

scientific commentaries

Pixel modelling – a new age in SFX data analysis
aSwissFEL, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
*Correspondence e-mail: karol.nass@psi.ch
Keywords: serial crystallography; XFELs; data analysis; maximum likelihood.
Over a decade ago, the first proof-of-principle serial femtosecond crystallography (SFX) experiment started the era of nano- and micro-crystallography at X-ray free-electron lasers (XFELs) (Chapman et al., 2011). The high peak and femtosecond duration of the XFEL pulses enabled the long-awaited radiation-damage-free data collection at room temperature from fully hydrated samples (Nass, 2019
). This opened up unmatched opportunities for structural studies of radiation sensitive metalloproteins (Kern et al., 2015
; Suga et al., 2020
) and small, weakly diffracting protein crystals, including membrane proteins (Johansson et al., 2017
).
Moreover, the femtosecond XFEL ). In this case, small crystal sizes are a necessity due to the limited of the pump laser in protein crystals. By combining radiation-damage-free data collection from tiny crystals at room temperature with the sub-picosecond time-resolution in pump-probe experiments, SFX is a very powerful tool in the hands of structural biologists (Spence, 2017
).
However, despite continuous efforts to improve state-of-the art SFX, it still suffers from major technical challenges that limit the throughput and accessibility of this relatively new technique, especially for non-expert user groups. These challenges occur in all aspects of the experiment, starting with radically different sample requirements (Beale et al., 2019), non-standardized methods and complex sample delivery equipment (Grünbein & Nass Kovacs, 2019
), and finishing with demanding and heavily supervised data collection and analysis that requires significant computational resources.
In particular, analysis of the SFX data is complex. A fundamental limitation is the femtosecond de novo (Nass et al., 2016).
To date, the most popular SFX data processing programs use the so-called `Monte Carlo' method, which is based on averaging partial intensity measurements of equivalent reflections from many different crystals. This method can decrease the contribution of random sources of errors described above to the et al., 2010). Extension of this `Monte Carlo' method with post-refinement and partiality corrections recently provided tangible improvements to the determination of accurate anomalous differences required for de novo phasing by needing significantly fewer diffraction images than before (Nass et al., 2020
). However, these methods still rely on integration of the Bragg spot intensities located under globally defined, fixed-width areas predicted by incomplete diffraction models without taking into account the shape and size of the spots (Fig. 1
).
![]() | Figure 1 Collage of partial Bragg spots recorded during SFX experiments. For each pixel in the `shoe-box' of a given Bragg spot, diffBragg applies precise modelling of the various parameters affecting their shape and intensity, such as lattice orientation, unit-cell dimensions, mosaic structure, incident photon spectra and partiality. |
In this issue of IUCrJ, Mendez and co-workers (Mendez et al., 2020) present a new data analysis approach, diffBragg, that proposes to increase the accuracy of amplitudes attainable in SFX experiments. In contrast to the `Monte Carlo' approach defined in Kirian et al., diffBragg employs an elaborated physical model and estimation to describe the intensity of all observed pixels in Bragg spots and in their vicinity across all images. As opposed to other SFX data processing programs, the model presented by the authors takes into account most of the important factors that determine the intricate shapes, sizes and intensity profiles of Bragg spots to improve accuracy of final amplitudes. The parameters optimized by the pixel modelling include crystal orientation, unit-cell parameters, intensity scale factor, mosaic parameters, incident photon spectra and a starting list of amplitudes provided by an initial round of conventional data processing.
This work paves the way for next-generation SFX data analysis by enabling to decouple contributions of these various experimental sources or error from the measured Bragg spot intensities, which otherwise obscure e.g. background scattering, measurement noise, typical detector panel displacement). This indicates that diffBragg could have a remarkable impact on future SFX experiments by addressing one of the main bottlenecks of SFX – the need for high amounts of data, translating into large sample quantities. Further, the high accuracy achieved with pixel-level can provide a clear view on extremely sensitive details such as two differently oxidized metal atoms (Sauter et al., 2020). The ability to observe such level of detail expands opportunities for new and exciting experiments to consider for the upcoming years of SFX science.
References
Beale, J. H., Bolton, R., Marshall, S. A., Beale, E. V., Carr, S. B., Ebrahim, A., Moreno-Chicano, T., Hough, M. A., Worrall, J. A. R., Tews, I. & Owen, R. L. (2019). J. Appl. Cryst. 52, 1385–1396. CrossRef CAS IUCr Journals Google Scholar
Chapman, H. N., Fromme, P., Barty, A., White, T. A., Kirian, R. A., Aquila, A., Hunter, M. S., Schulz, J., DePonte, D. P., Weierstall, U., Doak, R. B., Maia, F. R. N. C., Martin, A. V., Schlichting, I., Lomb, L., Coppola, N., Shoeman, R. L., Epp, S. W., Hartmann, R., Rolles, D., Rudenko, A., Foucar, L., Kimmel, N., Weidenspointner, G., Holl, P., Liang, M., Barthelmess, M., Caleman, C., Boutet, S., Bogan, M. J., Krzywinski, J., Bostedt, C., Bajt, S., Gumprecht, L., Rudek, B., Erk, B., Schmidt, C., Hömke, A., Reich, C., Pietschner, D., Strüder, L., Hauser, G., Gorke, H., Ullrich, J., Herrmann, S., Schaller, G., Schopper, F., Soltau, H., Kühnel, K., Messerschmidt, M., Bozek, J. D., Hau-Riege, S. P., Frank, M., Hampton, C. Y., Sierra, R. G., Starodub, D., Williams, G. J., Hajdu, J., Timneanu, N., Seibert, M. M., Andreasson, J., Rocker, A., Jönsson, O., Svenda, M., Stern, S., Nass, K., Andritschke, R., Schröter, C., Krasniqi, F., Bott, M., Schmidt, K. E., Wang, X., Grotjohann, I., Holton, J. M., Barends, T. R. M., Neutze, R., Marchesini, S., Fromme, R., Schorb, S., Rupp, D., Adolph, M., Gorkhover, T., Andersson, I., Hirsemann, H., Potdevin, G., Graafsma, H., Nilsson, B. & Spence, J. C. H. (2011). Nature, 470, 73–77. Web of Science CrossRef CAS PubMed Google Scholar
Grünbein, M. L. & Nass Kovacs, G. (2019). Acta Cryst. D75, 178–191. Web of Science CrossRef IUCr Journals Google Scholar
Johansson, L. C., Stauch, B., Ishchenko, A. & Cherezov, V. (2017). Trends Biochem. Sci. 42, 749–762. Web of Science CrossRef CAS PubMed Google Scholar
Kern, J., Yachandra, V. K. & Yano, J. (2015). Curr. Opin. Struct. Biol. 34, 87–98. Web of Science CrossRef CAS PubMed Google Scholar
Kirian, R. A., Wang, X., Weierstall, U., Schmidt, K. E., Spence, J. C., Hunter, M., Fromme, P., White, T., Chapman, H. N. & Holton, J. (2010). Opt. Express, 18, 5713–5723. Web of Science CrossRef PubMed Google Scholar
Mendez, D., Bolotovsky, R., Bhowmick, A., Brewster, A. S., Kern, J., Yano, J., Holton, J. & Sauter, N. K. (2020). IUCrJ, 7, 1151–1167. CrossRef IUCr Journals Google Scholar
Nass, K. (2019). Acta Cryst. D75, 211–218. Web of Science CrossRef IUCr Journals Google Scholar
Nass, K., Cheng, R., Vera, L., Mozzanica, A., Redford, S., Ozerov, D., Basu, S., James, D., Knopp, G., Cirelli, C., Martiel, I., Casadei, C., Weinert, T., Nogly, P., Skopintsev, P., Usov, I., Leonarski, F., Geng, T., Rappas, M., Doré, A. S., Cooke, R., Nasrollahi Shirazi, S., Dworkowski, F., Sharpe, M., Olieric, N., Bacellar, C., Bohinc, R., Steinmetz, M. O., Schertler, G., Abela, R., Patthey, L., Schmitt, B., Hennig, M., Standfuss, J., Wang, M. & Milne, C. J. (2020). IUCrJ, 7, 965–975. CrossRef IUCr Journals Google Scholar
Nass, K., Meinhart, A., Barends, T. R. M., Foucar, L., Gorel, A., Aquila, A., Botha, S., Doak, R. B., Koglin, J., Liang, M., Shoeman, R. L., Williams, G., Boutet, S. & Schlichting, I. (2016). IUCrJ, 3, 180–191. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Orville, A. M. (2020). Curr. Opin. Struct. Biol. 65, 193–208. CrossRef CAS PubMed Google Scholar
Sauter, N. K., Kern, J., Yano, J. & Holton, J. M. (2020). Acta Cryst. D76, 176–192. CrossRef IUCr Journals Google Scholar
Spence, J. C. H. (2017). IUCrJ, 4, 322–339. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Suga, M., Shimada, A., Akita, F., Shen, J. R., Tosha, T. & Sugimoto, H. (2020). Biochim. Biophys. Acta. Gen. Subj. 1864, 129466. CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
