.1355 (4)0.2929 (10)0.5573 (6)0.1040 (14)
C260.2166 (4)0.6501 (9)0.4199 (5)0.0529 (18)
H260.24370.72670.42960.063*
C250.1363 (4)0.4314 (9)0.3944 (6)0.060 (2)
H250.10840.35620.38490.072*
C90.1161 (3)0.5309 (9)0.1229 (5)0.0524 (18)
H90.14050.46210.10420.063*
C110.1090 (4)0.7363 (9)0.1956 (6)0.061 (2)
H110.12870.81090.22770.073*
C280.1395 (5)0.5133 (10)0.4646 (6)0.070 (3)
C270.1795 (6)0.6196 (9)0.4777 (6)0.070 (3)
H270.18250.67390.52660.084*
C100.0505 (4)0.5210 (10)0.1036 (5)0.058 (2)
H100.03060.44470.07360.070*
C130.0152 (3)0.6223 (8)0.1283 (5)0.0520 (19)
C150.1511 (5)0.5376 (14)0.0945 (9)0.094 (3)
H15A0.16060.61770.05830.141*
H15B0.17460.54260.13960.141*
H15C0.16330.45550.06110.141*
C140.0847 (4)0.5335 (10)0.1306 (6)0.066 (2)
C120.0447 (4)0.7285 (10)0.1775 (7)0.069 (3)
H120.02040.79520.19840.083*
C290.0975 (6)0.3787 (9)0.5597 (7)0.088 (3)
O10.0594 (4)0.4621 (9)0.1865 (6)0.1040 (14)
C300.0486 (6)0.3781 (14)0.6092 (9)0.094 (3)
H30A0.00770.36090.57200.141*
H30B0.04770.46640.63670.141*
H30C0.05760.30680.65200.141*
O40.0983 (4)0.4925 (9)0.5183 (6)0.1040 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I20.0284 (2)0.0559 (3)0.0400 (3)0.00555 (16)0.00522 (17)0.01099 (18)
I10.0483 (3)0.0391 (3)0.0376 (3)0.00481 (17)0.01293 (19)0.00959 (16)
O60.027 (2)0.044 (2)0.033 (2)0.0039 (18)0.0064 (16)0.0123 (18)
O50.034 (2)0.056 (3)0.033 (2)0.003 (2)0.0044 (18)0.015 (2)
N10.033 (3)0.034 (3)0.033 (3)0.003 (2)0.005 (2)0.002 (2)
N20.030 (3)0.039 (3)0.038 (3)0.002 (2)0.008 (2)0.006 (2)
C360.034 (3)0.026 (3)0.033 (3)0.002 (2)0.012 (2)0.003 (2)
C320.034 (3)0.030 (3)0.028 (3)0.003 (2)0.007 (2)0.000 (2)
C40.033 (3)0.036 (3)0.031 (3)0.005 (2)0.007 (2)0.003 (2)
C350.031 (3)0.028 (3)0.026 (3)0.003 (2)0.004 (2)0.002 (2)
C310.039 (3)0.025 (3)0.027 (3)0.001 (2)0.011 (2)0.002 (2)
C30.032 (3)0.029 (3)0.037 (3)0.004 (2)0.003 (2)0.001 (2)
C50.027 (3)0.034 (3)0.042 (3)0.000 (2)0.007 (2)0.000 (3)
O20.082 (3)0.109 (3)0.124 (4)0.011 (2)0.029 (2)0.037 (3)
C340.034 (3)0.028 (3)0.027 (3)0.003 (2)0.010 (2)0.001 (2)
C330.028 (3)0.033 (3)0.031 (3)0.002 (2)0.007 (2)0.002 (2)
C180.040 (4)0.043 (4)0.033 (3)0.001 (3)0.002 (3)0.006 (3)
C10.042 (4)0.033 (3)0.035 (3)0.006 (3)0.007 (3)0.005 (3)
C200.032 (3)0.032 (3)0.047 (4)0.000 (2)0.006 (3)0.017 (3)
C170.038 (3)0.034 (3)0.042 (3)0.001 (3)0.004 (3)0.008 (3)
C190.042 (4)0.043 (4)0.040 (3)0.010 (3)0.016 (3)0.006 (3)
C20.027 (3)0.033 (3)0.044 (3)0.001 (2)0.002 (3)0.006 (3)
C230.031 (3)0.045 (4)0.046 (4)0.005 (3)0.006 (3)0.001 (3)
C160.042 (4)0.033 (3)0.039 (3)0.002 (3)0.011 (3)0.003 (3)
C60.035 (3)0.031 (3)0.046 (4)0.001 (3)0.008 (3)0.004 (3)
C210.032 (3)0.031 (3)0.044 (3)0.005 (2)0.008 (3)0.001 (3)
C240.046 (4)0.045 (4)0.052 (4)0.001 (3)0.016 (3)0.003 (3)
C220.033 (3)0.038 (3)0.044 (4)0.003 (3)0.007 (3)0.006 (3)
C70.040 (4)0.031 (3)0.050 (4)0.000 (3)0.014 (3)0.003 (3)
C80.033 (3)0.043 (4)0.045 (4)0.001 (3)0.005 (3)0.001 (3)
O30.082 (3)0.109 (3)0.124 (4)0.011 (2)0.029 (2)0.037 (3)
C260.048 (4)0.055 (4)0.058 (5)0.004 (3)0.018 (3)0.008 (4)
C250.057 (5)0.053 (5)0.079 (6)0.010 (4)0.029 (4)0.003 (4)
C90.038 (4)0.062 (5)0.059 (4)0.003 (3)0.014 (3)0.016 (4)
C110.042 (4)0.050 (4)0.089 (6)0.002 (3)0.010 (4)0.018 (4)
C280.084 (7)0.062 (6)0.081 (6)0.004 (5)0.053 (6)0.000 (5)
C270.106 (8)0.054 (5)0.057 (5)0.004 (5)0.033 (5)0.010 (4)
C100.041 (4)0.070 (5)0.060 (5)0.004 (4)0.002 (3)0.011 (4)
C130.025 (3)0.063 (5)0.065 (5)0.003 (3)0.002 (3)0.009 (4)
C150.076 (5)0.107 (6)0.113 (7)0.011 (5)0.050 (5)0.000 (5)
C140.051 (5)0.079 (6)0.069 (5)0.000 (4)0.014 (4)0.028 (5)
C120.035 (4)0.059 (5)0.117 (8)0.002 (4)0.023 (4)0.020 (5)
C290.123 (10)0.069 (7)0.081 (7)0.014 (6)0.044 (7)0.004 (5)
O10.082 (3)0.109 (3)0.124 (4)0.011 (2)0.029 (2)0.037 (3)
C300.076 (5)0.107 (6)0.113 (7)0.011 (5)0.050 (5)0.000 (5)
O40.082 (3)0.109 (3)0.124 (4)0.011 (2)0.029 (2)0.037 (3)
Geometric parameters (Å, º) top
I2—C352.101 (6)C16—H160.9500
I1—C312.097 (5)C6—C71.557 (9)
O6—C341.347 (7)C6—C211.585 (9)
O6—H6A0.8400C6—H61.0000
O5—C321.343 (7)C21—C221.546 (9)
O5—H50.8400C21—H211.0000
N1—C11.336 (8)C24—C251.394 (11)
N1—C31.351 (8)C24—H240.9500
N2—C161.333 (9)C22—C71.603 (10)
N2—C181.338 (9)C22—H221.0000
C36—C311.384 (8)C7—C81.519 (9)
C36—C351.385 (8)C7—H71.0000
C36—H360.9500C8—C111.381 (10)
C32—C311.393 (8)C8—C91.383 (10)
C32—C331.412 (8)O3—C291.188 (9)
C4—C31.372 (9)C26—C271.395 (12)
C4—C51.408 (9)C26—H260.9500
C4—H40.9500C25—C281.389 (13)
C35—C341.396 (9)C25—H250.9500
C3—H30.9500C9—C101.399 (11)
C5—C21.387 (9)C9—H90.9500
C5—C61.520 (9)C11—C121.370 (11)
O2—C141.310 (9)C11—H110.9500
O2—C131.392 (11)C28—C271.349 (14)
C34—C331.399 (8)C28—O41.394 (11)
C33—H330.9500C27—H270.9500
C18—C191.393 (10)C10—C131.370 (12)
C18—H180.9500C10—H100.9500
C1—C21.375 (9)C13—C121.389 (12)
C1—H10.9500C15—C141.442 (14)
C20—C171.363 (10)C15—H15A0.9800
C20—C191.380 (10)C15—H15B0.9800
C20—C211.540 (9)C15—H15C0.9800
C17—C161.374 (10)C14—O11.188 (9)
C17—H170.9500C12—H120.9500
C19—H190.9500C29—O41.310 (9)
C2—H20.9500C29—C301.465 (12)
C23—C261.380 (11)C30—H30A0.9800
C23—C241.394 (10)C30—H30B0.9800
C23—C221.502 (10)C30—H30C0.9800
C34—O6—H6A109.5C22—C21—H21109.4
C32—O5—H5109.5C6—C21—H21109.4
C1—N1—C3116.7 (5)C25—C24—C23121.7 (7)
C16—N2—C18117.3 (6)C25—C24—H24119.1
C31—C36—C35119.8 (5)C23—C24—H24119.1
C31—C36—H36120.1C23—C22—C21119.1 (6)
C35—C36—H36120.1C23—C22—C7119.7 (5)
O5—C32—C31119.2 (5)C21—C22—C788.8 (5)
O5—C32—C33122.6 (5)C23—C22—H22109.2
C31—C32—C33118.2 (5)C21—C22—H22109.2
C3—C4—C5119.7 (6)C7—C22—H22109.2
C3—C4—H4120.1C8—C7—C6117.1 (6)
C5—C4—H4120.1C8—C7—C22118.2 (6)
C36—C35—C34121.2 (5)C6—C7—C2290.1 (5)
C36—C35—I2119.3 (4)C8—C7—H7110.0
C34—C35—I2119.4 (4)C6—C7—H7110.0
C36—C31—C32121.3 (5)C22—C7—H7110.0
C36—C31—I1118.7 (4)C11—C8—C9117.7 (7)
C32—C31—I1120.0 (4)C11—C8—C7118.3 (6)
N1—C3—C4123.3 (6)C9—C8—C7124.1 (6)
N1—C3—H3118.4C23—C26—C27121.8 (8)
C4—C3—H3118.4C23—C26—H26119.1
C2—C5—C4116.2 (6)C27—C26—H26119.1
C2—C5—C6120.4 (6)C28—C25—C24119.3 (8)
C4—C5—C6123.1 (6)C28—C25—H25120.4
C14—O2—C13120.9 (8)C24—C25—H25120.4
O6—C34—C35119.2 (5)C8—C9—C10121.1 (7)
O6—C34—C33122.4 (5)C8—C9—H9119.4
C35—C34—C33118.4 (5)C10—C9—H9119.4
C34—C33—C32121.2 (5)C12—C11—C8122.2 (8)
C34—C33—H33119.4C12—C11—H11118.9
C32—C33—H33119.4C8—C11—H11118.9
N2—C18—C19122.2 (6)C27—C28—C25120.0 (8)
N2—C18—H18118.9C27—C28—O4119.6 (9)
C19—C18—H18118.9C25—C28—O4120.2 (9)
N1—C1—C2123.5 (6)C28—C27—C26120.4 (8)
N1—C1—H1118.3C28—C27—H27119.8
C2—C1—H1118.3C26—C27—H27119.8
C17—C20—C19117.6 (6)C13—C10—C9119.5 (8)
C17—C20—C21116.0 (6)C13—C10—H10120.2
C19—C20—C21126.1 (6)C9—C10—H10120.2
C20—C17—C16120.0 (6)C10—C13—C12119.9 (7)
C20—C17—H17120.0C10—C13—O2120.8 (8)
C16—C17—H17120.0C12—C13—O2119.3 (8)
C20—C19—C18119.6 (6)C14—C15—H15A109.5
C20—C19—H19120.2C14—C15—H15B109.5
C18—C19—H19120.2H15A—C15—H15B109.5
C1—C2—C5120.4 (6)C14—C15—H15C109.5
C1—C2—H2119.8H15A—C15—H15C109.5
C5—C2—H2119.8H15B—C15—H15C109.5
C26—C23—C24116.8 (7)O1—C14—O2117.5 (8)
C26—C23—C22121.1 (6)O1—C14—C15126.2 (9)
C24—C23—C22122.0 (6)O2—C14—C15116.1 (9)
N2—C16—C17123.2 (6)C11—C12—C13119.5 (8)
N2—C16—H16118.4C11—C12—H12120.3
C17—C16—H16118.4C13—C12—H12120.3
C5—C6—C7116.7 (5)O3—C29—O4120.5 (10)
C5—C6—C21115.5 (5)O3—C29—C30127.4 (10)
C7—C6—C2189.1 (5)O4—C29—C30112.0 (10)
C5—C6—H6111.3C29—C30—H30A109.5
C7—C6—H6111.3C29—C30—H30B109.5
C21—C6—H6111.3H30A—C30—H30B109.5
C20—C21—C22119.6 (5)C29—C30—H30C109.5
C20—C21—C6116.4 (5)H30A—C30—H30C109.5
C22—C21—C691.2 (5)H30B—C30—H30C109.5
C20—C21—H21109.4C29—O4—C28121.9 (9)
C31—C36—C35—C340.0 (8)C26—C23—C22—C21139.8 (7)
C31—C36—C35—I2175.3 (4)C24—C23—C22—C2143.5 (9)
C35—C36—C31—C320.3 (9)C26—C23—C22—C7113.4 (8)
C35—C36—C31—I1179.9 (4)C24—C23—C22—C763.4 (9)
O5—C32—C31—C36179.2 (5)C20—C21—C22—C23108.2 (7)
C33—C32—C31—C360.3 (9)C6—C21—C22—C23130.2 (6)
O5—C32—C31—I10.7 (8)C20—C21—C22—C7128.0 (6)
C33—C32—C31—I1179.5 (4)C6—C21—C22—C76.5 (5)
C1—N1—C3—C42.1 (9)C5—C6—C7—C8126.0 (6)
C5—C4—C3—N12.0 (9)C21—C6—C7—C8115.7 (6)
C3—C4—C5—C24.5 (9)C5—C6—C7—C22111.9 (6)
C3—C4—C5—C6168.9 (6)C21—C6—C7—C226.4 (5)
C36—C35—C34—O6179.9 (5)C23—C22—C7—C88.7 (9)
I2—C35—C34—O64.8 (7)C21—C22—C7—C8114.6 (6)
C36—C35—C34—C330.8 (8)C23—C22—C7—C6129.9 (6)
I2—C35—C34—C33176.2 (4)C21—C22—C7—C66.6 (5)
O6—C34—C33—C32179.5 (5)C6—C7—C8—C11173.4 (7)
C35—C34—C33—C321.4 (9)C22—C7—C8—C1180.5 (9)
O5—C32—C33—C34180.0 (6)C6—C7—C8—C97.8 (10)
C31—C32—C33—C341.2 (9)C22—C7—C8—C998.3 (9)
C16—N2—C18—C193.0 (9)C24—C23—C26—C270.3 (12)
C3—N1—C1—C23.7 (9)C22—C23—C26—C27176.6 (8)
C19—C20—C17—C163.9 (9)C23—C24—C25—C281.6 (13)
C21—C20—C17—C16169.7 (6)C11—C8—C9—C100.7 (13)
C17—C20—C19—C183.6 (9)C7—C8—C9—C10179.6 (8)
C21—C20—C19—C18169.3 (6)C9—C8—C11—C120.7 (14)
N2—C18—C19—C200.1 (10)C7—C8—C11—C12179.6 (9)
N1—C1—C2—C51.1 (10)C24—C25—C28—C270.2 (15)
C4—C5—C2—C13.1 (9)C24—C25—C28—O4174.9 (9)
C6—C5—C2—C1170.5 (6)C25—C28—C27—C261.8 (17)
C18—N2—C16—C172.7 (9)O4—C28—C27—C26173.4 (9)
C20—C17—C16—N20.8 (10)C23—C26—C27—C281.5 (15)
C2—C5—C6—C7145.5 (6)C8—C9—C10—C132.0 (13)
C4—C5—C6—C741.4 (9)C9—C10—C13—C124.8 (14)
C2—C5—C6—C21111.8 (7)C9—C10—C13—O2172.7 (8)
C4—C5—C6—C2161.3 (8)C14—O2—C13—C1070.2 (14)
C17—C20—C21—C22167.5 (6)C14—O2—C13—C12112.2 (12)
C19—C20—C21—C225.4 (9)C13—O2—C14—O18.5 (17)
C17—C20—C21—C659.5 (7)C13—O2—C14—C15175.6 (10)
C19—C20—C21—C6113.5 (7)C8—C11—C12—C132.1 (16)
C5—C6—C21—C2011.6 (8)C10—C13—C12—C114.9 (15)
C7—C6—C21—C20130.9 (6)O2—C13—C12—C11172.7 (9)
C5—C6—C21—C22112.6 (6)O3—C29—O4—C285.5 (19)
C7—C6—C21—C226.7 (5)C30—C29—O4—C28177.6 (11)
C26—C23—C24—C251.8 (11)C27—C28—O4—C29122.7 (13)
C22—C23—C24—C25175.0 (7)C25—C28—O4—C2962.0 (15)
(mcg16113) top
Crystal data top
C26H22N2O2F(000) = 3328
Mr = 394.45Dx = 1.217 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 19.7244 (19) ÅCell parameters from 9907 reflections
b = 12.3920 (12) Åθ = 2.3–24.0°
c = 35.750 (3) ŵ = 0.08 mm1
β = 99.796 (6)°T = 190 K
V = 8610.8 (14) Å3Prism, colorless
Z = 160.42 × 0.23 × 0.14 mm
Data collection top
Nonius Kappa CCD
diffractometer
5946 reflections with I > 2σ(I)
phi and ω scansRint = 0.045
Absorption correction: multi-scan
SADABS-2014/5 (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.0790 before and 0.0685 after correction. The Ratio of minimum to maximum transmission is 0.9038. The λ/2 correction factor is 0.00150.
θmax = 25.3°, θmin = 2.2°
Tmin = 0.979, Tmax = 0.989h = 4747
66161 measured reflectionsk = 1115
7778 independent reflectionsl = 2424
Refinement top
Refinement on F229 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.061P)2 + 16.8778P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
7778 reflectionsΔρmax = 0.63 e Å3
569 parametersΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.72942 (9)0.53307 (16)0.71568 (5)0.0400 (5)
O20.43548 (10)0.59912 (19)0.80622 (5)0.0481 (6)
N10.35329 (11)0.34720 (19)0.49259 (6)0.0383 (5)
N20.17578 (10)0.63768 (18)0.56540 (6)0.0348 (5)
C10.39147 (15)0.4349 (2)0.49333 (8)0.0424 (7)
H1A0.40040.46100.47030.051*
C20.41898 (14)0.4904 (2)0.52556 (7)0.0369 (6)
H2A0.44560.55160.52390.044*
C30.34021 (13)0.3123 (2)0.52606 (7)0.0383 (6)
H30.31300.25120.52650.046*
C40.36562 (13)0.3635 (2)0.56028 (7)0.0355 (6)
H40.35510.33680.58290.043*
C50.40686 (12)0.4549 (2)0.56039 (7)0.0287 (5)
C60.43723 (12)0.51578 (19)0.59586 (6)0.0267 (5)
H60.47270.56640.59070.032*
C70.46383 (11)0.44646 (19)0.63197 (6)0.0260 (5)
H70.46000.36920.62610.031*
C80.53462 (11)0.47376 (19)0.65322 (6)0.0261 (5)
C90.56052 (12)0.5789 (2)0.65660 (7)0.0314 (6)
H90.53420.63500.64450.038*
C100.62498 (12)0.6012 (2)0.67771 (7)0.0302 (5)
H100.64100.67190.67990.036*
C110.57567 (12)0.39275 (19)0.67173 (7)0.0290 (5)
H110.55940.32220.67020.035*
C120.63989 (12)0.4137 (2)0.69228 (7)0.0308 (5)
H120.66640.35740.70410.037*
C130.66525 (12)0.5184 (2)0.69538 (7)0.0281 (5)
C140.23016 (13)0.6667 (2)0.54998 (7)0.0345 (6)
H140.22200.70390.52710.041*
C150.29734 (13)0.6452 (2)0.56563 (7)0.0336 (6)
H150.33280.66640.55310.040*
C160.19035 (13)0.5851 (2)0.59847 (8)0.0409 (7)
H160.15400.56260.61010.049*
C170.25703 (13)0.5623 (2)0.61640 (7)0.0372 (6)
H170.26440.52670.63960.045*
C180.31209 (12)0.59260 (19)0.59974 (7)0.0283 (5)
C190.38546 (12)0.57271 (19)0.61851 (6)0.0270 (5)
H190.40560.64130.62850.032*
C200.40065 (12)0.48674 (19)0.64985 (7)0.0273 (5)
H200.36450.43170.64560.033*
C22A0.38903 (15)0.6171 (2)0.70247 (8)0.0349 (4)0.9
H22A0.36800.66560.68420.042*0.9
C23A0.39682 (15)0.6450 (2)0.74079 (8)0.0381 (7)0.9
H23A0.38160.71180.74780.046*0.9
C24A0.44114 (14)0.4481 (2)0.71870 (8)0.0330 (6)0.9
H24A0.45600.38130.71140.040*0.9
C25A0.44889 (14)0.4743 (2)0.75691 (8)0.0340 (6)0.9
H25A0.46880.42520.77520.041*0.9
O30.33379 (9)0.25911 (17)0.92208 (6)0.0429 (5)
O40.43287 (10)0.76181 (16)0.97855 (5)0.0397 (5)
N30.80987 (11)0.36427 (19)0.82231 (6)0.0388 (5)
N40.71359 (11)0.77347 (17)0.80174 (6)0.0354 (5)
C270.79803 (13)0.3622 (2)0.85783 (8)0.0402 (7)
H270.83520.35180.87730.048*
C280.73352 (12)0.3747 (2)0.86751 (7)0.0324 (6)
H280.72820.37310.89290.039*
C290.75539 (14)0.3796 (2)0.79518 (7)0.0403 (7)
H290.76240.38260.77010.048*
C300.68949 (13)0.3911 (2)0.80225 (7)0.0341 (6)
H300.65320.40000.78220.041*
C310.67683 (11)0.38962 (17)0.83929 (7)0.0241 (5)
C320.60522 (11)0.41327 (18)0.84651 (6)0.0225 (5)
H320.56980.37910.82770.027*
C330.59106 (11)0.39800 (18)0.88781 (6)0.0231 (5)
H330.62870.35820.90330.028*
C340.52234 (11)0.35524 (17)0.89380 (6)0.0227 (5)
C350.51959 (12)0.29388 (18)0.92598 (6)0.0255 (5)
H350.56050.27520.94160.031*
C360.45791 (12)0.25952 (19)0.93561 (6)0.0269 (5)
H360.45800.21710.95710.032*
C370.45947 (12)0.38217 (19)0.87127 (7)0.0288 (5)
H370.45940.42270.84940.035*
C380.39732 (12)0.3500 (2)0.88081 (7)0.0308 (5)
H380.35620.36960.86550.037*
C390.39631 (12)0.2884 (2)0.91323 (7)0.0283 (5)
C400.72482 (12)0.7520 (2)0.83892 (7)0.0323 (6)
H400.75940.78990.85440.039*
C410.68798 (12)0.67688 (19)0.85561 (7)0.0295 (5)
H410.69860.66450.88160.035*
C420.66249 (14)0.7180 (2)0.78056 (7)0.0392 (6)
H420.65350.73110.75460.047*
C430.62270 (13)0.6428 (2)0.79515 (7)0.0351 (6)
H430.58750.60750.77920.042*
C440.63512 (11)0.61970 (17)0.83381 (6)0.0231 (5)
C450.59211 (11)0.53848 (17)0.85054 (6)0.0214 (5)
H450.54350.55330.84080.026*
C460.60078 (11)0.52348 (17)0.89380 (6)0.0220 (5)
H460.64880.53800.90500.026*
C470.55471 (11)0.58606 (18)0.91538 (6)0.0225 (5)
C480.55605 (13)0.5668 (2)0.95385 (7)0.0303 (5)
H480.58530.51400.96600.036*
C490.51495 (13)0.6243 (2)0.97442 (7)0.0332 (6)
H490.51620.60891.00000.040*
C500.51002 (11)0.66463 (18)0.89836 (6)0.0244 (5)
H500.50720.67770.87250.029*
C510.46921 (11)0.72459 (19)0.91885 (6)0.0265 (5)
H510.44020.77790.90680.032*
C520.47199 (12)0.70463 (19)0.95712 (6)0.0266 (5)
C24B0.3905 (6)0.4492 (4)0.71690 (9)0.0335 (8)0.1
H24B0.37140.38310.70850.040*0.1
C25B0.3981 (6)0.4760 (5)0.75514 (8)0.0345 (9)0.1
H25B0.38410.42780.77230.041*0.1
C260.42664 (12)0.5748 (2)0.76776 (5)0.0340 (6)
C23B0.4475 (6)0.6467 (5)0.74214 (9)0.0381 (7)0.1
H23B0.46660.71280.75060.046*0.1
C22B0.4398 (6)0.6199 (5)0.70390 (8)0.0349 (4)0.1
H22B0.45380.66810.68680.042*0.1
C210.41132 (11)0.5211 (2)0.69128 (5)0.0284 (5)
H10.7469 (17)0.601 (3)0.7143 (9)0.066 (10)*
H20.3961 (18)0.621 (3)0.8118 (9)0.059 (10)*
H3A0.3423 (17)0.227 (3)0.9431 (10)0.065 (11)*
H4A0.4017 (17)0.803 (3)0.9633 (9)0.058 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0287 (9)0.0425 (11)0.0431 (11)0.0095 (8)0.0099 (8)0.0148 (9)
O20.0303 (10)0.0935 (17)0.0205 (9)0.0141 (10)0.0041 (8)0.0063 (10)
N10.0397 (12)0.0473 (14)0.0263 (11)0.0135 (11)0.0013 (9)0.0102 (10)
N20.0285 (11)0.0496 (14)0.0258 (11)0.0119 (10)0.0038 (9)0.0019 (10)
C10.0587 (18)0.0427 (17)0.0290 (14)0.0170 (14)0.0162 (13)0.0009 (12)
C20.0443 (15)0.0347 (14)0.0335 (14)0.0063 (12)0.0124 (12)0.0017 (11)
C30.0315 (13)0.0441 (16)0.0394 (15)0.0008 (12)0.0060 (11)0.0095 (13)
C40.0366 (14)0.0482 (16)0.0230 (13)0.0067 (12)0.0091 (11)0.0005 (11)
C50.0230 (12)0.0329 (13)0.0288 (13)0.0094 (10)0.0001 (10)0.0048 (10)
C60.0253 (12)0.0297 (13)0.0261 (12)0.0003 (10)0.0072 (10)0.0023 (10)
C70.0287 (12)0.0244 (12)0.0247 (12)0.0004 (10)0.0045 (10)0.0017 (10)
C80.0231 (12)0.0344 (13)0.0222 (12)0.0066 (10)0.0076 (9)0.0069 (10)
C90.0284 (13)0.0342 (14)0.0309 (13)0.0051 (11)0.0029 (10)0.0034 (11)
C100.0280 (12)0.0272 (13)0.0335 (13)0.0070 (10)0.0000 (10)0.0044 (10)
C110.0345 (13)0.0252 (12)0.0280 (13)0.0038 (10)0.0071 (10)0.0000 (10)
C120.0312 (13)0.0308 (13)0.0299 (13)0.0018 (11)0.0042 (10)0.0065 (11)
C130.0249 (12)0.0348 (14)0.0240 (12)0.0061 (10)0.0024 (9)0.0025 (10)
C140.0336 (14)0.0473 (16)0.0227 (12)0.0094 (12)0.0050 (10)0.0019 (11)
C150.0296 (13)0.0423 (15)0.0292 (13)0.0042 (11)0.0056 (10)0.0021 (11)
C160.0325 (14)0.0563 (18)0.0371 (15)0.0090 (13)0.0150 (12)0.0062 (13)
C170.0387 (15)0.0441 (16)0.0289 (14)0.0079 (12)0.0064 (11)0.0073 (12)
C180.0299 (12)0.0282 (13)0.0267 (12)0.0042 (10)0.0049 (10)0.0068 (10)
C190.0288 (12)0.0269 (12)0.0253 (12)0.0013 (10)0.0044 (10)0.0019 (10)
C200.0233 (12)0.0294 (13)0.0294 (13)0.0002 (10)0.0049 (10)0.0002 (10)
C22A0.0389 (8)0.0395 (9)0.0260 (8)0.0094 (8)0.0047 (7)0.0062 (7)
C23A0.0426 (16)0.0412 (16)0.0309 (12)0.0157 (14)0.0073 (11)0.0002 (11)
C24A0.0371 (15)0.0359 (15)0.0272 (12)0.0034 (13)0.0088 (11)0.0048 (11)
C25A0.0341 (14)0.0433 (16)0.0248 (12)0.0051 (13)0.0055 (11)0.0074 (11)
O30.0283 (10)0.0639 (13)0.0366 (11)0.0101 (9)0.0056 (8)0.0197 (10)
O40.0406 (10)0.0517 (12)0.0280 (10)0.0219 (9)0.0091 (8)0.0008 (9)
N30.0324 (12)0.0500 (14)0.0375 (12)0.0129 (10)0.0158 (10)0.0122 (11)
N40.0345 (12)0.0347 (12)0.0369 (12)0.0081 (10)0.0056 (9)0.0086 (10)
C270.0296 (13)0.0565 (18)0.0358 (15)0.0115 (12)0.0096 (11)0.0143 (13)
C280.0304 (13)0.0420 (15)0.0269 (13)0.0043 (11)0.0109 (10)0.0068 (11)
C290.0422 (15)0.0531 (17)0.0294 (14)0.0132 (13)0.0170 (12)0.0066 (12)
C300.0340 (14)0.0425 (15)0.0262 (13)0.0087 (11)0.0064 (11)0.0016 (11)
C310.0258 (12)0.0162 (11)0.0316 (13)0.0031 (9)0.0088 (10)0.0012 (9)
C320.0244 (11)0.0202 (11)0.0236 (12)0.0016 (9)0.0058 (9)0.0005 (9)
C330.0238 (11)0.0221 (12)0.0241 (12)0.0034 (9)0.0061 (9)0.0017 (9)
C340.0253 (11)0.0193 (11)0.0249 (12)0.0006 (9)0.0081 (9)0.0013 (9)
C350.0272 (12)0.0237 (12)0.0257 (12)0.0025 (10)0.0045 (10)0.0011 (10)
C360.0334 (13)0.0284 (13)0.0200 (11)0.0044 (10)0.0078 (10)0.0046 (10)
C370.0343 (13)0.0289 (13)0.0239 (12)0.0040 (10)0.0072 (10)0.0065 (10)
C380.0268 (12)0.0374 (14)0.0271 (13)0.0022 (11)0.0011 (10)0.0064 (11)
C390.0276 (12)0.0325 (13)0.0255 (12)0.0063 (10)0.0067 (10)0.0029 (10)
C400.0291 (13)0.0302 (13)0.0363 (14)0.0070 (10)0.0013 (11)0.0030 (11)
C410.0300 (13)0.0301 (13)0.0282 (13)0.0013 (10)0.0041 (10)0.0035 (10)
C420.0446 (15)0.0425 (16)0.0294 (14)0.0114 (13)0.0027 (12)0.0083 (12)
C430.0368 (14)0.0366 (15)0.0297 (13)0.0119 (11)0.0010 (11)0.0036 (11)
C440.0214 (11)0.0206 (11)0.0276 (12)0.0018 (9)0.0054 (9)0.0002 (9)
C450.0195 (11)0.0220 (11)0.0228 (11)0.0009 (9)0.0039 (9)0.0011 (9)
C460.0203 (11)0.0218 (11)0.0237 (12)0.0003 (9)0.0036 (9)0.0001 (9)
C470.0219 (11)0.0210 (11)0.0243 (12)0.0030 (9)0.0027 (9)0.0022 (9)
C480.0364 (13)0.0292 (13)0.0239 (12)0.0103 (11)0.0015 (10)0.0023 (10)
C490.0441 (15)0.0370 (14)0.0190 (12)0.0090 (12)0.0065 (11)0.0030 (10)
C500.0279 (12)0.0263 (12)0.0195 (11)0.0002 (10)0.0051 (9)0.0007 (9)
C510.0241 (12)0.0283 (12)0.0258 (12)0.0042 (10)0.0008 (9)0.0012 (10)
C520.0263 (12)0.0293 (13)0.0245 (12)0.0018 (10)0.0052 (9)0.0050 (10)
C24B0.0376 (18)0.0368 (18)0.0271 (14)0.0034 (16)0.0081 (14)0.0056 (13)
C25B0.0345 (18)0.0437 (19)0.0255 (14)0.0052 (17)0.0058 (13)0.0066 (13)
C260.0204 (11)0.0620 (18)0.0208 (12)0.0074 (12)0.0064 (9)0.0006 (12)
C23B0.0426 (16)0.0412 (16)0.0309 (12)0.0157 (14)0.0073 (11)0.0002 (11)
C22B0.0389 (8)0.0395 (9)0.0260 (8)0.0094 (8)0.0047 (7)0.0062 (7)
C210.0213 (11)0.0417 (14)0.0230 (12)0.0021 (10)0.0061 (9)0.0014 (11)
Geometric parameters (Å, º) top
O1—C131.360 (3)N3—C291.333 (3)
O1—H10.92 (4)N4—C401.336 (3)
O2—C261.389 (2)N4—C421.342 (3)
O2—H20.88 (3)C27—H270.9300
N1—C11.320 (4)C27—C281.383 (3)
N1—C31.338 (3)C28—H280.9300
N2—C141.336 (3)C28—C311.385 (3)
N2—C161.338 (3)C29—H290.9300
C1—H1A0.9300C29—C301.373 (3)
C1—C21.372 (4)C30—H300.9300
C2—H2A0.9300C30—C311.389 (3)
C2—C51.379 (4)C31—C321.507 (3)
C3—H30.9300C32—H320.9800
C3—C41.393 (4)C32—C331.560 (3)
C4—H40.9300C32—C451.584 (3)
C4—C51.394 (4)C33—H330.9800
C5—C61.509 (3)C33—C341.504 (3)
C6—H60.9800C33—C461.577 (3)
C6—C71.565 (3)C34—C351.388 (3)
C6—C191.574 (3)C34—C371.399 (3)
C7—H70.9800C35—H350.9300
C7—C81.510 (3)C35—C361.387 (3)
C7—C201.575 (3)C36—H360.9300
C8—C91.397 (3)C36—C391.383 (3)
C8—C111.385 (3)C37—H370.9300
C9—H90.9300C37—C381.386 (3)
C9—C101.391 (3)C38—H380.9300
C10—H100.9300C38—C391.391 (3)
C10—C131.382 (3)C40—H400.9300
C11—H110.9300C40—C411.378 (3)
C11—C121.376 (3)C41—H410.9300
C12—H120.9300C41—C441.386 (3)
C12—C131.388 (3)C42—H420.9300
C14—H140.9300C42—C431.377 (3)
C14—C151.374 (3)C43—H430.9300
C15—H150.9300C43—C441.392 (3)
C15—C181.370 (3)C44—C451.504 (3)
C16—H160.9300C45—H450.9800
C16—C171.390 (4)C45—C461.538 (3)
C17—H170.9300C46—H460.9800
C17—C181.377 (3)C46—C471.504 (3)
C18—C191.508 (3)C47—C481.392 (3)
C19—H190.9800C47—C501.383 (3)
C19—C201.538 (3)C48—H480.9300
C20—H200.9800C48—C491.381 (3)
C20—C211.521 (3)C49—H490.9300
C22A—H22A0.9300C49—C521.383 (3)
C22A—C23A1.396 (4)C50—H500.9300
C22A—C211.352 (4)C50—C511.392 (3)
C23—H230.9300C51—H510.9300
C23—C261.357 (4)C51—C521.382 (3)
C24—H240.9300C24B—H24B0.9300
C24—C251.387 (4)C24B—C25B1.3900
C24—C211.389 (4)C24B—C211.3900
C25—H250.9300C25B—H25B0.9300
C25—C261.397 (4)C25B—C261.3900
O3—C391.373 (3)C26—C23B1.3900
O3—H3A0.84 (4)C23B—H23B0.9300
O4—C521.373 (3)C23B—C22B1.3900
O4—H4A0.91 (3)C22B—H22B0.9300
N3—C271.330 (3)C22B—C211.3900
C13—O1—H1115 (2)C31—C30—H30119.9
C26—O2—H2109 (2)C28—C31—C30116.3 (2)
C1—N1—C3116.4 (2)C28—C31—C32124.4 (2)
C14—N2—C16115.4 (2)C30—C31—C32119.1 (2)
N1—C1—H1A117.5C31—C32—H32112.2
N1—C1—C2124.9 (3)C31—C32—C33117.54 (18)
C2—C1—H1A117.5C31—C32—C45112.23 (17)
C1—C2—H2A120.2C33—C32—H32112.2
C1—C2—C5119.6 (3)C33—C32—C4588.54 (16)
C5—C2—H2A120.2C45—C32—H32112.2
N1—C3—H3118.6C32—C33—H33110.9
N1—C3—C4122.9 (3)C32—C33—C4688.38 (16)
C4—C3—H3118.6C34—C33—C32119.23 (19)
C3—C4—H4120.2C34—C33—H33110.9
C3—C4—C5119.7 (2)C34—C33—C46114.82 (18)
C5—C4—H4120.2C46—C33—H33110.9
C2—C5—C4116.6 (2)C35—C34—C33118.3 (2)
C2—C5—C6119.6 (2)C35—C34—C37116.9 (2)
C4—C5—C6123.8 (2)C37—C34—C33124.4 (2)
C5—C6—H6110.9C34—C35—H35118.9
C5—C6—C7116.6 (2)C36—C35—C34122.3 (2)
C5—C6—C19117.18 (19)C36—C35—H35118.9
C7—C6—H6110.9C35—C36—H36120.1
C7—C6—C1988.72 (17)C39—C36—C35119.9 (2)
C19—C6—H6110.9C39—C36—H36120.1
C6—C7—H7111.0C34—C37—H37119.2
C6—C7—C2089.05 (17)C38—C37—C34121.6 (2)
C8—C7—C6116.33 (19)C38—C37—H37119.2
C8—C7—H7111.0C37—C38—H38119.9
C8—C7—C20116.89 (19)C37—C38—C39120.1 (2)
C20—C7—H7111.0C39—C38—H38119.9
C9—C8—C7123.1 (2)O3—C39—C36122.2 (2)
C11—C8—C7119.6 (2)O3—C39—C38118.5 (2)
C11—C8—C9117.3 (2)C36—C39—C38119.2 (2)
C8—C9—H9119.4N4—C40—H40118.2
C10—C9—C8121.3 (2)N4—C40—C41123.7 (2)
C10—C9—H9119.4C41—C40—H40118.2
C9—C10—H10120.0C40—C41—H41119.9
C13—C10—C9120.1 (2)C40—C41—C44120.3 (2)
C13—C10—H10120.0C44—C41—H41119.9
C8—C11—H11119.0N4—C42—H42118.2
C12—C11—C8121.9 (2)N4—C42—C43123.7 (2)
C12—C11—H11119.0C43—C42—H42118.2
C11—C12—H12119.8C42—C43—H43120.0
C11—C12—C13120.3 (2)C42—C43—C44120.0 (2)
C13—C12—H12119.8C44—C43—H43120.0
O1—C13—C10123.7 (2)C41—C44—C43116.2 (2)
O1—C13—C12117.2 (2)C41—C44—C45122.7 (2)
C10—C13—C12119.1 (2)C43—C44—C45121.1 (2)
N2—C14—H14117.7C32—C45—H45108.4
N2—C14—C15124.5 (2)C44—C45—C32120.50 (18)
C15—C14—H14117.7C44—C45—H45108.4
C14—C15—H15120.0C44—C45—C46120.46 (18)
C18—C15—C14119.9 (2)C46—C45—C3288.91 (16)
C18—C15—H15120.0C46—C45—H45108.4
N2—C16—H16118.3C33—C46—H46108.8
N2—C16—C17123.4 (2)C45—C46—C3389.57 (16)
C17—C16—H16118.3C45—C46—H46108.8
C16—C17—H17120.0C47—C46—C33120.55 (18)
C18—C17—C16120.0 (2)C47—C46—C45118.69 (18)
C18—C17—H17120.0C47—C46—H46108.8
C15—C18—C17116.8 (2)C48—C47—C46120.5 (2)
C15—C18—C19121.1 (2)C50—C47—C46122.2 (2)
C17—C18—C19122.1 (2)C50—C47—C48117.3 (2)
C6—C19—H19108.6C47—C48—H48119.2
C18—C19—C6120.12 (19)C49—C48—C47121.6 (2)
C18—C19—H19108.6C49—C48—H48119.2
C18—C19—C20119.4 (2)C48—C49—H49119.9
C20—C19—C690.06 (17)C48—C49—C52120.2 (2)
C20—C19—H19108.6C52—C49—H49119.9
C7—C20—H20108.8C47—C50—H50119.1
C19—C20—C789.63 (17)C47—C50—C51121.8 (2)
C19—C20—H20108.8C51—C50—H50119.1
C21—C20—C7119.74 (19)C50—C51—H51120.1
C21—C20—C19119.5 (2)C52—C51—C50119.8 (2)
C21—C20—H20108.8C52—C51—H51120.1
C23—C22A—H22A119.3O4—C52—C49118.8 (2)
C21—C22A—H22A119.3O4—C52—C51121.9 (2)
C21—C22A—C23A121.4 (3)C51—C52—C49119.3 (2)
C22A—C23A—H23A120.0C25B—C24B—H24B120.0
C26—C23A—C22A120.0 (3)C25B—C24B—C21120.0
C26—C23—H23120.0C21—C24B—H24B120.0
C25—C24—H24119.8C24B—C25B—H25B120.0
C25—C24—C21120.3 (3)C26—C25B—C24B120.0
C21—C24—H24119.8C26—C25B—H25B120.0
C24—C25—H25120.2O2—C26—C25A118.4 (2)
C24—C25—C26119.7 (2)O2—C26—C25B119.2 (2)
C26—C25—H25120.2O2—C26—C23B120.8 (2)
C39—O3—H3A106 (2)C23A—C26—O2122.0 (2)
C52—O4—H4A110 (2)C23A—C26—C25A119.6 (2)
C27—N3—C29116.5 (2)C23B—C26—C25B120.0
C40—N4—C42116.1 (2)C26—C23B—H23B120.0
N3—C27—H27118.1C26—C23B—C22B120.0
N3—C27—C28123.7 (2)C22B—C23B—H23B120.0
C28—C27—H27118.1C23B—C22B—H22B120.0
C27—C28—H28120.1C21—C22B—C23B120.0
C27—C28—C31119.7 (2)C21—C22B—H22B120.0
C31—C28—H28120.1C22A—C21—C24A119.0 (2)
N3—C29—H29118.2C24A—C21—C20118.5 (2)
N3—C29—C30123.5 (2)C24B—C21—C20117.04 (18)
C30—C29—H29118.2C22B—C21—C20122.96 (18)
C29—C30—H30119.9C22B—C21—C24B120.0
C29—C30—C31120.2 (2)
O2—C26—C23B—C22B178.4 (2)C27—N3—C29—C301.1 (4)
N1—C1—C2—C50.3 (4)C27—C28—C31—C300.1 (4)
N1—C3—C4—C50.3 (4)C27—C28—C31—C32174.7 (2)
N2—C14—C15—C181.4 (4)C28—C31—C32—C3312.4 (3)
N2—C16—C17—C181.2 (4)C28—C31—C32—C4588.1 (3)
C1—N1—C3—C40.8 (4)C29—N3—C27—C280.1 (4)
C1—C2—C5—C40.9 (4)C29—C30—C31—C280.8 (4)
C1—C2—C5—C6179.9 (2)C29—C30—C31—C32174.1 (2)
C2—C5—C6—C7142.1 (2)C30—C31—C32—C33173.2 (2)
C2—C5—C6—C19114.7 (2)C30—C31—C32—C4586.3 (3)
C3—N1—C1—C21.1 (4)C31—C32—C33—C34143.7 (2)
C3—C4—C5—C21.2 (3)C31—C32—C33—C4698.6 (2)
C3—C4—C5—C6179.6 (2)C31—C32—C45—C4422.2 (3)
C4—C5—C6—C738.7 (3)C31—C32—C45—C46103.03 (19)
C4—C5—C6—C1964.5 (3)C32—C33—C34—C35148.9 (2)
C5—C6—C7—C8132.1 (2)C32—C33—C34—C3738.1 (3)
C5—C6—C7—C20108.2 (2)C32—C33—C46—C4516.32 (16)
C5—C6—C19—C1817.2 (3)C32—C33—C46—C47139.9 (2)
C5—C6—C19—C20107.4 (2)C32—C45—C46—C3316.07 (15)
C6—C7—C8—C934.9 (3)C32—C45—C46—C47141.19 (19)
C6—C7—C8—C11147.8 (2)C33—C32—C45—C44141.5 (2)
C6—C7—C20—C1912.11 (17)C33—C32—C45—C4616.25 (16)
C6—C7—C20—C21136.4 (2)C33—C34—C35—C36174.0 (2)
C6—C19—C20—C712.04 (17)C33—C34—C37—C38172.5 (2)
C6—C19—C20—C21136.5 (2)C33—C46—C47—C4865.2 (3)
C7—C6—C19—C18136.7 (2)C33—C46—C47—C50115.2 (2)
C7—C6—C19—C2012.12 (17)C34—C33—C46—C45105.4 (2)
C7—C8—C9—C10177.4 (2)C34—C33—C46—C4718.2 (3)
C7—C8—C11—C12178.4 (2)C34—C35—C36—C391.4 (4)
C7—C20—C21—C22A128.1 (3)C34—C37—C38—C390.7 (4)
C7—C20—C21—C24A56.1 (3)C35—C34—C37—C380.6 (3)
C7—C20—C21—C24B103.6 (6)C35—C36—C39—O3178.1 (2)
C7—C20—C21—C22B77.0 (7)C35—C36—C39—C381.3 (4)
C8—C7—C20—C19107.2 (2)C37—C34—C35—C360.5 (3)
C8—C7—C20—C2117.2 (3)C37—C38—C39—O3179.2 (2)
C8—C9—C10—C131.0 (4)C37—C38—C39—C360.3 (4)
C8—C11—C12—C130.7 (4)C40—N4—C42—C430.1 (4)
C9—C8—C11—C120.9 (3)C40—C41—C44—C430.2 (3)
C9—C10—C13—O1178.3 (2)C40—C41—C44—C45178.6 (2)
C9—C10—C13—C121.2 (4)C41—C44—C45—C32102.7 (3)
C11—C8—C9—C100.0 (3)C41—C44—C45—C466.0 (3)
C11—C12—C13—O1179.2 (2)C42—N4—C40—C410.9 (4)
C11—C12—C13—C100.3 (4)C42—C43—C44—C410.7 (4)
C14—N2—C16—C170.8 (4)C42—C43—C44—C45179.6 (2)
C14—C15—C18—C170.9 (4)C43—C44—C45—C3278.5 (3)
C14—C15—C18—C19177.0 (2)C43—C44—C45—C46172.8 (2)
C15—C18—C19—C653.0 (3)C44—C45—C46—C33141.4 (2)
C15—C18—C19—C20162.2 (2)C44—C45—C46—C4793.5 (2)
C16—N2—C14—C150.5 (4)C45—C32—C33—C34101.9 (2)
C16—C17—C18—C150.3 (4)C45—C32—C33—C4615.85 (15)
C16—C17—C18—C19178.2 (2)C45—C46—C47—C48173.5 (2)
C17—C18—C19—C6129.1 (3)C45—C46—C47—C506.9 (3)
C17—C18—C19—C2020.0 (3)C46—C33—C34—C35108.2 (2)
C18—C19—C20—C7137.2 (2)C46—C33—C34—C3764.8 (3)
C18—C19—C20—C2198.3 (3)C46—C47—C48—C49179.1 (2)
C19—C6—C7—C8107.9 (2)C46—C47—C50—C51177.9 (2)
C19—C6—C7—C2011.84 (17)C47—C48—C49—C521.3 (4)
C19—C20—C21—C22A19.8 (3)C47—C50—C51—C521.2 (3)
C19—C20—C21—C24A164.5 (2)C48—C47—C50—C511.8 (3)
C19—C20—C21—C24B148.0 (6)C48—C49—C52—O4178.6 (2)
C19—C20—C21—C22B31.3 (7)C48—C49—C52—C511.9 (4)
C20—C7—C8—C968.5 (3)C50—C47—C48—C490.6 (4)
C20—C7—C8—C11108.9 (2)C50—C51—C52—O4179.8 (2)
C22A—C23A—C26—O2180.0 (3)C50—C51—C52—C490.7 (3)
C22A—C23A—C26—C250.5 (4)C24B—C25B—C26—O2178.4 (2)
C23A—C22A—C21—C20177.3 (2)C24B—C25B—C26—C23B0.0
C23A—C22A—C21—C24A1.5 (4)C25B—C24B—C21—C20179.38 (19)
C24—C25—C26—O2179.6 (2)C25B—C24B—C21—C22B0.0
C24A—C25—C26—C23A0.9 (4)C25B—C26—C23B—C22B0.0
C25—C24A—C21—C20177.0 (2)C26—C23B—C22B—C210.0
C25—C24A—C21—C22A1.1 (4)C23B—C22B—C21—C20179.3 (2)
N3—C27—C28—C310.5 (4)C23B—C22B—C21—C24B0.0
N3—C29—C30—C311.5 (4)C21—C22A—C23A—C260.7 (4)
N4—C40—C41—C441.1 (4)C21—C24A—C25A—C260.1 (4)
N4—C42—C43—C440.9 (4)C21—C24B—C25B—C260.0
 

Funding information

The National Science Foundation (grant No. DMR-1708673 awarded to LRM) is acknowledged for support of the work. RHG gratefully acknowledges financial support from Webster University in the form of Faculty Research Grants. DMP thanks the Universitá degli Studi di Milano for the transition grant PSR2015-1718 and for the grant FFABR2018.

References

First citationAlexandrov, E. V., Blatov, V. A., Kochetkov, A. V. & Proserpio, D. M. (2011). CrystEngComm, 13, 3947–3958.  Web of Science CrossRef CAS Google Scholar
First citationAlexandrov, E. V., Blatov, V. A. & Proserpio, D. M. (2012). Acta Cryst. A68, 484–493.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaburin, I. A., Blatov, V. A., Carlucci, L., Ciani, G. & Proserpio, D. M. (2008). Cryst. Growth Des. 8, 519–539.  Web of Science CrossRef CAS Google Scholar
First citationBiradha, K. & Santra, R. (2013). Chem. Soc. Rev. 42, 950–967.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBlake, A. J., Champness, N. R., Chung, S. S. M., Li, W.-S. & Schröder, M. (1997). Chem. Commun. pp. 1675–1676.  CSD CrossRef Web of Science Google Scholar
First citationBlatov V. A. (2016). Struct. Chem. 27, 1605–1611.  Google Scholar
First citationBlatov, V. A., O'Keeffe, M. & Proserpio, D. M. (2010). CrystEngComm, 12, 44–48.  Web of Science CrossRef CAS Google Scholar
First citationBlatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576–3586.  Web of Science CrossRef CAS Google Scholar
First citationBonneau, C. & O'Keeffe, M. (2015). Acta Cryst. A71, 82–91.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDobson, C. M. (2004). Nature, 432, 824–828.  Web of Science CrossRef PubMed CAS Google Scholar
First citationElacqua, E., Kaushik, P., Groeneman, R. H., Sumrak, J. C., Bučar, D.-K. & MacGillivray, L. R. (2012). Angew. Chem. Int. Ed. 51, 1037–1041.  Web of Science CSD CrossRef CAS Google Scholar
First citationErmer, O. (1988). J. Am. Chem. Soc. 110, 3747–3754.  CSD CrossRef CAS Web of Science Google Scholar
First citationGao, X., Friščić, T. & MacGillivray, L. R. (2004). Angew. Chem. Int. Ed. 43, 232–236.  Web of Science CSD CrossRef CAS Google Scholar
First citationGong, Y., Zhou, Y. C., Liu, T. F., Lü, J., Proserpio, D. M. & Cao, R. (2011). Chem. Commun. 47, 5982–5984.  Web of Science CSD CrossRef CAS Google Scholar
First citationKraus, W. & Nolze, G., (1996). J. Appl. Cryst. 29, 301–303.  Google Scholar
First citationLange, R. Z., Hofer, G., Weber, T. & Schlüter, A. D. (2017). J. Am. Chem. Soc. 139, 2053–2059.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLewis, F. D., Oxman, J. D. & Huffman, J. C. (1984). J. Am. Chem. Soc. 106, 466–468.  CSD CrossRef CAS Web of Science Google Scholar
First citationLi, Q., Yu, M.-H., Xu, J., Li, A.-L., Hu, T.-L. & Bu, X. (2017). Dalton Trans. 46, 3223–3228.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiang, J., Wang, X.-L., Jiao, Y.-Q., Qin, C., Shao, K.-Z., Su, Z.-M. & Wu, Q.-Y. (2013). Chem. Commun. 49, 8555–8557.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, D., Li, N.-Y. & Lang, J.-P. (2011). Dalton Trans. 40, 2170–2172.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMetrangolo, P. & Resnati, G. (2014). IUCrJ, 1, 5–7.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationOburn, S. M., Swenson, D. C., Mariappan, S. V. S. & MacGillivray, L. R. (2017). J. Am. Chem. Soc. 139, 8452–8454.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationO'Keeffe, M. (1991). Z. Kristallogr. Cryst. Mater. 196, 21.  Google Scholar
First citationRamamurthy, V. & Sivaguru, J. (2016). Chem. Rev. 116, 9914–9993.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSchmidt, G. M. J. (1971). Pure Appl. Chem. 27, 647–678.  CrossRef CAS Google Scholar
First citationSheldrick G. (2015a). Acta Cryst. A71, 3–8.  Google Scholar
First citationSheldrick G. (2015b). Acta Cryst. C71, 3–8.  Google Scholar
First citationSinnwell, M. A., Baltrusaitis, J. & MacGillivray, L. R. (2015). Cryst. Growth Des. 15, 538–541.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVittal, J. J. & Quah, H. S. (2017). Coord. Chem. Rev. 342, 1–18.  Web of Science CrossRef CAS Google Scholar
First citationYin, S., Sun, H., Yan, Y., Zhang, H., Li, W. & Wu, L. (2011). J. Colloid Interface Sci. 361, 548–555.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, D.-S., Chang, Z., Lv, Y., Hu, T. & Bu, X. (2012). RSC Adv. 2, 408–410.  Web of Science CrossRef CAS Google Scholar
First citationZhang, W.-Q., Zhang, X.-H., Zheng, Y., Shen, G. & Zhuang, J.-P. (2000). Ganguang Kexue Yu Guang Huaxue, 18, 144–149.  CAS Google Scholar
First citationZhang, X., Xing, P., Geng, X., Sun, D., Xiao, Z. & Wang, L. (2015). J. Solid State Chem. 229, 49–61.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

IUCrJ
Volume 6| Part 6| November 2019| Pages 1032-1039
ISSN: 2052-2525