research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

IUCrJ
Volume 10| Part 3| May 2023| Pages 341-351
ISSN: 2052-2525

Low-density preference of the ambient and high-pressure polymorphs of DL-menthol

crossmark logo

aDeparment of Material Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
*Correspondence e-mail: katran@amu.edu.pl

Edited by A. Fitch, ESRF, France (Received 16 September 2022; accepted 13 March 2023; online 21 April 2023)

Lower-density polymorphs of DL-menthol were nucleated and crystallized in their high-pressure stability regions. Up to 0.30 GPa, the triclinic DL-menthol polymorph α, which is stable at atmospheric pressure, is less dense than a new β polymorph, which becomes stable above 0.40 GPa, but is less dense than the α polymorph at this pressure. The compression of polymorph α to at least 3.37 GPa is monotonic, with no signs of phase transitions. However, recrystallizations of DL-menthol above 0.40 GPa yield the β polymorph, which is less compressible and becomes less dense than α-DL-menthol. At 0.10 MPa, the melting point of the β polymorph is 14°C, much lower compared with those of α-DL-menthol (42–43°C) and L-menthol (36–38°C). The structures of both DL-menthol polymorphs α and β are very similar with respect to the lattice dimensions, the aggregation of OH⋯O molecules bonded into Ci symmetric chains, the presence of three symmetry-independent molecules (Z′ = 3), their sequence ABCC′B′A′, the disorder of the hydroxyl protons and the parallel arrangement of the chains. However, the different symmetries relating the chains constitute a high kinetic barrier for the solid–solid transition between polymorphs α and β, hence their crystallizations below or above 0.40 GPa, respectively, are required. In the structure of polymorph α, the directional OH⋯O bonds are shorter and the voids are larger compared with those in polymorph β, which leads to the reverse density relation of the polymorphs in their stability regions. This low-density preference reduces the Gibbs free-energy difference between the polymorphs: when polymorph α is compressed to above 0.40 GPa, the work component pΔV counteracts the transition to the less dense polymorph β, and on reducing the pressure of polymorph β to below 0.40 GPa, its transition to the less dense polymorph α is also hampered by the work contribution.

1. Introduction

The thermodynamic definition of pressure p = −∂F/∂V|T (Feynman, 1972[Feynman, R. P. (1972). Statistical Machanics. A Set of Lectures. New York: W. A. Benjamin Inc.]), where V is the volume of any closed system, T its absolute temperature and F is the Helmholz free energy, can be rewritten in the form pV = −∂F. The assumption of positive work performed on the system (∂F) and the positive p value require that ∂V be negative. This implies the positive compressibility value β = −(1/V)(∂V/∂p) for any given homogenous phase within its stability region (i.e. for monotonic pressure-induced changes of the closed system of a specified chemical composition). Although it is not strictly forbidden by thermodynamic laws, the experimental evidence shows that the pressure-induced phase transitions also lead to either discontinuous or continuous volume reduction. The volume reduction is considered a necessary condition for the formation of new forms that are stable under high pressure (e.g. Bridgman, 1949[Bridgman, P. W. (1949). The Physics of High Pressure, pp. 208-210. London: Bell and Sons.]; Nye, 1984[Nye, J. F. (1984). Physical Properties of Crystals: Their Representation by Tensors and Matrices, pp. 145-146. Oxford: Clarendon Press.]; Newnham, 2005[Newnham, R. E. (2005). Properties of Materials: Anisotropy, Symmetry, Structure, p. 7. Oxford University Press.]; Baughman et al., 1998[Baughman, R. H., Stafström, S., Cui, C. & Dantas, S. O. (1998). Science, 279, 1522-1524.]; Reichl, 1998[Reichl, L. E. (1998). A Modern Course in Statistical Physics. New York: John Wiley.]), which is indeed often observed experimentally (e.g. Bridgman, 1964[Bridgman, P. W. (1964). Collected Experimental Papers. Cambridge, MA: Harvard University Press.]). Only very few exceptions indicate possible volume increases under high pressure: (i) when two polymorphs β and γ of 3-nitro­phenyl­disulfide were recrystallized at high temperature (Sobczak et al., 2021[Sobczak, S., Ratajczyk, P. & Katrusiak, A. (2021). Chem. Eur. J. 27, 10769-10779.]); (ii) when the composition of the sample was increased due to the penetration of the pressure-transmitting liquid (Lee et al., 2002[Lee, Y., Vogt, T., Hriljac, J. A., Parise, J. B. & Artioli, G. (2002). J. Am. Chem. Soc. 124, 5466-5475.]; Li et al., 2014[Li, Q., Li, S., Wang, K., Liu, J., Yang, K., Liu, B., Zou, G. & Zou, B. (2014). J. Phys. Chem. C, 118, 5848-5853.]) and gases; or (iii) when the compound underwent a chemical reaction under high pressure (Zhang et al., 2020[Zhang, Y., Yao, M., Du, M., Yao, Z., Wang, Y., Dong, J., Yang, Z., Sundqvist, B., Kováts, É., Pekker, S. & Liu, B. (2020). J. Am. Chem. Soc. 142, 7584-7590.]). Only the first of these exceptions (Sobczak et al., 2021[Sobczak, S., Ratajczyk, P. & Katrusiak, A. (2021). Chem. Eur. J. 27, 10769-10779.]) fulfils the condition of the same chemical composition, although the higher-volume polymorphs, nucleated under high-pressure and high-temperature conditions, are metastable under normal conditions and are built of higher-energy conformers. Thus the volume increase was attributed to the increased internal energy and the entropy contributions to the Gibbs free energy, compensating the work contribution of increased volume under high pressure and temperature when these low-density polymorphs were nucleated. This mechanism involves transformations at metastable states and in this respect, it is analogous to the concept of negative compression through destabilization of metastable equilibria of constituents (Nicolaou & Motter, 2012[Nicolaou, Z. & Motter, A. (2012). Nat. Mater. 11, 608-613.]).

In the work described herein, we investigated a one-component compound, which does not change its composition, chemical formula or even the conformation of molecules, and we show that it favours the lower-density polymorphs under high-pressure conditions. To our knowledge, such a behaviour, when a low-density polymorph becomes stable under isothermally increased pressure, has not been reported to date. For this reason, as indicated above, it is often assumed that such a behaviour is not possible. Our case study on the well known fragrance compound DL-menthol demonstrates its preference to form the lower-density polymorphs, not only under atmospheric pressure, but also under high-pressure conditions. L-(−)-(1R,2S,5R)-menthol, naturally occurring in Mentha piperita and other Mentha species, is well known for its therapeutic qualities and as an ingredient in alimentary products and cosmetics (Fig. 1[link]; Coleman et al., 1998[Coleman, W. M., Perfetti, T. A. & Suber, R. L. (1998). J. Chromatogr. Sci. 36, 318-321.]). Of the four concomitant L-menthol polymorphs, three of them are monotropic at atmospheric pressure, and their transformations were described over a century ago by Wright (1917[Wright, F. E. (1917). J. Am. Chem. Soc. 39, 1515-1524.]). The fresh, sweet, mint, cooling and refreshing smell of naturally occurring L-(−)-menthol is similar to that of D-(+)-menthol, which is somewhat less minty and less refreshing, with bitter, phenolic and herbaceous notes. Hence the D-enantiomer and DL-racemate are used as substitutes for or complements to natural menthol (Bhatia et al., 2008[Bhatia, S. P., McGinty, D., Letizia, C. S. & Api, A. M. (2008). Food Chem. Toxicol. 46, S215-S217.]). The cooling sensation of L-(−)-menthol is about four times stronger than that of D-(+)-menthol, because the heat receptors in the skin are chiral (McKemy et al., 2002[McKemy, D. D., Neuhausser, W. M. & Julius, D. (2002). Nature, 416, 52-58.]; Bentley, 2006[Bentley, R. (2006). Chem. Rev. 106, 4099-4112.]). Unlike L-(−)-menthol, the DL-racemate is mainly obtained by chemical synthesis and applied in ointments, cough drops and nasal inhalers, but also for flavouring food, cigarettes, liqueurs, cosmetics, perfumes etc. The solubility of methanol is most relevant to its applications: it hardly dissolves in water, 0.456 mg ml−1 at 25°C (298 K) (Yalkowsky et al., 2010[Yalkowsky, S. H., He, Y. & Jain, P. (2010). Handbook of Aqueous Solubility Data. Boca Raton: CRC Press.]), but it is very soluble in ethanol, methanol (100 mg ml−1), di­ethyl ether, chloro­form petroleum ether, hexane; and it is freely soluble in glacial acetic acid; liquid petrolatum; and in mineral, fixed and volatile oils (Hopp & Lawrence, 2006[Hopp, R. & Lawrence, B. M. (2006). Mint: the Genus Mentha, edited by B. Lawrence, pp. 371-399. Boca Raton: CRC Press.]; Sell, 1999[Sell, C. (1999). The Chemistry of Fragrances: From Perfumer to Consumer, pp. 51-124. Cambridge: The Royal Society of Chemistry.]; O'Neil, 2013[O'Neil, M. J. (2013). The Merck Index - an Encyclopedia of Chemicals, Drugs, and Biologicals Cambridge: Royal Society of Chemistry.]).

[Figure 1]
Figure 1
Chemical formula of L-(−)-menthol, its chiral centres (green) and atomic labels (red).

Single-crystal X-ray diffraction (SCXRD) measurements revealed that L-(−)-menthol crystallizes in the trigonal space group P31 (Ramsay & Rogers, 1952[Ramsay, I. W. & Rogers, D. (1952). Acta Cryst. 5, 268-271.]; Bombicz et al., 1999[Bombicz, P., Buschmann, J., Luger, P., Dung, N. X. & Nam, C. B. (1999). Z. Kristallogr. 214, 420-423.]) and DL-menthol is triclinic, with the space group P1 (Corvis et al., 2012[Corvis, Y., Négrier, P., Massip, S., Leger, J. M. & Espeau, P. (2012). CrystEngComm, 14, 7055-7064.]). The binary phase diagram of the L- and D-enantiomers and the formation of the DL-menthol racemate compound were studied nearly five decades ago (Kuhnert-Brandstätter et al., 1974[Kuhnert-Brandstätter, M., Ulmer, R. & Langhammer, L. (1974). Arch. Pharm. Pharm. Med. Chem. 307, 497-503.]) and later by Corvis et al. (2012[Corvis, Y., Négrier, P., Massip, S., Leger, J. M. & Espeau, P. (2012). CrystEngComm, 14, 7055-7064.]; 2015[Corvis, Y., Wurm, A., Schick, C. & Espeau, P. (2015). CrystEngComm, 17, 5357-5359.]), who also postulated new low-temperature metastable polymorphs of both L-(−)-menthol and DL-menthol at 233 K, but only the unit-cell dimensions and crystal symmetry (triclinic space group P1 for both), and no further structural information, were reported from the powder X-ray diffraction (PXRD) measurements. In our present study, we compressed and recrystallized DL-menthol under high-pressure in order to investigate its phase transitions and various possible forms, either polymorphs, solvates or even spontaneously separated enantiomers (Jacques et al., 1981[Jacques, J., Collet, A. & Wilen, S. H. (1981). Enantiomers, Racemates and Resolution. New York: Wiley.]; Cai et al., 2013[Cai, W., Marciniak, J., Andrzejewski, M. & Katrusiak, A. (2013). J. Phys. Chem. C, 117, 7279-7285.]; Marciniak et al., 2014[Marciniak, J., Andrzejewski, M., Cai, W. & Katrusiak, A. (2014). J. Phys. Chem. C, 118, 4309-4313.]). We have obtained and characterized a new polymorph of DL-menthol, labelled polymorph β. It can be recovered under atmospheric pressure only at low temperature, because its melting point is about 14°C (287 K). The crystallographic parameters of our polymorph β are markedly different from those of the DL-menthol polymorph reported by Corvis et al. (2012[Corvis, Y., Négrier, P., Massip, S., Leger, J. M. & Espeau, P. (2012). CrystEngComm, 14, 7055-7064.], 2015[Corvis, Y., Wurm, A., Schick, C. & Espeau, P. (2015). CrystEngComm, 17, 5357-5359.]). However, we found during our study that its most intriguing aspect is the counterintuitive density relation between the DL-menthol polymorphs. Between atmospheric pressure and 0.30 GPa, i.e. with the stability range of polymorph α extending to 0.40 GPa, its density is lower than the density of the new polymorph β, which is metastable in this pressure range. Above 0.30 GPa, in the stability region of polymorph β, its density becomes lower compared with that of polymorph α over-compressed to the same high-pressure value. To our knowledge, such stability regions of low-density high-pressure polymorphs are unprecedented in the literature and they are difficult to reconcile with the close-packing rule. The structural and thermodynamic analysis of this exceptional high-pressure behaviour of DL-menthol reveals new aspects of the close (Kitaigorodsky, 1973[Kitaigorodsky, A. I. (1973). Molecular Crystals and Molecules. New York, London: Academic Press.]) and loose aggregation of molecules (Bujak et al., 2008[Bujak, M., Podsiadło, M. & Katrusiak, A. (2008). J. Phys. Chem. B, 112, 1184-1188.], 2018[Bujak, M., Podsiadło, M. & Katrusiak, A. (2018). CrystEngComm, 20, 328-333.]; Kaźmierczak & Katrusiak, 2013[Kaźmierczak, M. & Katrusiak, A. (2013). J. Phys. Chem. C, 117, 1441-1446.]).

2. Experimental

High-pressure experiments were performed in a Merrill–Bassett diamond anvil-cell (DAC, Merrill & Bassett, 1974[Merrill, L. & Bassett, W. A. (1974). Rev. Sci. Instrum. 45, 290-294.]), modified by mounting the anvils directly on steel backing plates with conical windows (Katrusiak, 2008[Katrusiak, A. (2008). Acta Cryst. A64, 135-148.]). Crystals of DL-menthol were investigated either by gradually compressing a single crystal grown at 294 (2) K and atmospheric pressure, or by high-pressure recrystallizations and growing single crystals under isothermal and isochoric conditions from the solutions in dry methanol, ethanol, methanol:water mixture (1:2 v/v) and ethanol:water mixture (2:1 v/v), as shown in Figs. 2[link] and S1–S5 of the supporting information.

[Figure 2]
Figure 2
Single crystal of α-DL-menthol grown from the methanol:water mixture (1:2 v/v) under isochoric conditions in the DAC chamber at (a) 363 K, (b) 353 K, (c) 323 K, (d) 296 K and 0.10 GPa. Powder of crushed ruby chips for pressure calibration is scattered close to the gasket edge.

For the isothermal recrystallizations, the concentration of DL-menthol was adjusted to nucleate the crystal either below or above 0.40 GPa in order to check the possible role of increased temperature and entropy changes for the formation of polymorph β. Also, isochoric recrystallizations from pure molten DL-menthol were performed (Fig. S6) to eliminate the possibility of stoichiometric or stochastic cocrystallization of DL-menthol with solvent molecules. The isochoric recrystallizations of pure DL-menthol required 453 K for melting the sample at 0.90 GPa and 483 K for melting the sample at 1.28 GPa. We also performed seeded crystallizations above 0.40 GPa, when a small seed of polymorph α was left, when the temperature was lowered, but these recrystallizations also resulted in the crystals of polymorph β.

The structures of high-pressure polymorphs α and β were determined by SCXRD up to 3.37 and 2.90 GPa, respectively, although we plotted the data up to 2.5 GPa only to better represent the region around 0.40 GPa. The compression of DL-menthol crystals was determined for the sample grown under ambient conditions and then mounted in the DAC. The gaskets were made of 0.20 mm-thick Inconel foil and the initial diameter of the spark-eroded holes was 0.45 mm. Glycerine was used as the hydro­static medium. Pressure in the DAC chamber was calibrated by the ruby-fluorescence method (Piermarini et al., 1975[Piermarini, G. J., Block, S., Barnett, J. D. & Forman, R. A. (1975). J. Appl. Phys. 46, 2774-2780.]; Mao et al., 1986[Mao, H. K., Xu, J. & Bell, P. M. (1986). J. Geophys. Res. 91, 4673-4676.]) with a Photon Control Inc. spectrometer, affording an accuracy of 0.02 GPa; the calibration was repeated before and after each diffraction measurement. Above 0.40 GPa the isochoric recrystallizations of molten DL-menthol and the solutions in methanol:water and ethanol:water mixtures (2:1 v/v) yielded a new monoclinic polymorph β (Fig. 3[link]). Such alcohol:water mixtures start to separate under high pressure above 1 GPa, as ice VI crystallizes, which increases the methanol and ethanol concentration; eventually they become nearly pure and remain hydro­static up to their freezing pressures at 3.50 and 1.80 GPa (Allan et al., 1998[Allan, D. R., Clark, S. J., Brugmans, M. J. P., Ackland, G. J. & Vos, W. L. (1998). Phys. Rev. B, 58, R11809-R11812.]; Allan & Clark, 1999[Allan, D. R. & Clark, S. J. (1999). Phys. Rev. B, 60, 6328-6334.]), respectively. The hydro­static limit of glycerine was assessed as 3.00 GPa (Hazen & Finger, 1982[Hazen, R. M. & Finger, L. (1982). Comparative Crystal Chemistry. New York: John Wiley.]). The crystallizations of DL-menthol from its melt were undertaken in order to exclude the possibility of stochastic solvation (Roszak & Katrusiak, 2021[Roszak, K. & Katrusiak, A. (2021). Acta Cryst. B77, 449-455.]; Olejniczak et al., 2022a[Olejniczak, A., Katrusiak, A., Podsiadło, M. & Katrusiak, A. (2022a). IUCrJ, 9, 49-54.]), while the non-hydro­static conditions due to the thermal contraction were ignored despite the markedly non-isotropic thermal contraction of the β-DL-menthol crystal (Figs. S7–S10).

[Figure 3]
Figure 3
Single crystal of β-DL-menthol grown from the ethanol:water mixture (2:1 v/v) under isochoric conditions in the DAC chamber: (a) spontaneous powder precipitation at 0.64 GPa viewed under polarized light, (b) one seed (indicated by the red arrow) at 365 K, (c) 323 K and (d) 0.64 GPa and 296 K. A large ruby chip for pressure calibration lies close to the centre of the chamber.

Low-temperature SCXRD data were measured on Oxford Diffraction diffractometers Xcalibur and SuperNova equip­ped with low-temperature Cryosystem attachments. High-pressure SCXRD data were recorded on diffractometers KUMA KM4-CCD and Xcalibur, equipped with EOS-CCD detectors, according to the procedure described previously (Budzianowski & Katrusiak, 2004[Budzianowski, A. & Katrusiak, A. (2004). In High-Pressure Crystallography, edited by A. Katrusiak and P. McMillan. NATO Science Series (Series II: Mathematics, Physics and Chemistry), Vol. 140, pp 101-112. Dordrecht: Springer.]). The CrysAlisPro software (CrysAlisPro Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlisPro. Rigaku Corporation, The Woodlands, TX, USA.]) was used for collecting diffraction data and their preliminary reduction. The sample reflections overlapping with diamond reflections were eliminated, and corrections for the DAC and sample absorption and for the beam shadowing by the gasket were applied. Olex2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) was used, the crystal structures were solved by direct methods within SHELXT (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]) and refined by least-squares using SHELXL (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]). Anisotropic displacement parameters (ADPs) were applied for non-hydrogen atoms in all low-temperature structures, whereas for the ambient-conditions and high-pressure experiments ISOR constraints were applied for all carbon and oxygen atoms (cf. SHELXL input instructions in the supporting CIFs). The hydrogen atoms were located from the molecular geometry and their isotropic ADP values Uiso were constrained to 1.2Ueq of their carriers. In DL-menthol, the starting model with the hydroxyl proton disordered was assumed. The hydroxyl hydrogen atoms were refined with geometric constraints (OH distance 0.81 Å) and were assigned Uiso = 1.2Ueq of the oxygen atoms. We investigated the disorder of hydroxyl hydrogen atoms (labelled H1) by lowering the symmetry to space group P1 and refining the site occupation factors as free variables for two possible sites for each of the six independent hydrogen atoms. Their site occupation factors (SOFs) were refined as free variables with the constraints SOF(H1i1) + SOF(H1i2) = 1, where i = A, B, C for three independent molecules and the last digits of the labels, 1 and 2, denote the first and second of two sites of the disordered hydroxyl hydrogen atom. In all experiments performed between 296 and 100 K, the SOFs refined to values close to 0.5 and therefore we assumed that all three hydroxyl protons are 50:50 disordered. After removing the hydroxyl protons, in each OH⋯O hydrogen bond two similar electron-density peaks corresponding to the disordered hydrogen sites were found in the difference Fourier maps. Thus, no reasons were found for rejecting the symmetry of space group P1, which implies the 50:50 disorder of hydroxyl hydrogen atoms in the final refinements. Structural drawings were prepared using the program Mercury (version 4.0; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

High-pressure PXRD measurements were performed for the sample compressed in the DAC, according to the procedure described by Skumiel (2010[Skumiel, J. (2010). MSc thesis. Adam Mickiewicz University, Poland.]). The ethanol:water mixture (1:3 v/v) was used as the solvent and hydro­static fluid. The Xcalibur diffractometer equipped with an 0.3 mm collimator was used, and the diffraction images were recorded for the sample rotated by ±15° about the ω axis from its 0° position, for the χ axis at 0, 30, 60 and 90° positions. The diamond reflections were eliminated, the background recorded beforehand for the empty DAC was subtracted and the residue intensity was integrated at constant 2θ angles. Before each measurement the sample was almost completely dissolved by heating and then left to crystallize under isochoric conditions up to 2.23 GPa (cf. Fig. S11). The crystallographic information has been deposited in the Cambridge Structural Database (Groom et. al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with deposition nos. 2206626–2206658. Selected crystal data are summarized in Table 1[link]. Experimental and crystallographic details are listed in Tables S1–S2 of the supporting information.

Table 1
Selected crystal data of DL-menthol polymorphs α and β determined at 296 K (cf. Tables S1 and S2)

Formula α-DL-C10H20O α-DL-C10H20O β-DL-C10H20O β-DL-C10H20O
Pressure (GPa) 0.0001 0.60 0.10 0.56
Crystal system Triclinic Triclinic Monoclinic Monoclinic
Space group P1 P1 P21/n P21/n
a (Å) 12.035 (7) 11.601 (1) 11.928 (6) 11.728 (1)
b (Å) 12.536 (6) 12.022 (3) 21.334 (2) 21.085 (1)
c (Å) 12.859 (9) 12.596 (2) 12.235 (8) 12.258 (2)
α (°) 117.56 (6) 117.58 (2) 90 90
β (°) 98.61 (5) 99.50 (3) 103.71 (3) 104.60 (5)
γ (°) 103.93 (5) 103.76 (4) 90 90
V3) 1590.6 (18) 1432.9 (1) 3025 (3) 2933 (3)
Z/Z 6/3 6/3 12/3 12/3
Dx (g cm−3) 0.979 (1) 1.086 (1) 1.029 (2) 1.062 (2)

Differential scanning calorimetry (DSC) measurements were performed for the samples sealed in aluminium capsules in N2 atmospheres on a Setsys 1200 Setaram instrument between 140 and 573 K at a scan speed of 5 K min−1 (cf. Fig. S12).

3. Results and discussion

Under normal conditions (273 K and 1006 hPa), DL-menthol forms triclinic crystals, hereafter referred to as polymorph α (α-DL-menthol, Table 1[link]; Figs. 4[link], S13 and S14). The crystals of α-DL-menthol are built from ⋯OH⋯OH⋯ bonded chains. In the chains, three independent molecules (Z′ = 3), denoted A, B and C, are arranged in the sequence [ABCCBA]n. The ABC intervals are of the same chirality, reversed by two non-equivalent inversion centres located between molecules AA and CC. All hydroxyl atoms (H1) are disordered 50:50 across two sites in OH⋯O hydrogen bonds (cf. Experimental) and the DSC (cf. Fig. S12) of the α-DL-menthol crystals revealed no anomalous heat flow down to 140 K. This result is consistent with our low-temperature X-ray diffraction measurements on the α-DL-menthol crystals showing the persistence of the disorder of hydroxyl hydrogen atoms down to 120 K at least, and no new phases, in particular no metastable triclinic DL-menthol postulated at 233 K by Corvis et al. (2012[Corvis, Y., Négrier, P., Massip, S., Leger, J. M. & Espeau, P. (2012). CrystEngComm, 14, 7055-7064.]); its occurrence was excluded within the conditions of our experiments. Interestingly, the similar feature of the same number of three independent molecules (Z′ = 3) is also characteristic of the L-menthol enantiomorph, although the structure of helices of OH⋯O bonded L-menthol molecules is different from that of OH⋯O bonded DL-menthol chains.

[Figure 4]
Figure 4
Structures of (a) α-DL-menthol and (b) β-DL-menthol projected down the OH⋯O bonded chains. The hydrogen atoms have been omitted for clarity. The voids are represented as contact surfaces for the probing radius 0.85 and step 0.1 Å (cf. Fig. S15). The symmetry elements of space groups P1 (a) and P21/n (b) are marked in orange.

We found that the α-DL-menthol crystals, obtained and mounted in the DAC under ambient conditions in our laboratory, can be compressed with no signs of anomalies to 2.20 GPa at least (Fig. 5[link]). The smooth compression of the crystal volume and unit-cell parameters are indications that the crystal remains in the same phase, whereas anomalous compression (discontinuities or changed rate of compression) would indicate phase transitions to other phases. Generally, the absence of detectable anomalies cannot be directly connected with the thermodynamic stability of crystalline or liquid phases, because of the possible effects of supercompressing (Katrusiak et al., 2011[Katrusiak, A., Szafrański, M. & Podsiadło, M. (2011). Chem. Commun. 47, 2107-2109.]; Paliwoda et al., 2012[Paliwoda, D., Dziubek, K. F. & Katrusiak, A. (2012). Cryst. Growth Des. 12, 4302-4305.]; Anioła & Katrusiak, 2015[Rigaku Oxford Diffraction (2015). CrysAlisPro. Rigaku Corporation, The Woodlands, TX, USA.]; Roszak et al., 2016[Roszak, K., Katrusiak, A. & Katrusiak, A. (2016). Cryst. Growth Des. 16, 3947-3953.]; Fedorov et al., 2017[Fedorov, A. Y., Rychkov, D. A., Losev, E. A., Zakharov, B. A., Stare, J. & Boldyreva, E. V. (2017). CrystEngComm, 19, 2243-2252.]; Andrzejewski & Katrusiak, 2017[Andrzejewski, M. & Katrusiak, A. (2017). J. Phys. Chem. Lett. 8, 929-935.]; Sobczak & Katrusiak, 2017[Sobczak, S. & Katrusiak, A. (2017). J. Phys. Chem. C, 121, 2539-2545.]; Safari & Katrusiak, 2021[Safari, F. & Katrusiak, A. (2021). J. Phys. Chem. C, 125, 23501-23509.]; Olejniczak et al., 2022b[Olejniczak, A., Katrusiak, A., Podsiadło, M. & Katrusiak, A. (2022b). Cryst. Growth Des. 22, 5996-6003.]) or supercooling (Weineerg, 1908[Weineerg, B. (1908). Nature, 78, 390.]) the phases.

[Figure 5]
Figure 5
Pressure (full symbols) and temperature (open squares) dependence of molecular volume (Vm = V/Z) for α-DL-menthol (squares) obtained at atmospheric pressure (green squares); and recrystallized up to 0.40 GPa from methanol:water solution (blue), ethanol:water solution (cyan) as well as from the pure melt (violet); all recrystallizations above 0.40 GPa yielded β-DL-menthol (triangles down), which also persisted after further compression (triangles right) and decompression below 0.40 GPa (triangles left). All estimated standard deviations are smaller than the plotted symbols. The least-squares functions (plotted lines) fitted to the experimental points are Vα(p) = 265.0 (4) − 52 (1)p + 18 (2)p2 − 2.5 (6)p3 and Vβ(p) = 255 (2) − 21 (6)p − 1(7)p2 + 1(2)p33).

In another series of experiments, when the single crystals of DL-menthol were recrystallized from the water:ethanol mixture under pressure in the DAC, the same triclinic polymorph α was obtained up to 0.40 GPa. Above 0.40 GPa, a new monoclinic form, hereafter denoted β-DL-menthol, was crystallized (Table 1[link]). This new polymorph β-DL-menthol could not be obtained by compressing the ambient-pressure polymorph α up to 3.37 GPa. Such high-pressure polymorphs, accessible via in situ recrystallization under pressure, were found for imidazole (Paliwoda et al., 2012[Paliwoda, D., Dziubek, K. F. & Katrusiak, A. (2012). Cryst. Growth Des. 12, 4302-4305.]), 4,4′-bipiridium hydro­bromide monohydrate (Anioła & Katrusiak, 2015[Anioła, M. & Katrusiak, A. (2015). Cryst. Growth Des. 15, 764-770.]), 3-hy­droxy-4,5-di­methyl-1-phenyl­pyridazin-6-one (Roszak et al., 2016[Roszak, K., Katrusiak, A. & Katrusiak, A. (2016). Cryst. Growth Des. 16, 3947-3953.]), di-p-tolyl disulfide (Sobczak & Katrusiak, 2017[Sobczak, S. & Katrusiak, A. (2017). J. Phys. Chem. C, 121, 2539-2545.]), resorcinol (Safari & Katrusiak, 2021[Safari, F. & Katrusiak, A. (2021). J. Phys. Chem. C, 125, 23501-23509.]) and other compounds (Fedorov et al., 2017[Fedorov, A. Y., Rychkov, D. A., Losev, E. A., Zakharov, B. A., Stare, J. & Boldyreva, E. V. (2017). CrystEngComm, 19, 2243-2252.]; Andrzejewski & Katrusiak, 2017[Andrzejewski, M. & Katrusiak, A. (2017). J. Phys. Chem. Lett. 8, 929-935.]; Olejniczak et al., 2022b[Olejniczak, A., Katrusiak, A., Podsiadło, M. & Katrusiak, A. (2022b). Cryst. Growth Des. 22, 5996-6003.]). However, the molecular volume of those polymorphs accessible through recrystallization is smaller compared with the compressed ambient-pressure polymorph. Our experiments show that the volume of β-DL-menthol is larger compared with α-DL-menthol and this difference increases with increasing pressure (Fig. 5[link]). This was a surprising result because, in general, one expects the high-pressure polymorphs to be more dense compared with the low-pressure polymorphs, when both polymorphs are compared under the same pressure conditions. Moreover, the close similarity between the structures of α-DL-menthol and β-DL-menthol could imply their similar compressibility. Fig. 4[link] shows that both these structures are built of similar chains of OH⋯O bonded molecules. These chains are nearly identical in shape (Figs. 6[link], S13 and S14): each contains three independent molecules in sequence A′ABCC′′, with the inversion centres between the A′A molecules and between the CC′′ molecules (in polymorph β, the prime indicates the molecule transformed through symmetry code x, y, 1 − z and bis denotes 1 − x, y, 1 − x; in polymorph α, the prime denotes the symmetry code 1 − x, 2 − y, z and bis denotes 2 − x, 2 − y, z).

[Figure 6]
Figure 6
Projections of neighbouring OH⋯OH bonded chains along the direction perpendicular to their axes in (a) α-DL-menthol and (b) β-DL-menthol. Chain intervals ABC of L-(−)(1R,2S,5R)-menthol molecules are highlighted in blue and of D-(+)(1S,2R,5S)-menthol molecules are highlighted in yellow. The dashed ovals indicate analogous regions of the shortest contacts between chains. Hydrogen atoms have been omitted for clarity.

It appears that when viewing the structure along the chains (i.e. along a in polymorphs α and β), the arrangements of chains are nearly identical (Figs. 4[link] and 6[link]) and their shortest contacts to neighbouring chains are also very similar. However, the chains are shifted differently along their axes with respect to the six close chains: in polymorph α translated along ±bα, ±[011]α, ±cα; and in polymorph β translated along ±cβ, or transformed by glide plane n and screw axis 21, to the positions along ±[011]β and ±[011]β, as illustrated in Figs. 4[link], S7 and S8.

Furthermore, a striking similarity connects the lattices of both polymorphs: the lattice vectors of β-DL-menthol can be transformed to approximate those of α-DL-menthol through the matrix equation

[\left(\matrix{{{a}}_{\beta }\cr {{b}}_{\beta }\cr {{c}}_{\beta }}\right) = \left(\matrix{ -1& 0& 0\cr 0& -1& -2\cr 0& -1& 0}\right)\left(\matrix{{{a}}_{\alpha }\cr {{b}}_{\alpha }\cr {{c}}_{\alpha }}\right), \eqno (1)]

where subscript β refers to the monoclinic β-DL-menthol and subscript α denotes the triclinic α-DL-menthol. The reverse matrix transforms the lattice of polymorph β into that of polymorph α

[\left(\matrix{{{a}}_{\alpha }\cr {{b}}_{\alpha }\cr {{c}}_{\alpha }}\right) = \left(\matrix{-1& 0& 0\cr 0& 0& -1\cr 0& -0.5& 0.5}\right)\left(\matrix{{{a}}_{\beta }\cr {{b}}_{\beta }\cr {{c}}_{\beta }}\right). \eqno (2)]

According to Equation (1)[link], the triclinic unit cell of α-DL-menthol at 0.1 MPa can be represented as the following pseudo-monoclinic unit cell: am = 12.035 Å, bm = 22.809 Å, cm = 12.536 Å, αm = 88.40°, βm = 103.93° and γm = 107.52° [superscript m indicates the unit-cell dimensions of polymorph α transformed according to equation (1)[link] to the monoclinic setting of polymorph β]. The unit-cell parameters of α-DL-menthol at 0.60 GPa transformed in this way to give am = 11.581 Å, bm = 22.336 Å, cm = 12.222 Å, αm = 88.57°, βm = 103.76° and γm = 108.44°. Both these sets of pseudo-monoclinic unit cells are similar to the unit cell of β-DL-menthol (Table 1[link]), except that angle γ significantly diverges from 90°. This departure from 90° increases with pressure, by over 1.0° GPa−1, which shows that the compressed lattices of polymorphs α and β become increasingly different (Fig. S9). Equations (1)[link] and (2)[link] can be used for convenient comparions of the dimensions and compressions of the structures of polymorphs α and β in their corresponding directions. Fig. 7[link] shows that the parameters at and bt of the triclinic lattice are similar in polymorphs α and β, whereas the ct parameters differ by about 0.6 Å. These smaller differences occur along the OH⋯O bonded chains (parameter at) and in this direction between the chains where they are related by inversion centres (parameter bt), whereas the largest difference along ct is between the chains related by different symmetry elements: the inversion centres in polymorph α, and the glide planes n or screw axes 21 in polymorph β (Fig. 4[link]). The strongest difference in compression occurs up to about 0.5 GPa, when polymorph α, owing to the presence of voids supported by directional OH⋯O bonds (Fig. S15), is much softer than polymorph β. Above 1.0 GPa the compressions along at and bt become similar, but the compression along ct continues to be considerably lower for polymorph β (Fig. 7[link]). The crystal-strain analyses for compressed polymorphs α and β are presented in Tables S3, S4 and Fig. S10.

[Figure 7]
Figure 7
(a) Pressure and (b) temperature dependence of unit-cell parameters a, b, c in α-DL-menthol (squares and α subscripts) and β-DL-menthol (diamonds and β subscripts; cf. Fig. S7). For convenient comparisons of analogous lattice directions, the unit-cell parameters of the monoclinic β-DL-menthol (superscript m in the legend) are transformed to the triclinic lattice [superscript t, cf. equation (2)[link]]. The pressure dependence of the unit-cell parameters for the lattices in the settings of polymorphs α and β are plotted in Figs. S7–S9.

The α-DL-menthol polymorph is highly compressible, considerably more so than most crystals of organic compounds, and at 1.00 GPa its volume is reduced by about 13.2%. It is connected with an exceptionally low density of α-DL-menthol (Table 1[link]), due to the presence of many small voids constituting nearly 25% of the structure at 0.10 MPa, according to the probing-sphere calculations (with a probing-sphere radius of 0.60 Å and a step of 0.10 Å, cf. Fig. S14). The compressibility of α-DL-menthol is strongly non-linear (Figs. 5[link] and S17), which is characteristic of molecular crystals with large volumes of voids. The compressibility of α-DL-menthol at 0.10 MPa is βα(0.1 MPa) = 0.198 GPa−1, compared with the nearly five times smaller compressibility at 2.00 GPa, βα(2.0 GPa) = 0.0415 GPa−1. The compressibility of β-DL-menthol at 0.10 MPa is estimated to be ββ(0.1 MPa) = 0.084 GPa−1 compared with the more than four times smaller compressibility at 2.00 GPa, ββ (2.0 GPa) = 0.018 GPa−1.

The very high compressibility of polymorph α-DL-menthol at 0.10 MPa (Fig. 5[link]) is two and half times larger than that of β-DL-menthol (see the compressibility values above); at 0.40 GPa the compressibility of polymorph α is still double that of polymorph β: 0.149 compared with 0.077 GPa−1, respectively. The smaller compressibility of polymorph β compared with that of polymorph α (Fig. 5[link]) can be connected to initially significantly smaller intermolecular voids in polymorph β (Fig. S15). Consequently, starting from about 0.30 GPa, the molecular volume of the low-pressure polymorph α becomes smaller than that of the high-pressure polymorph β. We have double checked this counterintuitive result by performing the recrystallizations as a function of pressure in the DAC from different solvents, dry methanol, ethanol and finally from the molten pure DL-menthol. All these experiments confirmed that, up to 0.30 GPa, the density of polymorph α is lower than that of polymorph β and above 0.30 GPa the density of polymorph β becomes lower than that of polymorph α. Due to the molecular volume differences, the Gibbs free energy difference between the stable and unstable polymorphs is reduced by the energy value [p\Delta V = p(V_{\rm m}^{\rm stable} - V_{\rm m}^{\rm unstable})], which acts against the stability of the polymorphs obtained by recrystallization: for polymorph α up to 0.30 GPa, this work contribution [p(V_{\rm m}^\alpha - V_{\rm m}^\beta)] is positive; and above 0.40 GPa in the stability region of polymorph β, the product [p({V}_{\rm m}^{\beta }-{ V}_{\rm m}^{\alpha })] is also positive (cf. Figs. 5[link] and 8[link]). Moreover, the recrystallizations of the pure molten DL-menthol yielded polymorph α below 0.40 GPa and polymorph β above 0.40 GPa. Because no other compounds except DL-menthol were present in the DAC chamber, this series of experiments showed that no solvent effects, such as stochastic sorption, take place (Roszak & Katrusiak, 2021[Roszak, K. & Katrusiak, A. (2021). Acta Cryst. B77, 449-455.]; Olejniczak et al., 2022a[Olejniczak, A., Katrusiak, A., Podsiadło, M. & Katrusiak, A. (2022a). IUCrJ, 9, 49-54.]).

[Figure 8]
Figure 8
(a) Molecular volume difference ΔV between DL-menthol polymorphs α and β and the work contribution pΔV to the Gibbs free energy G; (b) plots of Gibbs free-energy functions GLiquid, Gα and Gβ as a function of pressure, the dotted lines indicate the experimentally observed melting pressure of polymorph β at 0.1 GPa and 296 K, and the point of changed preference for the crystallization between polymorphs α and β at 0.4 GPa. Note the volume difference ΔV = 0 (and hence ΔVp = 0) at p = 0.30 GPa in (a) occurs at a lower pressure than ΔG = 0 at p = 0.40 GPa in (b).

The larger volume and hence lower density of the high-pressure polymorph is difficult to reconcile with the typical behaviour of one-component compounds, which undergo a pressure-induced phase transition. However, no phase transition has been observed in any of our high-pressure experiments on DL-menthol, even when the samples were kept at high pressure for several months. The polymorphs α and β were obtained solely by recrystallizations. Thus, their molecular volumes can be regarded as independent parameters, like the Gibbs free energy functions Gα and Gβ of the polymorphs, and

[\Delta G = U_{\alpha} - U_{\beta} + \left( V_{\alpha} - V_{\beta}\right )p - \left ( S_{\alpha} - S_{\beta}\right )T,\eqno (3)]

where the internal energy U and entropy S of polymorphs, α and β, depend on pressure p and temperature T. The high-pressure recrystallizations and SCXRD studies on DL-menthol show that the zero value of ΔG = 0 occurs at 0.40 GPa, close to the pressure when ΔV = 0 (Fig. 8[link]). If we assume the same pressure for ΔG = 0 and ΔV = 0, equation (3)[link] simplifies to

[\Delta U = \Delta ST, \eqno (4)]

where ΔU = UαUβ and ΔS = SαSβ. Fig. 8[link] shows that, between 0.10 MPa and 0.40 GPa, the work contribution considered for transforming the metastable β polymorph to the stable α polymorph pΔV = p(VαVβ) is positive, and thus it acts against such a transition. However, the p(VαVβ) value is smaller than 0.5 kJ mol−1, which can be overcome by the differences in the internal energy (ΔU) and entropy (ΔST) contributions, usually much higher for isomers and polymorphs of molecular hydrogen-bonded crystals (Madsen & Larsen, 2007[Madsen, A. Ø. & Larsen, S. (2007). Angew. Chem. Int. Ed. 46, 8609-8613.]; Kofoed et al., 2019[Kofoed, P. M., Hoser, A. A., Diness, F., Capelli, S. C. & Madsen, A. Ø. (2019). IUCrJ, 6, 558-571.]). Above 0.40 GPa, when the β polymorph becomes stable, the work contribution pΔV = p(VβVα) considered for transforming the metastable α polymorph to the stable β polymorph is positive again and hence it acts against the transition again. Despite this larger positive work contribution (Fig. 8[link]), the β polymorph nonetheless becomes more stable than the α polymorph due to the ΔU and ΔST contributions. The comparison of the compressed structures of polymorphs α and β reveals systematic significant structural differences connected to the internal energy. The compression of all parameters is initially much stronger for polymorph α. The compression of parameters aα and aβ along the OH⋯O bonded chains correlates with the compression of the hydrogen bonds (Figs. 6[link] and 9[link]). It is plausible that the stronger compression of the OH⋯O bonds in polymorph α significantly increases the internal energy and reduces the entropy connected with the atomic displacement parameters, which counteract the work contribution and destabilize the α-DL-menthol structure above 0.40 GPa. The stronger compression of OH⋯O bonds in polymorph α contrasts with the stronger compression of van der Waals contacts H⋯H in polymorph β, plotted in Figs. S17 and S18.

[Figure 9]
Figure 9
Pressure dependence of H⋯O and O⋯O distances in four independent hydrogen bonds (see legend) in DL-menthol polymorphs α (full squares, full lines) and β (open diamonds, dashed lines). The temperature dependence of these dimensions as well as the pressure-induced changes in OH⋯O angles are plotted in Figs. S19 and S23.

The significantly larger voids in α-DL-menthol up to about 0.50 GPa are consistent with the lower density of this polymorph up to about 0.40 GPa (Fig. S15). The similar volumes of voids in α- and β-DL-menthol above 0.50 GPa can be regarded as an indication that the lengths of chains (aβ > aα) contribute most to the lower density of β-DL-menthol above 0.40 GPa (Figs. 7[link], S9 and S15).

In the structure of polymorph α three of four independent OH⋯O hydrogen bonds are monotonically compressed, whereas one hydrogen bond initially increases in length, which is clearly seen for the O1B⋯O1C distance, and above about 1.0 GPa it is compressed at a slower rate compared with other hydrogen bonds (Fig. 9[link]). The OH⋯O angle undergoes a large change, from 148 to 175° in the pressure range from 0.10 MPa to 0.10 GPa (Fig. S19). Above about 0.50 GPa, all the OH⋯O angles decrease with pressure and the smallest of the angles becomes close to 130° at about 1.50 GPa. It is also characteristic that on average all OH⋯O hydrogen bonds in polymorph α are ca 0.10 Å shorter than the corresponding four independent hydrogen bonds in polymorph β and this average difference in length does not change significantly with pressure. It was postulated that the bulky molecules cannot get close enough to form short hydrogen bonds OH⋯O owing to steric hindrances interfering with the symmetry of glide planes and 21 screw axis (Brock & Duncan, 1994[Brock, C. P. & Duncan, L. L. (1994). Chem. Mater. 6, 1307-1312.]), which is in agreement with the structures of DL-menthol polymorphs. The longer OH⋯O bonds in β-DL-menthol correspond with the longer chains in this polymorph and with the unit-cell dimension aβ > aα. The compression of crystals is also reflected in conformational changes of molecules, up to about 20° in torsion angles, changing their values between the polymorphs and as a function of pressure (Figs. S20–S22).

In general, experimental evidence shows there are numerous compounds that, under ambient conditions, form stable polymorphs less dense than the more dense unstable polymorphs, which are either concomitant or can be obtained under high pressure (e.g. Boldyreva et al., 2002[Boldyreva, E. V., Shakhtshneider, T. P., Ahsbahs, H., Sowa, H. & Uchtmann, H. (2002). J. Therm. Anal. Calorim. 68, 437-452.]; Krawczyk & Gdaniec, 2005[Krawczyk, S. & Gdaniec, M. (2005). Acta Cryst. E61, o4116-o4118.]; Nelyubina et al., 2010[Nelyubina, Y. V., Glukhov, I. V., Antipin, M. Y. & Lyssenko, K. A. (2010). Chem. Commun. 46, 3469-3471.]; Adhikari et al., 2015[Adhikari, K., Flurchick, K. M. & Valenzano, L. (2015). Comput. Theor. Chem. 1062, 90-98.]; Zieliński & Katrusiak, 2013[Zieliński, W. & Katrusiak, A. (2013). Cryst. Growth Des. 13, 696-700.]; Safari & Katrusiak, 2021[Safari, F. & Katrusiak, A. (2021). J. Phys. Chem. C, 125, 23501-23509.]). However, in all these cases, the high-density metastable polymorph continues to be more dense in its high-pressure stability region. To our knowledge, the DL-menthol polymorphs α and β document for the first time the existence of a compound, for which the high-pressure polymorph (β), obtained under isothermal conditions, becomes less dense than the low-pressure polymorph (α). These polymorphs can coexist and below 0.40 GPa the less dense polymorph α is stable, whereas at pressures above 0.40 GPa polymorph α becomes more dense and less stable than polymorph β, despite the fact that no chemical, compositional or even a significant conformational change (Fig. S24) take places. This effect of high-pressure favouring the less dense polymorph of DL-menthol is similarly as counterintuitive as the effect of increased chemical composition reducing the molecular volume. It is expected that new components added to a structure will increase its volume; however, there are rare observations that the molecular volumes of anhydrates are smaller than those of their hydrates (Zieliński & Katrusiak, 2015[Zieliński, W. & Katrusiak, A. (2015). CrystEngComm, 17, 5468-5473.]; Andrzejewski et al., 2017[Andrzejewski, M., Casati, N. & Katrusiak, A. (2017). Dalton Trans. 46, 14795-14803.]).

In order to confirm that polymorph β is stable at the same temperature as polymorph α, at 296 K, we performed isothermal crystallizations from DL-menthol dissolved in iso­propanol, and nucleation occurred above 0.40 GPa. These isothermal in situ recrystallizations yielded the β polymorph, identified by PXRD, as exemplified in Fig. S25.

We also considered the possibility that polymorph β-DL-menthol is metastable in a wide range of pressures, even above 0.40 GPa. The formation of the metastable β polymorph would be consistent with Ostwald's rule of stages. In such a case, the metastable phase would have a lower melting point than the stable phase, not only below 0.40 GPa, but also above this pressure. Hence, in another series of experiments we gradually compressed the pure DL-menthol sample in the DAC and for each pressure point we recorded the temperature of the beginning and of the full melting of the sample (Fig. 10[link]), determined by microscopic observations. The temperature required for melting the sample in the DAC chamber drastically increases above 0.40 GPa. This increase in temperature of about 80 K above 0.40 GPa, coinciding with the formation of polymorph β, indicates that it becomes more stable than polymorph α, which implies that polymorph β is not metastable above 0.40 GPa.

[Figure 10]
Figure 10
(a) Melting temperature of pure α-DL-menthol and β-DL-menthol compressed and recrystallized in the DAC chamber: the black squares mark the onset of melting of the crystal filling the volume of the chamber, and the red squares mark the melting completion, according to the microscopic observation of the sample, as exemplified for the heating run of the sample at the starting pressure 0.48 GPa in (b). The increased temperature for the full melting (red squares) compared with that at the start (black squares) results from the pressure–temperature interdependence for the isochoric process: the larger portion of the sample is molten, the higher pressure is in the DAC chamber. Due to the thermal expansion of the sample, the pressure measurements at 296 K plotted in (a) are lower than the actual values for which the melting onset, and even more so the melting completion, took place. In the DAC chamber several small irregular ruby chips are placed close to the gasket walls for the ruby-fluorescence pressure measurements.

4. Conclusions

According to the close-packing rule for molecular crystals (Kitaigorodsky, 1973[Kitaigorodsky, A. I. (1973). Molecular Crystals and Molecules. New York, London: Academic Press.]), their dense structures should be favoured under specific thermodynamic conditions. We have shown that this is not the case for DL-menthol polymorphs α and β when nucleated and crystallized in their low- and high-pressure stability regions, respectively. As expected, up to 0.40 GPa, the triclinic DL-menthol polymorph α, stable at atmospheric pressure, is less dense than the high-pressure β polymorph revealed here. But the exceptional observation is that the high-pressure polymorph β-DL-menthol is less dense in its stability region above 0.40 GPa than the super-compressed ambient-pressure polymorph α. We have rationalized this counterintuitive pressure–density relation between the DL-menthol polymorphs by the shorter OH⋯O bonds enforcing larger voids in polymorph α compared with the considerably longer OH⋯O bonds allowing a more compact structure of polymorph β. Like in the structure of H2O ice Ih, in DL-menthol polymorph α the OH⋯O bonds dominate the cohesion forces, achieved at the cost of close-packing of the molecules. This loose packing in DL-menthol polymorph α results in its high compressibility, which in turn leads above 0.30 GPa to its higher-density compared with the less-compressible polymorph β. Therefore, the densities of DL-menthol polymorphs α and β in their stability regions below and above 0.40 GPa, respectively, are lower compared with the densities of their metastable counterparts. These density relations are essential for the thermodynamic properties of the α and β polymorphs, because the work contribution pΔV to the Gibbs free energy favours the unstable polymorph. It reduces the energy difference between the Gibbs free energies of the polymorphs, |GαGβ|T, while the kinetic barrier for the transition between the polymorphs, requiring considerable structural rearrangements, remains high. Consequently, the kinetics of the possible transitions between the polymorphs are very slow. Indeed, we observed no solid-state phase transitions from polymorph α to polymorph β when the pressure was increased to above 0.40 GPa, and from polymorph β to polymorph α when pressure was released to below 0.40 GPa. For obtaining the other polymorph under high pressure, the DL-menthol sample had to be either molten or dissolved. The α- and β-DL-menthol polymorphs exemplify an extremely rare system, for which the high-pressure polymorph is less dense compared with the metastable (super-compressed) one. Such a phenomenon, although counterintuitive and unprecedented in the literature, is not forbidden by any thermodynamic law, and therefore it widens our understanding of the general properties of molecular crystals. DL-Menthol exemplifies a chemical compound, which even under high pressure is not stable in its most dense polymorphs. This observation can be used for the interpretation of theoretically predicted models of crystal structures, where the density and internal energy criteria are generally applied (Bhardwaj et al., 2019[Bhardwaj, R. M., McMahon, J. A., Nyman, J., Price, L. S., Konar, S., Oswald, I. D. H., Pulham, C. R., Price, S. L. & Reutzel-Edens, S. M. (2019). J. Am. Chem. Soc. 141, 13887-13897.]; Tchoń et al., 2021[Tchoń, D., Bowskill, D., Sugden, I., Piotrowski, P. & Makal, A. (2021). J. Mater. Chem. C. 9, 2491-2503.]; Price & Price, 2022[Price, L. S. & Price, S. L. (2022). Cryst. Growth Des. 22, 1801-1816.]).

5. Related literature

The following references are cited in the supporting information: Cliffe & Goodwin (2012[Cliffe, M. J. & Goodwin, A. L. (2012). J. Appl. Cryst. 45, 1321-1329.]); Langreiter & Kahlenberg (2015[Langreiter, T. & Kahlenberg, V. (2015). Crystals, 5, 143-153.]).

Supporting information


Computing details top

Data collection: CrysAlis (Oxford Diffraction, 2015) for alpha_DL_0.01MPa, alpha_DL_0.10GPa, alpha_DL_0.15GPa, alpha_DL_0.30GPa, alpha_DL_0.51GPa, alpha_DL_0.60GPa, alpha_DL_0.65GPa, alpha_DL_0.84GPa, alpha_DL_1.12GPa, alpha_DL_1.44GPa, alpha_DL_1.70GPa, alpha_DL_2.10GPa, alpha_DL_3.37GPa, alpha_DL_120K, alpha_DL_160K, alpha_DL_190K, alpha_DL_220K, alpha_DL_260K, beta_DL_0.70GPa, beta_DL_1.28GPa, beta_DL_2.39GPa; CrysAlis PRO 1.171.40.67a (Rigaku OD, 2019) for beta_DL_0.10GPa, beta_DL_0.45GPa, beta_DL_0.56GPa, beta_DL_0.57GPa, beta_DL_0.67GPa, beta_DL_0.90GPa, beta_DL_1.34GPa, beta_DL_1.67GPa, beta_DL_2.10GPa, beta_DL_2.90GPa; CrysAlis PRO 1.171.41.93a (Rigaku OD, 2020) for beta_DL_0.20GPa; CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) for beta_DL_0.64GPa. Cell refinement: CrysAlis (Oxford Diffraction, 2015) for alpha_DL_0.01MPa, alpha_DL_0.10GPa, alpha_DL_0.15GPa, alpha_DL_0.30GPa, alpha_DL_0.51GPa, alpha_DL_0.60GPa, alpha_DL_0.65GPa, alpha_DL_0.84GPa, alpha_DL_1.12GPa, alpha_DL_1.44GPa, alpha_DL_1.70GPa, alpha_DL_2.10GPa, alpha_DL_3.37GPa, alpha_DL_120K, alpha_DL_160K, alpha_DL_190K, alpha_DL_220K, alpha_DL_260K, beta_DL_0.70GPa, beta_DL_1.28GPa, beta_DL_2.39GPa; CrysAlis PRO 1.171.40.67a (Rigaku OD, 2019) for beta_DL_0.10GPa, beta_DL_0.45GPa, beta_DL_0.56GPa, beta_DL_0.57GPa, beta_DL_0.67GPa, beta_DL_0.90GPa, beta_DL_1.34GPa, beta_DL_1.67GPa, beta_DL_2.10GPa, beta_DL_2.90GPa; CrysAlis PRO 1.171.41.93a (Rigaku OD, 2020) for beta_DL_0.20GPa; CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) for beta_DL_0.64GPa. Data reduction: CrysAlis (Oxford Diffraction, 2015) for alpha_DL_0.01MPa, alpha_DL_0.10GPa, alpha_DL_0.15GPa, alpha_DL_0.30GPa, alpha_DL_0.51GPa, alpha_DL_0.60GPa, alpha_DL_0.65GPa, alpha_DL_0.84GPa, alpha_DL_1.12GPa, alpha_DL_1.44GPa, alpha_DL_1.70GPa, alpha_DL_2.10GPa, alpha_DL_3.37GPa, alpha_DL_120K, alpha_DL_160K, alpha_DL_190K, alpha_DL_220K, alpha_DL_260K, beta_DL_0.70GPa, beta_DL_1.28GPa, beta_DL_2.39GPa; CrysAlis PRO 1.171.40.67a (Rigaku OD, 2019) for beta_DL_0.10GPa, beta_DL_0.45GPa, beta_DL_0.56GPa, beta_DL_0.57GPa, beta_DL_0.67GPa, beta_DL_0.90GPa, beta_DL_1.34GPa, beta_DL_1.67GPa, beta_DL_2.10GPa, beta_DL_2.90GPa; CrysAlis PRO 1.171.41.93a (Rigaku OD, 2020) for beta_DL_0.20GPa; CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) for beta_DL_0.64GPa. Program(s) used to solve structure: SHELXT 2014/5 (Sheldrick, 2014) for alpha_DL_0.01MPa, alpha_DL_0.10GPa, alpha_DL_0.15GPa, alpha_DL_0.30GPa, alpha_DL_0.51GPa, alpha_DL_0.60GPa, alpha_DL_0.65GPa, alpha_DL_0.84GPa, alpha_DL_1.12GPa, alpha_DL_1.44GPa, alpha_DL_1.70GPa, alpha_DL_2.10GPa, alpha_DL_3.37GPa, alpha_DL_120K, alpha_DL_160K, alpha_DL_190K, alpha_DL_220K, alpha_DL_260K, beta_DL_0.10GPa, beta_DL_0.45GPa, beta_DL_0.56GPa, beta_DL_0.57GPa, beta_DL_0.64GPa, beta_DL_0.67GPa, beta_DL_0.70GPa, beta_DL_0.90GPa, beta_DL_1.28GPa, beta_DL_1.34GPa, beta_DL_1.67GPa, beta_DL_2.10GPa, beta_DL_2.39GPa, beta_DL_2.90GPa; SHELXT 2018/2 (Sheldrick, 2018) for beta_DL_0.20GPa. Program(s) used to refine structure: SHELXL 2018/3 (Sheldrick, 2015) for alpha_DL_0.01MPa, alpha_DL_0.51GPa, alpha_DL_0.65GPa, alpha_DL_0.84GPa, alpha_DL_1.12GPa, alpha_DL_1.44GPa, alpha_DL_1.70GPa, alpha_DL_2.10GPa, alpha_DL_3.37GPa, alpha_DL_160K, alpha_DL_190K, alpha_DL_220K, alpha_DL_260K, beta_DL_0.20GPa, beta_DL_0.56GPa, beta_DL_0.64GPa, beta_DL_0.67GPa, beta_DL_0.70GPa, beta_DL_1.28GPa, beta_DL_1.67GPa, beta_DL_2.10GPa, beta_DL_2.39GPa, beta_DL_2.90GPa; SHELXL 2017/1 (Sheldrick, 2015) for alpha_DL_0.10GPa, alpha_DL_0.15GPa, alpha_DL_0.30GPa, alpha_DL_0.60GPa, alpha_DL_120K, beta_DL_0.10GPa, beta_DL_0.45GPa, beta_DL_0.57GPa, beta_DL_0.90GPa, beta_DL_1.34GPa. Molecular graphics: Olex2 1.3 (Dolomanov et al., 2009) for alpha_DL_0.01MPa, alpha_DL_0.51GPa, alpha_DL_0.65GPa, alpha_DL_0.84GPa, alpha_DL_1.12GPa, alpha_DL_1.44GPa, alpha_DL_1.70GPa, alpha_DL_2.10GPa, alpha_DL_3.37GPa, alpha_DL_160K, alpha_DL_190K, alpha_DL_220K, alpha_DL_260K, beta_DL_0.20GPa, beta_DL_0.56GPa, beta_DL_0.64GPa, beta_DL_0.67GPa, beta_DL_0.70GPa, beta_DL_1.28GPa, beta_DL_1.67GPa, beta_DL_2.10GPa, beta_DL_2.39GPa, beta_DL_2.90GPa; Mercury (2020) for alpha_DL_0.10GPa, alpha_DL_0.15GPa, alpha_DL_0.30GPa, alpha_DL_0.60GPa, alpha_DL_120K, beta_DL_0.10GPa, beta_DL_0.45GPa, beta_DL_0.57GPa, beta_DL_0.90GPa, beta_DL_1.34GPa. Software used to prepare material for publication: Olex2 1.3 (Dolomanov et al., 2009) for alpha_DL_0.01MPa, alpha_DL_0.51GPa, alpha_DL_0.65GPa, alpha_DL_0.84GPa, alpha_DL_1.12GPa, alpha_DL_1.44GPa, alpha_DL_1.70GPa, alpha_DL_2.10GPa, alpha_DL_3.37GPa, alpha_DL_160K, alpha_DL_190K, alpha_DL_220K, alpha_DL_260K, beta_DL_0.20GPa, beta_DL_0.56GPa, beta_DL_0.64GPa, beta_DL_0.67GPa, beta_DL_0.70GPa, beta_DL_1.28GPa, beta_DL_1.67GPa, beta_DL_2.10GPa, beta_DL_2.39GPa, beta_DL_2.90GPa; SHELXL (Sheldrick, 2015) for alpha_DL_0.10GPa, alpha_DL_0.15GPa, alpha_DL_0.30GPa, alpha_DL_0.60GPa, alpha_DL_120K, beta_DL_0.10GPa, beta_DL_0.45GPa, beta_DL_0.57GPa, beta_DL_0.90GPa, beta_DL_1.34GPa.

beta-DL-2-Isopropyl-5-methylcyclohexanol (alpha_DL_0.01MPa) top
Crystal data top
C10H20OZ = 6
Mr = 156.26F(000) = 528
Triclinic, P1Dx = 0.979 Mg m3
a = 12.035 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.536 (6) ÅCell parameters from 5556 reflections
c = 12.859 (9) Åθ = 1.8–25.0°
α = 117.56 (6)°µ = 0.06 mm1
β = 98.61 (5)°T = 296 K
γ = 103.93 (5)°Plate, colourless
V = 1590.6 (18) Å30.23 × 0.2 × 0.08 mm
Data collection top
Xcalibur, Eos
diffractometer
2997 reflections with I > 2σ(I)
Detector resolution: 16.4 pixels mm-1Rint = 0.032
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1413
Tmin = 0.986, Tmax = 0.995k = 1414
11264 measured reflectionsl = 1115
5556 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.059 w = 1/[σ2(Fo2) + (0.0902P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.185(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.24 e Å3
5556 reflectionsΔρmin = 0.15 e Å3
314 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
206 restraintsExtinction coefficient: 0.011 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.54705 (16)1.07513 (13)0.12521 (13)0.0724 (5)
H1B0.6134571.0692640.1252460.109*0.5
H1A0.529 (6)1.037 (5)0.0499 (4)0.109*0.5
C10.5581 (2)1.20849 (18)0.17859 (18)0.0629 (6)
H10.4801301.2123030.1487750.094*
C20.5927 (2)1.27390 (19)0.31903 (18)0.0629 (6)
H20.6707841.2685130.3457130.094*
C30.6123 (2)1.41774 (19)0.3767 (2)0.0725 (7)
H3A0.5369471.4274150.3518920.109*
H3B0.6375421.4593620.4656860.109*
C40.7065 (2)1.4834 (2)0.3379 (2)0.0846 (8)
H4A0.7832591.4789190.3675310.127*
H4B0.7154341.5734240.3749670.127*
C50.6719 (3)1.4203 (2)0.1986 (2)0.0817 (7)
H50.5964601.4297750.1706490.123*
C60.6506 (2)1.2763 (2)0.1397 (2)0.0709 (6)
H6A0.6237951.2355700.0508030.106*
H6B0.7260751.2656920.1621380.106*
C70.5050 (2)1.2047 (2)0.3628 (2)0.0738 (7)
H70.4883161.1123440.3101670.111*
C80.3840 (2)1.2242 (3)0.3504 (3)0.0908 (8)
H8A0.3488131.2003670.2671990.109*
H8B0.3313531.1715720.3712060.109*
H8C0.3961051.3130000.4051640.109*
C90.5630 (3)1.2423 (3)0.4952 (2)0.1112 (10)
H9A0.6387041.2295490.5015620.133*
H9B0.5756901.3310990.5504070.133*
H9C0.5109381.1896710.5164490.133*
C100.7677 (3)1.4844 (3)0.1588 (3)0.1132 (11)
H10A0.7431641.4425240.0706680.136*
H10B0.7771981.5736090.1942380.136*
H10C0.8426661.4773430.1865600.136*
O1B0.74691 (18)1.0091 (2)0.12545 (17)0.0948 (6)
H1BA0.8040 (19)1.032 (4)0.104 (2)0.142*0.5
H1BB0.6986 (15)1.046 (2)0.1393 (17)0.142*0.5
C1B0.7622 (2)0.9521 (2)0.1986 (2)0.0736 (7)
H1BC0.8218480.9110320.1778060.110*
C2B0.8068 (2)1.0503 (2)0.3366 (2)0.0764 (7)
H2B0.7426831.0846660.3559360.115*
C3B0.8185 (3)0.9797 (3)0.4064 (2)0.0974 (9)
H3BA0.8796120.9416460.3880920.146*
H3BB0.8436081.0408940.4942570.146*
C4B0.6992 (3)0.8744 (3)0.3700 (3)0.1091 (10)
H4BA0.7103980.8293430.4127540.164*
H4BB0.6406460.9139460.3963240.164*
C5B0.6503 (3)0.7779 (3)0.2325 (3)0.0948 (9)
H5B0.7077420.7341890.2095020.142*
C6B0.6433 (2)0.8480 (2)0.1624 (2)0.0773 (7)
H6BA0.6193590.7861100.0748080.116*
H6BB0.5822250.8865210.1785270.116*
C7B0.9203 (3)1.1670 (3)0.3777 (2)0.0901 (8)
H7B0.9041631.1984890.3221360.135*
C8B1.0346 (3)1.1365 (3)0.3661 (3)0.1062 (10)
H8BA1.0198281.0665540.2843610.127*
H8BB1.0973661.2109900.3820210.127*
H8BC1.0585861.1127920.4246350.127*
C9B0.9415 (3)1.2776 (3)0.5065 (3)0.1518 (17)
H9BA0.8687791.2956470.5123810.182*
H9BB0.9651091.2543760.5655290.182*
H9BC1.0038891.3525730.5229150.182*
C10B0.5294 (3)0.6751 (3)0.1955 (3)0.1217 (12)
H10D0.5027160.6168580.1079720.146*
H10E0.5378640.6283980.2361450.146*
H10F0.4715210.7152560.2191320.146*
O1C0.93830 (17)1.08108 (16)0.05539 (16)0.0832 (5)
H1CA0.8729 (18)1.039 (2)0.0530 (19)0.125*0.5
H1C0.9743 (14)1.0346 (14)0.011 (6)0.125*0.5
C2C1.0513 (2)1.2516 (2)0.0302 (2)0.0657 (6)
H2C1.0798511.1897730.0291420.099*
C6C0.8352 (2)1.1096 (2)0.1043 (2)0.0692 (6)
H6CA0.8571691.0427210.1646070.104*
H6CB0.7575231.0690960.1007020.104*
C4C0.9480 (3)1.2761 (2)0.1421 (2)0.0868 (8)
H4CA0.9418891.3392540.1641270.130*
H4CB0.9762071.2161100.2020770.130*
C1C0.9287 (2)1.1751 (2)0.02237 (19)0.0649 (6)
H1CB0.8999491.2351510.0831710.097*
C5C0.8248 (2)1.2041 (2)0.1463 (2)0.0787 (7)
H5C0.7975581.2673390.0868800.118*
C3C1.0395 (2)1.3446 (2)0.0133 (2)0.0784 (7)
H3CA1.1173281.3872840.0150590.118*
H3CB1.0147181.4100230.0451990.118*
C7C1.1461 (2)1.3172 (2)0.1589 (2)0.0808 (7)
H7C1.1468451.2494620.1768930.121*
C8C1.1159 (3)1.4181 (3)0.2638 (2)0.1093 (10)
H8CA1.0362511.3805820.2636750.131*
H8CB1.1724611.4477110.3409970.131*
H8CC1.1199901.4894100.2526130.131*
C9C1.2725 (3)1.3755 (3)0.1579 (3)0.1181 (11)
H9CA1.2905841.3115200.0918510.142*
H9CB1.2769691.4466770.1464640.142*
H9CC1.3294391.4049790.2348480.142*
C10C0.7310 (3)1.1368 (3)0.2738 (2)0.1054 (10)
H10G0.6548371.0926770.2717850.126*
H10H0.7231551.1997930.2941200.126*
H10I0.7564971.0759170.3346660.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0920 (13)0.0517 (8)0.0640 (9)0.0241 (8)0.0255 (9)0.0229 (7)
C10.0691 (15)0.0536 (11)0.0611 (12)0.0240 (10)0.0200 (10)0.0251 (10)
C20.0600 (15)0.0600 (12)0.0573 (11)0.0194 (10)0.0155 (10)0.0233 (10)
C30.0718 (16)0.0586 (12)0.0656 (13)0.0206 (11)0.0203 (11)0.0174 (10)
C40.0824 (19)0.0564 (12)0.0991 (18)0.0212 (12)0.0274 (14)0.0301 (12)
C50.094 (2)0.0690 (14)0.1047 (18)0.0391 (14)0.0478 (15)0.0522 (13)
C60.0824 (18)0.0653 (12)0.0744 (14)0.0332 (12)0.0350 (12)0.0369 (11)
C70.0735 (17)0.0755 (14)0.0666 (13)0.0237 (12)0.0270 (12)0.0321 (11)
C80.075 (2)0.0858 (17)0.1011 (19)0.0228 (14)0.0352 (15)0.0409 (15)
C90.109 (3)0.153 (3)0.0824 (18)0.043 (2)0.0410 (17)0.0681 (18)
C100.134 (3)0.0840 (17)0.166 (3)0.0515 (19)0.086 (2)0.081 (2)
O1B0.0926 (15)0.1312 (15)0.1087 (13)0.0436 (12)0.0389 (11)0.0945 (12)
C1B0.0872 (19)0.0928 (16)0.0756 (14)0.0467 (14)0.0393 (13)0.0587 (13)
C2B0.0767 (18)0.0870 (16)0.0781 (15)0.0351 (14)0.0371 (13)0.0457 (13)
C3B0.101 (2)0.136 (2)0.0836 (17)0.0451 (19)0.0370 (15)0.0745 (17)
C4B0.122 (3)0.138 (2)0.112 (2)0.044 (2)0.0507 (19)0.096 (2)
C5B0.110 (2)0.0886 (17)0.124 (2)0.0509 (17)0.0573 (19)0.0707 (17)
C6B0.089 (2)0.0765 (14)0.0779 (15)0.0334 (14)0.0367 (13)0.0437 (12)
C7B0.0746 (19)0.0965 (18)0.0943 (18)0.0282 (15)0.0311 (14)0.0453 (15)
C8B0.081 (2)0.148 (3)0.111 (2)0.049 (2)0.0425 (17)0.076 (2)
C9B0.088 (3)0.130 (3)0.135 (3)0.008 (2)0.037 (2)0.006 (2)
C10B0.141 (3)0.0879 (19)0.163 (3)0.043 (2)0.071 (3)0.078 (2)
O1C0.0937 (14)0.0838 (11)0.1022 (13)0.0320 (10)0.0361 (10)0.0689 (10)
C2C0.0727 (16)0.0640 (12)0.0720 (13)0.0261 (11)0.0311 (12)0.0406 (11)
C6C0.0802 (17)0.0648 (12)0.0678 (13)0.0255 (12)0.0275 (12)0.0370 (11)
C4C0.110 (2)0.0817 (15)0.0821 (16)0.0267 (15)0.0319 (15)0.0557 (14)
C1C0.0774 (17)0.0646 (12)0.0680 (13)0.0301 (12)0.0304 (11)0.0414 (11)
C5C0.089 (2)0.0791 (15)0.0741 (14)0.0311 (14)0.0241 (13)0.0443 (12)
C3C0.091 (2)0.0646 (13)0.0806 (15)0.0171 (12)0.0264 (13)0.0432 (12)
C7C0.0762 (19)0.0799 (15)0.0824 (16)0.0232 (13)0.0189 (13)0.0427 (13)
C8C0.103 (2)0.118 (2)0.0751 (17)0.0365 (19)0.0141 (15)0.0318 (16)
C9C0.082 (2)0.134 (3)0.131 (3)0.0259 (19)0.0279 (19)0.071 (2)
C10C0.119 (3)0.110 (2)0.0863 (18)0.0379 (19)0.0148 (17)0.0565 (17)
Geometric parameters (Å, º) top
O1—H1B0.8200C5B—C6B1.528 (4)
O1—H1A0.8200 (13)C5B—C10B1.526 (4)
O1—C11.445 (3)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.532 (3)C7B—H7B0.9800
C1—C61.522 (3)C7B—C8B1.524 (4)
C2—H20.9800C7B—C9B1.519 (4)
C2—C31.537 (3)C8B—H8BA0.9600
C2—C71.540 (3)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.521 (3)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.522 (4)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.534 (3)O1C—H1CA0.8200 (12)
C5—C101.532 (4)O1C—H1C0.86 (3)
C6—H6A0.9700O1C—C1C1.448 (3)
C6—H6B0.9700C2C—H2C0.9800
C7—H70.9800C2C—C1C1.514 (3)
C7—C81.531 (4)C2C—C3C1.533 (3)
C7—C91.534 (4)C2C—C7C1.563 (4)
C8—H8A0.9600C6C—H6CA0.9700
C8—H8B0.9600C6C—H6CB0.9700
C8—H8C0.9600C6C—C1C1.537 (4)
C9—H9A0.9600C6C—C5C1.534 (3)
C9—H9B0.9600C4C—H4CA0.9700
C9—H9C0.9600C4C—H4CB0.9700
C10—H10A0.9600C4C—C5C1.517 (4)
C10—H10B0.9600C4C—C3C1.541 (4)
C10—H10C0.9600C1C—H1CB0.9800
O1B—H1BA0.8200 (11)C5C—H5C0.9800
O1B—H1BB0.8201 (11)C5C—C10C1.543 (4)
O1B—C1B1.436 (3)C3C—H3CA0.9700
C1B—H1BC0.9800C3C—H3CB0.9700
C1B—C2B1.525 (4)C7C—H7C0.9800
C1B—C6B1.519 (4)C7C—C8C1.530 (4)
C2B—H2B0.9800C7C—C9C1.525 (4)
C2B—C3B1.538 (4)C8C—H8CA0.9600
C2B—C7B1.546 (4)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.529 (4)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.517 (4)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1B—O1—H1A87.2C10B—C5B—C6B111.3 (3)
C1—O1—H1B109.5C1B—C6B—C5B112.4 (2)
C1—O1—H1A112 (5)C1B—C6B—H6BA109.1
O1—C1—H1108.7C1B—C6B—H6BB109.1
O1—C1—C2109.41 (19)C5B—C6B—H6BA109.1
O1—C1—C6110.27 (17)C5B—C6B—H6BB109.1
C2—C1—H1108.7H6BA—C6B—H6BB107.8
C6—C1—H1108.7C2B—C7B—H7B106.2
C6—C1—C2111.06 (19)C8B—C7B—C2B115.1 (2)
C1—C2—H2106.6C8B—C7B—H7B106.2
C1—C2—C3109.6 (2)C9B—C7B—C2B112.2 (2)
C1—C2—C7112.99 (19)C9B—C7B—H7B106.2
C3—C2—H2106.6C9B—C7B—C8B110.4 (3)
C3—C2—C7114.00 (18)C7B—C8B—H8BA109.5
C7—C2—H2106.6C7B—C8B—H8BB109.5
C2—C3—H3A109.3C7B—C8B—H8BC109.5
C2—C3—H3B109.3H8BA—C8B—H8BB109.5
H3A—C3—H3B107.9H8BA—C8B—H8BC109.5
C4—C3—C2111.79 (18)H8BB—C8B—H8BC109.5
C4—C3—H3A109.3C7B—C9B—H9BA109.5
C4—C3—H3B109.3C7B—C9B—H9BB109.5
C3—C4—H4A109.4C7B—C9B—H9BC109.5
C3—C4—H4B109.4H9BA—C9B—H9BB109.5
C3—C4—C5111.3 (2)H9BA—C9B—H9BC109.5
H4A—C4—H4B108.0H9BB—C9B—H9BC109.5
C5—C4—H4A109.4C5B—C10B—H10D109.5
C5—C4—H4B109.4C5B—C10B—H10E109.5
C4—C5—H5108.3C5B—C10B—H10F109.5
C4—C5—C6109.3 (2)H10D—C10B—H10E109.5
C4—C5—C10111.6 (3)H10D—C10B—H10F109.5
C6—C5—H5108.3H10E—C10B—H10F109.5
C10—C5—H5108.3H1CA—O1C—H1C114 (3)
C10—C5—C6111.0 (2)C1C—O1C—H1CA112 (3)
C1—C6—C5113.13 (18)C1C—O1C—H1C110 (4)
C1—C6—H6A109.0C1C—C2C—H2C106.5
C1—C6—H6B109.0C1C—C2C—C3C109.9 (2)
C5—C6—H6A109.0C1C—C2C—C7C113.07 (19)
C5—C6—H6B109.0C3C—C2C—H2C106.5
H6A—C6—H6B107.8C3C—C2C—C7C113.9 (2)
C2—C7—H7107.0C7C—C2C—H2C106.5
C8—C7—C2114.1 (2)H6CA—C6C—H6CB107.8
C8—C7—H7107.0C1C—C6C—H6CA109.0
C8—C7—C9110.4 (2)C1C—C6C—H6CB109.0
C9—C7—C2111.1 (2)C5C—C6C—H6CA109.0
C9—C7—H7107.0C5C—C6C—H6CB109.0
C7—C8—H8A109.5C5C—C6C—C1C112.8 (2)
C7—C8—H8B109.5H4CA—C4C—H4CB108.0
C7—C8—H8C109.5C5C—C4C—H4CA109.3
H8A—C8—H8B109.5C5C—C4C—H4CB109.3
H8A—C8—H8C109.5C5C—C4C—C3C111.6 (2)
H8B—C8—H8C109.5C3C—C4C—H4CA109.3
C7—C9—H9A109.5C3C—C4C—H4CB109.3
C7—C9—H9B109.5O1C—C1C—C2C110.2 (2)
C7—C9—H9C109.5O1C—C1C—C6C110.47 (19)
H9A—C9—H9B109.5O1C—C1C—H1CB107.5
H9A—C9—H9C109.5C2C—C1C—C6C113.33 (19)
H9B—C9—H9C109.5C2C—C1C—H1CB107.5
C5—C10—H10A109.5C6C—C1C—H1CB107.5
C5—C10—H10B109.5C6C—C5C—H5C107.5
C5—C10—H10C109.5C6C—C5C—C10C112.1 (2)
H10A—C10—H10B109.5C4C—C5C—C6C109.5 (2)
H10A—C10—H10C109.5C4C—C5C—H5C107.5
H10B—C10—H10C109.5C4C—C5C—C10C112.6 (2)
H1BA—O1B—H1BB122 (5)C10C—C5C—H5C107.5
C1B—O1B—H1BA118 (3)C2C—C3C—C4C112.5 (2)
C1B—O1B—H1BB113 (3)C2C—C3C—H3CA109.1
O1B—C1B—H1BC108.1C2C—C3C—H3CB109.1
O1B—C1B—C2B112.9 (2)C4C—C3C—H3CA109.1
O1B—C1B—C6B108.0 (2)C4C—C3C—H3CB109.1
C2B—C1B—H1BC108.1H3CA—C3C—H3CB107.8
C6B—C1B—H1BC108.1C2C—C7C—H7C107.0
C6B—C1B—C2B111.6 (2)C8C—C7C—C2C113.7 (2)
C1B—C2B—H2B106.3C8C—C7C—H7C107.0
C1B—C2B—C3B108.8 (2)C9C—C7C—C2C111.8 (2)
C1B—C2B—C7B114.3 (2)C9C—C7C—H7C107.0
C3B—C2B—H2B106.3C9C—C7C—C8C110.1 (2)
C3B—C2B—C7B114.1 (2)C7C—C8C—H8CA109.5
C7B—C2B—H2B106.3C7C—C8C—H8CB109.5
C2B—C3B—H3BA109.4C7C—C8C—H8CC109.5
C2B—C3B—H3BB109.4H8CA—C8C—H8CB109.5
H3BA—C3B—H3BB108.0H8CA—C8C—H8CC109.5
C4B—C3B—C2B111.1 (3)H8CB—C8C—H8CC109.5
C4B—C3B—H3BA109.4C7C—C9C—H9CA109.5
C4B—C3B—H3BB109.4C7C—C9C—H9CB109.5
C3B—C4B—H4BA109.0C7C—C9C—H9CC109.5
C3B—C4B—H4BB109.0H9CA—C9C—H9CB109.5
H4BA—C4B—H4BB107.8H9CA—C9C—H9CC109.5
C5B—C4B—C3B112.8 (2)H9CB—C9C—H9CC109.5
C5B—C4B—H4BA109.0C5C—C10C—H10G109.5
C5B—C4B—H4BB109.0C5C—C10C—H10H109.5
C4B—C5B—H5B107.4C5C—C10C—H10I109.5
C4B—C5B—C6B110.0 (2)H10G—C10C—H10H109.5
C4B—C5B—C10B112.9 (3)H10G—C10C—H10I109.5
C6B—C5B—H5B107.4H10H—C10C—H10I109.5
C10B—C5B—H5B107.4
O1—C1—C2—C3176.49 (18)C3B—C2B—C7B—C9B69.4 (3)
O1—C1—C2—C755.2 (3)C3B—C4B—C5B—C6B53.2 (4)
O1—C1—C6—C5177.0 (2)C3B—C4B—C5B—C10B178.3 (3)
C1—C2—C3—C456.5 (3)C4B—C5B—C6B—C1B53.4 (3)
C1—C2—C7—C874.0 (2)C6B—C1B—C2B—C3B57.4 (3)
C1—C2—C7—C9160.5 (2)C6B—C1B—C2B—C7B173.7 (2)
C2—C1—C6—C555.5 (3)C7B—C2B—C3B—C4B174.3 (2)
C2—C3—C4—C558.2 (3)C10B—C5B—C6B—C1B179.3 (2)
C3—C2—C7—C852.1 (3)C1C—C2C—C3C—C4C53.6 (3)
C3—C2—C7—C973.5 (3)C1C—C2C—C7C—C8C63.6 (3)
C3—C4—C5—C655.7 (3)C1C—C2C—C7C—C9C171.0 (2)
C3—C4—C5—C10178.9 (2)C1C—C6C—C5C—C4C54.1 (3)
C4—C5—C6—C155.2 (3)C1C—C6C—C5C—C10C179.8 (2)
C6—C1—C2—C354.5 (2)C5C—C6C—C1C—O1C177.77 (18)
C6—C1—C2—C7177.14 (19)C5C—C6C—C1C—C2C53.6 (3)
C7—C2—C3—C4175.7 (2)C5C—C4C—C3C—C2C57.1 (3)
C10—C5—C6—C1178.7 (2)C3C—C2C—C1C—O1C176.16 (17)
O1B—C1B—C2B—C3B179.2 (2)C3C—C2C—C1C—C6C51.8 (2)
O1B—C1B—C2B—C7B51.9 (3)C3C—C2C—C7C—C8C62.8 (3)
O1B—C1B—C6B—C5B178.39 (18)C3C—C2C—C7C—C9C62.6 (3)
C1B—C2B—C3B—C4B56.7 (3)C3C—C4C—C5C—C6C55.7 (3)
C1B—C2B—C7B—C8B68.1 (3)C3C—C4C—C5C—C10C178.9 (2)
C1B—C2B—C7B—C9B164.5 (3)C7C—C2C—C1C—O1C55.3 (2)
C2B—C1B—C6B—C5B57.0 (3)C7C—C2C—C1C—C6C179.68 (18)
C2B—C3B—C4B—C5B56.3 (4)C7C—C2C—C3C—C4C178.3 (2)
C3B—C2B—C7B—C8B58.0 (3)
alpha-DL-2-Isopropyl-5-methylcyclohexanol (alpha_DL_0.10GPa) top
Crystal data top
C10H20OZ = 6
Mr = 156.26F(000) = 528
Triclinic, P1Dx = 0.999 Mg m3
Hall symbol: -P 1Melting point: 308 K
a = 11.933 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.489 (3) ÅCell parameters from 1392 reflections
c = 12.767 (3) Åθ = 5.8–26.3°
α = 117.43 (3)°µ = 0.06 mm1
β = 98.767 (18)°T = 296 K
γ = 104.13 (2)°Plate, colourless
V = 1558.3 (7) Å30.40 × 0.30 × 0.05 mm
Data collection top
Xcalibur, Eos
diffractometer
1392 independent reflections
Radiation source: fine-focus sealed tube634 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
Detector resolution: 16.4 pixels mm-1θmax = 26.3°, θmin = 5.1°
ω scansh = 1414
Absorption correction: integration
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 66
Tmin = 0.978, Tmax = 0.996l = 1212
7351 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.072 w = 1/[σ2(Fo2) + (0.0997P)2 + 0.5955P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.220(Δ/σ)max = 0.005
S = 1.02Δρmax = 0.08 e Å3
1392 reflectionsΔρmin = 0.07 e Å3
314 parametersExtinction correction: SHELXL-2015/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
207 restraintsExtinction coefficient: 0.015 (17)
Special details top

Experimental. Data were collected at room temperature and pressure of 0.10 (2) GPa (100000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.5452 (5)1.0731 (10)0.1261 (6)0.097 (10)
H1B0.6119691.0667430.1260060.146*0.5
H1A0.527 (14)1.000 (4)0.067 (7)0.146*0.5
C10.5574 (8)1.2115 (16)0.1773 (9)0.077 (6)
H10.4785231.2142040.1458880.115*
C20.5896 (8)1.2749 (15)0.3176 (9)0.075 (6)
H20.6688201.2703320.3443800.112*
C30.6106 (8)1.4162 (16)0.3765 (9)0.080 (6)
H3A0.6359621.4567980.4660690.119*
H3B0.5353401.4273910.3516870.119*
C40.7063 (8)1.480 (2)0.3388 (11)0.103 (7)
H4A0.7824211.4727960.3672120.155*
H4B0.7184001.5716500.3779910.155*
C50.6705 (10)1.420 (2)0.1991 (12)0.118 (7)
H50.5935891.4290060.1725000.177*
C60.6493 (8)1.2791 (17)0.1395 (10)0.087 (7)
H6A0.6220601.2392360.0501420.130*
H6B0.7254791.2682730.1618780.130*
C70.5036 (7)1.2034 (16)0.3630 (10)0.085 (6)
H70.4863711.1106190.3106140.128*
C80.3803 (7)1.2265 (17)0.3507 (10)0.114 (11)
H8A0.3438841.2009340.2663910.137*
H8B0.3266751.1762760.3737020.137*
H8C0.3948551.3164830.4043300.137*
C90.5595 (9)1.244 (2)0.4946 (12)0.141 (12)
H9A0.5033521.1971730.5189620.169*
H9B0.6326311.2248650.5019450.169*
H9C0.5782001.3347220.5474240.169*
C100.7661 (11)1.489 (2)0.1597 (13)0.160 (12)
H10A0.7767981.5792030.1999560.192*
H10B0.8419461.4801490.1832990.192*
H10C0.7387451.4511460.0714140.192*
O1B0.7477 (8)1.0131 (15)0.1308 (11)0.126 (12)
H1BA0.814 (2)1.034 (11)0.120 (3)0.188*0.5
H1BB0.7047 (14)1.057 (3)0.137 (16)0.188*0.5
C1B0.7636 (16)0.951 (3)0.2007 (16)0.121 (9)
H1BC0.8240190.9100950.1799160.182*
C2B0.8068 (13)1.052 (3)0.3387 (15)0.104 (8)
H2B0.7413041.0842600.3587890.155*
C3B0.8217 (16)0.973 (3)0.4034 (17)0.129 (9)
H3BA0.8801990.9318410.3778760.193*
H3BB0.8520601.0304520.4927330.193*
C4B0.7004 (10)0.870 (2)0.3682 (12)0.144 (8)
H4BA0.7098550.8245760.4116040.216*
H4BB0.6422220.9109820.3937750.216*
C5B0.6537 (16)0.776 (3)0.2331 (19)0.132 (9)
H5B0.7130550.7347450.2098530.199*
C6B0.6425 (12)0.849 (3)0.1620 (14)0.092 (8)
H6BA0.6167570.7883200.0733120.138*
H6BB0.5821430.8887870.1810040.138*
C7B0.9220 (8)1.1687 (17)0.3790 (11)0.111 (7)
H7B0.9063041.1983080.3210990.166*
C8B1.0370 (7)1.1340 (18)0.3672 (11)0.133 (12)
H8BA1.0204601.0626600.2850940.159*
H8BB1.1020461.2072620.3822490.159*
H8BC1.0599821.1105410.4267700.159*
C9B0.9408 (8)1.2771 (18)0.5022 (11)0.125 (12)
H9BA0.8672901.2951850.5051780.150*
H9BB0.9627581.2553090.5633670.150*
H9BC1.0048221.3520300.5188460.150*
C10B0.5325 (11)0.671 (2)0.1932 (14)0.171 (13)
H10D0.5068730.6129980.1049380.206*
H10E0.5412600.6232330.2335770.206*
H10F0.4728200.7089620.2158990.206*
O1C0.9386 (9)1.0784 (10)0.0526 (12)0.122 (12)
H1CA0.882 (3)1.043 (4)0.068 (3)0.183*0.5
H1C0.9635 (13)1.021 (2)0.014 (5)0.183*0.5
C2C1.0544 (12)1.258 (3)0.0293 (15)0.089 (8)
H2C1.0819491.1957880.0316680.133*
C6C0.8359 (13)1.113 (2)0.1061 (14)0.082 (8)
H6CA0.7565371.0720260.1042780.124*
H6CB0.8596141.0463540.1648810.124*
C4C0.9492 (9)1.281 (2)0.1413 (12)0.123 (7)
H4CA0.9423291.3430280.1645950.185*
H4CB0.9797381.2215790.1999300.185*
C1C0.9253 (16)1.181 (3)0.019 (2)0.099 (8)
H1CB0.8952131.2401100.0793210.149*
C5C0.8294 (16)1.208 (3)0.1470 (17)0.120 (10)
H5C0.8025861.2716460.0865550.180*
C3C1.0355 (17)1.348 (3)0.0151 (19)0.117 (10)
H3CA1.0058031.4094460.0422630.175*
H3CB1.1132091.3970750.0138440.175*
C7C1.1460 (7)1.3148 (16)0.1605 (9)0.095 (7)
H7C1.1421631.2449020.1769350.142*
C8C1.1168 (8)1.4192 (18)0.2630 (10)0.124 (12)
H8CA1.0363191.3832760.2639260.149*
H8CB1.1742561.4516130.3415590.149*
H8CC1.1213791.4885330.2479870.149*
C9C1.2728 (8)1.3712 (19)0.1588 (11)0.139 (12)
H9CA1.2910501.3053710.0941950.167*
H9CB1.2774501.4405440.1437710.167*
H9CC1.3303261.4036240.2373420.167*
C10C0.7317 (8)1.1440 (19)0.2780 (10)0.116 (12)
H10G0.6547491.0977310.2776250.139*
H10H0.7240411.2099660.2943470.139*
H10I0.7571701.0851580.3412720.139*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.109 (4)0.071 (12)0.089 (6)0.034 (6)0.028 (4)0.023 (7)
C10.083 (5)0.070 (10)0.070 (6)0.023 (6)0.020 (5)0.033 (5)
C20.084 (5)0.067 (10)0.070 (6)0.034 (6)0.020 (5)0.031 (5)
C30.092 (5)0.069 (10)0.076 (6)0.025 (6)0.027 (5)0.038 (6)
C40.101 (5)0.095 (10)0.110 (7)0.031 (6)0.027 (5)0.054 (6)
C50.123 (6)0.113 (11)0.120 (8)0.036 (7)0.057 (7)0.058 (6)
C60.092 (5)0.092 (10)0.084 (7)0.030 (6)0.033 (5)0.051 (6)
C70.079 (5)0.086 (10)0.089 (6)0.040 (6)0.027 (5)0.039 (5)
C80.090 (5)0.111 (16)0.130 (9)0.026 (7)0.044 (6)0.055 (9)
C90.128 (7)0.163 (18)0.137 (10)0.046 (9)0.043 (7)0.084 (10)
C100.170 (8)0.147 (18)0.173 (11)0.057 (10)0.098 (9)0.077 (10)
O1B0.102 (6)0.157 (17)0.152 (9)0.055 (7)0.055 (6)0.098 (9)
C1B0.116 (8)0.134 (13)0.119 (10)0.051 (8)0.048 (8)0.063 (7)
C2B0.097 (7)0.102 (12)0.111 (9)0.037 (8)0.032 (7)0.053 (7)
C3B0.124 (9)0.135 (13)0.132 (10)0.042 (8)0.050 (8)0.071 (7)
C4B0.142 (7)0.152 (11)0.143 (9)0.038 (7)0.052 (7)0.086 (7)
C5B0.122 (9)0.137 (13)0.142 (11)0.048 (8)0.048 (9)0.073 (7)
C6B0.101 (7)0.095 (12)0.082 (7)0.037 (8)0.025 (6)0.047 (6)
C7B0.095 (6)0.123 (11)0.119 (7)0.047 (6)0.036 (5)0.061 (6)
C8B0.099 (6)0.162 (18)0.160 (10)0.048 (8)0.051 (7)0.096 (10)
C9B0.109 (6)0.097 (16)0.152 (10)0.017 (8)0.034 (6)0.062 (9)
C10B0.161 (9)0.158 (19)0.193 (12)0.059 (11)0.058 (9)0.088 (11)
O1C0.112 (6)0.122 (17)0.137 (9)0.057 (9)0.046 (6)0.061 (10)
C2C0.089 (7)0.082 (12)0.093 (9)0.036 (8)0.033 (6)0.039 (6)
C6C0.088 (7)0.078 (11)0.080 (8)0.013 (7)0.028 (6)0.047 (6)
C4C0.135 (7)0.110 (11)0.120 (8)0.029 (7)0.028 (6)0.065 (6)
C1C0.097 (7)0.100 (12)0.100 (9)0.040 (8)0.040 (6)0.047 (6)
C5C0.124 (9)0.120 (13)0.115 (10)0.050 (9)0.039 (8)0.057 (7)
C3C0.117 (9)0.120 (13)0.114 (10)0.040 (9)0.021 (7)0.067 (7)
C7C0.092 (5)0.094 (10)0.096 (7)0.031 (6)0.019 (5)0.053 (6)
C8C0.132 (7)0.129 (17)0.102 (8)0.071 (9)0.017 (6)0.046 (9)
C9C0.107 (6)0.150 (18)0.166 (10)0.047 (9)0.034 (7)0.087 (10)
C10C0.139 (7)0.120 (17)0.105 (9)0.048 (9)0.016 (7)0.077 (9)
Geometric parameters (Å, º) top
O1—H1B0.8200C5B—C6B1.56 (7)
O1—H1A0.8200 (12)C5B—C10B1.52 (2)
O1—C11.50 (2)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.523 (15)C7B—H7B0.9800
C1—C61.494 (18)C7B—C8B1.54 (2)
C2—H20.9800C7B—C9B1.463 (10)
C2—C31.50 (2)C8B—H8BA0.9600
C2—C71.55 (2)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.502 (19)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.517 (19)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.49 (3)O1C—H1CA0.8200 (12)
C5—C101.55 (2)O1C—H1C0.8200 (12)
C6—H6A0.9700O1C—C1C1.56 (5)
C6—H6B0.9700C2C—H2C0.9800
C7—H70.9800C2C—C1C1.55 (2)
C7—C81.566 (18)C2C—C3C1.53 (6)
C7—C91.50 (2)C2C—C7C1.57 (2)
C8—H8A0.9600C6C—H6CA0.9700
C8—H8B0.9600C6C—H6CB0.9700
C8—H8C0.9600C6C—C1C1.48 (3)
C9—H9A0.9600C6C—C5C1.52 (6)
C9—H9B0.9600C4C—H4CA0.9700
C9—H9C0.9600C4C—H4CB0.9700
C10—H10A0.9600C4C—C5C1.463 (19)
C10—H10B0.9600C4C—C3C1.48 (3)
C10—H10C0.9600C1C—H1CB0.9800
O1B—H1BA0.8200 (14)C5C—H5C0.9800
O1B—H1BB0.8200 (12)C5C—C10C1.58 (3)
O1B—C1B1.45 (5)C3C—H3CA0.9700
C1B—H1BC0.9800C3C—H3CB0.9700
C1B—C2B1.523 (18)C7C—H7C0.9800
C1B—C6B1.50 (2)C7C—C8C1.524 (14)
C2B—H2B0.9800C7C—C9C1.514 (10)
C2B—C3B1.58 (6)C8C—H8CA0.9600
C2B—C7B1.55 (2)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.52 (2)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.478 (16)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1B—O1—H1A78.5C10B—C5B—C6B110 (2)
C1—O1—H1B109.5C1B—C6B—C5B109 (2)
C1—O1—H1A150 (8)C1B—C6B—H6BA109.9
O1—C1—H1108.5C1B—C6B—H6BB109.9
O1—C1—C2106.9 (16)C5B—C6B—H6BA109.9
C2—C1—H1108.5C5B—C6B—H6BB109.9
C6—C1—O1112.1 (9)H6BA—C6B—H6BB108.3
C6—C1—H1108.5C2B—C7B—H7B106.2
C6—C1—C2112.1 (8)C8B—C7B—C2B113.7 (17)
C1—C2—H2105.4C8B—C7B—H7B106.2
C1—C2—C7114.8 (8)C9B—C7B—C2B111.6 (10)
C3—C2—C1110.1 (16)C9B—C7B—H7B106.2
C3—C2—H2105.4C9B—C7B—C8B112.4 (9)
C3—C2—C7114.6 (8)C7B—C8B—H8BA109.5
C7—C2—H2105.4C7B—C8B—H8BB109.5
C2—C3—H3A109.5C7B—C8B—H8BC109.5
C2—C3—H3B109.5H8BA—C8B—H8BB109.5
C2—C3—C4110.8 (10)H8BA—C8B—H8BC109.5
H3A—C3—H3B108.1H8BB—C8B—H8BC109.5
C4—C3—H3A109.5C7B—C9B—H9BA109.5
C4—C3—H3B109.5C7B—C9B—H9BB109.5
C3—C4—H4A109.3C7B—C9B—H9BC109.5
C3—C4—H4B109.3H9BA—C9B—H9BB109.5
C3—C4—C5111.4 (8)H9BA—C9B—H9BC109.5
H4A—C4—H4B108.0H9BB—C9B—H9BC109.5
C5—C4—H4A109.3C5B—C10B—H10D109.5
C5—C4—H4B109.3C5B—C10B—H10E109.5
C4—C5—H5107.9C5B—C10B—H10F109.5
C4—C5—C10111.8 (9)H10D—C10B—H10E109.5
C6—C5—C4109 (2)H10D—C10B—H10F109.5
C6—C5—H5107.9H10E—C10B—H10F109.5
C6—C5—C10112.2 (10)H1CA—O1C—H1C104 (4)
C10—C5—H5107.9C1C—O1C—H1CA117 (5)
C1—C6—C5112.6 (10)C1C—O1C—H1C125 (5)
C1—C6—H6A109.1C1C—C2C—H2C106.9
C1—C6—H6B109.1C1C—C2C—C7C110.8 (19)
C5—C6—H6A109.1C3C—C2C—H2C106.9
C5—C6—H6B109.1C3C—C2C—C1C105 (2)
H6A—C6—H6B107.8C3C—C2C—C7C119.7 (17)
C2—C7—H7108.1C7C—C2C—H2C106.9
C2—C7—C8111.2 (15)H6CA—C6C—H6CB108.2
C8—C7—H7108.1C1C—C6C—H6CA109.7
C9—C7—C2112.2 (9)C1C—C6C—H6CB109.7
C9—C7—H7108.1C1C—C6C—C5C110 (2)
C9—C7—C8108.9 (8)C5C—C6C—H6CA109.7
C7—C8—H8A109.5C5C—C6C—H6CB109.7
C7—C8—H8B109.5H4CA—C4C—H4CB108.1
C7—C8—H8C109.5C5C—C4C—H4CA109.5
H8A—C8—H8B109.5C5C—C4C—H4CB109.5
H8A—C8—H8C109.5C5C—C4C—C3C110.8 (17)
H8B—C8—H8C109.5C3C—C4C—H4CA109.5
C7—C9—H9A109.5C3C—C4C—H4CB109.5
C7—C9—H9B109.5O1C—C1C—H1CB109.0
C7—C9—H9C109.5C2C—C1C—O1C107 (2)
H9A—C9—H9B109.5C2C—C1C—H1CB109.0
H9A—C9—H9C109.5C6C—C1C—O1C109 (2)
H9B—C9—H9C109.5C6C—C1C—C2C114 (2)
C5—C10—H10A109.5C6C—C1C—H1CB109.0
C5—C10—H10B109.5C6C—C5C—H5C106.5
C5—C10—H10C109.5C6C—C5C—C10C113.0 (18)
H10A—C10—H10B109.5C4C—C5C—C6C112 (3)
H10A—C10—H10C109.5C4C—C5C—H5C106.5
H10B—C10—H10C109.5C4C—C5C—C10C112.2 (19)
H1BA—O1B—H1BB121 (10)C10C—C5C—H5C106.5
C1B—O1B—H1BA104 (8)C2C—C3C—H3CA108.9
C1B—O1B—H1BB126 (10)C2C—C3C—H3CB108.9
O1B—C1B—H1BC109.7C4C—C3C—C2C114 (2)
O1B—C1B—C2B109 (3)C4C—C3C—H3CA108.9
O1B—C1B—C6B106 (2)C4C—C3C—H3CB108.9
C2B—C1B—H1BC109.7H3CA—C3C—H3CB107.7
C6B—C1B—H1BC109.7C2C—C7C—H7C109.0
C6B—C1B—C2B112.3 (14)C8C—C7C—C2C111.8 (14)
C1B—C2B—H2B108.1C8C—C7C—H7C109.0
C1B—C2B—C3B104 (3)C9C—C7C—C2C108.4 (11)
C1B—C2B—C7B113.9 (16)C9C—C7C—H7C109.0
C3B—C2B—H2B108.1C9C—C7C—C8C109.6 (9)
C7B—C2B—H2B108.1C7C—C8C—H8CA109.5
C7B—C2B—C3B114.5 (18)C7C—C8C—H8CB109.5
C2B—C3B—H3BA109.6C7C—C8C—H8CC109.5
C2B—C3B—H3BB109.6H8CA—C8C—H8CB109.5
H3BA—C3B—H3BB108.2H8CA—C8C—H8CC109.5
C4B—C3B—C2B110 (2)H8CB—C8C—H8CC109.5
C4B—C3B—H3BA109.6C7C—C9C—H9CA109.5
C4B—C3B—H3BB109.6C7C—C9C—H9CB109.5
C3B—C4B—H4BA109.4C7C—C9C—H9CC109.5
C3B—C4B—H4BB109.4H9CA—C9C—H9CB109.5
H4BA—C4B—H4BB108.0H9CA—C9C—H9CC109.5
C5B—C4B—C3B111.3 (13)H9CB—C9C—H9CC109.5
C5B—C4B—H4BA109.4C5C—C10C—H10G109.5
C5B—C4B—H4BB109.4C5C—C10C—H10H109.5
C4B—C5B—H5B107.9C5C—C10C—H10I109.5
C4B—C5B—C6B110 (3)H10G—C10C—H10H109.5
C4B—C5B—C10B113.3 (16)H10G—C10C—H10I109.5
C6B—C5B—H5B107.9H10H—C10C—H10I109.5
C10B—C5B—H5B107.9
O1—C1—C2—C3176.7 (6)C3B—C2B—C7B—C9B76 (2)
O1—C1—C2—C752.1 (14)C3B—C4B—C5B—C6B57 (3)
O1—C1—C6—C5174.9 (13)C3B—C4B—C5B—C10B180 (3)
C1—C2—C3—C455.6 (14)C4B—C5B—C6B—C1B56 (2)
C1—C2—C7—C875.9 (14)C6B—C1B—C2B—C3B63 (3)
C1—C2—C7—C9161.9 (16)C6B—C1B—C2B—C7B172 (3)
C2—C1—C6—C555 (2)C7B—C2B—C3B—C4B173.8 (7)
C2—C3—C4—C559 (2)C10B—C5B—C6B—C1B178.8 (10)
C3—C2—C7—C853.1 (12)C1C—C2C—C3C—C4C56.4 (18)
C3—C2—C7—C969.1 (18)C1C—C2C—C7C—C8C67 (2)
C3—C4—C5—C657.8 (18)C1C—C2C—C7C—C9C172 (2)
C3—C4—C5—C10177.7 (19)C1C—C6C—C5C—C4C54.6 (19)
C4—C5—C6—C155.6 (14)C1C—C6C—C5C—C10C177.7 (9)
C6—C1—C2—C353.5 (15)C5C—C6C—C1C—O1C174.7 (16)
C6—C1—C2—C7175.3 (15)C5C—C6C—C1C—C2C56 (3)
C7—C2—C3—C4173.1 (12)C5C—C4C—C3C—C2C60 (3)
C10—C5—C6—C1179.9 (13)C3C—C2C—C1C—O1C175.2 (13)
O1B—C1B—C2B—C3B179.4 (15)C3C—C2C—C1C—C6C55 (3)
O1B—C1B—C2B—C7B54 (3)C3C—C2C—C7C—C8C55 (2)
O1B—C1B—C6B—C5B179.2 (19)C3C—C2C—C7C—C9C66 (2)
C1B—C2B—C3B—C4B61.3 (19)C3C—C4C—C5C—C6C57 (2)
C1B—C2B—C7B—C8B67 (3)C3C—C4C—C5C—C10C175 (3)
C1B—C2B—C7B—C9B165 (3)C7C—C2C—C1C—O1C54 (2)
C2B—C1B—C6B—C5B62 (4)C7C—C2C—C1C—C6C174 (3)
C2B—C3B—C4B—C5B62 (3)C7C—C2C—C3C—C4C178.5 (6)
C3B—C2B—C7B—C8B52.6 (19)
alpha-DL-2-Isopropyl-5-methylcyclohexanol (alpha_DL_0.15GPa) top
Crystal data top
C10H20OZ = 6
Mr = 156.26F(000) = 528
Triclinic, P1Dx = 1.005 Mg m3
Hall symbol: -P 1Melting point: 308 K
a = 11.923 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.429 (2) ÅCell parameters from 1388 reflections
c = 12.770 (2) Åθ = 4.8–26.2°
α = 117.478 (18)°µ = 0.06 mm1
β = 99.16 (3)°T = 296 K
γ = 103.81 (3)°Plate, colourless
V = 1548.7 (9) Å30.45 × 0.45 × 0.05 mm
Data collection top
Xcalibur, Eos
diffractometer
1388 independent reflections
Radiation source: Enhance (Mo) X-ray Source639 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
ω scansθmax = 26.2°, θmin = 4.8°
Absorption correction: integration
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 66
Tmin = 0.972, Tmax = 0.997k = 1515
7285 measured reflectionsl = 1515
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.079 w = 1/[σ2(Fo2) + (0.1609P)2 + 0.1727P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.267(Δ/σ)max = 0.002
S = 1.04Δρmax = 0.12 e Å3
1388 reflectionsΔρmin = 0.09 e Å3
314 parametersExtinction correction: SHELXL-2015/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
207 restraintsExtinction coefficient: 0.016 (19)
Primary atom site location: iterative
Special details top

Experimental. Data were collected at room temperature and pressure of 0.15 (2) GPa (150000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.5467 (13)1.0762 (6)0.1275 (4)0.080 (8)
H1B0.6141171.0713320.1280100.120*0.5
H1A0.53 (4)1.036 (19)0.0513 (12)0.120*0.5
C10.556 (2)1.2101 (10)0.1805 (7)0.065 (5)
H10.4772871.2139450.1504350.097*
C20.594 (3)1.2750 (11)0.3190 (8)0.071 (5)
H20.6740401.2714950.3452770.106*
C30.610 (2)1.4173 (11)0.3778 (8)0.076 (5)
H3A0.5318471.4252150.3539910.113*
H3B0.6375841.4593780.4675410.113*
C40.697 (3)1.4810 (13)0.3381 (10)0.100 (6)
H4A0.7762761.4831960.3730110.151*
H4B0.7006771.5700960.3729470.151*
C50.671 (3)1.4208 (13)0.2018 (10)0.093 (6)
H50.5958201.4291470.1693490.140*
C60.649 (2)1.2761 (11)0.1419 (8)0.075 (5)
H6A0.6215671.2352440.0522090.113*
H6B0.7250401.2646970.1648550.113*
C70.511 (3)1.2060 (15)0.3620 (10)0.083 (5)
H70.4934011.1129270.3075600.124*
C80.387 (4)1.2263 (18)0.3541 (13)0.112 (10)
H8A0.3386741.1790080.3832830.135*
H8B0.4004671.3169690.4047070.135*
H8C0.3444831.1952950.2694010.135*
C90.563 (3)1.2404 (15)0.4994 (9)0.142 (10)
H9A0.5027701.1911750.5181120.171*
H9B0.6348301.2196860.5083250.171*
H9C0.5818891.3314150.5556660.171*
C100.770 (3)1.4843 (15)0.1626 (12)0.119 (9)
H10A0.7465001.4398650.0735750.142*
H10B0.7785891.5737300.1956590.142*
H10C0.8456341.4790250.1940920.142*
O1B0.7460 (13)1.0087 (7)0.1243 (5)0.131 (8)
H1BA0.811 (3)1.051 (5)0.126 (3)0.196*0.5
H1BB0.685 (2)1.024 (3)0.106 (4)0.196*0.5
C1B0.761 (3)0.9499 (15)0.1978 (9)0.085 (6)
H1BC0.8220660.9092090.1770950.128*
C2B0.805 (4)1.0443 (16)0.3338 (11)0.093 (6)
H2B0.7383821.0754720.3519730.140*
C3B0.819 (4)0.9767 (17)0.4035 (11)0.114 (6)
H3BA0.8821250.9406780.3873490.171*
H3BB0.8424191.0385950.4920160.171*
C4B0.704 (4)0.8728 (17)0.3657 (12)0.116 (6)
H4BA0.6448400.9114940.3926120.173*
H4BB0.7171870.8274310.4086060.173*
C5B0.653 (4)0.7768 (16)0.2305 (12)0.106 (6)
H5B0.7104190.7316540.2070250.158*
C6B0.647 (3)0.8484 (15)0.1601 (10)0.085 (6)
H6BA0.6246940.7864680.0717110.128*
H6BB0.5846870.8859560.1742820.128*
C7B0.906 (5)1.157 (2)0.3729 (14)0.110 (6)
H7B0.8869041.1872590.3160800.165*
C8B1.033 (6)1.136 (3)0.3667 (17)0.150 (11)
H8BA1.0947861.2174140.3947750.180*
H8BB1.0542261.1034600.4188930.180*
H8BC1.0248341.0749520.2825320.180*
C9B0.944 (4)1.2772 (18)0.5078 (14)0.195 (11)
H9BA1.0129591.3452220.5203760.234*
H9BB0.8770751.3076830.5183180.234*
H9BC0.9636891.2523640.5671400.234*
C10B0.530 (4)0.6742 (18)0.1899 (14)0.135 (10)
H10D0.5040200.6164150.1014560.162*
H10E0.5363350.6259720.2300950.162*
H10F0.4720380.7154560.2125320.162*
O1C0.9353 (7)1.0792 (6)0.0515 (5)0.093 (8)
H1CA0.893 (3)1.081 (8)0.096 (2)0.140*0.5
H1C0.9775 (16)1.0360 (19)0.024 (4)0.140*0.5
C2C1.059 (4)1.2553 (15)0.0330 (11)0.080 (6)
H2C1.0896751.1941590.0247500.120*
C6C0.834 (2)1.1097 (11)0.1069 (8)0.082 (5)
H6CA0.7570901.0582690.1104110.123*
H6CB0.8654241.0501380.1646530.123*
C4C0.950 (4)1.2769 (16)0.1402 (12)0.087 (6)
H4CA0.9788511.2148940.1977860.131*
H4CB0.9467381.3392660.1651260.131*
C1C0.917 (4)1.1711 (15)0.0162 (11)0.077 (6)
H1CB0.8859401.2299020.0758120.116*
C5C0.811 (4)1.1994 (17)0.1529 (12)0.090 (6)
H5C0.7825231.2618010.0931820.136*
C3C1.038 (2)1.3456 (11)0.0153 (8)0.092 (5)
H3CA1.0094111.4085510.0422660.138*
H3CB1.1148381.3929250.0159720.138*
C7C1.143 (4)1.317 (2)0.1589 (15)0.097 (7)
H7C1.1422761.2476740.1759830.145*
C8C1.108 (3)1.4163 (16)0.2622 (10)0.142 (10)
H8CA1.1670551.4518960.3410690.171*
H8CB1.1052031.4847740.2473450.171*
H8CC1.0293351.3742630.2628010.171*
C9C1.266 (6)1.370 (3)0.156 (2)0.160 (13)
H9CA1.3233841.4114480.2372410.192*
H9CB1.2867061.3014240.0975780.192*
H9CC1.2682721.4330020.1316360.192*
C10C0.726 (3)1.1376 (13)0.2750 (9)0.112 (9)
H10G0.7180711.2024420.2938700.134*
H10H0.7539771.0788950.3352240.134*
H10I0.6477501.0903700.2773500.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.09 (2)0.069 (5)0.072 (3)0.028 (10)0.024 (7)0.028 (4)
C10.068 (14)0.067 (6)0.062 (4)0.028 (8)0.027 (7)0.032 (4)
C20.067 (14)0.077 (6)0.069 (5)0.028 (8)0.027 (7)0.035 (4)
C30.070 (14)0.072 (6)0.068 (5)0.023 (8)0.028 (8)0.022 (4)
C40.099 (14)0.087 (7)0.110 (7)0.037 (9)0.040 (8)0.043 (5)
C50.098 (14)0.080 (7)0.108 (6)0.024 (8)0.040 (8)0.055 (5)
C60.078 (14)0.077 (6)0.077 (5)0.028 (8)0.025 (7)0.044 (5)
C70.081 (14)0.080 (7)0.076 (5)0.015 (9)0.029 (8)0.037 (5)
C80.11 (3)0.103 (10)0.108 (8)0.036 (15)0.035 (14)0.042 (7)
C90.14 (3)0.180 (12)0.094 (7)0.025 (16)0.032 (11)0.077 (7)
C100.13 (3)0.098 (9)0.145 (8)0.051 (13)0.056 (13)0.066 (7)
O1B0.17 (2)0.160 (7)0.126 (5)0.064 (12)0.053 (8)0.116 (5)
C1B0.088 (14)0.091 (7)0.076 (6)0.025 (9)0.020 (8)0.047 (5)
C2B0.092 (14)0.099 (8)0.088 (6)0.030 (9)0.034 (9)0.049 (6)
C3B0.120 (14)0.131 (8)0.094 (6)0.023 (9)0.026 (8)0.074 (6)
C4B0.130 (15)0.126 (8)0.107 (7)0.024 (9)0.036 (8)0.083 (7)
C5B0.104 (14)0.089 (7)0.121 (7)0.036 (9)0.036 (8)0.052 (6)
C6B0.087 (14)0.090 (7)0.074 (5)0.023 (9)0.031 (8)0.041 (5)
C7B0.108 (15)0.120 (9)0.102 (7)0.042 (10)0.035 (9)0.057 (6)
C8B0.16 (3)0.169 (14)0.133 (9)0.053 (18)0.038 (16)0.091 (10)
C9B0.18 (3)0.160 (13)0.187 (11)0.040 (17)0.080 (15)0.045 (9)
C10B0.13 (3)0.118 (11)0.164 (10)0.061 (15)0.053 (15)0.069 (9)
O1C0.11 (2)0.095 (5)0.118 (4)0.036 (10)0.048 (8)0.079 (4)
C2C0.081 (14)0.076 (7)0.078 (6)0.026 (9)0.025 (8)0.038 (5)
C6C0.086 (14)0.083 (6)0.073 (5)0.018 (8)0.025 (7)0.043 (4)
C4C0.092 (14)0.089 (7)0.086 (7)0.029 (9)0.024 (8)0.052 (5)
C1C0.080 (14)0.076 (7)0.088 (6)0.030 (9)0.034 (8)0.048 (5)
C5C0.091 (14)0.096 (8)0.086 (7)0.025 (9)0.031 (8)0.051 (5)
C3C0.103 (14)0.090 (6)0.092 (5)0.024 (8)0.032 (7)0.060 (5)
C7C0.095 (15)0.098 (8)0.094 (7)0.035 (10)0.026 (9)0.047 (6)
C8C0.14 (3)0.175 (12)0.100 (7)0.055 (16)0.051 (12)0.059 (8)
C9C0.16 (3)0.168 (16)0.147 (12)0.043 (18)0.040 (16)0.088 (11)
C10C0.10 (3)0.117 (9)0.094 (7)0.019 (14)0.007 (11)0.058 (7)
Geometric parameters (Å, º) top
O1—H1B0.8200C5B—C6B1.534 (15)
O1—H1A0.8200 (15)C5B—C10B1.52 (5)
O1—C11.444 (8)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.495 (11)C7B—H7B0.9800
C1—C61.50 (3)C7B—C8B1.60 (8)
C2—H20.9800C7B—C9B1.57 (2)
C2—C31.516 (11)C8B—H8BA0.9600
C2—C71.49 (3)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.45 (3)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.484 (14)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.526 (13)O1C—H1CA0.8200 (12)
C5—C101.53 (4)O1C—H1C0.8200 (12)
C6—H6A0.9700O1C—C1C1.455 (12)
C6—H6B0.9700C2C—H2C0.9800
C7—H70.9800C2C—C1C1.68 (5)
C7—C81.56 (5)C2C—C3C1.558 (14)
C7—C91.574 (16)C2C—C7C1.47 (4)
C8—H8A0.9600C6C—H6CA0.9700
C8—H8B0.9600C6C—H6CB0.9700
C8—H8C0.9600C6C—C1C1.44 (3)
C9—H9A0.9600C6C—C5C1.538 (15)
C9—H9B0.9600C4C—H4CA0.9700
C9—H9C0.9600C4C—H4CB0.9700
C10—H10A0.9600C4C—C5C1.64 (6)
C10—H10B0.9600C4C—C3C1.47 (3)
C10—H10C0.9600C1C—H1CB0.9800
O1B—H1BA0.8200 (12)C5C—H5C0.9800
O1B—H1BB0.8200 (12)C5C—C10C1.44 (3)
O1B—C1B1.446 (10)C3C—H3CA0.9700
C1B—H1BC0.9800C3C—H3CB0.9700
C1B—C2B1.485 (16)C7C—H7C0.9800
C1B—C6B1.44 (4)C7C—C8C1.54 (2)
C2B—H2B0.9800C7C—C9C1.47 (8)
C2B—C3B1.494 (14)C8C—H8CA0.9600
C2B—C7B1.42 (6)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.46 (5)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.481 (18)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1B—O1—H1A89.2C10B—C5B—C6B110 (2)
C1—O1—H1B109.5C1B—C6B—C5B113 (2)
C1—O1—H1A113 (10)C1B—C6B—H6BA109.1
O1—C1—H1109.5C1B—C6B—H6BB109.1
O1—C1—C2108.9 (6)C5B—C6B—H6BA109.1
O1—C1—C6109.1 (12)C5B—C6B—H6BB109.1
C2—C1—H1109.5H6BA—C6B—H6BB107.8
C2—C1—C6110.3 (17)C2B—C7B—H7B106.4
C6—C1—H1109.5C2B—C7B—C8B115.9 (15)
C1—C2—H2106.9C2B—C7B—C9B119 (3)
C1—C2—C3110.2 (7)C8B—C7B—H7B106.4
C3—C2—H2106.9C9B—C7B—H7B106.4
C7—C2—C1112.5 (17)C9B—C7B—C8B102 (4)
C7—C2—H2106.9C7B—C8B—H8BA109.5
C7—C2—C3113.0 (15)C7B—C8B—H8BB109.5
C2—C3—H3A109.6C7B—C8B—H8BC109.5
C2—C3—H3B109.6H8BA—C8B—H8BB109.5
H3A—C3—H3B108.1H8BA—C8B—H8BC109.5
C4—C3—C2110.4 (15)H8BB—C8B—H8BC109.5
C4—C3—H3A109.6C7B—C9B—H9BA109.5
C4—C3—H3B109.6C7B—C9B—H9BB109.5
C3—C4—H4A108.3C7B—C9B—H9BC109.5
C3—C4—H4B108.3H9BA—C9B—H9BB109.5
C3—C4—C5116 (2)H9BA—C9B—H9BC109.5
H4A—C4—H4B107.4H9BB—C9B—H9BC109.5
C5—C4—H4A108.3C5B—C10B—H10D109.5
C5—C4—H4B108.3C5B—C10B—H10E109.5
C4—C5—H5107.3C5B—C10B—H10F109.5
C4—C5—C6109.6 (8)H10D—C10B—H10E109.5
C4—C5—C10115 (2)H10D—C10B—H10F109.5
C6—C5—H5107.3H10E—C10B—H10F109.5
C6—C5—C10110.2 (16)H1CA—O1C—H1C134 (8)
C10—C5—H5107.3C1C—O1C—H1CA104 (7)
C1—C6—C5112.4 (15)C1C—O1C—H1C122 (5)
C1—C6—H6A109.1C1C—C2C—H2C107.6
C1—C6—H6B109.1C3C—C2C—H2C107.6
C5—C6—H6A109.1C3C—C2C—C1C103 (2)
C5—C6—H6B109.1C7C—C2C—H2C107.6
H6A—C6—H6B107.9C7C—C2C—C1C113 (2)
C2—C7—H7107.1C7C—C2C—C3C117.5 (15)
C2—C7—C8114.4 (13)H6CA—C6C—H6CB107.3
C2—C7—C9116 (2)C1C—C6C—H6CA108.1
C8—C7—H7107.1C1C—C6C—H6CB108.1
C8—C7—C9104.9 (19)C1C—C6C—C5C116.9 (13)
C9—C7—H7107.1C5C—C6C—H6CA108.1
C7—C8—H8A109.5C5C—C6C—H6CB108.1
C7—C8—H8B109.5H4CA—C4C—H4CB107.5
C7—C8—H8C109.5C5C—C4C—H4CA108.5
H8A—C8—H8B109.5C5C—C4C—H4CB108.5
H8A—C8—H8C109.5C3C—C4C—H4CA108.5
H8B—C8—H8C109.5C3C—C4C—H4CB108.5
C7—C9—H9A109.5C3C—C4C—C5C114.9 (16)
C7—C9—H9B109.5O1C—C1C—C2C103 (2)
C7—C9—H9C109.5O1C—C1C—H1CB108.9
H9A—C9—H9B109.5C2C—C1C—H1CB108.9
H9A—C9—H9C109.5C6C—C1C—O1C113.2 (13)
H9B—C9—H9C109.5C6C—C1C—C2C113.3 (15)
C5—C10—H10A109.5C6C—C1C—H1CB108.9
C5—C10—H10B109.5C6C—C5C—C4C101 (3)
C5—C10—H10C109.5C6C—C5C—H5C108.4
H10A—C10—H10B109.5C4C—C5C—H5C108.4
H10A—C10—H10C109.5C10C—C5C—C6C116.7 (15)
H10B—C10—H10C109.5C10C—C5C—C4C113.7 (16)
H1BA—O1B—H1BB120 (5)C10C—C5C—H5C108.4
C1B—O1B—H1BA112 (5)C2C—C3C—H3CA108.7
C1B—O1B—H1BB125 (5)C2C—C3C—H3CB108.7
O1B—C1B—H1BC107.8C4C—C3C—C2C114.1 (13)
O1B—C1B—C2B113.5 (9)C4C—C3C—H3CA108.7
C2B—C1B—H1BC107.8C4C—C3C—H3CB108.7
C6B—C1B—O1B108 (2)H3CA—C3C—H3CB107.6
C6B—C1B—H1BC107.8C2C—C7C—H7C106.9
C6B—C1B—C2B112 (2)C2C—C7C—C8C115 (3)
C1B—C2B—H2B105.2C2C—C7C—C9C107 (2)
C1B—C2B—C3B110.5 (10)C8C—C7C—H7C106.9
C3B—C2B—H2B105.2C9C—C7C—H7C106.9
C7B—C2B—C1B114 (2)C9C—C7C—C8C114 (2)
C7B—C2B—H2B105.2C7C—C8C—H8CA109.5
C7B—C2B—C3B115 (3)C7C—C8C—H8CB109.5
C2B—C3B—H3BA109.6C7C—C8C—H8CC109.5
C2B—C3B—H3BB109.6H8CA—C8C—H8CB109.5
H3BA—C3B—H3BB108.1H8CA—C8C—H8CC109.5
C4B—C3B—C2B110 (3)H8CB—C8C—H8CC109.5
C4B—C3B—H3BA109.6C7C—C9C—H9CA109.5
C4B—C3B—H3BB109.6C7C—C9C—H9CB109.5
C3B—C4B—H4BA108.5C7C—C9C—H9CC109.5
C3B—C4B—H4BB108.5H9CA—C9C—H9CB109.5
C3B—C4B—C5B115 (2)H9CA—C9C—H9CC109.5
H4BA—C4B—H4BB107.5H9CB—C9C—H9CC109.5
C5B—C4B—H4BA108.5C5C—C10C—H10G109.5
C5B—C4B—H4BB108.5C5C—C10C—H10H109.5
C4B—C5B—H5B107.3C5C—C10C—H10I109.5
C4B—C5B—C6B109.3 (11)H10G—C10C—H10H109.5
C4B—C5B—C10B115 (2)H10G—C10C—H10I109.5
C6B—C5B—H5B107.3H10H—C10C—H10I109.5
C10B—C5B—H5B107.3
O1—C1—C2—C3177.8 (19)C3B—C2B—C7B—C9B64 (4)
O1—C1—C2—C755 (2)C3B—C4B—C5B—C6B51 (4)
O1—C1—C6—C5175.9 (13)C3B—C4B—C5B—C10B176 (2)
C1—C2—C3—C457 (3)C4B—C5B—C6B—C1B51 (3)
C1—C2—C7—C875.4 (18)C6B—C1B—C2B—C3B58 (3)
C1—C2—C7—C9162.4 (13)C6B—C1B—C2B—C7B170 (3)
C2—C1—C6—C556.3 (19)C7B—C2B—C3B—C4B173 (2)
C2—C3—C4—C554 (2)C10B—C5B—C6B—C1B178.3 (18)
C3—C2—C7—C850 (2)C1C—C2C—C3C—C4C53 (2)
C3—C2—C7—C972 (2)C1C—C2C—C7C—C8C61 (2)
C3—C4—C5—C651 (3)C1C—C2C—C7C—C9C171.7 (17)
C3—C4—C5—C10175.8 (15)C1C—C6C—C5C—C4C58 (2)
C4—C5—C6—C151 (3)C1C—C6C—C5C—C10C178 (3)
C6—C1—C2—C358 (2)C5C—C6C—C1C—O1C179 (2)
C6—C1—C2—C7174.6 (14)C5C—C6C—C1C—C2C62 (3)
C7—C2—C3—C4176.5 (17)C5C—C4C—C3C—C2C62 (3)
C10—C5—C6—C1178.2 (16)C3C—C2C—C1C—O1C175.5 (5)
O1B—C1B—C2B—C3B180 (3)C3C—C2C—C1C—C6C52.6 (14)
O1B—C1B—C2B—C7B48 (4)C3C—C2C—C7C—C8C59 (4)
O1B—C1B—C6B—C5B179.0 (10)C3C—C2C—C7C—C9C68 (3)
C1B—C2B—C3B—C4B56 (3)C3C—C4C—C5C—C6C56.8 (14)
C1B—C2B—C7B—C8B71 (3)C3C—C4C—C5C—C10C177.5 (8)
C1B—C2B—C7B—C9B166.8 (19)C7C—C2C—C1C—O1C56.7 (15)
C2B—C1B—C6B—C5B56 (2)C7C—C2C—C1C—C6C179.6 (10)
C2B—C3B—C4B—C5B55 (3)C7C—C2C—C3C—C4C178 (3)
C3B—C2B—C7B—C8B58 (2)
alpha-DL-2-Isopropyl-5-methylcyclohexanol (alpha_DL_0.30GPa) top
Crystal data top
C10H20OZ = 6
Mr = 156.26F(000) = 528
Triclinic, P1Dx = 1.035 Mg m3
Hall symbol: -P 1Melting point: 308 K
a = 11.886 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.233 (3) ÅCell parameters from 1378 reflections
c = 12.647 (3) Åθ = 4.8–26.7°
α = 117.45 (3)°µ = 0.06 mm1
β = 99.624 (18)°T = 296 K
γ = 103.81 (2)°Plate, colourless
V = 1500.5 (8) Å30.40 × 0.30 × 0.05 mm
Data collection top
Xcalibur, Eos
diffractometer
1378 independent reflections
Radiation source: Enhance (Mo) X-ray Source608 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
ω scansθmax = 26.7°, θmin = 4.8°
Absorption correction: integration
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1414
Tmin = 0.978, Tmax = 0.996k = 66
7233 measured reflectionsl = 1212
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.067 w = 1/[σ2(Fo2) + (0.1255P)2 + 0.0841P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.228(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.08 e Å3
1378 reflectionsΔρmin = 0.08 e Å3
314 parametersExtinction correction: SHELXL-2015/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
207 restraintsExtinction coefficient: 0.03 (2)
Special details top

Experimental. Data were collected at room temperature and pressure of 0.30 (2) GPa (300000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.5451 (5)1.0736 (10)0.1257 (6)0.114 (10)
H1B0.6124251.0678670.1259600.171*0.5
H1A0.512 (16)0.995 (4)0.071 (9)0.171*0.5
C10.5560 (7)1.2110 (15)0.1764 (9)0.080 (6)
H10.4764031.2138690.1443340.120*
C20.5906 (7)1.2746 (15)0.3197 (8)0.074 (6)
H20.6698041.2686800.3474300.111*
C30.6127 (8)1.4204 (17)0.3766 (9)0.087 (6)
H3A0.5374031.4314150.3482860.130*
H3B0.6375671.4643200.4676010.130*
C40.7081 (8)1.4809 (19)0.3394 (11)0.106 (7)
H4A0.7832691.4701650.3684450.159*
H4B0.7235531.5747390.3795610.159*
C50.6723 (9)1.4204 (19)0.2005 (11)0.115 (7)
H50.5955481.4309570.1729430.173*
C60.6501 (7)1.2814 (16)0.1401 (9)0.083 (6)
H6A0.7262171.2691300.1625260.124*
H6B0.6221931.2420720.0495460.124*
C70.5027 (6)1.2045 (15)0.3634 (9)0.083 (6)
H70.4852181.1096680.3102890.125*
C80.3820 (7)1.2236 (16)0.3532 (10)0.116 (11)
H8A0.3431941.1987690.2684280.140*
H8B0.3304551.1696230.3751390.140*
H8C0.3951791.3147630.4095180.140*
C90.5610 (9)1.244 (2)0.4960 (12)0.143 (12)
H9A0.6383961.2322970.5042350.172*
H9B0.5733581.3349210.5516430.172*
H9C0.5086341.1897820.5172640.172*
C100.7685 (10)1.488 (2)0.1612 (13)0.162 (12)
H10A0.7817091.5808780.2026560.195*
H10B0.8438431.4767820.1847720.195*
H10C0.7399241.4497420.0717270.195*
O1B0.7473 (8)1.0118 (15)0.1281 (10)0.123 (11)
H1BA0.802 (3)1.025 (9)0.099 (3)0.185*0.5
H1BB0.7061 (15)1.058 (3)0.134 (12)0.185*0.5
C1B0.7626 (15)0.948 (3)0.1999 (15)0.117 (8)
H1BC0.8227210.9053670.1804720.175*
C2B0.8035 (14)1.050 (3)0.3372 (15)0.113 (8)
H2B0.7370941.0819620.3561280.170*
C3B0.8215 (15)0.976 (3)0.4016 (17)0.127 (9)
H3BA0.8547911.0374730.4919180.190*
H3BB0.8793260.9339280.3750410.190*
C4B0.6994 (9)0.8721 (19)0.3693 (11)0.142 (7)
H4BA0.7109170.8258140.4128020.213*
H4BB0.6415290.9142210.3961520.213*
C5B0.6507 (15)0.776 (3)0.2301 (17)0.126 (9)
H5B0.7092160.7322990.2069510.190*
C6B0.6419 (12)0.849 (3)0.1600 (14)0.099 (8)
H6BA0.6152860.7868500.0699910.148*
H6BB0.5827080.8915700.1787730.148*
C7B0.9200 (7)1.1693 (16)0.3790 (10)0.112 (7)
H7B0.9032421.1994700.3206030.169*
C8B1.0358 (7)1.1331 (17)0.3661 (10)0.138 (12)
H8BA1.0174971.0593930.2829510.165*
H8BB1.1007601.2074510.3804690.165*
H8BC1.0607931.1100800.4269090.165*
C9B0.9421 (7)1.2784 (16)0.5010 (11)0.125 (11)
H9BA1.0147801.3494220.5224800.150*
H9BB0.8737341.3072440.5012150.150*
H9BC0.9525641.2519370.5615500.150*
C10B0.5296 (11)0.671 (2)0.1934 (14)0.173 (12)
H10D0.5004230.6110330.1038700.208*
H10E0.5402690.6235520.2347630.208*
H10F0.4712600.7118210.2181370.208*
O1C0.9394 (10)1.0789 (16)0.0530 (12)0.123 (12)
H1CA0.873 (3)1.036 (5)0.051 (2)0.184*0.5
H1C0.9735 (15)1.0348 (15)0.009 (2)0.184*0.5
C2C1.0535 (12)1.257 (2)0.0280 (14)0.089 (8)
H2C1.0804511.1934180.0334590.134*
C6C0.8337 (13)1.113 (2)0.1060 (14)0.085 (8)
H6CA0.7538301.0722070.1044520.128*
H6CB0.8558551.0437880.1657770.128*
C4C0.9482 (9)1.279 (2)0.1418 (11)0.119 (7)
H4CA0.9779921.2173060.2004710.178*
H4CB0.9409941.3413440.1667520.178*
C1C0.9231 (15)1.178 (3)0.019 (2)0.096 (8)
H1CB0.8943701.2393720.0807610.145*
C5C0.8269 (16)1.206 (3)0.1478 (16)0.119 (9)
H5C0.8012031.2713420.0867060.178*
C3C1.0349 (17)1.348 (3)0.0167 (19)0.121 (9)
H3CA1.0061211.4116850.0412610.182*
H3CB1.1127961.3970660.0158970.182*
C7C1.1451 (6)1.3148 (15)0.1602 (9)0.096 (7)
H7C1.1413001.2431540.1762930.144*
C8C1.1169 (7)1.4198 (17)0.2629 (10)0.123 (12)
H8CA1.0358501.3830310.2627190.148*
H8CB1.1749501.4522410.3428210.148*
H8CC1.1218301.4911910.2487090.148*
C9C1.2736 (7)1.3731 (18)0.1605 (11)0.142 (12)
H9CA1.2915771.3060240.0949210.170*
H9CB1.2785741.4444410.1462520.170*
H9CC1.3316941.4054910.2403640.170*
C10C0.7287 (8)1.1414 (18)0.2787 (9)0.128 (12)
H10G0.7291721.2072160.3001280.153*
H10H0.7471501.0721840.3414230.153*
H10I0.6493051.1052110.2750970.153*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.118 (4)0.078 (12)0.093 (5)0.029 (5)0.029 (4)0.009 (7)
C10.090 (5)0.066 (10)0.074 (6)0.027 (6)0.020 (4)0.031 (5)
C20.086 (4)0.068 (9)0.065 (6)0.035 (5)0.021 (4)0.030 (5)
C30.104 (5)0.072 (10)0.077 (6)0.031 (6)0.022 (5)0.035 (5)
C40.109 (5)0.088 (10)0.110 (7)0.029 (6)0.030 (5)0.047 (6)
C50.119 (6)0.110 (11)0.118 (8)0.034 (6)0.055 (6)0.059 (6)
C60.093 (5)0.083 (10)0.081 (6)0.025 (6)0.035 (5)0.050 (5)
C70.081 (4)0.086 (9)0.081 (6)0.036 (5)0.029 (4)0.038 (5)
C80.099 (5)0.112 (16)0.131 (8)0.032 (7)0.046 (5)0.059 (9)
C90.133 (6)0.177 (18)0.136 (10)0.064 (8)0.051 (7)0.089 (9)
C100.166 (8)0.141 (18)0.197 (11)0.067 (9)0.102 (8)0.082 (10)
O1B0.105 (5)0.158 (17)0.142 (9)0.058 (7)0.047 (6)0.099 (9)
C1B0.117 (8)0.127 (12)0.111 (10)0.041 (8)0.047 (8)0.064 (7)
C2B0.111 (8)0.104 (12)0.122 (9)0.039 (8)0.040 (7)0.056 (7)
C3B0.123 (8)0.128 (13)0.129 (9)0.049 (8)0.043 (7)0.065 (7)
C4B0.141 (7)0.152 (11)0.140 (8)0.042 (7)0.050 (6)0.085 (6)
C5B0.124 (8)0.130 (13)0.131 (10)0.034 (8)0.044 (8)0.077 (7)
C6B0.101 (7)0.099 (12)0.097 (7)0.040 (7)0.037 (6)0.048 (6)
C7B0.097 (5)0.116 (10)0.120 (7)0.043 (6)0.041 (5)0.056 (6)
C8B0.105 (5)0.163 (17)0.152 (9)0.051 (8)0.056 (6)0.082 (9)
C9B0.115 (6)0.083 (15)0.150 (9)0.019 (7)0.036 (6)0.051 (9)
C10B0.174 (9)0.147 (18)0.193 (11)0.050 (10)0.073 (8)0.083 (10)
O1C0.114 (6)0.127 (18)0.130 (9)0.054 (9)0.039 (6)0.064 (10)
C2C0.097 (7)0.080 (11)0.088 (8)0.031 (7)0.034 (6)0.041 (6)
C6C0.089 (6)0.082 (11)0.085 (8)0.023 (7)0.029 (6)0.047 (6)
C4C0.130 (6)0.108 (11)0.113 (7)0.021 (7)0.029 (6)0.067 (6)
C1C0.092 (7)0.092 (12)0.105 (9)0.041 (8)0.043 (6)0.043 (6)
C5C0.127 (9)0.120 (13)0.108 (10)0.046 (9)0.034 (7)0.059 (7)
C3C0.128 (9)0.123 (13)0.112 (10)0.050 (9)0.022 (7)0.065 (7)
C7C0.100 (5)0.096 (10)0.086 (6)0.024 (6)0.017 (5)0.053 (6)
C8C0.138 (6)0.116 (16)0.101 (8)0.066 (9)0.023 (6)0.041 (9)
C9C0.116 (6)0.131 (17)0.167 (10)0.035 (8)0.044 (6)0.074 (10)
C10C0.147 (7)0.131 (17)0.101 (8)0.035 (9)0.019 (6)0.072 (9)
Geometric parameters (Å, º) top
O1—H1B0.8200C5B—C6B1.53 (6)
O1—H1A0.8200 (12)C5B—C10B1.51 (2)
O1—C11.46 (2)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.536 (15)C7B—H7B0.9800
C1—C61.510 (16)C7B—C8B1.555 (18)
C2—H20.9800C7B—C9B1.425 (10)
C2—C31.52 (3)C8B—H8BA0.9600
C2—C71.527 (18)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.467 (18)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.489 (19)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.44 (2)O1C—H1CA0.8200 (12)
C5—C101.54 (2)O1C—H1C0.8200 (12)
C6—H6A0.9700O1C—C1C1.51 (5)
C6—H6B0.9700C2C—H2C0.9800
C7—H70.9800C2C—C1C1.57 (2)
C7—C81.503 (16)C2C—C3C1.51 (6)
C7—C91.49 (2)C2C—C7C1.55 (2)
C8—H8A0.9600C6C—H6CA0.9700
C8—H8B0.9600C6C—H6CB0.9700
C8—H8C0.9600C6C—C1C1.46 (3)
C9—H9A0.9600C6C—C5C1.47 (6)
C9—H9B0.9600C4C—H4CA0.9700
C9—H9C0.9600C4C—H4CB0.9700
C10—H10A0.9600C4C—C5C1.473 (18)
C10—H10B0.9600C4C—C3C1.44 (2)
C10—H10C0.9600C1C—H1CB0.9800
O1B—H1BA0.8200 (13)C5C—H5C0.9800
O1B—H1BB0.8200 (12)C5C—C10C1.56 (2)
O1B—C1B1.46 (5)C3C—H3CA0.9700
C1B—H1BC0.9800C3C—H3CB0.9700
C1B—C2B1.495 (17)C7C—H7C0.9800
C1B—C6B1.46 (2)C7C—C8C1.504 (13)
C2B—H2B0.9800C7C—C9C1.522 (9)
C2B—C3B1.49 (6)C8C—H8CA0.9600
C2B—C7B1.55 (2)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.53 (2)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.497 (16)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1B—O1—H1A90.0C10B—C5B—C6B112 (2)
C1—O1—H1B109.5C1B—C6B—C5B109 (2)
C1—O1—H1A151 (10)C1B—C6B—H6BA110.0
O1—C1—H1109.1C1B—C6B—H6BB110.0
O1—C1—C2105.9 (15)C5B—C6B—H6BA110.0
O1—C1—C6111.7 (8)C5B—C6B—H6BB110.0
C2—C1—H1109.1H6BA—C6B—H6BB108.3
C6—C1—H1109.1C2B—C7B—H7B105.9
C6—C1—C2111.7 (7)C2B—C7B—C8B113.8 (17)
C1—C2—H2106.4C8B—C7B—H7B105.9
C3—C2—C1107.4 (15)C9B—C7B—C2B112.7 (9)
C3—C2—H2106.4C9B—C7B—H7B105.9
C3—C2—C7114.9 (8)C9B—C7B—C8B111.9 (8)
C7—C2—C1114.7 (7)C7B—C8B—H8BA109.5
C7—C2—H2106.4C7B—C8B—H8BB109.5
C2—C3—H3A109.6C7B—C8B—H8BC109.5
C2—C3—H3B109.6H8BA—C8B—H8BB109.5
H3A—C3—H3B108.1H8BA—C8B—H8BC109.5
C4—C3—C2110.4 (10)H8BB—C8B—H8BC109.5
C4—C3—H3A109.6C7B—C9B—H9BA109.5
C4—C3—H3B109.6C7B—C9B—H9BB109.5
C3—C4—H4A109.3C7B—C9B—H9BC109.5
C3—C4—H4B109.3H9BA—C9B—H9BB109.5
C3—C4—C5111.8 (7)H9BA—C9B—H9BC109.5
H4A—C4—H4B107.9H9BB—C9B—H9BC109.5
C5—C4—H4A109.3C5B—C10B—H10D109.5
C5—C4—H4B109.3C5B—C10B—H10E109.5
C4—C5—H5107.9C5B—C10B—H10F109.5
C4—C5—C10112.1 (9)H10D—C10B—H10E109.5
C6—C5—C4109.7 (19)H10D—C10B—H10F109.5
C6—C5—H5107.9H10E—C10B—H10F109.5
C6—C5—C10111.0 (10)H1CA—O1C—H1C115 (4)
C10—C5—H5107.9C1C—O1C—H1CA109 (5)
C1—C6—H6A109.1C1C—O1C—H1C110 (3)
C1—C6—H6B109.1C1C—C2C—H2C107.0
C5—C6—C1112.6 (9)C3C—C2C—H2C107.0
C5—C6—H6A109.1C3C—C2C—C1C106 (2)
C5—C6—H6B109.1C3C—C2C—C7C119.8 (17)
H6A—C6—H6B107.8C7C—C2C—H2C107.0
C2—C7—H7107.1C7C—C2C—C1C109.5 (18)
C8—C7—C2115.6 (15)H6CA—C6C—H6CB107.9
C8—C7—H7107.1C1C—C6C—H6CA109.2
C9—C7—C2111.1 (8)C1C—C6C—H6CB109.2
C9—C7—H7107.1C1C—C6C—C5C112 (2)
C9—C7—C8108.3 (8)C5C—C6C—H6CA109.2
C7—C8—H8A109.5C5C—C6C—H6CB109.2
C7—C8—H8B109.5H4CA—C4C—H4CB108.0
C7—C8—H8C109.5C5C—C4C—H4CA109.3
H8A—C8—H8B109.5C5C—C4C—H4CB109.3
H8A—C8—H8C109.5C3C—C4C—H4CA109.3
H8B—C8—H8C109.5C3C—C4C—H4CB109.3
C7—C9—H9A109.5C3C—C4C—C5C111.5 (16)
C7—C9—H9B109.5O1C—C1C—C2C106 (2)
C7—C9—H9C109.5O1C—C1C—H1CB109.0
H9A—C9—H9B109.5C2C—C1C—H1CB108.9
H9A—C9—H9C109.5C6C—C1C—O1C111 (2)
H9B—C9—H9C109.5C6C—C1C—C2C113 (2)
C5—C10—H10A109.5C6C—C1C—H1CB109.0
C5—C10—H10B109.5C6C—C5C—C4C111 (3)
C5—C10—H10C109.5C6C—C5C—H5C106.2
H10A—C10—H10B109.5C6C—C5C—C10C113.9 (18)
H10A—C10—H10C109.5C4C—C5C—H5C106.2
H10B—C10—H10C109.5C4C—C5C—C10C112.2 (18)
H1BA—O1B—H1BB114 (10)C10C—C5C—H5C106.2
C1B—O1B—H1BA115 (7)C2C—C3C—H3CA109.1
C1B—O1B—H1BB127 (10)C2C—C3C—H3CB109.1
O1B—C1B—H1BC110.3C4C—C3C—C2C113 (2)
O1B—C1B—C2B109 (3)C4C—C3C—H3CA109.1
O1B—C1B—C6B105 (2)C4C—C3C—H3CB109.1
C2B—C1B—H1BC110.3H3CA—C3C—H3CB107.8
C6B—C1B—H1BC110.3C2C—C7C—H7C108.9
C6B—C1B—C2B111.3 (12)C8C—C7C—C2C112.1 (14)
C1B—C2B—H2B108.7C8C—C7C—H7C108.9
C1B—C2B—C7B113.1 (16)C8C—C7C—C9C109.5 (8)
C3B—C2B—C1B105 (3)C9C—C7C—C2C108.5 (11)
C3B—C2B—H2B108.7C9C—C7C—H7C108.9
C3B—C2B—C7B112.9 (19)C7C—C8C—H8CA109.5
C7B—C2B—H2B108.7C7C—C8C—H8CB109.5
C2B—C3B—H3BA109.7C7C—C8C—H8CC109.5
C2B—C3B—H3BB109.7H8CA—C8C—H8CB109.5
C2B—C3B—C4B110 (2)H8CA—C8C—H8CC109.5
H3BA—C3B—H3BB108.2H8CB—C8C—H8CC109.5
C4B—C3B—H3BA109.7C7C—C9C—H9CA109.5
C4B—C3B—H3BB109.7C7C—C9C—H9CB109.5
C3B—C4B—H4BA109.9C7C—C9C—H9CC109.5
C3B—C4B—H4BB109.9H9CA—C9C—H9CB109.5
H4BA—C4B—H4BB108.3H9CA—C9C—H9CC109.5
C5B—C4B—C3B109.1 (13)H9CB—C9C—H9CC109.5
C5B—C4B—H4BA109.9C5C—C10C—H10G109.5
C5B—C4B—H4BB109.9C5C—C10C—H10H109.5
C4B—C5B—H5B107.7C5C—C10C—H10I109.5
C4B—C5B—C6B110 (3)H10G—C10C—H10H109.5
C4B—C5B—C10B111.1 (15)H10G—C10C—H10I109.5
C6B—C5B—H5B107.7H10H—C10C—H10I109.5
C10B—C5B—H5B107.7
O1—C1—C2—C3175.6 (6)C3B—C2B—C7B—C9B75 (2)
O1—C1—C2—C755.3 (13)C3B—C4B—C5B—C6B55 (3)
O1—C1—C6—C5173.4 (13)C3B—C4B—C5B—C10B180 (3)
C1—C2—C3—C457.3 (13)C4B—C5B—C6B—C1B56 (2)
C1—C2—C7—C874.0 (13)C6B—C1B—C2B—C3B67 (3)
C1—C2—C7—C9162.0 (16)C6B—C1B—C2B—C7B170 (3)
C2—C1—C6—C555.0 (18)C7B—C2B—C3B—C4B172.5 (7)
C2—C3—C4—C561 (2)C10B—C5B—C6B—C1B179.5 (10)
C3—C2—C7—C851.3 (12)C1C—C2C—C3C—C4C56.5 (18)
C3—C2—C7—C972.7 (17)C1C—C2C—C7C—C8C67 (2)
C3—C4—C5—C659.4 (17)C1C—C2C—C7C—C9C171.7 (19)
C3—C4—C5—C10176.8 (18)C1C—C6C—C5C—C4C54 (2)
C4—C5—C6—C155.5 (13)C1C—C6C—C5C—C10C177.7 (9)
C6—C1—C2—C353.7 (14)C5C—C6C—C1C—O1C173.2 (17)
C6—C1—C2—C7177.2 (14)C5C—C6C—C1C—C2C54 (3)
C7—C2—C3—C4173.8 (11)C5C—C4C—C3C—C2C60 (2)
C10—C5—C6—C1179.9 (12)C3C—C2C—C1C—O1C175.4 (13)
O1B—C1B—C2B—C3B177.6 (15)C3C—C2C—C1C—C6C54 (3)
O1B—C1B—C2B—C7B54 (3)C3C—C2C—C7C—C8C55 (2)
O1B—C1B—C6B—C5B179.3 (17)C3C—C2C—C7C—C9C66 (2)
C1B—C2B—C3B—C4B64 (2)C3C—C4C—C5C—C6C57 (2)
C1B—C2B—C7B—C8B65 (3)C3C—C4C—C5C—C10C174 (3)
C1B—C2B—C7B—C9B166 (3)C7C—C2C—C1C—O1C54 (2)
C2B—C1B—C6B—C5B63 (4)C7C—C2C—C1C—C6C176 (3)
C2B—C3B—C4B—C5B61 (3)C7C—C2C—C3C—C4C179.2 (6)
C3B—C2B—C7B—C8B54 (2)
alpha-DL-2-Isopropyl-5-methylcyclohexanol (alpha_DL_0.51GPa) top
Crystal data top
C10H20OZ = 6
Mr = 156.26F(000) = 528
Triclinic, P1Dx = 1.070 Mg m3
Hall symbol: -P 1Melting point: 308 K
a = 11.735 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.0842 (15) ÅCell parameters from 1421 reflections
c = 12.5710 (16) Åθ = 3.1–28.4°
α = 117.421 (13)°µ = 0.07 mm1
β = 99.67 (10)°T = 296 K
γ = 103.75 (9)°Plate, colourless
V = 1455.3 (13) Å30.38 × 0.33 × 0.05 mm
Data collection top
Xcalibur, Eos
diffractometer
394 reflections with I > 2σ(I)
Detector resolution: 16.4 pixels mm-1Rint = 0.244
ω scansθmax = 29.4°, θmin = 2.8°
Absorption correction: integration
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1515
Tmin = 0.975, Tmax = 0.996k = 1312
8658 measured reflectionsl = 1616
1416 independent reflections
Refinement top
Refinement on F2216 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.065H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.250 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.004
1416 reflectionsΔρmax = 0.07 e Å3
313 parametersΔρmin = 0.07 e Å3
Special details top

Experimental. Data were collected at room temperature and pressure of 0.51 (2) GPa (510000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.5417 (11)1.085 (2)0.1352 (16)0.123 (9)
H1B0.6097421.0783240.1353420.185*0.5
H1A0.52 (2)1.067 (6)0.0622 (16)0.185*0.5
C10.5550 (19)1.221 (2)0.1938 (18)0.113 (9)
H10.4757011.2307170.1690250.136*
C20.5917 (18)1.261 (3)0.325 (2)0.110 (8)
H20.6700901.2493380.3482980.166*
C30.6126 (11)1.401 (2)0.3778 (17)0.077 (6)
H3A0.6324871.4425900.4688120.092*
H3B0.5349121.4081700.3467750.092*
C40.7147 (10)1.485 (3)0.352 (3)0.105 (6)
H4A0.7183641.5766820.3916690.157*
H4B0.7950291.4845140.3860430.157*
C50.6805 (16)1.422 (3)0.210 (3)0.100 (8)
H50.6054211.4358200.1809180.150*
C60.6532 (14)1.296 (4)0.161 (3)0.082 (7)
H6A0.7288271.2814720.1849470.123*
H6B0.6266801.2545510.0699180.123*
C70.5020 (11)1.205 (3)0.375 (2)0.090 (6)
H70.4773851.1079340.3214350.135*
C80.3798 (10)1.231 (3)0.368 (3)0.100 (9)
H8A0.3319271.1893960.4032010.120*
H8B0.3975081.3258790.4155270.120*
H8C0.3337681.1952060.2814420.120*
C90.5585 (10)1.238 (3)0.506 (2)0.104 (9)
H9A0.4962271.1990100.5318330.125*
H9B0.6233231.2022790.5073950.125*
H9C0.5922581.3329710.5620380.125*
C100.7825 (11)1.492 (3)0.178 (3)0.126 (10)
H10A0.7951471.5851010.2190370.151*
H10B0.8578901.4805490.2060410.151*
H10C0.7590351.4536030.0877640.151*
O1B0.7343 (6)0.9932 (18)0.1112 (15)0.106 (8)
H1BA0.803 (3)1.031 (8)0.113 (5)0.158*0.5
H1BB0.704 (4)1.050 (4)0.144 (13)0.158*0.5
C1B0.7498 (13)0.932 (4)0.182 (3)0.084 (6)
H1BC0.8062830.8830700.1594780.126*
C2B0.7993 (16)1.041 (5)0.332 (4)0.110 (7)
H2B0.7306811.0719000.3493820.166*
C3B0.8147 (12)0.971 (3)0.403 (3)0.112 (6)
H3BA0.8378341.0343060.4930360.168*
H3BB0.8800840.9357660.3874670.168*
C4B0.6912 (15)0.856 (3)0.358 (3)0.123 (7)
H4BA0.7051660.8075470.3996910.185*
H4BB0.6314130.8955940.3881040.185*
C5B0.6329 (13)0.755 (3)0.216 (3)0.106 (6)
H5B0.6895440.7087660.1869000.159*
C6B0.6281 (11)0.841 (3)0.157 (2)0.091 (6)
H6BA0.5888010.7831580.0659810.136*
H6BB0.5773580.8932780.1896690.136*
C7B0.919 (2)1.178 (5)0.382 (3)0.096 (7)
H7B0.9026721.2240280.3375510.145*
C8B1.0297 (11)1.120 (3)0.351 (3)0.100 (9)
H8BA1.0110021.0671660.2605720.120*
H8BB1.1069981.1932130.3863920.120*
H8BC1.0359201.0656970.3863170.120*
C9B0.934 (2)1.243 (6)0.487 (4)0.165 (13)
H9BA0.8652751.2727740.4981610.198*
H9BB0.9381071.1909170.5263530.198*
H9BC1.0091851.3184330.5264280.198*
C10B0.5023 (14)0.648 (4)0.173 (3)0.134 (10)
H10D0.5084780.5958210.2108760.161*
H10E0.4449880.6916070.1983880.161*
H10F0.4734690.5902970.0821080.161*
O1C0.9245 (6)1.0690 (17)0.0405 (13)0.102 (8)
H1CA0.861 (4)1.023 (5)0.041 (5)0.154*0.5
H1C0.9653 (14)1.0265 (17)0.005 (3)0.154*0.5
C2C1.0466 (11)1.248 (3)0.029 (2)0.083 (6)
H2C1.0761001.1847650.0322580.125*
C6C0.8286 (9)1.113 (3)0.112 (2)0.076 (5)
H6CA0.8456221.0391900.1741880.114*
H6CB0.7469261.0759870.1087100.114*
C4C0.9491 (11)1.270 (3)0.153 (2)0.099 (6)
H4CA0.9464451.3273550.1861500.149*
H4CB0.9775091.2010510.2061170.149*
C1C0.9204 (11)1.169 (3)0.014 (2)0.091 (6)
H1CB0.8920821.2299420.0773430.136*
C5C0.8255 (12)1.207 (3)0.155 (2)0.103 (6)
H5C0.7998141.2769450.0966810.154*
C3C1.0457 (11)1.357 (3)0.008 (3)0.102 (6)
H3CA1.1276141.4023290.0042880.153*
H3CB1.0165121.4228780.0486050.153*
C7C1.1378 (18)1.308 (5)0.157 (4)0.094 (7)
H7C1.1362761.2365410.1748330.142*
C8C1.119 (2)1.439 (6)0.285 (4)0.166 (12)
H8CA1.1819491.4685960.3615670.199*
H8CB1.1249091.5112130.2709940.199*
H8CC1.0386861.4074390.2919960.199*
C9C1.2734 (13)1.381 (4)0.174 (3)0.137 (10)
H9CA1.3253001.4165380.2579300.164*
H9CB1.3021471.3197830.1137510.164*
H9CC1.2765741.4532660.1590930.164*
C10C0.7257 (12)1.129 (3)0.295 (3)0.117 (9)
H10G0.6453681.0887020.2937040.140*
H10H0.7226061.1902440.3228200.140*
H10I0.7500641.0599860.3529980.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.107 (7)0.12 (2)0.131 (19)0.019 (13)0.023 (10)0.077 (18)
C10.095 (9)0.115 (15)0.120 (14)0.056 (10)0.037 (8)0.044 (11)
C20.126 (10)0.110 (15)0.108 (12)0.044 (9)0.031 (7)0.068 (11)
C30.061 (7)0.078 (13)0.081 (12)0.031 (8)0.034 (7)0.028 (10)
C40.087 (7)0.104 (14)0.114 (11)0.044 (8)0.029 (7)0.046 (10)
C50.105 (9)0.095 (14)0.108 (12)0.034 (9)0.041 (7)0.058 (11)
C60.078 (8)0.080 (14)0.085 (12)0.024 (8)0.032 (7)0.041 (10)
C70.090 (7)0.092 (13)0.091 (11)0.028 (7)0.028 (7)0.053 (10)
C80.079 (7)0.09 (2)0.123 (18)0.021 (11)0.037 (10)0.051 (18)
C90.092 (8)0.09 (2)0.120 (18)0.026 (11)0.034 (10)0.052 (18)
C100.118 (9)0.12 (2)0.131 (18)0.024 (12)0.040 (10)0.068 (18)
O1B0.111 (6)0.11 (2)0.106 (14)0.025 (9)0.030 (8)0.073 (16)
C1B0.079 (7)0.084 (14)0.086 (11)0.036 (7)0.026 (7)0.040 (10)
C2B0.105 (8)0.111 (14)0.114 (12)0.037 (8)0.037 (8)0.058 (11)
C3B0.108 (7)0.115 (13)0.110 (11)0.041 (8)0.043 (7)0.054 (10)
C4B0.133 (10)0.118 (14)0.126 (12)0.042 (8)0.031 (7)0.074 (11)
C5B0.099 (8)0.107 (14)0.114 (11)0.045 (8)0.040 (7)0.052 (10)
C6B0.090 (7)0.092 (13)0.094 (11)0.039 (7)0.036 (7)0.047 (10)
C7B0.086 (9)0.097 (14)0.102 (12)0.042 (8)0.040 (8)0.040 (11)
C8B0.083 (7)0.11 (2)0.089 (19)0.056 (11)0.050 (10)0.023 (18)
C9B0.116 (13)0.16 (3)0.19 (2)0.049 (14)0.074 (15)0.06 (2)
C10B0.143 (10)0.13 (2)0.147 (19)0.038 (13)0.057 (11)0.081 (19)
O1C0.113 (5)0.09 (2)0.126 (15)0.035 (9)0.033 (8)0.079 (17)
C2C0.089 (7)0.082 (13)0.083 (10)0.025 (7)0.028 (7)0.049 (10)
C6C0.079 (6)0.077 (13)0.079 (10)0.032 (7)0.041 (6)0.038 (10)
C4C0.116 (8)0.102 (13)0.095 (11)0.039 (8)0.034 (7)0.063 (10)
C1C0.100 (7)0.094 (13)0.084 (11)0.033 (8)0.019 (7)0.055 (10)
C5C0.109 (8)0.097 (13)0.110 (11)0.050 (8)0.021 (7)0.059 (10)
C3C0.105 (7)0.104 (13)0.100 (11)0.034 (7)0.032 (7)0.058 (10)
C7C0.100 (8)0.091 (14)0.098 (12)0.040 (8)0.025 (7)0.053 (10)
C8C0.168 (14)0.18 (3)0.14 (2)0.069 (16)0.022 (13)0.08 (2)
C9C0.116 (9)0.15 (3)0.14 (2)0.057 (13)0.046 (11)0.063 (19)
C10C0.135 (9)0.13 (2)0.113 (18)0.066 (12)0.041 (10)0.071 (18)
Geometric parameters (Å, º) top
O1—H1B0.8200C5B—C6B1.531 (19)
O1—H1A0.8200 (13)C5B—C10B1.57 (3)
O1—C11.418 (19)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.444 (17)C7B—H7B0.9800
C1—C61.52 (2)C7B—C8B1.64 (4)
C2—H20.9800C7B—C9B1.14 (7)
C2—C31.44 (2)C8B—H8BA0.9600
C2—C71.489 (17)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.558 (14)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.52 (2)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.27 (5)O1C—H1CA0.8200 (14)
C5—C101.518 (16)O1C—H1C0.8200 (14)
C6—H6A0.9700O1C—C1C1.401 (19)
C6—H6B0.9700C2C—H2C0.9800
C7—H70.9800C2C—C1C1.487 (15)
C7—C81.538 (18)C2C—C3C1.59 (3)
C7—C91.49 (2)C2C—C7C1.50 (3)
C8—H8A0.9600C6C—H6CA0.9700
C8—H8B0.9600C6C—H6CB0.9700
C8—H8C0.9600C6C—C1C1.48 (2)
C9—H9A0.9600C6C—C5C1.48 (2)
C9—H9B0.9600C4C—H4CA0.9700
C9—H9C0.9600C4C—H4CB0.9700
C10—H10A0.9600C4C—C5C1.456 (12)
C10—H10B0.9600C4C—C3C1.64 (3)
C10—H10C0.9600C1C—H1CB0.9800
O1B—H1BA0.8200 (15)C5C—H5C0.9800
O1B—H1BB0.8200 (13)C5C—C10C1.62 (3)
O1B—C1B1.419 (15)C3C—H3CA0.9700
C1B—H1BC0.9800C3C—H3CB0.9700
C1B—C2B1.61 (5)C7C—H7C0.9800
C1B—C6B1.45 (2)C7C—C8C1.76 (8)
C2B—H2B0.9800C7C—C9C1.55 (2)
C2B—C3B1.50 (2)C8C—H8CA0.9600
C2B—C7B1.66 (5)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.55 (2)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.53 (2)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1B—O1—H1A99.3C10B—C5B—H5B108.2
C1—O1—H1B109.5C1B—C6B—C5B113.1 (10)
C1—O1—H1A96 (2)C1B—C6B—H6BA109.0
O1—C1—H1110.8C1B—C6B—H6BB109.0
O1—C1—C2100 (2)C5B—C6B—H6BA109.0
O1—C1—C6110 (2)C5B—C6B—H6BB109.0
C2—C1—H1110.8H6BA—C6B—H6BB107.8
C2—C1—C6113.1 (17)C2B—C7B—H7B111.5
C6—C1—H1110.8C8B—C7B—C2B103 (3)
C1—C2—H2109.9C8B—C7B—H7B111.5
C1—C2—C7119.7 (18)C9B—C7B—C2B104 (3)
C3—C2—C197.0 (12)C9B—C7B—H7B111.5
C3—C2—H2109.9C9B—C7B—C8B114 (2)
C3—C2—C7110 (2)C7B—C8B—H8BA109.5
C7—C2—H2109.9C7B—C8B—H8BB109.5
C2—C3—H3A107.6C7B—C8B—H8BC109.5
C2—C3—H3B107.6H8BA—C8B—H8BB109.5
C2—C3—C4118.8 (19)H8BA—C8B—H8BC109.5
H3A—C3—H3B107.0H8BB—C8B—H8BC109.5
C4—C3—H3A107.6C7B—C9B—H9BA109.5
C4—C3—H3B107.6C7B—C9B—H9BB109.5
C3—C4—H4A110.3C7B—C9B—H9BC109.5
C3—C4—H4B110.3H9BA—C9B—H9BB109.5
H4A—C4—H4B108.5H9BA—C9B—H9BC109.5
C5—C4—C3107.2 (16)H9BB—C9B—H9BC109.5
C5—C4—H4A110.3C5B—C10B—H10D109.5
C5—C4—H4B110.3C5B—C10B—H10E109.5
C4—C5—H5107.6C5B—C10B—H10F109.5
C4—C5—C10109.8 (18)H10D—C10B—H10E109.5
C6—C5—C4107 (2)H10D—C10B—H10F109.5
C6—C5—H5107.6H10E—C10B—H10F109.5
C6—C5—C10117 (3)H1CA—O1C—H1C114 (6)
C10—C5—H5107.6C1C—O1C—H1CA119 (6)
C1—C6—H6A107.6C1C—O1C—H1C112 (2)
C1—C6—H6B107.6C1C—C2C—H2C106.5
C5—C6—C1119 (3)C1C—C2C—C3C112.4 (10)
C5—C6—H6A107.6C1C—C2C—C7C113.0 (11)
C5—C6—H6B107.6C3C—C2C—H2C106.5
H6A—C6—H6B107.0C7C—C2C—H2C106.5
C2—C7—H7105.1C7C—C2C—C3C111 (2)
C2—C7—C8119.0 (11)H6CA—C6C—H6CB107.4
C2—C7—C9113.5 (13)C1C—C6C—H6CA108.3
C8—C7—H7105.1C1C—C6C—H6CB108.3
C9—C7—H7105.1C5C—C6C—H6CA108.3
C9—C7—C8107.8 (15)C5C—C6C—H6CB108.3
C7—C8—H8A109.5C5C—C6C—C1C115.9 (19)
C7—C8—H8B109.5H4CA—C4C—H4CB108.1
C7—C8—H8C109.5C5C—C4C—H4CA109.6
H8A—C8—H8B109.5C5C—C4C—H4CB109.6
H8A—C8—H8C109.5C5C—C4C—C3C110.2 (13)
H8B—C8—H8C109.5C3C—C4C—H4CA109.6
C7—C9—H9A109.5C3C—C4C—H4CB109.6
C7—C9—H9B109.5O1C—C1C—C2C110.6 (10)
C7—C9—H9C109.5O1C—C1C—C6C111.5 (19)
H9A—C9—H9B109.5O1C—C1C—H1CB107.0
H9A—C9—H9C109.5C2C—C1C—C6C113.4 (10)
H9B—C9—H9C109.5C2C—C1C—H1CB107.0
C5—C10—H10A109.5C6C—C1C—H1CB107.0
C5—C10—H10B109.5C6C—C5C—H5C108.9
C5—C10—H10C109.5C6C—C5C—C10C109 (2)
H10A—C10—H10B109.5C4C—C5C—C6C109.3 (10)
H10A—C10—H10C109.5C4C—C5C—H5C108.9
H10B—C10—H10C109.5C4C—C5C—C10C111.4 (13)
H1BA—O1B—H1BB108 (9)C10C—C5C—H5C108.9
C1B—O1B—H1BA107 (7)C2C—C3C—C4C103 (2)
C1B—O1B—H1BB110 (10)C2C—C3C—H3CA111.1
O1B—C1B—H1BC110.8C2C—C3C—H3CB111.1
O1B—C1B—C2B110 (3)C4C—C3C—H3CA111.1
O1B—C1B—C6B107.6 (10)C4C—C3C—H3CB111.1
C2B—C1B—H1BC110.8H3CA—C3C—H3CB109.1
C6B—C1B—H1BC110.8C2C—C7C—H7C108.6
C6B—C1B—C2B106.3 (16)C2C—C7C—C8C117.1 (16)
C1B—C2B—H2B105.3C2C—C7C—C9C114.9 (14)
C1B—C2B—C7B116.9 (17)C8C—C7C—H7C108.6
C3B—C2B—C1B108 (3)C9C—C7C—H7C108.6
C3B—C2B—H2B105.3C9C—C7C—C8C98 (4)
C3B—C2B—C7B114.4 (19)C7C—C8C—H8CA109.5
C7B—C2B—H2B105.3C7C—C8C—H8CB109.5
C2B—C3B—H3BA109.8C7C—C8C—H8CC109.5
C2B—C3B—H3BB109.8H8CA—C8C—H8CB109.5
C2B—C3B—C4B109.4 (14)H8CA—C8C—H8CC109.5
H3BA—C3B—H3BB108.3H8CB—C8C—H8CC109.5
C4B—C3B—H3BA109.8C7C—C9C—H9CA109.5
C4B—C3B—H3BB109.8C7C—C9C—H9CB109.5
C3B—C4B—H4BA108.0C7C—C9C—H9CC109.5
C3B—C4B—H4BB108.0H9CA—C9C—H9CB109.5
H4BA—C4B—H4BB107.3H9CA—C9C—H9CC109.5
C5B—C4B—C3B117.0 (14)H9CB—C9C—H9CC109.5
C5B—C4B—H4BA108.0C5C—C10C—H10G109.5
C5B—C4B—H4BB108.0C5C—C10C—H10H109.5
C4B—C5B—H5B108.2C5C—C10C—H10I109.5
C4B—C5B—C10B115.7 (17)H10G—C10C—H10H109.5
C6B—C5B—C4B104.6 (19)H10G—C10C—H10I109.5
C6B—C5B—H5B108.2H10H—C10C—H10I109.5
C6B—C5B—C10B111.6 (12)
O1—C1—C2—C3175.7 (18)C3B—C2B—C7B—C9B55 (4)
O1—C1—C2—C767 (3)C3B—C4B—C5B—C6B51.5 (17)
O1—C1—C6—C5178 (2)C3B—C4B—C5B—C10B174.7 (16)
C1—C2—C3—C461.9 (19)C4B—C5B—C6B—C1B61 (2)
C1—C2—C7—C861 (3)C6B—C1B—C2B—C3B63.8 (18)
C1—C2—C7—C9171 (2)C6B—C1B—C2B—C7B165.1 (17)
C2—C1—C6—C566 (3)C7B—C2B—C3B—C4B173 (3)
C2—C3—C4—C559.3 (19)C10B—C5B—C6B—C1B173 (3)
C3—C2—C7—C850 (3)C1C—C2C—C3C—C4C56 (2)
C3—C2—C7—C979 (2)C1C—C2C—C7C—C8C70 (3)
C3—C4—C5—C647 (2)C1C—C2C—C7C—C9C175 (3)
C3—C4—C5—C10175.1 (19)C1C—C6C—C5C—C4C55 (3)
C4—C5—C6—C154 (2)C1C—C6C—C5C—C10C177.1 (15)
C6—C1—C2—C358 (2)C5C—C6C—C1C—O1C174.3 (15)
C6—C1—C2—C7175 (2)C5C—C6C—C1C—C2C49 (2)
C7—C2—C3—C4173.0 (11)C5C—C4C—C3C—C2C63.3 (19)
C10—C5—C6—C1177.8 (13)C3C—C2C—C1C—O1C177 (2)
O1B—C1B—C2B—C3B179.7 (9)C3C—C2C—C1C—C6C51 (3)
O1B—C1B—C2B—C7B49 (2)C3C—C2C—C7C—C8C58 (3)
O1B—C1B—C6B—C5B173 (2)C3C—C2C—C7C—C9C57 (3)
C1B—C2B—C3B—C4B55 (2)C3C—C4C—C5C—C6C63 (3)
C1B—C2B—C7B—C8B64 (2)C3C—C4C—C5C—C10C176 (2)
C1B—C2B—C7B—C9B177 (3)C7C—C2C—C1C—O1C56 (3)
C2B—C1B—C6B—C5B69 (3)C7C—C2C—C1C—C6C178 (2)
C2B—C3B—C4B—C5B53 (3)C7C—C2C—C3C—C4C176.1 (15)
C3B—C2B—C7B—C8B65 (3)
alpha-DL-2-Isopropyl-5-methylcyclohexanol (alpha_DL_0.60GPa) top
Crystal data top
C10H20OZ = 6
Mr = 156.26F(000) = 528
Triclinic, P1Dx = 1.086 Mg m3
Hall symbol: -P 1Melting point: 308 K
a = 11.601 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.022 (3) ÅCell parameters from 1268 reflections
c = 12.596 (2) Åθ = 5.0–26.7°
α = 117.58 (2)°µ = 0.07 mm1
β = 99.50 (3)°T = 296 K
γ = 103.76 (4)°Plate, colourless
V = 1432.9 (13) Å30.45 × 0.45 × 0.05 mm
Data collection top
Xcalibur, Eos
diffractometer
1268 independent reflections
Radiation source: Enhance (Mo) X-ray Source589 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.101
Detector resolution: 16.4 pixels mm-1θmax = 26.7°, θmin = 5.0°
ω scansh = 66
Absorption correction: integration
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1515
Tmin = 0.975, Tmax = 0.996l = 1515
6663 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.064 w = 1/[σ2(Fo2) + (0.1195P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.203(Δ/σ)max = 0.005
S = 1.01Δρmax = 0.08 e Å3
1268 reflectionsΔρmin = 0.07 e Å3
314 parametersExtinction correction: SHELXL-2017/1 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
207 restraintsExtinction coefficient: 0.020 (16)
Special details top

Experimental. Data were collected at room temperature and pressure of 0.60 (2) GPa (600000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.5398 (13)1.0727 (6)0.1285 (4)0.075 (8)
H1B0.6066611.0617140.1265880.113*0.5
H1A0.483 (6)1.010 (8)0.065 (5)0.113*0.5
C10.559 (2)1.2093 (11)0.1830 (7)0.061 (5)
H10.4792971.2164830.1532430.091*
C20.594 (2)1.2755 (9)0.3243 (6)0.058 (5)
H20.6757491.2723210.3547910.087*
C30.608 (2)1.4206 (9)0.3844 (7)0.063 (5)
H3A0.5280811.4280830.3571720.095*
H3B0.6343561.4639890.4756810.095*
C40.701 (3)1.4847 (11)0.3458 (8)0.080 (5)
H4A0.7809431.4838050.3819580.120*
H4B0.7083531.5781080.3830000.120*
C50.678 (3)1.4252 (12)0.2059 (9)0.084 (5)
H50.6028171.4370870.1718600.126*
C60.651 (2)1.2761 (11)0.1446 (7)0.067 (5)
H6A0.6197141.2344720.0536100.101*
H6B0.7280181.2619530.1651720.101*
C70.500 (3)1.2036 (13)0.3671 (9)0.069 (5)
H70.4801471.1068060.3115490.104*
C80.377 (4)1.2270 (15)0.3604 (11)0.084 (9)
H8A0.3262251.1779540.3889870.100*
H8B0.3926651.3212480.4132650.100*
H8C0.3329981.1965870.2746630.100*
C90.566 (3)1.2412 (14)0.5040 (8)0.133 (10)
H9A0.6442491.2263350.5079370.160*
H9B0.5820151.3341550.5624350.160*
H9C0.5131921.1861230.5256740.160*
C100.787 (3)1.4923 (14)0.1718 (11)0.105 (9)
H10A0.7657191.4490920.0816270.126*
H10B0.7998401.5859810.2081380.126*
H10C0.8625091.4828730.2048120.126*
O1B0.7386 (15)0.9980 (7)0.1138 (5)0.119 (8)
H1BA0.805 (3)1.053 (4)0.127 (3)0.179*0.5
H1BB0.7016 (19)1.050 (3)0.142 (7)0.179*0.5
C1B0.753 (3)0.9390 (14)0.1919 (9)0.079 (6)
H1BC0.8165610.8974190.1749160.119*
C2B0.792 (4)1.0365 (15)0.3290 (10)0.090 (6)
H2B0.7248461.0719510.3477300.136*
C3B0.811 (3)0.9656 (15)0.4008 (9)0.094 (6)
H3BA0.8768660.9294850.3832640.141*
H3BB0.8357421.0285890.4911120.141*
C4B0.692 (3)0.8562 (16)0.3585 (11)0.111 (6)
H4BA0.7035210.8062520.3992320.167*
H4BB0.6295450.8943970.3841580.167*
C5B0.648 (3)0.7651 (15)0.2226 (11)0.096 (6)
H5B0.7054870.7175900.1983190.144*
C6B0.635 (3)0.8352 (12)0.1505 (8)0.068 (5)
H6BA0.6111610.7712510.0604880.101*
H6BB0.5707720.8740350.1660900.101*
C7B0.918 (4)1.1598 (18)0.3707 (11)0.095 (6)
H7B0.9007721.1929880.3142880.143*
C8B1.032 (5)1.131 (3)0.3595 (14)0.115 (10)
H8BA1.0160381.0590110.2751530.138*
H8BB1.0967591.2099250.3775090.138*
H8BC1.0578531.1054240.4185470.138*
C9B0.936 (3)1.2736 (15)0.5026 (10)0.154 (10)
H9BA0.8585261.2886550.5051250.184*
H9BB0.9606901.2496500.5633080.184*
H9BC0.9995961.3541510.5222700.184*
C10B0.515 (3)0.6602 (15)0.1831 (11)0.110 (10)
H10D0.4853100.5996300.0930560.132*
H10E0.5206820.6103240.2239290.132*
H10F0.4582810.7062100.2079190.132*
O1C0.9311 (13)1.0739 (6)0.0463 (5)0.093 (8)
H1CA0.884 (3)1.060 (7)0.085 (3)0.140*0.5
H1C0.9797 (17)1.033 (2)0.0350 (12)0.140*0.5
C2C1.054 (3)1.2531 (14)0.0324 (10)0.070 (6)
H2C1.0842891.1881930.0268610.105*
C6C0.820 (2)1.1056 (9)0.1140 (7)0.058 (5)
H6CA0.7388141.0583640.1155210.087*
H6CB0.8471651.0390040.1732770.087*
C4C0.950 (3)1.2761 (14)0.1464 (10)0.068 (6)
H4CA0.9797771.2092370.2016630.102*
H4CB0.9513641.3394350.1739100.102*
C1C0.907 (3)1.1692 (14)0.0107 (10)0.075 (6)
H1CB0.8760681.2297510.0725330.112*
C5C0.805 (3)1.2012 (15)0.1598 (11)0.080 (6)
H5C0.7752271.2676790.1021320.121*
C3C1.034 (2)1.3466 (9)0.0188 (7)0.073 (5)
H3CA1.0016751.4099290.0366620.109*
H3CB1.1148211.3980080.0149060.109*
C7C1.147 (3)1.3207 (16)0.1601 (11)0.072 (6)
H7C1.1475131.2489910.1771470.109*
C8C1.105 (3)1.4174 (13)0.2634 (8)0.100 (9)
H8CA1.1665541.4592410.3444180.120*
H8CB1.0943651.4853010.2466510.120*
H8CC1.0263241.3679670.2633890.120*
C9C1.283 (5)1.380 (2)0.1607 (18)0.141 (12)
H9CA1.3411231.4228340.2441620.169*
H9CB1.3054381.3087220.1024560.169*
H9CC1.2869271.4447410.1357520.169*
C10C0.724 (2)1.1362 (11)0.2869 (7)0.089 (9)
H10G0.7193081.2027470.3078730.106*
H10H0.7557491.0753680.3438810.106*
H10I0.6413271.0871280.2940800.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.09 (2)0.059 (5)0.069 (3)0.023 (9)0.039 (7)0.026 (3)
C10.064 (14)0.066 (6)0.061 (4)0.023 (8)0.036 (7)0.034 (4)
C20.051 (14)0.060 (5)0.057 (4)0.024 (8)0.013 (7)0.025 (4)
C30.060 (14)0.057 (6)0.059 (4)0.013 (8)0.018 (7)0.024 (4)
C40.078 (14)0.069 (6)0.083 (5)0.021 (8)0.034 (8)0.032 (4)
C50.086 (14)0.068 (6)0.100 (6)0.018 (8)0.040 (8)0.047 (5)
C60.066 (14)0.072 (6)0.066 (4)0.032 (8)0.024 (7)0.034 (4)
C70.075 (14)0.067 (6)0.067 (5)0.019 (9)0.038 (8)0.034 (4)
C80.08 (3)0.088 (9)0.099 (7)0.040 (14)0.050 (13)0.046 (6)
C90.13 (3)0.168 (10)0.089 (6)0.019 (15)0.013 (11)0.082 (7)
C100.12 (3)0.090 (8)0.132 (7)0.041 (12)0.065 (12)0.072 (6)
O1B0.15 (2)0.123 (6)0.113 (4)0.039 (11)0.034 (8)0.091 (4)
C1B0.085 (14)0.082 (6)0.079 (6)0.026 (8)0.024 (8)0.051 (5)
C2B0.094 (14)0.084 (7)0.090 (6)0.020 (9)0.028 (8)0.050 (5)
C3B0.096 (14)0.111 (7)0.075 (5)0.014 (9)0.032 (8)0.057 (5)
C4B0.127 (15)0.115 (8)0.114 (7)0.026 (9)0.037 (8)0.085 (6)
C5B0.093 (14)0.087 (7)0.107 (7)0.037 (9)0.031 (8)0.050 (6)
C6B0.068 (14)0.063 (6)0.060 (5)0.010 (8)0.017 (7)0.031 (4)
C7B0.098 (14)0.102 (8)0.084 (6)0.039 (10)0.020 (8)0.049 (6)
C8B0.12 (3)0.140 (12)0.131 (8)0.081 (16)0.055 (15)0.084 (8)
C9B0.14 (3)0.138 (11)0.132 (8)0.033 (15)0.076 (13)0.032 (7)
C10B0.10 (3)0.081 (9)0.121 (8)0.034 (14)0.009 (13)0.037 (7)
O1C0.11 (2)0.079 (5)0.106 (4)0.018 (10)0.030 (7)0.069 (4)
C2C0.076 (14)0.065 (6)0.079 (6)0.023 (9)0.033 (8)0.043 (5)
C6C0.053 (14)0.055 (5)0.062 (4)0.014 (7)0.016 (7)0.031 (4)
C4C0.072 (14)0.072 (7)0.065 (6)0.021 (9)0.026 (8)0.041 (5)
C1C0.082 (15)0.073 (7)0.079 (6)0.017 (9)0.024 (8)0.053 (5)
C5C0.080 (15)0.085 (7)0.079 (6)0.028 (9)0.029 (8)0.045 (5)
C3C0.076 (14)0.075 (5)0.075 (5)0.026 (8)0.016 (7)0.048 (4)
C7C0.076 (15)0.083 (7)0.064 (6)0.029 (9)0.016 (8)0.045 (5)
C8C0.08 (3)0.129 (9)0.086 (6)0.045 (13)0.032 (10)0.050 (6)
C9C0.14 (3)0.157 (15)0.130 (10)0.029 (17)0.060 (15)0.086 (10)
C10C0.08 (3)0.103 (8)0.073 (6)0.026 (13)0.019 (10)0.045 (6)
Geometric parameters (Å, º) top
O1—H1B0.8200C5B—C6B1.510 (13)
O1—H1A0.8200 (13)C5B—C10B1.56 (5)
O1—C11.396 (8)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.505 (10)C7B—H7B0.9800
C1—C61.46 (3)C7B—C8B1.45 (6)
C2—H20.9800C7B—C9B1.524 (14)
C2—C31.499 (9)C8B—H8BA0.9600
C2—C71.55 (3)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.46 (3)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.508 (12)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.508 (13)O1C—H1CA0.8200 (12)
C5—C101.56 (4)O1C—H1C0.8200 (12)
C6—H6A0.9700O1C—C1C1.475 (11)
C6—H6B0.9700C2C—H2C0.9800
C7—H70.9800C2C—C1C1.67 (5)
C7—C81.52 (4)C2C—C3C1.575 (12)
C7—C91.561 (15)C2C—C7C1.49 (3)
C8—H8A0.9600C6C—H6CA0.9700
C8—H8B0.9600C6C—H6CB0.9700
C8—H8C0.9600C6C—C1C1.44 (2)
C9—H9A0.9600C6C—C5C1.536 (12)
C9—H9B0.9600C4C—H4CA0.9700
C9—H9C0.9600C4C—H4CB0.9700
C10—H10A0.9600C4C—C5C1.65 (5)
C10—H10B0.9600C4C—C3C1.44 (2)
C10—H10C0.9600C1C—H1CB0.9800
O1B—H1BA0.8200 (13)C5C—H5C0.9800
O1B—H1BB0.8200 (12)C5C—C10C1.43 (2)
O1B—C1B1.466 (9)C3C—H3CA0.9700
C1B—H1BC0.9800C3C—H3CB0.9700
C1B—C2B1.476 (14)C7C—H7C0.9800
C1B—C6B1.43 (4)C7C—C8C1.54 (2)
C2B—H2B0.9800C7C—C9C1.57 (7)
C2B—C3B1.528 (13)C8C—H8CA0.9600
C2B—C7B1.62 (6)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.47 (4)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.449 (14)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1B—O1—H1A110.3C10B—C5B—H5B109.0
C1—O1—H1B109.5C1B—C6B—C5B108 (2)
C1—O1—H1A126 (9)C1B—C6B—H6BA110.0
O1—C1—H1107.4C1B—C6B—H6BB110.0
O1—C1—C2109.5 (6)C5B—C6B—H6BA110.0
O1—C1—C6112.5 (11)C5B—C6B—H6BB110.0
C2—C1—H1107.4H6BA—C6B—H6BB108.4
C6—C1—H1107.4C2B—C7B—H7B105.7
C6—C1—C2112.4 (16)C8B—C7B—C2B118.2 (13)
C1—C2—H2107.5C8B—C7B—H7B105.7
C1—C2—C7113.3 (15)C8B—C7B—C9B113 (3)
C3—C2—C1110.4 (6)C9B—C7B—C2B108 (3)
C3—C2—H2107.5C9B—C7B—H7B105.7
C3—C2—C7110.2 (14)C7B—C8B—H8BA109.5
C7—C2—H2107.5C7B—C8B—H8BB109.5
C2—C3—H3A110.1C7B—C8B—H8BC109.5
C2—C3—H3B110.1H8BA—C8B—H8BB109.5
H3A—C3—H3B108.4H8BA—C8B—H8BC109.5
C4—C3—C2107.9 (14)H8BB—C8B—H8BC109.5
C4—C3—H3A110.1C7B—C9B—H9BA109.5
C4—C3—H3B110.1C7B—C9B—H9BB109.5
C3—C4—H4A107.9C7B—C9B—H9BC109.5
C3—C4—H4B107.9H9BA—C9B—H9BB109.5
C3—C4—C5117.4 (18)H9BA—C9B—H9BC109.5
H4A—C4—H4B107.2H9BB—C9B—H9BC109.5
C5—C4—H4A107.9C5B—C10B—H10D109.5
C5—C4—H4B107.9C5B—C10B—H10E109.5
C4—C5—H5107.6C5B—C10B—H10F109.5
C4—C5—C6108.4 (8)H10D—C10B—H10E109.5
C4—C5—C10114 (2)H10D—C10B—H10F109.5
C6—C5—H5107.6H10E—C10B—H10F109.5
C6—C5—C10111.0 (15)H1CA—O1C—H1C116 (5)
C10—C5—H5107.6C1C—O1C—H1CA111 (6)
C1—C6—C5114.1 (14)C1C—O1C—H1C133 (3)
C1—C6—H6A108.7C1C—C2C—H2C107.0
C1—C6—H6B108.7C3C—C2C—H2C107.0
C5—C6—H6A108.7C3C—C2C—C1C101 (2)
C5—C6—H6B108.7C7C—C2C—H2C107.0
H6A—C6—H6B107.6C7C—C2C—C1C117.8 (17)
C2—C7—H7106.9C7C—C2C—C3C116.3 (13)
C2—C7—C9109 (2)H6CA—C6C—H6CB107.5
C8—C7—C2116.5 (11)C1C—C6C—H6CA108.5
C8—C7—H7106.9C1C—C6C—H6CB108.5
C8—C7—C9109.7 (15)C1C—C6C—C5C115.1 (12)
C9—C7—H7106.9C5C—C6C—H6CA108.5
C7—C8—H8A109.5C5C—C6C—H6CB108.5
C7—C8—H8B109.5H4CA—C4C—H4CB107.8
C7—C8—H8C109.5C5C—C4C—H4CA109.1
H8A—C8—H8B109.5C5C—C4C—H4CB109.1
H8A—C8—H8C109.5C3C—C4C—H4CA109.1
H8B—C8—H8C109.5C3C—C4C—H4CB109.1
C7—C9—H9A109.5C3C—C4C—C5C112.7 (14)
C7—C9—H9B109.5O1C—C1C—C2C99 (2)
C7—C9—H9C109.5O1C—C1C—H1CB109.2
H9A—C9—H9B109.5C2C—C1C—H1CB109.2
H9A—C9—H9C109.5C6C—C1C—O1C113.9 (10)
H9B—C9—H9C109.5C6C—C1C—C2C116.1 (14)
C5—C10—H10A109.5C6C—C1C—H1CB109.2
C5—C10—H10B109.5C6C—C5C—C4C102 (2)
C5—C10—H10C109.5C6C—C5C—H5C109.5
H10A—C10—H10B109.5C4C—C5C—H5C109.5
H10A—C10—H10C109.5C10C—C5C—C6C114.8 (13)
H10B—C10—H10C109.5C10C—C5C—C4C111.0 (15)
H1BA—O1B—H1BB98 (5)C10C—C5C—H5C109.5
C1B—O1B—H1BA112 (5)C2C—C3C—H3CA108.6
C1B—O1B—H1BB108 (7)C2C—C3C—H3CB108.6
O1B—C1B—H1BC108.5C4C—C3C—C2C114.5 (11)
O1B—C1B—C2B114.1 (8)C4C—C3C—H3CA108.6
C2B—C1B—H1BC108.5C4C—C3C—H3CB108.6
C6B—C1B—O1B106.3 (17)H3CA—C3C—H3CB107.6
C6B—C1B—H1BC108.5C2C—C7C—H7C105.5
C6B—C1B—C2B111 (2)C2C—C7C—C8C112 (2)
C1B—C2B—H2B108.9C2C—C7C—C9C111.4 (17)
C1B—C2B—C3B109.4 (8)C8C—C7C—H7C105.5
C1B—C2B—C7B110 (2)C8C—C7C—C9C116.2 (19)
C3B—C2B—H2B108.9C9C—C7C—H7C105.5
C3B—C2B—C7B111 (2)C7C—C8C—H8CA109.5
C7B—C2B—H2B108.9C7C—C8C—H8CB109.5
C2B—C3B—H3BA110.2C7C—C8C—H8CC109.5
C2B—C3B—H3BB110.2H8CA—C8C—H8CB109.5
H3BA—C3B—H3BB108.5H8CA—C8C—H8CC109.5
C4B—C3B—C2B108 (2)H8CB—C8C—H8CC109.5
C4B—C3B—H3BA110.2C7C—C9C—H9CA109.5
C4B—C3B—H3BB110.2C7C—C9C—H9CB109.5
C3B—C4B—H4BA109.2C7C—C9C—H9CC109.5
C3B—C4B—H4BB109.2H9CA—C9C—H9CB109.5
H4BA—C4B—H4BB107.9H9CA—C9C—H9CC109.5
C5B—C4B—C3B112 (2)H9CB—C9C—H9CC109.5
C5B—C4B—H4BA109.2C5C—C10C—H10G109.5
C5B—C4B—H4BB109.2C5C—C10C—H10H109.5
C4B—C5B—H5B109.0C5C—C10C—H10I109.5
C4B—C5B—C6B113.2 (9)H10G—C10C—H10H109.5
C4B—C5B—C10B109 (2)H10G—C10C—H10I109.5
C6B—C5B—H5B109.0H10H—C10C—H10I109.5
C6B—C5B—C10B107 (2)
O1—C1—C2—C3176.6 (18)C3B—C2B—C7B—C9B73 (2)
O1—C1—C2—C752 (2)C3B—C4B—C5B—C6B55 (3)
O1—C1—C6—C5177.6 (13)C3B—C4B—C5B—C10B174.5 (18)
C1—C2—C3—C457 (2)C4B—C5B—C6B—C1B55 (3)
C1—C2—C7—C876.5 (15)C6B—C1B—C2B—C3B63 (3)
C1—C2—C7—C9158.4 (11)C6B—C1B—C2B—C7B174.6 (19)
C2—C1—C6—C553.4 (19)C7B—C2B—C3B—C4B179.6 (18)
C2—C3—C4—C556.5 (19)C10B—C5B—C6B—C1B175.9 (15)
C3—C2—C7—C847.8 (16)C1C—C2C—C3C—C4C55 (2)
C3—C2—C7—C977.3 (17)C1C—C2C—C7C—C8C55.0 (17)
C3—C4—C5—C651 (3)C1C—C2C—C7C—C9C173.2 (14)
C3—C4—C5—C10175.4 (13)C1C—C6C—C5C—C4C56.3 (18)
C4—C5—C6—C147 (3)C1C—C6C—C5C—C10C176 (2)
C6—C1—C2—C358 (2)C5C—C6C—C1C—O1C173 (2)
C6—C1—C2—C7178.2 (13)C5C—C6C—C1C—C2C60 (2)
C7—C2—C3—C4177.3 (14)C5C—C4C—C3C—C2C66 (2)
C10—C5—C6—C1173.8 (15)C3C—C2C—C1C—O1C174.0 (4)
O1B—C1B—C2B—C3B177 (3)C3C—C2C—C1C—C6C51.9 (13)
O1B—C1B—C2B—C7B55 (3)C3C—C2C—C7C—C8C65 (3)
O1B—C1B—C6B—C5B176.5 (10)C3C—C2C—C7C—C9C67 (3)
C1B—C2B—C3B—C4B59 (3)C3C—C4C—C5C—C6C59.1 (11)
C1B—C2B—C7B—C8B65 (2)C3C—C4C—C5C—C10C178.0 (6)
C1B—C2B—C7B—C9B165.7 (14)C7C—C2C—C1C—O1C58.1 (13)
C2B—C1B—C6B—C5B59 (2)C7C—C2C—C1C—C6C179.8 (7)
C2B—C3B—C4B—C5B56 (2)C7C—C2C—C3C—C4C176 (2)
C3B—C2B—C7B—C8B55.8 (17)
alpha-DL-2-Isopropyl-5-methylcyclohexanol (alpha_DL_0.65GPa) top
Crystal data top
C10H20OZ = 6
Mr = 156.26F(000) = 528
Triclinic, P1Dx = 1.091 Mg m3
Hall symbol: -P 1Melting point: 308 K
a = 11.677 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.9875 (14) ÅCell parameters from 1405 reflections
c = 12.442 (9) Åθ = 3.1–28.4°
α = 117.25 (3)°µ = 0.07 mm1
β = 99.96 (2)°T = 296 K
γ = 103.224 (12)°Plate, colourless
V = 1427.5 (13) Å30.39 × 0.3 × 0.06 mm
Data collection top
Xcalibur, Eos
diffractometer
556 reflections with I > 2σ(I)
Detector resolution: 16.4 pixels mm-1Rint = 0.117
ω scansθmax = 29.4°, θmin = 3.1°
Absorption correction: integration
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1515
Tmin = 0.976, Tmax = 0.996k = 44
8478 measured reflectionsl = 1516
1422 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.081 w = 1/[σ2(Fo2) + (0.1609P)2 + 0.047P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.294(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.10 e Å3
1422 reflectionsΔρmin = 0.09 e Å3
317 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
247 restraintsExtinction coefficient: 0.012 (10)
Special details top

Experimental. Data were collected at room temperature and pressure of 0.65 (2) GPa (650000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.5372 (9)1.0644 (17)0.1265 (9)0.112 (10)
H1A0.602 (3)1.031 (7)0.111 (9)0.167*0.5
H1B0.475 (3)0.99 (2)0.045 (5)0.167*0.5
C10.5586 (11)1.2037 (16)0.1798 (8)0.075 (7)
H10.4801981.2135470.1499530.112*
C20.5946 (9)1.2681 (15)0.3279 (7)0.077 (6)
H20.6745261.2605930.3566730.116*
C30.6161 (10)1.4169 (16)0.3854 (10)0.085 (6)
H3A0.6360611.4584620.4772470.128*
H3B0.5390081.4262300.3538140.128*
C40.7196 (7)1.4945 (17)0.3573 (7)0.093 (6)
H4A0.7245301.5870200.3937060.140*
H4B0.7992561.4932830.3943720.140*
C50.6886 (10)1.4280 (17)0.2170 (7)0.111 (7)
H50.6159301.4452070.1849530.166*
C60.6561 (9)1.2815 (17)0.1539 (10)0.078 (6)
H6A0.7313651.2645120.1762930.118*
H6B0.6310671.2451500.0624850.118*
C70.5040 (6)1.1971 (16)0.3672 (7)0.080 (6)
H70.4847521.1007490.3112830.119*
C80.3770 (7)1.223 (2)0.3570 (8)0.090 (10)
H8A0.3389241.2005030.2715800.108*
H8B0.3227521.1678650.3777030.108*
H8C0.3921511.3154670.4155960.108*
C90.5600 (7)1.232 (3)0.4979 (8)0.104 (10)
H9A0.5007441.1853820.5217380.125*
H9B0.6317401.2057790.5030580.125*
H9C0.5842541.3266410.5546350.125*
C100.7931 (8)1.486 (2)0.1812 (10)0.127 (11)
H10A0.8136081.5815030.2227490.152*
H10B0.8643861.4666650.2077030.152*
H10C0.7679301.4475250.0904060.152*
O1B0.7306 (5)0.9873 (14)0.1048 (6)0.100 (9)
H1BA0.7896 (18)0.984 (4)0.078 (3)0.151*0.5
H1BB0.709 (3)1.038 (3)0.1618 (17)0.151*0.5
C1B0.7488 (7)0.9294 (13)0.1853 (7)0.081 (6)
H1BC0.8102470.8858160.1666560.122*
C2B0.7929 (8)1.0336 (14)0.3212 (8)0.082 (6)
H2B0.7289591.0732840.3403200.123*
C3B0.8040 (8)0.9565 (16)0.3908 (10)0.097 (6)
H3BA0.8286771.0195830.4818910.145*
H3BB0.8700490.9210620.3748460.145*
C4B0.6814 (9)0.8357 (17)0.3521 (8)0.116 (7)
H4BA0.7016580.7871490.3926540.174*
H4BB0.6206670.8725080.3848470.174*
C5B0.6236 (9)0.7387 (16)0.2101 (8)0.119 (7)
H5B0.6758560.6848380.1812240.179*
C6B0.6227 (7)0.8230 (16)0.1421 (8)0.086 (6)
H6BA0.5974070.7624990.0504940.129*
H6BB0.5618810.8662430.1600800.129*
C7B0.9076 (6)1.1386 (13)0.3613 (8)0.086 (6)
H7B0.8882841.1769480.3087860.129*
C8B1.0254 (7)1.128 (2)0.3532 (8)0.102 (10)
H8BA1.0850801.2159280.3878520.122*
H8BB1.0519311.0893100.4008570.122*
H8BC1.0185821.0726250.2654780.122*
C9B0.9316 (8)1.2499 (16)0.4927 (8)0.115 (11)
H9BA0.8547581.2611990.5033160.138*
H9BB0.9683321.2292600.5533230.138*
H9BC0.9873261.3312240.5064220.138*
C10B0.4984 (9)0.648 (2)0.1765 (11)0.153 (11)
H10D0.4652020.5882000.0856000.184*
H10E0.5015930.5970710.2173510.184*
H10F0.4460760.6993570.2044360.184*
O1C0.9315 (6)1.0682 (10)0.0456 (7)0.099 (10)
H1CA0.867 (3)1.016 (4)0.038 (5)0.149*0.5
H1CB0.986 (2)1.035 (3)0.0384 (11)0.149*0.5
C2C1.0499 (6)1.2532 (17)0.0313 (7)0.078 (6)
H2C1.0778001.1879640.0304320.116*
C6C0.8250 (8)1.1291 (18)0.1105 (7)0.081 (6)
H6CA0.8358851.0506100.1748200.122*
H6CB0.7416061.0993600.1077880.122*
C4C0.9486 (7)1.276 (2)0.1483 (7)0.090 (6)
H4CA0.9435031.3348660.1815720.135*
H4CB0.9791451.2098130.2025230.135*
C1C0.9142 (7)1.1696 (12)0.0186 (8)0.072 (7)
H1C0.8880011.2300520.0862620.108*
C5C0.8263 (8)1.2098 (17)0.1550 (8)0.086 (6)
H5C0.8024201.2813010.0954940.130*
C3C1.0401 (9)1.3581 (17)0.0157 (8)0.097 (6)
H3CA1.0114251.4253560.0406990.146*
H3CB1.1204311.4027810.0159620.146*
C7C1.1408 (5)1.3077 (17)0.1605 (7)0.072 (6)
H7C1.1369481.2342870.1764270.108*
C8C1.1102 (8)1.4196 (19)0.2696 (8)0.093 (10)
H8CA1.0270911.3832130.2677670.111*
H8CB1.1676301.4500610.3509290.111*
H8CC1.1172081.4934640.2565230.111*
C9C1.2707 (6)1.371 (2)0.1688 (9)0.102 (11)
H9CA1.3259921.4042630.2521440.123*
H9CB1.2942651.3050810.1055050.123*
H9CC1.2753101.4433310.1541070.123*
C10C0.7269 (8)1.146 (3)0.2871 (9)0.119 (11)
H10G0.7336571.2110430.3130880.143*
H10H0.7401511.0695770.3490370.143*
H10I0.6456001.1193370.2807910.143*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.108 (5)0.12 (2)0.101 (6)0.020 (11)0.046 (4)0.055 (11)
C10.070 (6)0.081 (14)0.080 (7)0.021 (9)0.022 (5)0.050 (8)
C20.074 (5)0.080 (14)0.082 (6)0.037 (9)0.032 (4)0.038 (8)
C30.084 (5)0.085 (14)0.084 (6)0.019 (9)0.035 (5)0.044 (8)
C40.094 (5)0.100 (14)0.098 (6)0.052 (8)0.037 (4)0.050 (8)
C50.104 (7)0.113 (15)0.111 (7)0.022 (9)0.049 (6)0.058 (8)
C60.077 (5)0.082 (14)0.074 (5)0.028 (9)0.031 (4)0.037 (8)
C70.079 (5)0.087 (14)0.078 (5)0.031 (8)0.029 (4)0.045 (7)
C80.075 (5)0.10 (3)0.099 (6)0.047 (10)0.031 (4)0.041 (11)
C90.089 (5)0.12 (3)0.095 (6)0.018 (10)0.038 (5)0.050 (10)
C100.117 (7)0.13 (3)0.134 (8)0.054 (12)0.064 (6)0.057 (12)
O1B0.077 (4)0.10 (2)0.106 (5)0.013 (7)0.038 (3)0.041 (8)
C1B0.074 (5)0.078 (14)0.083 (6)0.033 (8)0.028 (4)0.033 (8)
C2B0.079 (5)0.083 (14)0.082 (5)0.021 (8)0.031 (4)0.043 (8)
C3B0.088 (6)0.099 (14)0.101 (6)0.032 (8)0.044 (5)0.047 (8)
C4B0.122 (6)0.124 (14)0.109 (6)0.038 (8)0.057 (5)0.061 (8)
C5B0.101 (6)0.120 (15)0.135 (7)0.031 (8)0.058 (6)0.061 (8)
C6B0.088 (6)0.087 (14)0.081 (5)0.035 (8)0.032 (4)0.039 (7)
C7B0.072 (5)0.088 (14)0.101 (6)0.046 (8)0.029 (4)0.042 (8)
C8B0.099 (6)0.12 (3)0.093 (6)0.047 (11)0.041 (5)0.048 (11)
C9B0.094 (6)0.12 (3)0.128 (8)0.056 (11)0.048 (5)0.045 (12)
C10B0.135 (8)0.15 (3)0.170 (10)0.042 (13)0.085 (7)0.067 (13)
O1C0.085 (4)0.12 (3)0.121 (5)0.046 (10)0.024 (3)0.083 (10)
C2C0.076 (5)0.073 (14)0.082 (6)0.036 (8)0.039 (4)0.030 (8)
C6C0.075 (5)0.080 (14)0.073 (5)0.019 (8)0.031 (4)0.029 (7)
C4C0.100 (5)0.095 (14)0.084 (5)0.024 (8)0.031 (4)0.058 (7)
C1C0.060 (5)0.072 (14)0.081 (6)0.041 (8)0.024 (4)0.029 (8)
C5C0.105 (6)0.086 (14)0.068 (5)0.028 (8)0.024 (5)0.045 (7)
C3C0.093 (6)0.093 (14)0.092 (6)0.049 (8)0.026 (5)0.032 (8)
C7C0.061 (4)0.068 (14)0.083 (5)0.011 (7)0.019 (4)0.044 (7)
C8C0.106 (6)0.09 (3)0.086 (6)0.059 (11)0.028 (5)0.042 (11)
C9C0.103 (6)0.10 (3)0.104 (6)0.062 (11)0.042 (5)0.044 (11)
C10C0.118 (7)0.14 (3)0.100 (7)0.030 (12)0.037 (5)0.065 (11)
Geometric parameters (Å, º) top
O1—H1A0.936 (16)C5B—C6B1.588 (5)
O1—H1B1.00 (12)C5B—C10B1.463 (9)
O1—C11.424 (6)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.566 (4)C7B—H7B0.9800
C1—C61.479 (8)C7B—C8B1.426 (5)
C2—H20.9800C7B—C9B1.4841 (16)
C2—C31.523 (2)C8B—H8BA0.9600
C2—C71.492 (2)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.5431 (13)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.479 (3)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.474 (2)O1C—H1CA0.8200 (12)
C5—C101.5021 (13)O1C—H1CB0.8200 (12)
C6—H6A0.9700O1C—C1C1.447 (3)
C6—H6B0.9700C2C—H2C0.9800
C7—H70.9800C2C—C1C1.607 (4)
C7—C81.577 (8)C2C—C3C1.628 (6)
C7—C91.461 (2)C2C—C7C1.506 (8)
C8—H8A0.9600C6C—H6CA0.9700
C8—H8B0.9600C6C—H6CB0.9700
C8—H8C0.9600C6C—C1C1.541 (2)
C9—H9A0.9600C6C—C5C1.316 (5)
C9—H9B0.9600C4C—H4CA0.9700
C9—H9C0.9600C4C—H4CB0.9700
C10—H10A0.9600C4C—C5C1.435 (8)
C10—H10B0.9600C4C—C3C1.501 (8)
C10—H10C0.9600C1C—H1C0.9800
O1B—H1BA0.8200 (12)C5C—H5C0.9800
O1B—H1BB0.8200 (12)C5C—C10C1.555 (8)
O1B—C1B1.471 (3)C3C—H3CA0.9700
C1B—H1BC0.9800C3C—H3CB0.9700
C1B—C2B1.468 (3)C7C—H7C0.9800
C1B—C6B1.5233 (13)C7C—C8C1.578 (7)
C2B—H2B0.9800C7C—C9C1.494 (7)
C2B—C3B1.539 (4)C8C—H8CA0.9600
C2B—C7B1.4313 (13)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.598 (2)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.5089 (16)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1A—O1—H1B92 (8)C10B—C5B—C6B111.1 (11)
C1—O1—H1A121 (6)C1B—C6B—C5B112.9 (9)
C1—O1—H1B129 (10)C1B—C6B—H6BA109.0
O1—C1—H1108.1C1B—C6B—H6BB109.0
O1—C1—C2106.6 (11)C5B—C6B—H6BA109.0
O1—C1—C6117.9 (14)C5B—C6B—H6BB109.0
C2—C1—H1108.1H6BA—C6B—H6BB107.8
C6—C1—H1108.1C2B—C7B—H7B103.1
C6—C1—C2107.6 (8)C2B—C7B—C9B110.1 (8)
C1—C2—H2107.1C8B—C7B—C2B128.4 (12)
C3—C2—C1106.9 (11)C8B—C7B—H7B103.1
C3—C2—H2107.1C8B—C7B—C9B106.1 (9)
C7—C2—C1113.0 (7)C9B—C7B—H7B103.1
C7—C2—H2107.1C7B—C8B—H8BA109.5
C7—C2—C3115.1 (10)C7B—C8B—H8BB109.5
C2—C3—H3A108.4C7B—C8B—H8BC109.5
C2—C3—H3B108.4H8BA—C8B—H8BB109.5
C2—C3—C4115.5 (11)H8BA—C8B—H8BC109.5
H3A—C3—H3B107.5H8BB—C8B—H8BC109.5
C4—C3—H3A108.4C7B—C9B—H9BA109.5
C4—C3—H3B108.4C7B—C9B—H9BB109.5
C3—C4—H4A110.2C7B—C9B—H9BC109.5
C3—C4—H4B110.2H9BA—C9B—H9BB109.5
H4A—C4—H4B108.5H9BA—C9B—H9BC109.5
C5—C4—C3107.5 (8)H9BB—C9B—H9BC109.5
C5—C4—H4A110.2C5B—C10B—H10D109.5
C5—C4—H4B110.2C5B—C10B—H10E109.5
C4—C5—H5107.7C5B—C10B—H10F109.5
C4—C5—C10110.9 (8)H10D—C10B—H10E109.5
C6—C5—C4112.7 (12)H10D—C10B—H10F109.5
C6—C5—H5107.7H10E—C10B—H10F109.5
C6—C5—C10110.0 (13)H1CA—O1C—H1CB110.9 (14)
C10—C5—H5107.7C1C—O1C—H1CA114 (4)
C1—C6—H6A107.5C1C—O1C—H1CB130 (3)
C1—C6—H6B107.5C1C—C2C—H2C105.8
C5—C6—C1119.3 (12)C1C—C2C—C3C110.0 (11)
C5—C6—H6A107.5C3C—C2C—H2C105.8
C5—C6—H6B107.5C7C—C2C—H2C105.8
H6A—C6—H6B107.0C7C—C2C—C1C110.7 (7)
C2—C7—H7107.4C7C—C2C—C3C117.7 (11)
C2—C7—C8115.5 (9)H6CA—C6C—H6CB106.5
C8—C7—H7107.4C1C—C6C—H6CA106.4
C9—C7—C2110.4 (8)C1C—C6C—H6CB106.4
C9—C7—H7107.4C5C—C6C—H6CA106.4
C9—C7—C8108.4 (7)C5C—C6C—H6CB106.4
C7—C8—H8A109.5C5C—C6C—C1C123.8 (11)
C7—C8—H8B109.5H4CA—C4C—H4CB107.7
C7—C8—H8C109.5C5C—C4C—H4CA108.8
H8A—C8—H8B109.5C5C—C4C—H4CB108.8
H8A—C8—H8C109.5C5C—C4C—C3C113.7 (7)
H8B—C8—H8C109.5C3C—C4C—H4CA108.8
C7—C9—H9A109.5C3C—C4C—H4CB108.8
C7—C9—H9B109.5O1C—C1C—C2C105.3 (11)
C7—C9—H9C109.5O1C—C1C—C6C120.4 (11)
H9A—C9—H9B109.5O1C—C1C—H1C107.7
H9A—C9—H9C109.5C2C—C1C—H1C107.7
H9B—C9—H9C109.5C6C—C1C—C2C107.3 (6)
C5—C10—H10A109.5C6C—C1C—H1C107.7
C5—C10—H10B109.5C6C—C5C—C4C112.8 (14)
C5—C10—H10C109.5C6C—C5C—H5C105.0
H10A—C10—H10B109.5C6C—C5C—C10C114.4 (13)
H10A—C10—H10C109.5C4C—C5C—H5C105.0
H10B—C10—H10C109.5C4C—C5C—C10C113.5 (8)
H1BA—O1B—H1BB141.8 (4)C10C—C5C—H5C105.0
C1B—O1B—H1BA102 (4)C2C—C3C—H3CA110.5
C1B—O1B—H1BB83.6 (17)C2C—C3C—H3CB110.5
O1B—C1B—H1BC109.1C4C—C3C—C2C106.3 (12)
O1B—C1B—C6B104.3 (8)C4C—C3C—H3CA110.5
C2B—C1B—O1B110.9 (8)C4C—C3C—H3CB110.5
C2B—C1B—H1BC109.1H3CA—C3C—H3CB108.7
C2B—C1B—C6B114.2 (7)C2C—C7C—H7C109.0
C6B—C1B—H1BC109.1C2C—C7C—C8C111.3 (9)
C1B—C2B—H2B108.7C8C—C7C—H7C109.0
C1B—C2B—C3B104.2 (9)C9C—C7C—C2C111.7 (7)
C3B—C2B—H2B108.7C9C—C7C—H7C109.0
C7B—C2B—C1B114.7 (8)C9C—C7C—C8C106.6 (9)
C7B—C2B—H2B108.7C7C—C8C—H8CA109.5
C7B—C2B—C3B111.6 (9)C7C—C8C—H8CB109.5
C2B—C3B—H3BA108.3C7C—C8C—H8CC109.5
C2B—C3B—H3BB108.3H8CA—C8C—H8CB109.5
C2B—C3B—C4B115.8 (9)H8CA—C8C—H8CC109.5
H3BA—C3B—H3BB107.4H8CB—C8C—H8CC109.5
C4B—C3B—H3BA108.3C7C—C9C—H9CA109.5
C4B—C3B—H3BB108.3C7C—C9C—H9CB109.5
C3B—C4B—H4BA108.8C7C—C9C—H9CC109.5
C3B—C4B—H4BB108.8H9CA—C9C—H9CB109.5
H4BA—C4B—H4BB107.7H9CA—C9C—H9CC109.5
C5B—C4B—C3B113.9 (8)H9CB—C9C—H9CC109.5
C5B—C4B—H4BA108.8C5C—C10C—H10G109.5
C5B—C4B—H4BB108.8C5C—C10C—H10H109.5
C4B—C5B—H5B108.5C5C—C10C—H10I109.5
C4B—C5B—C6B108.1 (10)H10G—C10C—H10H109.5
C6B—C5B—H5B108.5H10G—C10C—H10I109.5
C10B—C5B—C4B112.2 (9)H10H—C10C—H10I109.5
C10B—C5B—H5B108.5
O1—C1—C2—C3179.3 (11)C3B—C2B—C7B—C9B72.1 (10)
O1—C1—C2—C751.7 (14)C3B—C4B—C5B—C6B44.3 (12)
O1—C1—C6—C5174.4 (9)C3B—C4B—C5B—C10B167.1 (13)
C1—C2—C3—C459.9 (12)C4B—C5B—C6B—C1B50.3 (10)
C1—C2—C7—C874.8 (12)C6B—C1B—C2B—C3B61.3 (11)
C1—C2—C7—C9161.8 (15)C6B—C1B—C2B—C7B176.3 (10)
C2—C1—C6—C553.9 (16)C7B—C2B—C3B—C4B179.4 (7)
C2—C3—C4—C557.1 (15)C10B—C5B—C6B—C1B173.8 (9)
C3—C2—C7—C848.4 (11)C1C—C2C—C3C—C4C54.7 (11)
C3—C2—C7—C975.0 (14)C1C—C2C—C7C—C8C68.2 (16)
C3—C4—C5—C648.8 (14)C1C—C2C—C7C—C9C172.7 (14)
C3—C4—C5—C10172.6 (13)C1C—C6C—C5C—C4C48.6 (14)
C4—C5—C6—C153.2 (14)C1C—C6C—C5C—C10C179.7 (10)
C6—C1—C2—C353.3 (15)C5C—C6C—C1C—O1C162.7 (10)
C6—C1—C2—C7179.1 (11)C5C—C6C—C1C—C2C42.5 (16)
C7—C2—C3—C4173.7 (6)C5C—C4C—C3C—C2C61.6 (17)
C10—C5—C6—C1177.5 (9)C3C—C2C—C1C—O1C172.4 (7)
O1B—C1B—C2B—C3B178.8 (7)C3C—C2C—C1C—C6C43.0 (13)
O1B—C1B—C2B—C7B58.9 (11)C3C—C2C—C7C—C8C59.5 (10)
O1B—C1B—C6B—C5B175.6 (6)C3C—C2C—C7C—C9C59.5 (16)
C1B—C2B—C3B—C4B55.0 (9)C3C—C4C—C5C—C6C58.0 (18)
C1B—C2B—C7B—C8B58.5 (15)C3C—C4C—C5C—C10C169.9 (18)
C1B—C2B—C7B—C9B169.7 (12)C7C—C2C—C1C—O1C55.8 (16)
C2B—C1B—C6B—C5B63.3 (11)C7C—C2C—C1C—C6C174.8 (13)
C2B—C3B—C4B—C5B50.9 (13)C7C—C2C—C3C—C4C177.2 (7)
C3B—C2B—C7B—C8B59.7 (12)
alpha-DL-2-Isopropyl-5-methylcyclohexanol (alpha_DL_0.84GPa) top
Crystal data top
C10H20OF(000) = 528
Mr = 156.26Dx = 1.115 Mg m3
Triclinic, P1Melting point: 308 K
a = 11.603 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.8897 (10) ÅCell parameters from 1407 reflections
c = 12.368 (9) Åθ = 3.1–28.7°
α = 117.791 (11)°µ = 0.07 mm1
β = 99.44 (5)°T = 296 K
γ = 103.16 (3)°Plate, colourless
V = 1395.7 (13) Å30.4 × 0.3 × 0.06 mm
Z = 6
Data collection top
Xcalibur, Eos
diffractometer
312 reflections with I > 2σ(I)
Detector resolution: 16.4 pixels mm-1Rint = 0.234
ω scansθmax = 30.7°, θmin = 4.1°
Absorption correction: integration
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 99
Tmin = 0.415, Tmax = 0.978k = 1313
8296 measured reflectionsl = 1717
1449 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.068 w = 1/[σ2(Fo2) + (0.1069P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.282(Δ/σ)max < 0.001
S = 0.89Δρmax = 0.05 e Å3
1449 reflectionsΔρmin = 0.05 e Å3
320 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
253 restraintsExtinction coefficient: 0.04 (2)
Special details top

Experimental. Data were collected at room temperature and pressure of 0.84 (2) GPa (840000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.5553 (11)1.0701 (10)0.1231 (6)0.146 (10)
H1A0.605 (3)1.046 (7)0.085 (3)0.219*0.5
H1B0.485 (5)0.986 (10)0.045 (2)0.219*0.5
C10.5571 (10)1.2120 (11)0.1787 (8)0.108 (7)
H10.4774541.2144730.1406000.130*
C20.5869 (15)1.2763 (12)0.3209 (8)0.119 (7)
H20.6724061.2793590.3475350.143*
C30.6018 (13)1.4189 (12)0.3790 (9)0.118 (7)
H3A0.6299511.4639520.4720720.177*
H3B0.5227161.4283240.3529140.177*
C40.7003 (17)1.4847 (17)0.3331 (8)0.146 (7)
H4A0.7063731.5783230.3664490.175*
H4B0.7810831.4850390.3697420.175*
C50.6714 (11)1.4148 (10)0.1916 (8)0.118 (7)
H50.5923341.4193530.1546620.142*
C60.6580 (11)1.2677 (10)0.1384 (7)0.101 (7)
H6A0.6360621.2189620.0452840.151*
H6B0.7354131.2604580.1730450.151*
C70.513 (2)1.1801 (18)0.3584 (10)0.155 (9)
H70.4961761.0834010.2998860.233*
C80.398 (3)1.2262 (19)0.3452 (16)0.223 (14)
H8A0.4254081.3233500.3894560.334*
H8B0.3413251.1949700.3823260.334*
H8C0.3557041.1883730.2558660.334*
C90.576 (2)1.232 (2)0.4936 (11)0.158 (12)
H9A0.5323091.1753660.5196830.189*
H9B0.6598831.2335080.5041220.189*
H9C0.5764041.3230150.5456830.189*
C100.7676 (16)1.4780 (19)0.1575 (11)0.179 (13)
H10A0.7470131.4312450.0655220.214*
H10B0.7747131.5710130.1907730.214*
H10C0.8453621.4741140.1934930.214*
O1B0.7511 (13)1.0270 (12)0.1332 (7)0.183 (11)
H1BA0.794 (8)0.980 (11)0.087 (8)0.274*0.5
H1BB0.706 (9)1.05 (2)0.074 (18)0.274*0.5
C1B0.7728 (12)0.9528 (12)0.1985 (9)0.115 (7)
H1BC0.8284120.9025760.1682010.138*
C2B0.8217 (17)1.0523 (13)0.3353 (10)0.135 (7)
H2B0.7566921.0905450.3580980.162*
C3B0.8327 (13)0.9704 (13)0.4035 (9)0.117 (7)
H3BA0.8804940.9123670.3695140.176*
H3BB0.8722621.0311170.4956490.176*
C4B0.6963 (14)0.8852 (15)0.3727 (10)0.154 (8)
H4BA0.6893980.8482550.4275960.185*
H4BB0.6420810.9380150.3811510.185*
C5B0.6670 (15)0.7729 (13)0.2316 (10)0.143 (8)
H5B0.7331850.7351500.2134950.172*
C6B0.6447 (12)0.8614 (14)0.1670 (10)0.141 (7)
H6BA0.6052890.8031140.0746420.212*
H6BB0.5931290.9131660.2038480.212*
C7B0.929 (2)1.163 (2)0.3698 (17)0.158 (10)
H7B0.9137221.1938860.3099510.190*
C8B1.036 (3)1.1191 (19)0.3598 (19)0.200 (15)
H8BA1.0160471.0314860.3504470.300*
H8BB1.1053411.1832370.4362240.300*
H8BC1.0572171.1139500.2862340.300*
C9B0.935 (2)1.268 (2)0.498 (2)0.244 (15)
H9BA1.0056311.3480650.5293720.293*
H9BB0.8600921.2898940.4919750.293*
H9BC0.9427341.2359490.5557850.293*
C10B0.541 (2)0.670 (3)0.1916 (18)0.234 (14)
H10D0.5206940.5982100.1036970.281*
H10E0.5431600.6324090.2458040.281*
H10F0.4795080.7122700.1997330.281*
O1C0.9326 (12)1.0844 (10)0.0545 (7)0.169 (11)
H1CA0.886 (11)1.042 (16)0.080 (19)0.254*0.5
H1CB0.982 (12)1.009 (12)0.041 (9)0.254*0.5
C2C1.0575 (11)1.2531 (13)0.0314 (10)0.113 (7)
H2C1.0756581.1782770.0340320.170*
C6C0.8347 (14)1.1095 (14)0.1032 (8)0.131 (7)
H6CA0.8629481.0386350.1577280.157*
H6CB0.7513191.0680950.1053580.157*
C4C0.9509 (13)1.2711 (18)0.1435 (10)0.146 (8)
H4CA0.9414021.3393100.1628620.175*
H4CB0.9766031.2080310.2104440.175*
C1C0.9221 (11)1.1924 (11)0.0318 (8)0.091 (7)
H1C0.8932651.2584710.0939350.109*
C5C0.8365 (13)1.2015 (14)0.1432 (10)0.111 (7)
H5C0.8160581.2728530.0764200.167*
C3C1.0557 (12)1.3422 (13)0.0085 (10)0.147 (8)
H3CA1.1363781.3758310.0162530.176*
H3CB1.0396301.4189250.0550330.176*
C7C1.1554 (14)1.311 (2)0.1578 (15)0.161 (9)
H7C1.1602641.2415870.1784330.193*
C8C1.105 (2)1.418 (2)0.2539 (16)0.175 (13)
H8CA1.0677611.4577340.2120230.262*
H8CB1.1735861.4884970.3291350.262*
H8CC1.0445661.3739210.2785490.262*
C9C1.2788 (17)1.393 (2)0.1695 (11)0.181 (13)
H9CA1.3365181.4261210.2518770.218*
H9CB1.3081581.3370080.1025980.218*
H9CC1.2718971.4674610.1615310.218*
C10C0.7346 (17)1.1515 (19)0.2662 (12)0.163 (12)
H10G0.7438531.2218430.2854400.196*
H10H0.7411261.0730940.3358170.196*
H10I0.6545331.1280050.2548550.196*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.126 (15)0.160 (12)0.125 (6)0.011 (11)0.027 (7)0.075 (7)
C10.101 (11)0.112 (9)0.115 (7)0.030 (7)0.034 (7)0.065 (7)
C20.109 (11)0.124 (9)0.113 (7)0.050 (7)0.021 (6)0.054 (7)
C30.100 (11)0.113 (9)0.115 (7)0.038 (7)0.045 (7)0.037 (7)
C40.147 (11)0.143 (10)0.142 (8)0.048 (7)0.058 (7)0.067 (8)
C50.124 (10)0.118 (9)0.132 (7)0.026 (7)0.036 (6)0.088 (7)
C60.108 (10)0.106 (9)0.093 (6)0.038 (7)0.036 (6)0.053 (6)
C70.180 (13)0.168 (11)0.147 (10)0.045 (7)0.067 (8)0.106 (9)
C80.25 (2)0.263 (19)0.214 (12)0.070 (14)0.071 (13)0.181 (14)
C90.182 (19)0.198 (16)0.130 (8)0.078 (13)0.058 (9)0.105 (10)
C100.195 (19)0.172 (15)0.210 (11)0.042 (13)0.073 (11)0.137 (12)
O1B0.201 (17)0.226 (14)0.146 (6)0.044 (12)0.084 (8)0.120 (9)
C1B0.112 (10)0.111 (9)0.126 (7)0.030 (7)0.030 (6)0.070 (7)
C2B0.137 (12)0.126 (10)0.134 (8)0.053 (7)0.037 (7)0.061 (8)
C3B0.125 (11)0.119 (9)0.111 (6)0.059 (7)0.027 (6)0.059 (7)
C4B0.160 (12)0.173 (11)0.137 (8)0.059 (8)0.053 (7)0.084 (8)
C5B0.130 (12)0.137 (10)0.159 (8)0.045 (7)0.039 (7)0.077 (8)
C6B0.144 (11)0.131 (10)0.144 (7)0.040 (7)0.050 (7)0.070 (8)
C7B0.151 (14)0.177 (13)0.146 (10)0.051 (8)0.053 (9)0.084 (10)
C8B0.15 (2)0.22 (2)0.214 (14)0.029 (13)0.066 (15)0.110 (14)
C9B0.21 (2)0.23 (2)0.238 (15)0.105 (15)0.095 (16)0.060 (15)
C10B0.23 (2)0.221 (19)0.267 (14)0.059 (14)0.059 (13)0.152 (15)
O1C0.169 (15)0.171 (14)0.179 (8)0.019 (12)0.069 (7)0.113 (9)
C2C0.095 (11)0.116 (9)0.125 (7)0.029 (7)0.024 (7)0.068 (7)
C6C0.133 (11)0.135 (10)0.124 (7)0.043 (7)0.049 (7)0.067 (8)
C4C0.140 (12)0.161 (11)0.136 (8)0.058 (7)0.057 (8)0.071 (8)
C1C0.095 (10)0.077 (8)0.100 (6)0.033 (7)0.035 (6)0.043 (6)
C5C0.108 (11)0.112 (9)0.112 (7)0.047 (7)0.010 (6)0.062 (7)
C3C0.151 (12)0.146 (10)0.154 (8)0.039 (7)0.035 (7)0.097 (8)
C7C0.157 (13)0.160 (12)0.160 (10)0.050 (8)0.061 (9)0.077 (9)
C8C0.155 (19)0.150 (17)0.183 (12)0.053 (13)0.062 (12)0.056 (13)
C9C0.175 (19)0.229 (18)0.147 (10)0.069 (14)0.065 (10)0.100 (12)
C10C0.222 (19)0.150 (15)0.137 (9)0.070 (13)0.075 (10)0.082 (10)
Geometric parameters (Å, º) top
O1—H1A0.8200 (13)C5B—C6B1.629 (9)
O1—H1B1.04 (5)C5B—C10B1.504 (6)
O1—C11.4889 (11)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.491 (6)C7B—H7B0.9800
C1—C61.485 (5)C7B—C8B1.453 (9)
C2—H20.9800C7B—C9B1.470 (7)
C2—C31.4531 (12)C8B—H8BA0.9600
C2—C71.563 (6)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.569 (5)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.480 (6)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.5120 (12)O1C—H1CA0.85 (7)
C5—C101.434 (4)O1C—H1CB1.14 (4)
C6—H6A0.9700O1C—C1C1.462 (7)
C6—H6B0.9700C2C—H2C0.9800
C7—H70.9800C2C—C1C1.575 (7)
C7—C81.567 (9)C2C—C3C1.364 (3)
C7—C91.462 (7)C2C—C7C1.5058 (18)
C8—H8A0.9600C6C—H6CA0.9700
C8—H8B0.9600C6C—H6CB0.9700
C8—H8C0.9600C6C—C1C1.497 (3)
C9—H9A0.9600C6C—C5C1.392 (7)
C9—H9B0.9600C4C—H4CA0.9700
C9—H9C0.9600C4C—H4CB0.9700
C10—H10A0.9600C4C—C5C1.397 (5)
C10—H10B0.9600C4C—C3C1.5907 (19)
C10—H10C0.9600C1C—H1C0.9800
O1B—H1BA0.90 (8)C5C—H5C0.9800
O1B—H1BB0.97 (10)C5C—C10C1.520 (9)
O1B—C1B1.481 (5)C3C—H3CA0.9700
C1B—H1BC0.9800C3C—H3CB0.9700
C1B—C2B1.448 (6)C7C—H7C0.9800
C1B—C6B1.491 (5)C7C—C8C1.591 (10)
C2B—H2B0.9800C7C—C9C1.477 (5)
C2B—C3B1.570 (8)C8C—H8CA0.9600
C2B—C7B1.418 (6)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.545 (6)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.539 (5)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1A—O1—H1B88 (3)C10B—C5B—C6B105.8 (11)
C1—O1—H1A120 (6)C1B—C6B—C5B103.9 (8)
C1—O1—H1B125 (6)C1B—C6B—H6BA111.0
O1—C1—H1111.3C1B—C6B—H6BB111.0
O1—C1—C2108.3 (10)C5B—C6B—H6BA111.0
C2—C1—H1111.3C5B—C6B—H6BB111.0
C6—C1—O1100.3 (7)H6BA—C6B—H6BB109.0
C6—C1—H1111.3C2B—C7B—H7B108.6
C6—C1—C2113.9 (7)C2B—C7B—C8B110 (2)
C1—C2—H2102.7C2B—C7B—C9B103.5 (15)
C1—C2—C7112.1 (7)C8B—C7B—H7B108.6
C3—C2—C1109.4 (9)C8B—C7B—C9B117 (2)
C3—C2—H2102.7C9B—C7B—H7B108.6
C3—C2—C7124.1 (13)C7B—C8B—H8BA109.5
C7—C2—H2102.7C7B—C8B—H8BB109.5
C2—C3—H3A110.1C7B—C8B—H8BC109.5
C2—C3—H3B110.1H8BA—C8B—H8BB109.5
C2—C3—C4108.2 (9)H8BA—C8B—H8BC109.5
H3A—C3—H3B108.4H8BB—C8B—H8BC109.5
C4—C3—H3A110.1C7B—C9B—H9BA109.5
C4—C3—H3B110.1C7B—C9B—H9BB109.5
C3—C4—H4A108.7C7B—C9B—H9BC109.5
C3—C4—H4B108.7H9BA—C9B—H9BB109.5
H4A—C4—H4B107.6H9BA—C9B—H9BC109.5
C5—C4—C3114.2 (7)H9BB—C9B—H9BC109.5
C5—C4—H4A108.7C5B—C10B—H10D109.5
C5—C4—H4B108.7C5B—C10B—H10E109.5
C4—C5—H5109.0C5B—C10B—H10F109.5
C4—C5—C6109.1 (10)H10D—C10B—H10E109.5
C6—C5—H5109.0H10D—C10B—H10F109.5
C10—C5—C4110.8 (8)H10E—C10B—H10F109.5
C10—C5—H5109.0H1CA—O1C—H1CB84 (5)
C10—C5—C6110.0 (10)C1C—O1C—H1CA130 (7)
C1—C6—C5105.8 (7)C1C—O1C—H1CB145 (3)
C1—C6—H6A110.6C1C—C2C—H2C107.2
C1—C6—H6B110.6C3C—C2C—H2C107.2
C5—C6—H6A110.6C3C—C2C—C1C107.7 (8)
C5—C6—H6B110.6C3C—C2C—C7C114.6 (9)
H6A—C6—H6B108.7C7C—C2C—H2C107.2
C2—C7—H7114.9C7C—C2C—C1C112.7 (8)
C2—C7—C891.8 (16)H6CA—C6C—H6CB108.9
C8—C7—H7114.9C1C—C6C—H6CA110.8
C9—C7—C2107.4 (8)C1C—C6C—H6CB110.8
C9—C7—H7114.9C5C—C6C—H6CA110.8
C9—C7—C8111 (2)C5C—C6C—H6CB110.8
C7—C8—H8A109.5C5C—C6C—C1C104.8 (8)
C7—C8—H8B109.5H4CA—C4C—H4CB108.0
C7—C8—H8C109.5C5C—C4C—H4CA109.3
H8A—C8—H8B109.5C5C—C4C—H4CB109.3
H8A—C8—H8C109.5C5C—C4C—C3C111.6 (8)
H8B—C8—H8C109.5C3C—C4C—H4CA109.3
C7—C9—H9A109.5C3C—C4C—H4CB109.3
C7—C9—H9B109.5O1C—C1C—C2C101.7 (7)
C7—C9—H9C109.5O1C—C1C—C6C100.2 (9)
H9A—C9—H9B109.5O1C—C1C—H1C114.6
H9A—C9—H9C109.5C2C—C1C—H1C114.6
H9B—C9—H9C109.5C6C—C1C—C2C109.5 (8)
C5—C10—H10A109.5C6C—C1C—H1C114.6
C5—C10—H10B109.5C6C—C5C—C4C117.6 (11)
C5—C10—H10C109.5C6C—C5C—H5C103.7
H10A—C10—H10B109.5C6C—C5C—C10C115.9 (9)
H10A—C10—H10C109.5C4C—C5C—H5C103.7
H10B—C10—H10C109.5C4C—C5C—C10C110.3 (8)
H1BA—O1B—H1BB102 (7)C10C—C5C—H5C103.7
C1B—O1B—H1BA80 (3)C2C—C3C—C4C110.8 (9)
C1B—O1B—H1BB157 (10)C2C—C3C—H3CA109.5
O1B—C1B—H1BC112.3C2C—C3C—H3CB109.5
O1B—C1B—C6B103.0 (7)C4C—C3C—H3CA109.5
C2B—C1B—O1B106.8 (9)C4C—C3C—H3CB109.5
C2B—C1B—H1BC112.3H3CA—C3C—H3CB108.1
C2B—C1B—C6B109.7 (9)C2C—C7C—H7C112.2
C6B—C1B—H1BC112.3C2C—C7C—C8C100.9 (13)
C1B—C2B—H2B106.4C8C—C7C—H7C112.2
C1B—C2B—C3B106.0 (9)C9C—C7C—C2C113.8 (10)
C3B—C2B—H2B106.4C9C—C7C—H7C112.2
C7B—C2B—C1B113.5 (11)C9C—C7C—C8C104.7 (17)
C7B—C2B—H2B106.4C7C—C8C—H8CA109.5
C7B—C2B—C3B117.4 (13)C7C—C8C—H8CB109.5
C2B—C3B—H3BA110.9C7C—C8C—H8CC109.5
C2B—C3B—H3BB110.9H8CA—C8C—H8CB109.5
H3BA—C3B—H3BB108.9H8CA—C8C—H8CC109.5
C4B—C3B—C2B104.2 (9)H8CB—C8C—H8CC109.5
C4B—C3B—H3BA110.9C7C—C9C—H9CA109.5
C4B—C3B—H3BB110.9C7C—C9C—H9CB109.5
C3B—C4B—H4BA111.5C7C—C9C—H9CC109.5
C3B—C4B—H4BB111.5H9CA—C9C—H9CB109.5
H4BA—C4B—H4BB109.4H9CA—C9C—H9CC109.5
C5B—C4B—C3B101.2 (8)H9CB—C9C—H9CC109.5
C5B—C4B—H4BA111.5C5C—C10C—H10G109.5
C5B—C4B—H4BB111.5C5C—C10C—H10H109.5
C4B—C5B—H5B114.7C5C—C10C—H10I109.5
C4B—C5B—C6B97.3 (8)H10G—C10C—H10H109.5
C6B—C5B—H5B114.7H10G—C10C—H10I109.5
C10B—C5B—C4B107.8 (12)H10H—C10C—H10I109.5
C10B—C5B—H5B114.7
O1—C1—C2—C3174.2 (7)C3B—C2B—C7B—C9B75 (2)
O1—C1—C2—C744.0 (19)C3B—C4B—C5B—C6B78.0 (10)
O1—C1—C6—C5179.1 (6)C3B—C4B—C5B—C10B172.7 (15)
C1—C2—C3—C453.6 (12)C4B—C5B—C6B—C1B74.3 (11)
C1—C2—C7—C885.7 (18)C6B—C1B—C2B—C3B64.1 (14)
C1—C2—C7—C9162 (2)C6B—C1B—C2B—C7B165.6 (19)
C2—C1—C6—C563.6 (14)C7B—C2B—C3B—C4B166.0 (17)
C2—C3—C4—C554.4 (18)C10B—C5B—C6B—C1B174.8 (14)
C3—C2—C7—C849.5 (13)C1C—C2C—C3C—C4C54.7 (13)
C3—C2—C7—C963 (2)C1C—C2C—C7C—C8C56.8 (13)
C3—C4—C5—C656.8 (17)C1C—C2C—C7C—C9C168.3 (17)
C3—C4—C5—C10178.1 (15)C1C—C6C—C5C—C4C59.6 (14)
C4—C5—C6—C158.2 (12)C1C—C6C—C5C—C10C167.0 (16)
C6—C1—C2—C363.5 (14)C5C—C6C—C1C—O1C169.2 (10)
C6—C1—C2—C7154.7 (17)C5C—C6C—C1C—C2C62.8 (13)
C7—C2—C3—C4170.3 (13)C5C—C4C—C3C—C2C49.2 (16)
C10—C5—C6—C1179.9 (8)C3C—C2C—C1C—O1C170.9 (8)
O1B—C1B—C2B—C3B175.0 (11)C3C—C2C—C1C—C6C65.6 (12)
O1B—C1B—C2B—C7B55 (2)C3C—C2C—C7C—C8C66.9 (13)
O1B—C1B—C6B—C5B177.1 (9)C3C—C2C—C7C—C9C45 (2)
C1B—C2B—C3B—C4B65.9 (13)C3C—C4C—C5C—C6C52.0 (16)
C1B—C2B—C7B—C8B73 (2)C3C—C4C—C5C—C10C172.1 (16)
C1B—C2B—C7B—C9B161 (2)C7C—C2C—C1C—O1C61.7 (13)
C2B—C1B—C6B—C5B69.5 (13)C7C—C2C—C1C—C6C167.1 (15)
C2B—C3B—C4B—C5B76.2 (11)C7C—C2C—C3C—C4C179.1 (15)
C3B—C2B—C7B—C8B51 (2)
alpha-DL-2-Isopropyl-5-methylcyclohexanol (alpha_DL_1.12GPa) top
Crystal data top
C10H20OF(000) = 528
Mr = 156.26Dx = 1.152 Mg m3
Triclinic, P1Melting point: 308 K
a = 11.441 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.726 (4) ÅCell parameters from 1404 reflections
c = 12.238 (4) Åθ = 3.1–29.1°
α = 117.51 (3)°µ = 0.07 mm1
β = 99.78 (2)°T = 296 K
γ = 102.45 (3)°Plate, colourless
V = 1351.3 (8) Å30.4 × 0.3 × 0.06 mm
Z = 6
Data collection top
Xcalibur, Eos
diffractometer
299 reflections with I > 2σ(I)
Detector resolution: 16.4 pixels mm-1Rint = 0.215
ω scansθmax = 27.7°, θmin = 4.3°
Absorption correction: integration
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1414
Tmin = 0.975, Tmax = 0.996k = 1514
6494 measured reflectionsl = 1111
1172 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.062 w = 1/[σ2(Fo2) + (0.1008P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.248(Δ/σ)max < 0.001
S = 0.94Δρmax = 0.08 e Å3
1172 reflectionsΔρmin = 0.08 e Å3
318 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
223 restraintsExtinction coefficient: 0.006 (5)
Special details top

Experimental. Data were collected at room temperature and pressure of 1.12 (2) GPa (1120000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.5395 (10)1.0723 (19)0.131 (3)0.097 (9)
H1A0.6006 (17)1.048 (3)0.138 (5)0.146*0.5
H1B0.504 (12)1.01 (2)0.0432 (12)0.146*0.5
C10.561 (3)1.219 (5)0.195 (7)0.081 (7)
H10.4831661.2325790.1634040.121*
C20.592 (3)1.278 (5)0.332 (6)0.084 (8)
H20.6714881.2643940.3560730.126*
C30.627 (2)1.451 (3)0.422 (5)0.119 (7)
H3A0.5525701.4763900.4113050.179*
H3B0.6649071.4855800.5137110.179*
C40.724 (2)1.504 (4)0.364 (5)0.085 (7)
H4A0.8044471.4965810.3954860.128*
H4B0.7368991.5995600.3960230.128*
C50.679 (2)1.419 (4)0.203 (5)0.076 (7)
H50.6010021.4290000.1679040.114*
C60.6642 (16)1.289 (3)0.166 (4)0.080 (6)
H6A0.7423061.2850740.2069120.120*
H6B0.6495431.2383310.0728950.120*
C70.500 (2)1.197 (4)0.368 (5)0.085 (7)
H70.4844271.0986550.3132660.127*
C80.3779 (14)1.228 (2)0.361 (3)0.084 (9)
H8A0.3224251.1749130.3837170.101*
H8B0.3953531.3232670.4197270.101*
H8C0.3386911.2050880.2740130.101*
C90.568 (2)1.252 (4)0.518 (6)0.124 (11)
H9A0.6464951.2338850.5267780.149*
H9B0.5847121.3482430.5691750.149*
H9C0.5145041.2057620.5482030.149*
C100.7946 (14)1.508 (2)0.195 (3)0.082 (9)
H10A0.7903961.5986230.2253880.099*
H10B0.8706531.5137190.2468860.099*
H10C0.7942771.4683830.1060750.099*
O1B0.7318 (8)0.9893 (13)0.1089 (18)0.100 (8)
H1BA0.7980 (13)0.985 (3)0.093 (2)0.150*0.5
H1BB0.7025 (12)1.040 (2)0.160 (2)0.150*0.5
C1B0.741 (2)0.927 (3)0.181 (4)0.084 (8)
H1BC0.7969080.8741560.1518280.100*
C2B0.806 (2)1.029 (3)0.325 (4)0.084 (8)
H2B0.7382361.0647230.3470970.101*
C3B0.8200 (13)0.971 (2)0.413 (3)0.083 (6)
H3BA0.8355721.0403750.5023070.124*
H3BB0.8894460.9353120.4080640.124*
C4B0.6959 (18)0.856 (3)0.364 (3)0.104 (9)
H4BA0.7109520.8063970.4073970.124*
H4BB0.6372550.9001240.3986080.124*
C5B0.624 (2)0.748 (3)0.223 (3)0.075 (7)
H5B0.6784870.6935200.1915780.090*
C6B0.6281 (15)0.833 (2)0.161 (3)0.086 (6)
H6BA0.5922750.7693770.0676670.129*
H6BB0.5709440.8828250.1866780.129*
C7B0.9201 (19)1.172 (3)0.392 (4)0.095 (8)
H7B0.8989261.2106100.3386670.114*
C8B1.0281 (17)1.118 (3)0.350 (4)0.110 (10)
H8BA0.9966351.0465790.2606180.132*
H8BB1.0954891.1918620.3615250.132*
H8BC1.0588411.0839830.4025500.132*
C9B0.945 (2)1.285 (3)0.529 (4)0.152 (14)
H9BA0.8668861.2949850.5427450.228*
H9BB0.9982831.3692430.5425060.228*
H9BC0.9863781.2641060.5887690.228*
C10B0.503 (2)0.651 (3)0.190 (4)0.121 (10)
H10D0.5108610.6022650.2342520.146*
H10E0.4444660.6982870.2147270.146*
H10F0.4720020.5869510.0977240.146*
O1C0.9283 (8)1.0704 (10)0.0426 (15)0.086 (8)
H1CA0.873 (3)1.014 (3)0.044 (3)0.130*0.5
H1CB0.9893 (10)1.045 (2)0.033 (4)0.130*0.5
C2C1.048 (2)1.249 (3)0.026 (5)0.080 (7)
H2C1.0750891.1795360.0364590.120*
C6C0.8222 (19)1.099 (3)0.128 (4)0.083 (6)
H6CA0.8495521.0300950.1892770.125*
H6CB0.7378481.0564310.1319130.125*
C4C0.958 (2)1.296 (3)0.119 (5)0.085 (7)
H4CA0.9906661.2414370.1854590.128*
H4CB0.9527571.3711220.1312070.128*
C1C0.9210 (18)1.179 (3)0.020 (4)0.072 (6)
H1C0.8895941.2427250.0833770.107*
C5C0.827 (2)1.212 (3)0.157 (4)0.103 (7)
H5C0.7922221.2713610.0938540.155*
C3C1.047 (2)1.352 (3)0.014 (5)0.088 (7)
H3CA1.0356151.4308130.0529440.132*
H3CB1.1271681.3814180.0269360.132*
C7C1.1436 (18)1.313 (3)0.156 (4)0.085 (7)
H7C1.1441611.2378180.1708550.127*
C8C1.1138 (16)1.415 (3)0.269 (4)0.114 (10)
H8CA1.1800561.4501890.3478210.137*
H8CB1.1067291.4890340.2571640.137*
H8CC1.0356881.3715310.2748210.137*
C9C1.2796 (16)1.382 (3)0.173 (4)0.092 (9)
H9CA1.3306491.4180880.2598800.110*
H9CB1.3096111.3161490.1131440.110*
H9CC1.2845481.4545480.1557360.110*
C10C0.7220 (19)1.139 (3)0.285 (4)0.099 (10)
H10G0.6466831.0917620.2771010.118*
H10H0.7064681.2041230.3061770.118*
H10I0.7465881.0738660.3514040.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.106 (10)0.112 (14)0.09 (3)0.035 (10)0.049 (15)0.058 (17)
C10.081 (9)0.083 (11)0.078 (15)0.011 (7)0.022 (10)0.050 (11)
C20.083 (9)0.090 (12)0.081 (15)0.030 (8)0.034 (10)0.043 (10)
C30.129 (10)0.113 (11)0.120 (15)0.020 (7)0.039 (9)0.072 (10)
C40.097 (10)0.090 (11)0.081 (15)0.025 (7)0.021 (9)0.059 (11)
C50.070 (8)0.075 (11)0.080 (15)0.030 (7)0.017 (9)0.037 (10)
C60.082 (8)0.083 (10)0.078 (14)0.027 (7)0.027 (9)0.043 (10)
C70.083 (9)0.094 (11)0.083 (15)0.029 (7)0.033 (9)0.049 (10)
C80.081 (10)0.073 (15)0.09 (3)0.028 (10)0.035 (14)0.034 (17)
C90.091 (13)0.15 (2)0.12 (3)0.025 (11)0.041 (16)0.061 (19)
C100.091 (10)0.059 (15)0.09 (3)0.016 (10)0.038 (14)0.035 (17)
O1B0.137 (9)0.120 (13)0.10 (2)0.070 (9)0.061 (12)0.076 (16)
C1B0.078 (9)0.088 (12)0.087 (15)0.045 (9)0.024 (9)0.039 (10)
C2B0.090 (10)0.083 (12)0.085 (15)0.021 (8)0.011 (9)0.056 (11)
C3B0.079 (8)0.091 (10)0.081 (14)0.028 (7)0.022 (9)0.047 (10)
C4B0.115 (12)0.091 (12)0.108 (16)0.017 (8)0.029 (9)0.065 (11)
C5B0.069 (8)0.075 (11)0.079 (15)0.039 (8)0.023 (9)0.032 (10)
C6B0.087 (8)0.079 (10)0.089 (14)0.027 (7)0.033 (9)0.039 (10)
C7B0.097 (10)0.094 (12)0.096 (15)0.027 (8)0.041 (10)0.050 (11)
C8B0.098 (12)0.122 (17)0.10 (3)0.031 (11)0.023 (15)0.054 (18)
C9B0.131 (16)0.15 (2)0.16 (3)0.065 (15)0.043 (18)0.064 (19)
C10B0.138 (12)0.112 (17)0.12 (3)0.033 (11)0.093 (15)0.056 (18)
O1C0.109 (8)0.072 (12)0.10 (2)0.031 (8)0.037 (11)0.061 (15)
C2C0.094 (9)0.080 (11)0.079 (15)0.026 (7)0.030 (9)0.051 (10)
C6C0.088 (8)0.079 (11)0.084 (14)0.027 (7)0.041 (9)0.039 (10)
C4C0.091 (10)0.094 (11)0.082 (15)0.028 (8)0.024 (9)0.056 (11)
C1C0.078 (8)0.062 (10)0.076 (14)0.021 (7)0.018 (9)0.039 (10)
C5C0.096 (9)0.113 (11)0.100 (15)0.040 (8)0.032 (9)0.053 (10)
C3C0.087 (9)0.085 (11)0.090 (15)0.020 (7)0.029 (9)0.047 (10)
C7C0.077 (9)0.087 (11)0.084 (15)0.018 (7)0.027 (9)0.043 (10)
C8C0.077 (12)0.112 (19)0.12 (3)0.005 (12)0.002 (17)0.059 (19)
C9C0.081 (11)0.079 (16)0.09 (3)0.017 (10)0.023 (14)0.035 (18)
C10C0.110 (12)0.082 (17)0.11 (3)0.060 (11)0.062 (15)0.031 (18)
Geometric parameters (Å, º) top
O1—H1A0.8200 (12)C5B—C6B1.504 (19)
O1—H1B0.92 (2)C5B—C10B1.45 (2)
O1—C11.46 (6)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.43 (10)C7B—H7B0.9800
C1—C61.482 (18)C7B—C8B1.56 (3)
C2—H20.9800C7B—C9B1.51 (2)
C2—C31.70 (6)C8B—H8BA0.9600
C2—C71.52 (2)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.59 (2)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.66 (8)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.34 (3)O1C—H1CA0.8200 (12)
C5—C101.550 (17)O1C—H1CB0.8200 (12)
C6—H6A0.9700O1C—C1C1.439 (11)
C6—H6B0.9700C2C—H2C0.9800
C7—H70.9800C2C—C1C1.482 (18)
C7—C81.520 (17)C2C—C3C1.493 (18)
C7—C91.62 (7)C2C—C7C1.49 (5)
C8—H8A0.9600C6C—H6CA0.9700
C8—H8B0.9600C6C—H6CB0.9700
C8—H8C0.9600C6C—C1C1.65 (6)
C9—H9A0.9700C6C—C5C1.502 (18)
C9—H9B0.9600C4C—H4CA0.9700
C9—H9C0.9600C4C—H4CB0.9700
C10—H10A0.9700C4C—C5C1.47 (2)
C10—H10B0.9600C4C—C3C1.27 (6)
C10—H10C0.9600C1C—H1C0.9800
O1B—H1BA0.8200 (12)C5C—H5C0.9800
O1B—H1BB0.8200 (12)C5C—C10C1.52 (2)
O1B—C1B1.38 (2)C3C—H3CA0.9600
C1B—H1BC0.9800C3C—H3CB0.9700
C1B—C2B1.52 (2)C7C—H7C0.9800
C1B—C6B1.41 (2)C7C—C8C1.51 (2)
C2B—H2B0.9800C7C—C9C1.521 (19)
C2B—C3B1.523 (18)C8C—H8CA0.9600
C2B—C7B1.61 (4)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.525 (17)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.52 (2)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1A—O1—H1B97 (2)C10B—C5B—C6B116.4 (19)
C1—O1—H1A118 (3)C1B—C6B—C5B122 (2)
C1—O1—H1B123 (10)C1B—C6B—H6BA106.8
O1—C1—H1108.9C1B—C6B—H6BB106.8
O1—C1—C6111 (3)C5B—C6B—H6BA106.8
C2—C1—O1110 (2)C5B—C6B—H6BB106.8
C2—C1—H1108.9H6BA—C6B—H6BB106.7
C2—C1—C6109 (4)C2B—C7B—H7B104.1
C6—C1—H1108.9C8B—C7B—C2B100 (2)
C1—C2—H2104.1C8B—C7B—H7B104.1
C1—C2—C3117 (3)C9B—C7B—C2B122 (2)
C1—C2—C7111 (5)C9B—C7B—H7B104.1
C3—C2—H2104.1C9B—C7B—C8B120 (3)
C7—C2—H2104.1C7B—C8B—H8BA109.5
C7—C2—C3115 (4)C7B—C8B—H8BB109.5
C2—C3—H3A111.4C7B—C8B—H8BC109.5
C2—C3—H3B111.4H8BA—C8B—H8BB109.5
H3A—C3—H3B109.3H8BA—C8B—H8BC109.5
C4—C3—C2102 (3)H8BB—C8B—H8BC109.5
C4—C3—H3A111.4C7B—C9B—H9BA109.5
C4—C3—H3B111.4C7B—C9B—H9BB109.5
C3—C4—H4A108.7C7B—C9B—H9BC109.5
C3—C4—H4B108.7H9BA—C9B—H9BB109.5
C3—C4—C5114 (3)H9BA—C9B—H9BC109.5
H4A—C4—H4B107.6H9BB—C9B—H9BC109.5
C5—C4—H4A108.7C5B—C10B—H10D109.5
C5—C4—H4B108.7C5B—C10B—H10E109.5
C4—C5—H5111.3C5B—C10B—H10F109.5
C6—C5—C4106 (2)H10D—C10B—H10E109.5
C6—C5—H5111.3H10D—C10B—H10F109.5
C6—C5—C10120.7 (19)H10E—C10B—H10F109.5
C10—C5—C495 (3)H1CA—O1C—H1CB110.9 (14)
C10—C5—H5111.3C1C—O1C—H1CA130 (4)
C1—C6—H6A108.3C1C—O1C—H1CB117 (4)
C1—C6—H6B108.3C1C—C2C—H2C106.9
C5—C6—C1116 (2)C1C—C2C—C3C112.1 (14)
C5—C6—H6A108.3C1C—C2C—C7C113 (3)
C5—C6—H6B108.3C3C—C2C—H2C106.9
H6A—C6—H6B107.4C3C—C2C—C7C111 (3)
C2—C7—H7110.0C7C—C2C—H2C106.9
C2—C7—C9105 (3)H6CA—C6C—H6CB109.1
C8—C7—C2111.6 (12)C1C—C6C—H6CA111.1
C8—C7—H7111.1C1C—C6C—H6CB111.1
C8—C7—C9107 (3)C5C—C6C—H6CA111.1
C9—C7—H7111.1C5C—C6C—H6CB111.1
C7—C8—H8A109.5C5C—C6C—C1C103 (3)
C7—C8—H8B109.5H4CA—C4C—H4CB105.7
C7—C8—H8C109.5C5C—C4C—H4CA104.6
H8A—C8—H8B109.5C5C—C4C—H4CB104.6
H8A—C8—H8C109.5C3C—C4C—H4CA104.6
H8B—C8—H8C109.5C3C—C4C—H4CB104.6
C7—C9—H9A109.5C3C—C4C—C5C131 (3)
C7—C9—H9B109.5O1C—C1C—C2C107.9 (10)
C7—C9—H9C109.5O1C—C1C—C6C104 (2)
H9A—C9—H9B109.5O1C—C1C—H1C111.4
H9A—C9—H9C109.5C2C—C1C—C6C111 (3)
H9B—C9—H9C109.5C2C—C1C—H1C111.4
C5—C10—H10A109.5C6C—C1C—H1C111.4
C5—C10—H10B109.5C6C—C5C—H5C104.1
C5—C10—H10C109.5C6C—C5C—C10C102 (2)
H10A—C10—H10B109.5C4C—C5C—C6C109.8 (17)
H10A—C10—H10C109.5C4C—C5C—H5C104.1
H10B—C10—H10C109.5C4C—C5C—C10C131 (2)
H1BA—O1B—H1BB141.9 (4)C10C—C5C—H5C104.1
C1B—O1B—H1BA95 (3)C2C—C3C—H3CA110.0
C1B—O1B—H1BB89 (2)C2C—C3C—H3CB110.0
O1B—C1B—H1BC105.7C4C—C3C—C2C108 (3)
O1B—C1B—C2B112.8 (18)C4C—C3C—H3CA110.0
O1B—C1B—C6B115 (2)C4C—C3C—H3CB110.0
C2B—C1B—H1BC105.7H3CA—C3C—H3CB108.4
C6B—C1B—H1BC105.7C2C—C7C—H7C105.6
C6B—C1B—C2B111 (2)C2C—C7C—C8C115.6 (16)
C1B—C2B—H2B99.2C2C—C7C—C9C118 (2)
C1B—C2B—C7B127.6 (19)C8C—C7C—H7C105.6
C3B—C2B—C1B117 (2)C8C—C7C—C9C105 (2)
C3B—C2B—H2B99.2C9C—C7C—H7C105.6
C3B—C2B—C7B108 (2)C7C—C8C—H8CA109.5
C7B—C2B—H2B99.2C7C—C8C—H8CB109.5
C2B—C3B—H3BA110.5C7C—C8C—H8CC109.5
C2B—C3B—H3BB110.5H8CA—C8C—H8CB109.5
C2B—C3B—C4B106.2 (16)H8CA—C8C—H8CC109.5
H3BA—C3B—H3BB108.7H8CB—C8C—H8CC109.5
C4B—C3B—H3BA110.5C7C—C9C—H9CA109.5
C4B—C3B—H3BB110.5C7C—C9C—H9CB109.5
C3B—C4B—H4BA105.9C7C—C9C—H9CC109.5
C3B—C4B—H4BB105.9H9CA—C9C—H9CB109.5
H4BA—C4B—H4BB106.2H9CA—C9C—H9CC109.5
C5B—C4B—C3B125.6 (19)H9CB—C9C—H9CC109.5
C5B—C4B—H4BA105.9C5C—C10C—H10G109.5
C5B—C4B—H4BB105.9C5C—C10C—H10H109.5
C4B—C5B—H5B106.0C5C—C10C—H10I109.5
C6B—C5B—C4B102 (2)H10G—C10C—H10H109.5
C6B—C5B—H5B106.0H10G—C10C—H10I109.5
C10B—C5B—C4B120 (2)H10H—C10C—H10I109.5
C10B—C5B—H5B106.0
O1—C1—C2—C3177.1 (8)C3B—C2B—C7B—C9B55 (3)
O1—C1—C2—C749 (2)C3B—C4B—C5B—C6B46 (2)
O1—C1—C6—C5171 (3)C3B—C4B—C5B—C10B175.5 (10)
C1—C2—C3—C448 (3)C4B—C5B—C6B—C1B51 (3)
C1—C2—C7—C879 (4)C6B—C1B—C2B—C3B48 (2)
C1—C2—C7—C9165 (3)C6B—C1B—C2B—C7B165.9 (14)
C2—C1—C6—C568 (4)C7B—C2B—C3B—C4B166.9 (19)
C2—C3—C4—C546 (2)C10B—C5B—C6B—C1B178 (3)
C3—C2—C7—C856 (5)C1C—C2C—C3C—C4C48 (5)
C3—C2—C7—C959 (3)C1C—C2C—C7C—C8C57 (2)
C3—C4—C5—C658.8 (18)C1C—C2C—C7C—C9C176.8 (16)
C3—C4—C5—C10177.3 (10)C1C—C6C—C5C—C4C46 (3)
C4—C5—C6—C166 (3)C1C—C6C—C5C—C10C172.3 (16)
C6—C1—C2—C355 (2)C5C—C6C—C1C—O1C173.7 (10)
C6—C1—C2—C7170.8 (10)C5C—C6C—C1C—C2C58 (2)
C7—C2—C3—C4179 (3)C5C—C4C—C3C—C2C45 (5)
C10—C5—C6—C1172 (3)C3C—C2C—C1C—O1C172 (3)
O1B—C1B—C2B—C3B179.3 (8)C3C—C2C—C1C—C6C59 (4)
O1B—C1B—C2B—C7B35 (3)C3C—C2C—C7C—C8C69 (2)
O1B—C1B—C6B—C5B175 (2)C3C—C2C—C7C—C9C57 (3)
C1B—C2B—C3B—C4B41 (2)C3C—C4C—C5C—C6C50 (5)
C1B—C2B—C7B—C8B67 (2)C3C—C4C—C5C—C10C176 (3)
C1B—C2B—C7B—C9B157 (2)C7C—C2C—C1C—O1C62 (3)
C2B—C1B—C6B—C5B56 (3)C7C—C2C—C1C—C6C175 (2)
C2B—C3B—C4B—C5B44 (2)C7C—C2C—C3C—C4C174 (3)
C3B—C2B—C7B—C8B81 (2)
alpha-DL-2-Isopropyl-5-methylcyclohexanol (alpha_DL_1.44GPa) top
Crystal data top
C10H20OZ = 6
Mr = 156.26F(000) = 528
Triclinic, P1Dx = 1.185 Mg m3
Hall symbol: -P 1Melting point: 308 K
a = 11.3399 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.6116 (11) ÅCell parameters from 1409 reflections
c = 12.094 (3) Åθ = 3.2–29.5°
α = 117.748 (13)°µ = 0.07 mm1
β = 99.55 (2)°T = 296 K
γ = 101.95 (3)°Plate, colourless
V = 1314.0 (5) Å30.39 × 0.3 × 0.06 mm
Data collection top
Xcalibur, Eos
diffractometer
373 reflections with I > 2σ(I)
Detector resolution: 16.4 pixels mm-1Rint = 0.220
ω scansθmax = 31.0°, θmin = 2.8°
Absorption correction: integration
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1010
Tmin = 0.974, Tmax = 0.996k = 1111
9339 measured reflectionsl = 1717
1521 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.075 w = 1/[σ2(Fo2) + (0.1193P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.291(Δ/σ)max < 0.001
S = 0.94Δρmax = 0.09 e Å3
1521 reflectionsΔρmin = 0.09 e Å3
317 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
214 restraintsExtinction coefficient: 0.083 (18)
Special details top

Experimental. Data were collected at room temperature and pressure of 1.44 (2) GPa (1440000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.5441 (12)1.0728 (14)0.1248 (7)0.119 (11)
H1A0.615 (2)1.102 (3)0.177 (3)0.179*0.5
H1B0.499 (10)1.011 (10)0.0511 (6)0.179*0.5
C10.5489 (14)1.2122 (15)0.1800 (10)0.101 (7)
H10.4651971.2174480.1512380.151*
C20.5897 (18)1.273 (2)0.3231 (9)0.086 (7)
H20.6719721.2625150.3477700.129*
C30.609 (2)1.419 (2)0.3767 (11)0.105 (7)
H3A0.6333481.4653550.4716230.158*
H3B0.5292541.4300510.3473110.158*
C40.7060 (19)1.483 (2)0.3371 (11)0.116 (7)
H4A0.7175741.5805680.3781570.174*
H4B0.7858331.4729270.3675040.174*
C50.672 (2)1.423 (2)0.2001 (12)0.118 (8)
H50.5949191.4407690.1736660.176*
C60.645 (2)1.288 (2)0.1430 (10)0.112 (7)
H6A0.7225461.2688870.1610260.168*
H6B0.6140091.2487410.0490690.168*
C70.507 (3)1.208 (3)0.3635 (14)0.097 (8)
H70.4952401.1097900.3107580.145*
C80.393 (3)1.219 (3)0.3500 (15)0.123 (12)
H8A0.3454641.1697120.3819280.148*
H8B0.3997761.3147530.3993110.148*
H8C0.3509881.1821030.2590950.148*
C90.556 (2)1.247 (2)0.4957 (11)0.140 (12)
H9A0.6399251.2409970.5106250.168*
H9B0.5599091.3405860.5520570.168*
H9C0.5027241.1875100.5143590.168*
C100.765 (3)1.488 (3)0.1661 (13)0.180 (14)
H10A0.7790671.5848420.2120600.215*
H10B0.8426831.4712730.1893840.215*
H10C0.7381921.4512060.0733190.215*
O1B0.7342 (16)1.0251 (15)0.1287 (8)0.160 (12)
H1BA0.81 (2)1.08 (3)0.14 (2)0.241*0.5
H1BB0.695 (3)1.051 (5)0.182 (2)0.241*0.5
C1B0.7709 (18)0.945 (2)0.1969 (11)0.118 (8)
H1BC0.8287930.8937280.1652860.177*
C2B0.8117 (19)1.048 (2)0.3370 (11)0.108 (7)
H2B0.7392361.0813630.3487330.162*
C3B0.813 (2)0.986 (2)0.4005 (11)0.125 (8)
H3BA0.8370891.0554360.4929560.187*
H3BB0.8792320.9449020.3875260.187*
C4B0.692 (2)0.875 (2)0.3692 (12)0.132 (7)
H4BA0.7093520.8289070.4164550.198*
H4BB0.6281500.9160320.3961600.198*
C5B0.647 (2)0.775 (3)0.2269 (14)0.152 (8)
H5B0.7116140.7319260.2017730.228*
C6B0.6351 (19)0.858 (2)0.1655 (11)0.113 (7)
H6BA0.5852420.9170070.2023990.169*
H6BB0.5953930.7997320.0715330.169*
C7B0.917 (4)1.175 (4)0.379 (2)0.146 (9)
H7B0.8966071.2083170.3197750.219*
C8B1.031 (4)1.137 (4)0.3668 (17)0.178 (14)
H8BA1.0151701.0644940.2785220.213*
H8BB1.0986701.2157240.3873060.213*
H8BC1.0528851.1066700.4261940.213*
C9B0.937 (2)1.280 (2)0.5053 (13)0.156 (12)
H9BA0.8607121.3033510.5118780.188*
H9BB0.9584101.2496890.5653750.188*
H9BC1.0041951.3587440.5264860.188*
C10B0.529 (3)0.668 (3)0.1933 (16)0.192 (14)
H10D0.5003200.6031290.1005070.230*
H10E0.5441180.6207220.2390170.230*
H10F0.4657350.7094200.2184070.230*
O1C0.9369 (9)1.0799 (9)0.0514 (8)0.136 (11)
H1C0.868 (19)1.05 (4)0.07 (2)0.204*0.5
H1CA0.976 (3)1.025 (3)0.037 (3)0.204*0.5
C2C1.0516 (18)1.252 (2)0.0292 (10)0.097 (7)
H2C1.0778191.1816440.0361770.146*
C6C0.8326 (17)1.1115 (19)0.1068 (9)0.095 (7)
H6CA0.8558271.0367090.1690350.143*
H6CB0.7503441.0726370.1024980.143*
C4C0.9498 (17)1.2794 (19)0.1439 (9)0.096 (7)
H4CA0.9419291.3457170.1696750.144*
H4CB0.9812061.2139210.2062830.144*
C1C0.928 (2)1.183 (2)0.0255 (11)0.091 (7)
H1CB0.8985631.2486790.0912930.136*
C5C0.8257 (19)1.207 (2)0.1511 (12)0.121 (8)
H5C0.8003351.2776280.0849360.182*
C3C1.042 (2)1.351 (2)0.0145 (11)0.114 (7)
H3CA1.0155041.4231020.0472400.170*
H3CB1.1234381.3931650.0173230.170*
C7C1.146 (2)1.309 (2)0.1578 (14)0.115 (8)
H7C1.1458201.2359770.1767620.173*
C8C1.111 (2)1.422 (2)0.2643 (12)0.136 (12)
H8CA1.0278001.3832900.2655790.164*
H8CB1.1709441.4588580.3480840.164*
H8CC1.1111701.4939550.2459140.164*
C9C1.273 (3)1.369 (3)0.1561 (12)0.167 (13)
H9CA1.3328501.4052110.2398020.200*
H9CB1.2948211.2983590.0891480.200*
H9CC1.2731201.4409800.1381690.200*
C10C0.724 (2)1.148 (2)0.2765 (10)0.122 (12)
H10G0.7253261.2169860.2994010.146*
H10H0.7379991.0709540.3447960.146*
H10I0.6433001.1181670.2660630.146*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.136 (16)0.121 (15)0.092 (5)0.042 (13)0.023 (7)0.052 (7)
C10.115 (11)0.105 (11)0.088 (7)0.045 (8)0.013 (7)0.055 (8)
C20.086 (10)0.091 (10)0.076 (6)0.039 (8)0.001 (6)0.043 (7)
C30.120 (11)0.096 (11)0.111 (7)0.035 (7)0.016 (7)0.068 (7)
C40.115 (11)0.100 (10)0.121 (7)0.032 (8)0.034 (7)0.050 (7)
C50.123 (11)0.108 (11)0.128 (8)0.023 (7)0.055 (7)0.067 (8)
C60.105 (11)0.112 (11)0.118 (7)0.029 (7)0.046 (7)0.058 (8)
C70.092 (11)0.085 (11)0.110 (8)0.029 (8)0.020 (8)0.051 (7)
C80.115 (18)0.130 (18)0.132 (9)0.035 (14)0.027 (12)0.078 (11)
C90.128 (18)0.171 (18)0.113 (8)0.069 (14)0.023 (9)0.063 (10)
C100.190 (19)0.18 (2)0.185 (11)0.040 (14)0.079 (12)0.108 (13)
O1B0.182 (17)0.188 (17)0.135 (6)0.038 (13)0.035 (8)0.114 (9)
C1B0.135 (11)0.130 (11)0.113 (7)0.037 (7)0.036 (7)0.085 (8)
C2B0.099 (11)0.110 (11)0.114 (7)0.036 (8)0.031 (7)0.057 (8)
C3B0.124 (12)0.128 (11)0.115 (7)0.043 (8)0.046 (7)0.055 (8)
C4B0.143 (11)0.145 (11)0.122 (7)0.048 (8)0.040 (7)0.080 (8)
C5B0.145 (12)0.142 (12)0.161 (9)0.039 (8)0.057 (8)0.072 (9)
C6B0.127 (11)0.114 (10)0.105 (6)0.040 (7)0.032 (7)0.064 (7)
C7B0.139 (13)0.155 (13)0.141 (9)0.049 (8)0.046 (9)0.073 (9)
C8B0.18 (2)0.21 (2)0.138 (11)0.070 (15)0.073 (14)0.081 (13)
C9B0.103 (17)0.156 (18)0.161 (10)0.037 (14)0.059 (11)0.041 (12)
C10B0.21 (2)0.15 (2)0.224 (12)0.036 (14)0.065 (13)0.113 (13)
O1C0.160 (16)0.125 (16)0.142 (7)0.041 (12)0.051 (7)0.085 (9)
C2C0.106 (11)0.093 (10)0.088 (6)0.038 (7)0.030 (7)0.041 (7)
C6C0.100 (11)0.091 (10)0.077 (6)0.042 (7)0.034 (6)0.023 (7)
C4C0.109 (11)0.109 (10)0.079 (5)0.047 (7)0.021 (6)0.054 (7)
C1C0.081 (11)0.095 (11)0.086 (6)0.046 (8)0.012 (7)0.036 (8)
C5C0.132 (12)0.121 (11)0.121 (8)0.039 (8)0.041 (8)0.071 (8)
C3C0.096 (11)0.108 (11)0.124 (7)0.030 (7)0.029 (7)0.053 (8)
C7C0.120 (11)0.107 (11)0.121 (8)0.036 (8)0.038 (8)0.061 (8)
C8C0.149 (18)0.139 (18)0.102 (8)0.060 (14)0.037 (10)0.043 (10)
C9C0.17 (2)0.179 (19)0.139 (9)0.076 (15)0.053 (11)0.061 (12)
C10C0.148 (17)0.134 (17)0.096 (7)0.064 (14)0.009 (8)0.072 (9)
Geometric parameters (Å, º) top
O1—H1A0.8200 (12)C5B—C6B1.48 (3)
O1—H1B0.8200 (12)C5B—C10B1.473 (19)
O1—C11.420 (6)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.473 (13)C7B—H7B0.9800
C1—C61.510 (16)C7B—C8B1.46 (9)
C2—H20.9800C7B—C9B1.38 (3)
C2—C31.45 (3)C8B—H8BA0.9600
C2—C71.371 (16)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.476 (16)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.407 (13)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.32 (3)O1C—H1C0.87 (10)
C5—C101.395 (19)O1C—H1CA0.8200 (12)
C6—H6A0.9700O1C—C1C1.39 (3)
C6—H6B0.9700C2C—H2C0.9800
C7—H70.9800C2C—C1C1.45 (2)
C7—C81.32 (5)C2C—C3C1.48 (3)
C7—C91.413 (17)C2C—C7C1.483 (18)
C8—H8A0.9600C6C—H6CA0.9700
C8—H8B0.9600C6C—H6CB0.9700
C8—H8C0.9600C6C—C1C1.497 (15)
C9—H9A0.9600C6C—C5C1.45 (2)
C9—H9B0.9600C4C—H4CA0.9700
C9—H9C0.9600C4C—H4CB0.9700
C10—H10A0.9600C4C—C5C1.448 (18)
C10—H10B0.9600C4C—C3C1.454 (14)
C10—H10C0.9600C1C—H1CB0.9800
O1B—H1BA0.90 (11)C5C—H5C0.9800
O1B—H1BB0.8200 (11)C5C—C10C1.492 (19)
O1B—C1B1.58 (3)C3C—H3CA0.9700
C1B—H1BC0.9800C3C—H3CB0.9700
C1B—C2B1.464 (18)C7C—H7C0.9800
C1B—C6B1.527 (18)C7C—C8C1.53 (4)
C2B—H2B0.9800C7C—C9C1.47 (2)
C2B—C3B1.27 (2)C8C—H8CA0.9600
C2B—C7B1.49 (2)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.525 (15)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.47 (2)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1A—O1—H1B143 (10)C10B—C5B—C6B115 (2)
C1—O1—H1A86.9 (17)C1B—C6B—H6BA110.8
C1—O1—H1B124 (10)C1B—C6B—H6BB110.8
O1—C1—H1110.3C5B—C6B—C1B104.6 (17)
O1—C1—C2105.7 (13)C5B—C6B—H6BA110.8
O1—C1—C6110.7 (15)C5B—C6B—H6BB110.8
C2—C1—H1110.3H6BA—C6B—H6BB108.9
C2—C1—C6109.3 (9)C2B—C7B—H7B108.4
C6—C1—H1110.3C8B—C7B—C2B108 (5)
C1—C2—H2108.0C8B—C7B—H7B108.4
C3—C2—C1104.3 (14)C9B—C7B—C2B113.3 (19)
C3—C2—H2108.0C9B—C7B—H7B108.4
C7—C2—C1112.4 (10)C9B—C7B—C8B111 (2)
C7—C2—H2108.0C7B—C8B—H8BA109.5
C7—C2—C3116 (2)C7B—C8B—H8BB109.5
C2—C3—H3A109.1C7B—C8B—H8BC109.5
C2—C3—H3B109.1H8BA—C8B—H8BB109.5
C2—C3—C4113 (2)H8BA—C8B—H8BC109.5
H3A—C3—H3B107.8H8BB—C8B—H8BC109.5
C4—C3—H3A109.1C7B—C9B—H9BA109.5
C4—C3—H3B109.1C7B—C9B—H9BB109.5
C3—C4—H4A109.3C7B—C9B—H9BC109.5
C3—C4—H4B109.3H9BA—C9B—H9BB109.5
H4A—C4—H4B108.0H9BA—C9B—H9BC109.5
C5—C4—C3111.6 (9)H9BB—C9B—H9BC109.5
C5—C4—H4A109.3C5B—C10B—H10D109.5
C5—C4—H4B109.3C5B—C10B—H10E109.5
C4—C5—H5107.1C5B—C10B—H10F109.5
C6—C5—C4109.5 (16)H10D—C10B—H10E109.5
C6—C5—H5107.1H10D—C10B—H10F109.5
C6—C5—C10115 (2)H10E—C10B—H10F109.5
C10—C5—C4110.2 (11)H1C—O1C—H1CA109.00
C10—C5—H5107.1C1C—O1C—H1C110.00
C1—C6—H6A107.7C1C—O1C—H1CA138 (2)
C1—C6—H6B107.7C1C—C2C—H2C106.5
C5—C6—C1118 (2)C1C—C2C—C3C110 (2)
C5—C6—H6A107.7C1C—C2C—C7C110.9 (9)
C5—C6—H6B107.7C3C—C2C—H2C106.5
H6A—C6—H6B107.1C7C—C2C—H2C106.5
C2—C7—H7106.3C7C—C2C—C3C116.0 (12)
C2—C7—C9112.7 (12)H6CA—C6C—H6CB108.1
C8—C7—C2118 (3)C1C—C6C—H6CA109.5
C8—C7—H7106.3C1C—C6C—H6CB109.5
C8—C7—C9106 (2)C5C—C6C—H6CA109.5
C9—C7—H7106.3C5C—C6C—H6CB109.5
C7—C8—H8A109.5C5C—C6C—C1C110.6 (13)
C7—C8—H8B109.5H4CA—C4C—H4CB107.7
C7—C8—H8C109.5C5C—C4C—H4CA108.8
H8A—C8—H8B109.5C5C—C4C—H4CB108.8
H8A—C8—H8C109.5C5C—C4C—C3C113.8 (8)
H8B—C8—H8C109.5C3C—C4C—H4CA108.8
C7—C9—H9A109.5C3C—C4C—H4CB108.8
C7—C9—H9B109.5O1C—C1C—C2C109 (2)
C7—C9—H9C109.5O1C—C1C—C6C105.6 (13)
H9A—C9—H9B109.5O1C—C1C—H1CB109.8
H9A—C9—H9C109.5C2C—C1C—C6C112.8 (10)
H9B—C9—H9C109.5C2C—C1C—H1CB109.8
C5—C10—H10A109.5C6C—C1C—H1CB109.8
C5—C10—H10B109.5C6C—C5C—C4C111 (2)
C5—C10—H10C109.5C6C—C5C—H5C104.8
H10A—C10—H10B109.5C6C—C5C—C10C114.3 (12)
H10A—C10—H10C109.5C4C—C5C—H5C104.8
H10B—C10—H10C109.5C4C—C5C—C10C115.7 (9)
H1BA—O1B—H1BB121 (10)C10C—C5C—H5C104.8
C1B—O1B—H1BA103 (10)C2C—C3C—H3CA109.7
C1B—O1B—H1BB84 (2)C2C—C3C—H3CB109.7
O1B—C1B—H1BC116.4C4C—C3C—C2C109.8 (13)
C2B—C1B—O1B103.6 (18)C4C—C3C—H3CA109.7
C2B—C1B—H1BC116.4C4C—C3C—H3CB109.7
C2B—C1B—C6B106.0 (13)H3CA—C3C—H3CB108.2
C6B—C1B—O1B95.4 (15)C2C—C7C—H7C109.4
C6B—C1B—H1BC116.4C2C—C7C—C8C109 (3)
C1B—C2B—H2B103.2C8C—C7C—H7C109.4
C1B—C2B—C7B115.3 (13)C9C—C7C—C2C110.3 (11)
C3B—C2B—C1B108.1 (18)C9C—C7C—H7C109.4
C3B—C2B—H2B103.2C9C—C7C—C8C109.3 (14)
C3B—C2B—C7B121 (2)C7C—C8C—H8CA109.5
C7B—C2B—H2B103.2C7C—C8C—H8CB109.5
C2B—C3B—H3BA107.6C7C—C8C—H8CC109.5
C2B—C3B—H3BB107.6H8CA—C8C—H8CB109.5
C2B—C3B—C4B118.7 (17)H8CA—C8C—H8CC109.5
H3BA—C3B—H3BB107.1H8CB—C8C—H8CC109.5
C4B—C3B—H3BA107.6C7C—C9C—H9CA109.5
C4B—C3B—H3BB107.6C7C—C9C—H9CB109.5
C3B—C4B—H4BA109.9C7C—C9C—H9CC109.5
C3B—C4B—H4BB109.9H9CA—C9C—H9CB109.5
H4BA—C4B—H4BB108.3H9CA—C9C—H9CC109.5
C5B—C4B—C3B108.7 (12)H9CB—C9C—H9CC109.5
C5B—C4B—H4BA109.9C5C—C10C—H10G109.5
C5B—C4B—H4BB109.9C5C—C10C—H10H109.5
C4B—C5B—H5B109.0C5C—C10C—H10I109.5
C4B—C5B—C6B105.0 (19)H10G—C10C—H10H109.5
C6B—C5B—H5B109.0H10G—C10C—H10I109.5
C10B—C5B—C4B110.0 (14)H10H—C10C—H10I109.5
C10B—C5B—H5B109.0
O1—C1—C2—C3173.3 (16)C3B—C2B—C7B—C9B58 (6)
O1—C1—C2—C761 (3)C3B—C4B—C5B—C6B55 (3)
O1—C1—C6—C5171.5 (17)C3B—C4B—C5B—C10B179 (3)
C1—C2—C3—C461 (2)C4B—C5B—C6B—C1B68 (2)
C1—C2—C7—C867 (3)C6B—C1B—C2B—C3B64 (3)
C1—C2—C7—C9169 (3)C6B—C1B—C2B—C7B157 (3)
C2—C1—C6—C555 (3)C7B—C2B—C3B—C4B168 (3)
C2—C3—C4—C561 (3)C10B—C5B—C6B—C1B171 (2)
C3—C2—C7—C853 (2)C1C—C2C—C3C—C4C56 (2)
C3—C2—C7—C971 (3)C1C—C2C—C7C—C8C65 (2)
C3—C4—C5—C653 (3)C1C—C2C—C7C—C9C175 (2)
C3—C4—C5—C10179 (3)C1C—C6C—C5C—C4C52 (2)
C4—C5—C6—C152 (3)C1C—C6C—C5C—C10C174 (2)
C6—C1—C2—C354 (3)C5C—C6C—C1C—O1C173.7 (17)
C6—C1—C2—C7180 (3)C5C—C6C—C1C—C2C55 (3)
C7—C2—C3—C4175.5 (15)C5C—C4C—C3C—C2C56 (3)
C10—C5—C6—C1177.3 (17)C3C—C2C—C1C—O1C173.0 (12)
O1B—C1B—C2B—C3B163.9 (19)C3C—C2C—C1C—C6C56 (2)
O1B—C1B—C2B—C7B57 (4)C3C—C2C—C7C—C8C61 (2)
O1B—C1B—C6B—C5B178.1 (16)C3C—C2C—C7C—C9C59 (3)
C1B—C2B—C3B—C4B56 (3)C3C—C4C—C5C—C6C55 (2)
C1B—C2B—C7B—C8B69 (3)C3C—C4C—C5C—C10C172 (2)
C1B—C2B—C7B—C9B169 (3)C7C—C2C—C1C—O1C57 (2)
C2B—C1B—C6B—C5B72 (2)C7C—C2C—C1C—C6C174 (2)
C2B—C3B—C4B—C5B53 (3)C7C—C2C—C3C—C4C177.5 (19)
C3B—C2B—C7B—C8B65 (3)
alpha-DL-2-Isopropyl-5-methylcyclohexanol (alpha_DL_1.70GPa) top
Crystal data top
C10H20OZ = 6
Mr = 156.26F(000) = 528
Triclinic, P1Dx = 1.209 Mg m3
Hall symbol: -P 1Melting point: 308 K
a = 11.262 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.533 (4) ÅCell parameters from 1408 reflections
c = 11.991 (4) Åθ = 3.2–29.8°
α = 117.74 (3)°µ = 0.08 mm1
β = 99.47 (2)°T = 296 K
γ = 101.75 (3)°Plate, colourless
V = 1287.7 (8) Å30.39 × 0.3 × 0.06 mm
Data collection top
Xcalibur, Eos
diffractometer
318 reflections with I > 2σ(I)
Detector resolution: 16.4 pixels mm-1Rint = 0.259
ω scansθmax = 28.4°, θmin = 4.4°
Absorption correction: integration
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1414
Tmin = 0.397, Tmax = 0.929k = 1515
6757 measured reflectionsl = 1111
1201 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.079 w = 1/[σ2(Fo2) + (0.1287P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.295(Δ/σ)max < 0.001
S = 0.94Δρmax = 0.10 e Å3
1201 reflectionsΔρmin = 0.09 e Å3
321 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
243 restraintsExtinction coefficient: 0.005 (6)
Special details top

Experimental. Data were collected at room temperature and pressure of 1.70 (2) GPa (1700000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.5366 (10)1.0673 (15)0.1224 (16)0.094 (9)
H1A0.610 (2)1.066 (6)0.135 (16)0.141*0.5
H1B0.539 (7)1.008 (7)0.0510 (7)0.141*0.5
C10.5593 (12)1.2122 (15)0.1916 (17)0.064 (6)
H10.4800741.2258230.1605570.077*
C20.5950 (14)1.2920 (16)0.3459 (17)0.093 (7)
H20.6770681.2804780.3713480.111*
C30.6272 (13)1.4487 (17)0.418 (2)0.096 (6)
H3A0.6668111.4895520.5118360.144*
H3B0.5511291.4740920.4061210.144*
C40.7201 (12)1.4978 (17)0.3559 (18)0.073 (6)
H4A0.7356431.5961250.3919520.088*
H4B0.8004151.4857490.3832690.088*
C50.6790 (11)1.4278 (14)0.2102 (18)0.076 (6)
H50.6008331.4440540.1809490.091*
C60.6556 (12)1.2781 (16)0.151 (2)0.071 (6)
H6A0.6281751.2338780.0558720.106*
H6B0.7347241.2627360.1762380.106*
C70.5133 (11)1.2204 (18)0.396 (2)0.067 (6)
H70.5025531.1220520.3403380.100*
C80.3784 (12)1.233 (2)0.362 (3)0.079 (9)
H8A0.3512751.2062390.2709810.095*
H8B0.3194951.1736510.3778890.095*
H8C0.3815521.3270730.4167940.095*
C90.5734 (16)1.2563 (19)0.530 (2)0.122 (10)
H9A0.6598401.2568910.5401390.184*
H9B0.5279681.1893160.5475670.184*
H9C0.5717491.3463230.5920170.184*
C100.7861 (13)1.501 (2)0.183 (3)0.080 (9)
H10A0.7944141.5979860.2248340.096*
H10B0.8637741.4907380.2169030.096*
H10C0.7683941.4627500.0892890.096*
O1B0.7362 (8)0.9923 (13)0.1074 (16)0.084 (8)
H1BA0.801 (4)1.051 (5)0.121 (9)0.126*0.5
H1BB0.714 (5)1.054 (4)0.160 (3)0.126*0.5
C1B0.7527 (12)0.9372 (15)0.1956 (15)0.064 (6)
H1BC0.8164230.8903440.1747200.077*
C2B0.8060 (13)1.0473 (14)0.3349 (16)0.065 (6)
H2B0.7395311.0893330.3576070.078*
C3B0.8223 (11)0.9764 (19)0.416 (2)0.094 (6)
H3BA0.8387121.0411440.5089490.141*
H3BB0.8917150.9384330.4038880.141*
C4B0.6895 (14)0.8562 (17)0.357 (2)0.088 (7)
H4BA0.6972160.8070160.4038740.106*
H4BB0.6267740.9014900.3832270.106*
C5B0.6321 (16)0.747 (2)0.213 (2)0.095 (8)
H5B0.6909940.6948000.1868790.114*
C6B0.6247 (10)0.8233 (16)0.132 (2)0.079 (6)
H6BA0.6130080.7602700.0388870.119*
H6BB0.5554380.8619000.1392020.119*
C7B0.9193 (11)1.1595 (17)0.379 (2)0.100 (8)
H7B0.9015321.1928070.3188490.149*
C8B1.0312 (16)1.124 (3)0.361 (4)0.094 (9)
H8BA1.1011111.2061980.3937500.113*
H8BB1.0499981.0777110.4071400.113*
H8BC1.0180101.0633350.2681050.113*
C9B0.9420 (14)1.283 (2)0.511 (2)0.121 (11)
H9BA0.8636851.3019160.5180680.146*
H9BB0.9739751.2651010.5787650.146*
H9BC1.0030941.3609040.5206790.146*
C10B0.5092 (17)0.649 (3)0.181 (4)0.112 (10)
H10D0.5221890.5773630.1958270.167*
H10E0.4633350.6091900.0894600.167*
H10F0.4613420.6962090.2354040.167*
O1C0.9304 (8)1.0742 (10)0.0493 (13)0.080 (8)
H1C0.902 (4)1.097 (12)0.113 (3)0.120*0.5
H1CA0.9914 (17)1.049 (3)0.032 (12)0.120*0.5
C2C1.0537 (11)1.2579 (18)0.043 (2)0.069 (6)
H2C1.0939871.1952040.0124300.082*
C6C0.8119 (12)1.0892 (14)0.1436 (18)0.075 (6)
H6CA0.8356971.0186950.2114970.090*
H6CB0.7273471.0490260.1437100.090*
C4C0.9388 (19)1.260 (2)0.161 (3)0.124 (8)
H4CA0.9294641.3175780.1977980.149*
H4CB0.9706281.1890550.2173230.149*
C1C0.9098 (11)1.1583 (15)0.0067 (19)0.062 (6)
H1CB0.8698371.2189030.0519220.074*
C5C0.819 (2)1.197 (2)0.158 (4)0.104 (8)
H5C0.7921601.2650420.0907560.124*
C3C1.0315 (19)1.345 (3)0.028 (3)0.086 (7)
H3CA1.0021971.4197080.0265790.103*
H3CB1.1120701.3862400.0350390.103*
C7C1.1483 (13)1.329 (2)0.176 (2)0.097 (7)
H7C1.1514871.2555380.1956950.116*
C8C1.1234 (18)1.443 (2)0.299 (3)0.147 (11)
H8CA1.1324801.5247290.2930780.220*
H8CB1.1836991.4659610.3786730.220*
H8CC1.0388251.4097700.3008870.220*
C9C1.2790 (19)1.383 (3)0.171 (5)0.132 (10)
H9CA1.3385211.4280610.2579220.159*
H9CB1.3023621.3073250.1110150.159*
H9CC1.2797181.4476260.1424220.159*
C10C0.723 (2)1.131 (3)0.296 (4)0.097 (10)
H10G0.7530601.0683050.3624050.145*
H10H0.7127971.2019960.3136040.145*
H10I0.6421611.0806930.2982960.145*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.088 (10)0.097 (13)0.10 (3)0.019 (9)0.015 (15)0.064 (17)
C10.065 (8)0.066 (10)0.064 (14)0.024 (7)0.016 (9)0.036 (10)
C20.092 (9)0.094 (11)0.093 (15)0.032 (8)0.024 (10)0.050 (10)
C30.094 (8)0.097 (10)0.097 (14)0.032 (7)0.030 (9)0.050 (10)
C40.080 (9)0.078 (10)0.068 (14)0.022 (7)0.021 (9)0.044 (10)
C50.065 (8)0.073 (11)0.078 (15)0.027 (7)0.019 (9)0.030 (10)
C60.068 (7)0.078 (10)0.070 (14)0.028 (7)0.013 (8)0.041 (10)
C70.067 (8)0.064 (10)0.067 (14)0.018 (7)0.028 (9)0.031 (10)
C80.077 (10)0.064 (15)0.10 (3)0.037 (10)0.041 (13)0.033 (17)
C90.117 (13)0.137 (19)0.12 (3)0.039 (12)0.040 (16)0.065 (19)
C100.096 (10)0.058 (15)0.09 (3)0.031 (10)0.033 (14)0.039 (17)
O1B0.093 (8)0.096 (13)0.09 (2)0.032 (8)0.040 (11)0.059 (16)
C1B0.063 (8)0.058 (10)0.070 (14)0.017 (7)0.018 (9)0.033 (10)
C2B0.056 (8)0.069 (11)0.064 (14)0.015 (7)0.012 (9)0.035 (10)
C3B0.081 (8)0.097 (10)0.094 (14)0.020 (7)0.033 (9)0.044 (10)
C4B0.090 (9)0.083 (11)0.089 (15)0.021 (7)0.032 (9)0.044 (10)
C5B0.091 (9)0.094 (11)0.095 (15)0.031 (8)0.034 (9)0.041 (10)
C6B0.065 (7)0.082 (10)0.080 (14)0.023 (7)0.021 (9)0.035 (10)
C7B0.093 (10)0.097 (12)0.101 (15)0.032 (8)0.042 (10)0.040 (10)
C8B0.083 (11)0.093 (16)0.09 (3)0.041 (10)0.037 (14)0.031 (18)
C9B0.089 (13)0.130 (19)0.13 (3)0.045 (12)0.031 (16)0.047 (19)
C10B0.112 (12)0.097 (17)0.13 (3)0.038 (11)0.044 (15)0.052 (18)
O1C0.088 (7)0.083 (12)0.09 (2)0.034 (8)0.030 (11)0.051 (16)
C2C0.067 (8)0.065 (10)0.070 (14)0.014 (7)0.024 (9)0.033 (10)
C6C0.084 (8)0.075 (10)0.071 (14)0.021 (7)0.026 (9)0.043 (10)
C4C0.120 (11)0.123 (12)0.124 (15)0.018 (8)0.046 (10)0.067 (11)
C1C0.075 (8)0.056 (10)0.063 (14)0.029 (7)0.021 (8)0.034 (10)
C5C0.105 (10)0.111 (11)0.102 (15)0.039 (8)0.019 (9)0.063 (10)
C3C0.103 (9)0.085 (10)0.083 (15)0.013 (7)0.029 (9)0.061 (10)
C7C0.107 (10)0.092 (11)0.099 (15)0.027 (8)0.036 (10)0.056 (10)
C8C0.135 (14)0.149 (19)0.16 (3)0.064 (13)0.038 (17)0.073 (19)
C9C0.106 (12)0.157 (19)0.13 (3)0.025 (12)0.054 (16)0.069 (19)
C10C0.119 (12)0.095 (17)0.09 (3)0.045 (11)0.036 (15)0.055 (18)
Geometric parameters (Å, º) top
O1—H1A0.8200 (18)C5B—C6B1.585 (5)
O1—H1B0.8200 (12)C5B—C10B1.459 (10)
O1—C11.419 (6)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.566 (4)C7B—H7B0.9800
C1—C61.472 (8)C7B—C8B1.424 (6)
C2—H20.9800C7B—C9B1.4840 (15)
C2—C31.523 (2)C8B—H8BA0.9600
C2—C71.492 (2)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.5429 (12)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.479 (2)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.473 (2)O1C—H1C0.8200 (12)
C5—C101.5020 (13)O1C—H1CA0.8200 (13)
C6—H6A0.9700O1C—C1C1.447 (3)
C6—H6B0.9700C2C—H2C0.9800
C7—H70.9800C2C—C1C1.607 (5)
C7—C81.560 (8)C2C—C3C1.628 (6)
C7—C91.460 (2)C2C—C7C1.488 (10)
C8—H8A0.9600C6C—H6CA0.9700
C8—H8B0.9600C6C—H6CB0.9700
C8—H8C0.9600C6C—C1C1.541 (2)
C9—H9A0.9600C6C—C5C1.320 (5)
C9—H9B0.9600C4C—H4CA0.9700
C9—H9C0.9600C4C—H4CB0.9700
C10—H10A0.9600C4C—C5C1.404 (9)
C10—H10B0.9600C4C—C3C1.471 (10)
C10—H10C0.9600C1C—H1CB0.9800
O1B—H1BA0.8200 (13)C5C—H5C0.9800
O1B—H1BB0.8200 (12)C5C—C10C1.548 (9)
O1B—C1B1.471 (3)C3C—H3CA0.9700
C1B—H1BC0.9800C3C—H3CB0.9700
C1B—C2B1.466 (4)C7C—H7C0.9800
C1B—C6B1.5231 (14)C7C—C8C1.573 (7)
C2B—H2B0.9800C7C—C9C1.498 (7)
C2B—C3B1.543 (5)C8C—H8CA0.9600
C2B—C7B1.4312 (14)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.599 (2)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.5089 (15)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1A—O1—H1B75 (9)C10B—C5B—C6B111.8 (11)
C1—O1—H1A100 (4)C1B—C6B—C5B103.6 (10)
C1—O1—H1B138 (7)C1B—C6B—H6BA111.0
O1—C1—H1106.2C1B—C6B—H6BB111.0
O1—C1—C2118.6 (13)C5B—C6B—H6BA111.0
O1—C1—C6109.3 (10)C5B—C6B—H6BB111.0
C2—C1—H1106.2H6BA—C6B—H6BB109.0
C6—C1—H1106.2C2B—C7B—H7B103.1
C6—C1—C2109.5 (12)C2B—C7B—C9B115.5 (16)
C1—C2—H2102.6C8B—C7B—C2B116.4 (14)
C3—C2—C1117.5 (14)C8B—C7B—H7B103.1
C3—C2—H2102.6C8B—C7B—C9B113 (2)
C7—C2—C1113.1 (14)C9B—C7B—H7B103.1
C7—C2—H2102.6C7B—C8B—H8BA109.5
C7—C2—C3115.7 (11)C7B—C8B—H8BB109.5
C2—C3—H3A110.7C7B—C8B—H8BC109.5
C2—C3—H3B110.7H8BA—C8B—H8BB109.5
C2—C3—C4105.4 (10)H8BA—C8B—H8BC109.5
H3A—C3—H3B108.8H8BB—C8B—H8BC109.5
C4—C3—H3A110.7C7B—C9B—H9BA109.5
C4—C3—H3B110.7C7B—C9B—H9BB109.5
C3—C4—H4A108.2C7B—C9B—H9BC109.5
C3—C4—H4B108.2H9BA—C9B—H9BB109.5
H4A—C4—H4B107.4H9BA—C9B—H9BC109.5
C5—C4—C3116.3 (12)H9BB—C9B—H9BC109.5
C5—C4—H4A108.2C5B—C10B—H10D109.5
C5—C4—H4B108.2C5B—C10B—H10E109.5
C4—C5—H5109.5C5B—C10B—H10F109.5
C4—C5—C10102.9 (14)H10D—C10B—H10E109.5
C6—C5—C4110.0 (15)H10D—C10B—H10F109.5
C6—C5—H5109.5H10E—C10B—H10F109.5
C6—C5—C10115.2 (10)H1C—O1C—H1CA135 (10)
C10—C5—H5109.5C1C—O1C—H1C108 (10)
C1—C6—C5113.6 (10)C1C—O1C—H1CA109 (10)
C1—C6—H6A108.8C1C—C2C—H2C102.0
C1—C6—H6B108.8C1C—C2C—C3C98.6 (8)
C5—C6—H6A108.8C3C—C2C—H2C102.0
C5—C6—H6B108.8C7C—C2C—H2C102.0
H6A—C6—H6B107.7C7C—C2C—C1C128.7 (12)
C2—C7—H7105.2C7C—C2C—C3C119.5 (16)
C2—C7—C8107.4 (11)H6CA—C6C—H6CB109.4
C8—C7—H7105.2C1C—C6C—H6CA111.6
C9—C7—C2113.7 (14)C1C—C6C—H6CB111.6
C9—C7—H7105.2C5C—C6C—H6CA111.6
C9—C7—C8118.8 (17)C5C—C6C—H6CB111.6
C7—C8—H8A109.5C5C—C6C—C1C100.6 (17)
C7—C8—H8B109.5H4CA—C4C—H4CB107.9
C7—C8—H8C109.5C5C—C4C—H4CA109.2
H8A—C8—H8B109.5C5C—C4C—H4CB109.2
H8A—C8—H8C109.5C5C—C4C—C3C112 (2)
H8B—C8—H8C109.5C3C—C4C—H4CA109.2
C7—C9—H9A109.5C3C—C4C—H4CB109.2
C7—C9—H9B109.5O1C—C1C—C2C98.8 (7)
C7—C9—H9C109.5O1C—C1C—C6C118.8 (10)
H9A—C9—H9B109.5O1C—C1C—H1CB102.6
H9A—C9—H9C109.5C2C—C1C—H1CB102.6
H9B—C9—H9C109.5C6C—C1C—C2C127.9 (12)
C5—C10—H10A109.5C6C—C1C—H1CB102.6
C5—C10—H10B109.5C6C—C5C—C4C115.1 (13)
C5—C10—H10C109.5C6C—C5C—H5C110.2
H10A—C10—H10B109.5C6C—C5C—C10C102.1 (17)
H10A—C10—H10C109.5C4C—C5C—H5C110.2
H10B—C10—H10C109.5C4C—C5C—C10C109 (2)
H1BA—O1B—H1BB89 (7)C10C—C5C—H5C110.2
C1B—O1B—H1BA113 (7)C2C—C3C—H3CA109.0
C1B—O1B—H1BB91.6 (19)C2C—C3C—H3CB109.0
O1B—C1B—H1BC106.1C4C—C3C—C2C113.1 (18)
O1B—C1B—C6B97.9 (7)C4C—C3C—H3CA109.0
C2B—C1B—O1B112.2 (12)C4C—C3C—H3CB109.0
C2B—C1B—H1BC106.1H3CA—C3C—H3CB107.8
C2B—C1B—C6B126.7 (14)C2C—C7C—H7C105.2
C6B—C1B—H1BC106.1C2C—C7C—C8C119.8 (13)
C1B—C2B—H2B106.0C2C—C7C—C9C111 (2)
C1B—C2B—C3B107.0 (12)C8C—C7C—H7C105.2
C3B—C2B—H2B106.0C9C—C7C—H7C105.2
C7B—C2B—C1B121.2 (15)C9C—C7C—C8C109.5 (19)
C7B—C2B—H2B106.0C7C—C8C—H8CA109.5
C7B—C2B—C3B109.6 (12)C7C—C8C—H8CB109.5
C2B—C3B—H3BA110.9C7C—C8C—H8CC109.5
C2B—C3B—H3BB110.9H8CA—C8C—H8CB109.5
C2B—C3B—C4B104.1 (10)H8CA—C8C—H8CC109.5
H3BA—C3B—H3BB109.0H8CB—C8C—H8CC109.5
C4B—C3B—H3BA110.9C7C—C9C—H9CA109.5
C4B—C3B—H3BB110.9C7C—C9C—H9CB109.5
C3B—C4B—H4BA106.5C7C—C9C—H9CC109.5
C3B—C4B—H4BB106.5H9CA—C9C—H9CB109.5
H4BA—C4B—H4BB106.5H9CA—C9C—H9CC109.5
C5B—C4B—C3B123.4 (17)H9CB—C9C—H9CC109.5
C5B—C4B—H4BA106.5C5C—C10C—H10G109.5
C5B—C4B—H4BB106.5C5C—C10C—H10H109.5
C4B—C5B—H5B107.4C5C—C10C—H10I109.5
C4B—C5B—C6B108.3 (16)H10G—C10C—H10H109.5
C6B—C5B—H5B107.4H10G—C10C—H10I109.5
C10B—C5B—C4B114 (2)H10H—C10C—H10I109.5
C10B—C5B—H5B107.4
O1—C1—C2—C3176.1 (9)C3B—C2B—C7B—C9B72.0 (18)
O1—C1—C2—C745 (2)C3B—C4B—C5B—C6B54 (2)
O1—C1—C6—C5175.7 (12)C3B—C4B—C5B—C10B178.9 (10)
C1—C2—C3—C446.8 (18)C4B—C5B—C6B—C1B43.5 (18)
C1—C2—C7—C871 (2)C6B—C1B—C2B—C3B62.4 (17)
C1—C2—C7—C9155.6 (15)C6B—C1B—C2B—C7B171.1 (9)
C2—C1—C6—C552.8 (19)C7B—C2B—C3B—C4B179.3 (12)
C2—C3—C4—C551.6 (18)C10B—C5B—C6B—C1B170.2 (17)
C3—C2—C7—C869 (2)C1C—C2C—C3C—C4C38.0 (19)
C3—C2—C7—C964.8 (18)C1C—C2C—C7C—C8C65 (2)
C3—C4—C5—C658.6 (16)C1C—C2C—C7C—C9C166.3 (13)
C3—C4—C5—C10178.1 (9)C1C—C6C—C5C—C4C62 (3)
C4—C5—C6—C158.2 (17)C1C—C6C—C5C—C10C179.5 (11)
C6—C1—C2—C349.7 (19)C5C—C6C—C1C—O1C179.2 (12)
C6—C1—C2—C7171.5 (9)C5C—C6C—C1C—C2C50.3 (17)
C7—C2—C3—C4175.4 (13)C5C—C4C—C3C—C2C59 (2)
C10—C5—C6—C1173.9 (15)C3C—C2C—C1C—O1C176.4 (14)
O1B—C1B—C2B—C3B178.2 (7)C3C—C2C—C1C—C6C38.7 (19)
O1B—C1B—C2B—C7B51.7 (19)C3C—C2C—C7C—C8C67.3 (18)
O1B—C1B—C6B—C5B176.7 (12)C3C—C2C—C7C—C9C61.5 (19)
C1B—C2B—C3B—C4B47.6 (17)C3C—C4C—C5C—C6C76 (3)
C1B—C2B—C7B—C8B61 (2)C3C—C4C—C5C—C10C170.3 (14)
C1B—C2B—C7B—C9B162.7 (16)C7C—C2C—C1C—O1C44.4 (18)
C2B—C1B—C6B—C5B57.9 (18)C7C—C2C—C1C—C6C178.0 (13)
C2B—C3B—C4B—C5B55 (2)C7C—C2C—C3C—C4C177.8 (14)
C3B—C2B—C7B—C8B64 (2)
alpha-DL-2-Isopropyl-5-methylcyclohexanol (alpha_DL_2.10GPa) top
Crystal data top
C10H20OF(000) = 528
Mr = 156.26Dx = 1.232 Mg m3
Triclinic, P1Melting point: 308 K
a = 11.198 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.459 (4) ÅCell parameters from 1420 reflections
c = 11.898 (4) Åθ = 3.2–30.0°
α = 117.74 (3)°µ = 0.08 mm1
β = 99.72 (2)°T = 296 K
γ = 101.39 (3)°Plate, colourless
V = 1263.5 (8) Å30.39 × 0.3 × 0.05 mm
Z = 6
Data collection top
Xcalibur, Eos
diffractometer
334 reflections with I > 2σ(I)
Detector resolution: 16.4 pixels mm-1Rint = 0.197
ω scansθmax = 27.5°, θmin = 4.3°
Absorption correction: integration
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1414
Tmin = 0.973, Tmax = 0.996k = 1414
5978 measured reflectionsl = 1111
1063 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.084 w = 1/[σ2(Fo2) + (0.148P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.291(Δ/σ)max = 0.001
S = 0.95Δρmax = 0.12 e Å3
1063 reflectionsΔρmin = 0.11 e Å3
319 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
246 restraintsExtinction coefficient: 0.012 (9)
Special details top

Experimental. Data were collected at room temperature and pressure of 2.10 (2) GPa (2100000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.5274 (8)1.0647 (16)0.1266 (13)0.099 (9)
H1A0.5984 (16)1.057 (4)0.126 (7)0.149*0.5
H1B0.486 (8)1.03 (2)0.0480 (9)0.149*0.5
C10.5543 (12)1.2113 (16)0.1962 (19)0.075 (6)
H10.4767261.2320700.1713030.112*
C20.5974 (12)1.2765 (15)0.3508 (19)0.082 (7)
H20.6794181.2632270.3760070.098*
C30.6203 (11)1.4314 (17)0.408 (2)0.079 (6)
H3A0.6332301.4751410.5026640.094*
H3B0.5431781.4431170.3693290.094*
C40.7334 (11)1.5108 (18)0.385 (2)0.084 (7)
H4A0.7415341.6087470.4261980.101*
H4B0.8130971.5011200.4207800.101*
C50.6967 (12)1.4411 (16)0.2387 (19)0.080 (7)
H50.6206501.4631050.2116290.096*
C60.6590 (12)1.2886 (16)0.173 (2)0.072 (6)
H6A0.6371501.2517600.0777570.108*
H6B0.7343051.2654960.1970150.108*
C70.4997 (10)1.192 (2)0.378 (3)0.081 (6)
H70.4862641.0960460.3078520.121*
C80.3646 (12)1.210 (3)0.351 (3)0.074 (9)
H8A0.3406741.2026390.2666740.089*
H8B0.3032631.1379610.3514330.089*
H8C0.3668711.2989000.4202760.089*
C90.5593 (14)1.198 (2)0.500 (3)0.104 (10)
H9A0.6270301.1576040.4880870.157*
H9B0.4967141.1470880.5205580.157*
H9C0.5934801.2930460.5715420.157*
C100.7996 (12)1.506 (2)0.200 (3)0.072 (9)
H10A0.8175631.6051780.2475030.086*
H10B0.8755041.4843040.2212680.086*
H10C0.7713071.4705950.1058530.086*
O1B0.7203 (8)0.9746 (13)0.0940 (16)0.088 (8)
H1BA0.773 (3)0.946 (2)0.058 (4)0.131*0.5
H1BB0.7038 (11)1.0465 (15)0.136 (3)0.131*0.5
C1B0.7418 (11)0.9268 (14)0.1886 (16)0.056 (6)
H1BC0.8009530.8736350.1620700.084*
C2B0.8028 (15)1.0286 (14)0.3307 (16)0.090 (8)
H2B0.7385641.0744010.3564750.135*
C3B0.8211 (11)0.968 (2)0.422 (2)0.072 (6)
H3BA0.8325201.0368760.5138830.108*
H3BB0.8930050.9329070.4172370.108*
C4B0.6884 (16)0.8460 (19)0.359 (2)0.120 (9)
H4BA0.6964360.7995520.4086320.180*
H4BB0.6259180.8928870.3844900.180*
C5B0.6226 (13)0.7300 (18)0.2162 (19)0.061 (6)
H5B0.6769640.6720120.1840170.091*
C6B0.6144 (10)0.8177 (18)0.146 (2)0.083 (6)
H6BA0.5877660.7555630.0503410.124*
H6BB0.5503070.8632910.1683120.124*
C7B0.9074 (12)1.1385 (18)0.352 (2)0.090 (8)
H7B0.8785831.1683220.2898050.134*
C8B1.0219 (18)1.108 (3)0.333 (4)0.112 (10)
H8BA1.0847351.1889460.3499590.135*
H8BB1.0533891.0797020.3937700.135*
H8BC1.0050081.0338410.2433460.135*
C9B0.9245 (14)1.253 (2)0.488 (2)0.108 (10)
H9BA0.8443011.2687280.4945440.130*
H9BB0.9547931.2275220.5514510.130*
H9BC0.9856271.3359630.5066180.130*
C10B0.4934 (15)0.643 (3)0.186 (4)0.125 (10)
H10D0.4619780.5734390.0927320.150*
H10E0.4949710.5987150.2372750.150*
H10F0.4385150.6996420.2074720.150*
O1C0.9139 (9)1.0586 (13)0.0289 (17)0.072 (8)
H1CA0.858 (4)1.008 (4)0.038 (5)0.108*0.5
H1CB0.979 (2)1.037 (4)0.0340 (17)0.108*0.5
C2C1.0527 (10)1.2408 (19)0.031 (3)0.058 (6)
H2C1.0843511.1728280.0333140.088*
C6C0.8170 (14)1.1113 (17)0.144 (2)0.106 (7)
H6CA0.8406271.0398780.2126080.160*
H6CB0.7278161.0752800.1528510.160*
C4C0.9633 (16)1.296 (2)0.138 (3)0.098 (8)
H4CA0.9579221.3677390.1587930.118*
H4CB0.9940411.2309630.2041740.118*
C1C0.9037 (10)1.1636 (17)0.004 (2)0.070 (6)
H1C0.8703411.2283890.0609200.106*
C5C0.8401 (16)1.226 (2)0.149 (3)0.080 (6)
H5C0.8133091.2921810.0785070.119*
C3C1.0576 (17)1.361 (2)0.007 (3)0.063 (6)
H3CA1.0365911.4374020.0593740.076*
H3CB1.1423441.3969090.0096000.076*
C7C1.1493 (15)1.306 (2)0.163 (2)0.116 (8)
H7C1.1530811.2312790.1804600.139*
C8C1.1061 (17)1.412 (2)0.277 (3)0.112 (10)
H8CA1.1154261.4950140.2732590.167*
H8CB1.1581751.4346180.3618190.167*
H8CC1.0182791.3708510.2659790.167*
C9C1.2845 (15)1.380 (3)0.182 (4)0.096 (9)
H9CA1.3356541.4169940.2711380.115*
H9CB1.3184311.3161800.1203130.115*
H9CC1.2855661.4550080.1653310.115*
C10C0.7320 (18)1.162 (2)0.281 (3)0.111 (10)
H10G0.7307571.2306070.3052710.133*
H10H0.7467531.0839870.3498440.133*
H10I0.6515141.1316790.2685710.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.115 (9)0.103 (15)0.09 (3)0.034 (10)0.053 (14)0.053 (18)
C10.078 (8)0.077 (11)0.074 (15)0.021 (7)0.018 (9)0.046 (10)
C20.070 (8)0.089 (12)0.081 (15)0.024 (7)0.032 (9)0.036 (10)
C30.077 (8)0.079 (11)0.079 (14)0.031 (7)0.022 (9)0.038 (10)
C40.082 (9)0.087 (12)0.085 (15)0.036 (7)0.027 (9)0.041 (11)
C50.081 (9)0.080 (11)0.080 (15)0.030 (7)0.020 (9)0.042 (11)
C60.075 (7)0.066 (10)0.076 (14)0.018 (7)0.023 (9)0.039 (10)
C70.075 (8)0.085 (11)0.081 (14)0.031 (7)0.027 (9)0.039 (10)
C80.078 (10)0.085 (16)0.07 (3)0.034 (10)0.027 (13)0.046 (18)
C90.099 (11)0.124 (19)0.09 (3)0.052 (12)0.037 (15)0.048 (19)
C100.085 (10)0.059 (16)0.08 (3)0.023 (10)0.037 (14)0.034 (18)
O1B0.091 (9)0.079 (14)0.09 (2)0.014 (9)0.018 (12)0.049 (17)
C1B0.054 (8)0.046 (10)0.066 (14)0.019 (7)0.015 (9)0.028 (10)
C2B0.087 (9)0.086 (12)0.096 (15)0.039 (8)0.017 (9)0.045 (11)
C3B0.053 (7)0.081 (11)0.070 (14)0.023 (7)0.023 (8)0.029 (10)
C4B0.132 (12)0.112 (13)0.122 (16)0.025 (8)0.041 (10)0.069 (12)
C5B0.059 (8)0.052 (11)0.066 (14)0.007 (7)0.015 (9)0.032 (10)
C6B0.079 (8)0.092 (11)0.081 (14)0.039 (7)0.016 (8)0.046 (10)
C7B0.082 (10)0.097 (12)0.085 (15)0.025 (8)0.044 (10)0.040 (11)
C8B0.107 (13)0.116 (19)0.11 (3)0.019 (11)0.050 (15)0.060 (19)
C9B0.085 (12)0.10 (2)0.12 (3)0.030 (12)0.044 (16)0.037 (19)
C10B0.105 (12)0.110 (19)0.13 (3)0.023 (12)0.041 (15)0.045 (19)
O1C0.101 (7)0.057 (13)0.08 (2)0.031 (8)0.033 (11)0.044 (16)
C2C0.057 (8)0.058 (11)0.058 (14)0.014 (7)0.034 (9)0.024 (10)
C6C0.107 (9)0.111 (12)0.105 (15)0.043 (8)0.022 (9)0.058 (11)
C4C0.109 (11)0.091 (11)0.102 (15)0.030 (8)0.010 (9)0.064 (11)
C1C0.082 (8)0.067 (11)0.070 (14)0.000 (6)0.027 (9)0.050 (10)
C5C0.082 (8)0.086 (11)0.076 (14)0.025 (7)0.018 (9)0.048 (10)
C3C0.066 (8)0.059 (10)0.065 (14)0.015 (6)0.020 (9)0.034 (10)
C7C0.123 (11)0.117 (12)0.114 (15)0.033 (8)0.036 (10)0.067 (11)
C8C0.112 (12)0.099 (19)0.12 (3)0.045 (12)0.030 (16)0.054 (19)
C9C0.094 (12)0.095 (17)0.10 (3)0.035 (11)0.036 (14)0.046 (19)
C10C0.118 (12)0.119 (19)0.11 (3)0.072 (12)0.047 (15)0.052 (19)
Geometric parameters (Å, º) top
O1—H1A0.8200 (13)C5B—C6B1.582 (5)
O1—H1B0.8200 (13)C5B—C10B1.461 (10)
O1—C11.420 (6)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.566 (4)C7B—H7B0.9800
C1—C61.470 (8)C7B—C8B1.421 (6)
C2—H20.9800C7B—C9B1.4840 (15)
C2—C31.523 (2)C8B—H8BA0.9600
C2—C71.492 (2)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.5429 (13)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.479 (2)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.473 (3)O1C—H1CA0.8200 (12)
C5—C101.5021 (13)O1C—H1CB0.8200 (12)
C6—H6A0.9700O1C—C1C1.447 (3)
C6—H6B0.9700C2C—H2C0.9800
C7—H70.9800C2C—C1C1.607 (5)
C7—C81.565 (8)C2C—C3C1.628 (6)
C7—C91.460 (2)C2C—C7C1.488 (10)
C8—H8A0.9600C6C—H6CA0.9700
C8—H8B0.9700C6C—H6CB0.9700
C8—H8C0.9600C6C—C1C1.541 (2)
C9—H9A0.9600C6C—C5C1.318 (5)
C9—H9B0.9600C4C—H4CA0.9700
C9—H9C0.9600C4C—H4CB0.9700
C10—H10A0.9600C4C—C5C1.404 (9)
C10—H10B0.9600C4C—C3C1.471 (11)
C10—H10C0.9600C1C—H1C0.9800
O1B—H1BA0.8200 (12)C5C—H5C0.9800
O1B—H1BB0.8200 (12)C5C—C10C1.545 (9)
O1B—C1B1.470 (4)C3C—H3CA0.9700
C1B—H1BC0.9800C3C—H3CB0.9700
C1B—C2B1.465 (4)C7C—H7C0.9800
C1B—C6B1.5230 (14)C7C—C8C1.572 (7)
C2B—H2B0.9800C7C—C9C1.505 (8)
C2B—C3B1.541 (5)C8C—H8CA0.9600
C2B—C7B1.4310 (13)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.599 (3)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9700
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.5090 (15)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1A—O1—H1B104.9 (14)C10B—C5B—C6B108.3 (10)
C1—O1—H1A102 (3)C1B—C6B—C5B112.0 (8)
C1—O1—H1B113 (10)C1B—C6B—H6BA109.2
O1—C1—H1108.5C1B—C6B—H6BB109.2
O1—C1—C2112.0 (11)C5B—C6B—H6BA109.2
O1—C1—C6115.4 (12)C5B—C6B—H6BB109.2
C2—C1—H1108.5H6BA—C6B—H6BB107.9
C6—C1—H1108.5C2B—C7B—H7B107.5
C6—C1—C2103.6 (12)C2B—C7B—C9B103.5 (15)
C1—C2—H2108.1C8B—C7B—C2B117.1 (14)
C3—C2—C1104.5 (14)C8B—C7B—H7B107.5
C3—C2—H2108.1C8B—C7B—C9B113 (2)
C7—C2—C1105.4 (14)C9B—C7B—H7B107.5
C7—C2—H2108.1C7B—C8B—H8BA109.5
C7—C2—C3121.9 (12)C7B—C8B—H8BB109.5
C2—C3—H3A108.0C7B—C8B—H8BC109.5
C2—C3—H3B108.0H8BA—C8B—H8BB109.5
C2—C3—C4117.1 (10)H8BA—C8B—H8BC109.5
H3A—C3—H3B107.3H8BB—C8B—H8BC109.5
C4—C3—H3A108.0C7B—C9B—H9BA109.5
C4—C3—H3B108.0C7B—C9B—H9BB109.5
C3—C4—H4A111.3C7B—C9B—H9BC109.5
C3—C4—H4B111.3H9BA—C9B—H9BB109.5
H4A—C4—H4B109.2H9BA—C9B—H9BC109.5
C5—C4—C3102.2 (12)H9BB—C9B—H9BC109.5
C5—C4—H4A111.3C5B—C10B—H10D109.5
C5—C4—H4B111.3C5B—C10B—H10E109.5
C4—C5—H5106.4C5B—C10B—H10F109.5
C4—C5—C10109.0 (14)H10D—C10B—H10E109.5
C6—C5—C4112.6 (14)H10D—C10B—H10F109.5
C6—C5—H5106.4H10E—C10B—H10F109.5
C6—C5—C10115.5 (10)H1CA—O1C—H1CB110.8 (15)
C10—C5—H5106.4C1C—O1C—H1CA128 (4)
C1—C6—C5121.0 (10)C1C—O1C—H1CB121 (4)
C1—C6—H6A107.1C1C—C2C—H2C106.1
C1—C6—H6B107.1C1C—C2C—C3C105.6 (8)
C5—C6—H6A107.1C3C—C2C—H2C106.1
C5—C6—H6B107.1C7C—C2C—H2C106.1
H6A—C6—H6B106.8C7C—C2C—C1C125.0 (13)
C2—C7—H7103.6C7C—C2C—C3C106.7 (15)
C2—C7—C8114.5 (10)H6CA—C6C—H6CB109.3
C8—C7—H7103.6C1C—C6C—H6CA111.4
C9—C7—C2108.4 (13)C1C—C6C—H6CB111.4
C9—C7—H7103.6C5C—C6C—H6CA111.4
C9—C7—C8120.9 (15)C5C—C6C—H6CB111.4
C7—C8—H8A109.5C5C—C6C—C1C101.7 (14)
C7—C8—H8B109.5H4CA—C4C—H4CB107.5
C7—C8—H8C109.5C5C—C4C—H4CA108.5
H8A—C8—H8B109.5C5C—C4C—H4CB108.5
H8A—C8—H8C109.5C5C—C4C—C3C115 (2)
H8B—C8—H8C109.5C3C—C4C—H4CA108.5
C7—C9—H9A109.5C3C—C4C—H4CB108.5
C7—C9—H9B109.5O1C—C1C—C2C99.5 (6)
C7—C9—H9C109.5O1C—C1C—C6C116.3 (13)
H9A—C9—H9B109.5O1C—C1C—H1C107.7
H9A—C9—H9C109.5C2C—C1C—H1C107.7
H9B—C9—H9C109.5C6C—C1C—C2C117.2 (13)
C5—C10—H10A109.5C6C—C1C—H1C107.7
C5—C10—H10B109.5C6C—C5C—C4C121.2 (12)
C5—C10—H10C109.5C6C—C5C—H5C106.8
H10A—C10—H10B109.5C6C—C5C—C10C94.7 (15)
H10A—C10—H10C109.5C4C—C5C—H5C106.8
H10B—C10—H10C109.5C4C—C5C—C10C119 (2)
H1BA—O1B—H1BB141.9 (4)C10C—C5C—H5C106.8
C1B—O1B—H1BA95 (3)C2C—C3C—H3CA110.4
C1B—O1B—H1BB103 (3)C2C—C3C—H3CB110.4
O1B—C1B—H1BC104.7C4C—C3C—C2C106.8 (15)
O1B—C1B—C6B102.8 (6)C4C—C3C—H3CA110.4
C2B—C1B—O1B119.8 (13)C4C—C3C—H3CB110.4
C2B—C1B—H1BC104.7H3CA—C3C—H3CB108.6
C2B—C1B—C6B118.5 (14)C2C—C7C—H7C106.5
C6B—C1B—H1BC104.7C2C—C7C—C8C111.4 (15)
C1B—C2B—H2B103.1C2C—C7C—C9C118.8 (17)
C1B—C2B—C3B116.0 (14)C8C—C7C—H7C106.5
C3B—C2B—H2B103.1C9C—C7C—H7C106.5
C7B—C2B—C1B111.3 (14)C9C—C7C—C8C106.6 (15)
C7B—C2B—H2B103.1C7C—C8C—H8CA109.5
C7B—C2B—C3B117.8 (13)C7C—C8C—H8CB109.5
C2B—C3B—H3BA111.6C7C—C8C—H8CC109.5
C2B—C3B—H3BB111.6H8CA—C8C—H8CB109.5
C2B—C3B—C4B100.8 (11)H8CA—C8C—H8CC109.5
H3BA—C3B—H3BB109.4H8CB—C8C—H8CC109.5
C4B—C3B—H3BA111.6C7C—C9C—H9CA109.5
C4B—C3B—H3BB111.6C7C—C9C—H9CB109.5
C3B—C4B—H4BA104.8C7C—C9C—H9CC109.5
C3B—C4B—H4BB104.8H9CA—C9C—H9CB109.5
H4BA—C4B—H4BB105.8H9CA—C9C—H9CC109.5
C5B—C4B—C3B130.1 (16)H9CB—C9C—H9CC109.5
C5B—C4B—H4BA104.8C5C—C10C—H10G109.5
C5B—C4B—H4BB104.8C5C—C10C—H10H109.5
C4B—C5B—H5B110.2C5C—C10C—H10I109.5
C4B—C5B—C6B100.0 (15)H10G—C10C—H10H109.5
C6B—C5B—H5B110.2H10G—C10C—H10I109.5
C10B—C5B—C4B117.3 (19)H10H—C10C—H10I109.5
C10B—C5B—H5B110.2
O1—C1—C2—C3179.4 (8)C3B—C2B—C7B—C9B63.1 (19)
O1—C1—C2—C749.8 (16)C3B—C4B—C5B—C6B56 (2)
O1—C1—C6—C5179.9 (14)C3B—C4B—C5B—C10B172.6 (14)
C1—C2—C3—C467.4 (19)C4B—C5B—C6B—C1B48.4 (18)
C1—C2—C7—C869 (2)C6B—C1B—C2B—C3B53 (2)
C1—C2—C7—C9153.0 (12)C6B—C1B—C2B—C7B168.7 (9)
C2—C1—C6—C557.3 (19)C7B—C2B—C3B—C4B176.5 (14)
C2—C3—C4—C562.0 (19)C10B—C5B—C6B—C1B171.7 (16)
C3—C2—C7—C850 (3)C1C—C2C—C3C—C4C45.8 (18)
C3—C2—C7—C988.5 (18)C1C—C2C—C7C—C8C52.9 (17)
C3—C4—C5—C649.7 (16)C1C—C2C—C7C—C9C177.3 (14)
C3—C4—C5—C10179.3 (9)C1C—C6C—C5C—C4C61 (3)
C4—C5—C6—C157 (2)C1C—C6C—C5C—C10C170.9 (12)
C6—C1—C2—C355.6 (13)C5C—C6C—C1C—O1C172.5 (12)
C6—C1—C2—C7174.8 (9)C5C—C6C—C1C—C2C55.0 (15)
C7—C2—C3—C4173.7 (16)C5C—C4C—C3C—C2C52.5 (16)
C10—C5—C6—C1176.4 (16)C3C—C2C—C1C—O1C178.1 (17)
O1B—C1B—C2B—C3B179.9 (8)C3C—C2C—C1C—C6C52 (2)
O1B—C1B—C2B—C7B42 (2)C3C—C2C—C7C—C8C70.6 (14)
O1B—C1B—C6B—C5B168.9 (12)C3C—C2C—C7C—C9C53.7 (19)
C1B—C2B—C3B—C4B40.9 (18)C3C—C4C—C5C—C6C67 (3)
C1B—C2B—C7B—C8B75 (3)C3C—C4C—C5C—C10C176.1 (11)
C1B—C2B—C7B—C9B159.4 (15)C7C—C2C—C1C—O1C57.9 (19)
C2B—C1B—C6B—C5B56 (2)C7C—C2C—C1C—C6C175.9 (13)
C2B—C3B—C4B—C5B52 (2)C7C—C2C—C3C—C4C179.3 (11)
C3B—C2B—C7B—C8B62 (3)
alpha-DL-2-Isopropyl-5-methylcyclohexanol (alpha_DL_3.37GPa) top
Crystal data top
C10H20OF(000) = 528
Mr = 156.26Dx = 1.263 Mg m3
Triclinic, P1Melting point: 308 K
a = 11.166 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.346 (4) ÅCell parameters from 8331 reflections
c = 11.760 (6) Åθ = 3.2–30.4°
α = 118.10 (4)°µ = 0.08 mm1
β = 99.90 (5)°T = 296 K
γ = 100.68 (4)°Plate, colourless
V = 1232.3 (9) Å30.3 × 0.3 × 0.05 mm
Z = 6
Data collection top
Multiwire proportional
diffractometer
1391 independent reflections
Graphite monochromator313 reflections with I > 2σ(I)
Detector resolution: 16.4 pixels mm-1Rint = 0.389
phi and ω scansθmax = 30.4°, θmin = 3.2°
Absorption correction: integration
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1313
Tmin = 0.415, Tmax = 0.978k = 66
8331 measured reflectionsl = 1414
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.094 w = 1/[σ2(Fo2) + (0.1466P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.357(Δ/σ)max = 0.001
S = 0.96Δρmax = 0.10 e Å3
1391 reflectionsΔρmin = 0.11 e Å3
317 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
245 restraintsExtinction coefficient: 0.011 (10)
Special details top

Experimental. Data were collected at room temperature and pressure of 3.37 (2) GPa (33700000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.5452 (11)1.0673 (18)0.1291 (10)0.111 (12)
H1A0.6231 (19)1.092 (5)0.161 (9)0.166*0.5
H1B0.533 (10)1.045 (8)0.0498 (12)0.166*0.5
C10.5477 (14)1.2153 (19)0.1783 (12)0.081 (9)
H10.4654701.2263200.1475380.121*
C20.5962 (13)1.2776 (16)0.3268 (11)0.064 (8)
H20.6810851.2669530.3465240.096*
C30.6126 (14)1.4269 (16)0.3882 (13)0.066 (8)
H3A0.6367911.4706490.4856870.099*
H3B0.5318831.4400510.3595240.099*
C40.7172 (18)1.501 (3)0.3488 (13)0.095 (9)
H4A0.7283701.6007110.3932920.143*
H4B0.7984371.4873270.3751480.143*
C50.6708 (15)1.435 (2)0.2014 (14)0.106 (10)
H50.5956821.4558420.1683220.159*
C60.6541 (15)1.281 (2)0.1470 (14)0.082 (9)
H6A0.6378681.2324080.0498010.123*
H6B0.7324671.2702500.1857600.123*
C70.5072 (17)1.189 (2)0.3659 (14)0.070 (8)
H70.4894411.0880380.3033910.105*
C80.3807 (17)1.232 (2)0.3584 (14)0.082 (13)
H8A0.3419211.2077720.2675150.098*
H8B0.3224211.1841650.3849740.098*
H8C0.4011851.3319440.4180240.098*
C90.5634 (15)1.228 (3)0.5051 (13)0.115 (14)
H9A0.5077681.1724280.5277320.138*
H9B0.6447721.2111840.5143170.138*
H9C0.5746571.3254670.5647450.138*
C100.783 (2)1.480 (3)0.1710 (19)0.135 (14)
H10A0.7633071.4428790.0754810.162*
H10B0.8115211.5811540.2179140.162*
H10C0.8488571.4479980.1993080.162*
O1B0.7387 (14)1.000 (2)0.1187 (15)0.130 (13)
H1BA0.80 (2)1.00 (3)0.08 (3)0.195*0.5
H1BB0.709 (4)1.057 (6)0.170 (4)0.195*0.5
C1B0.7589 (15)0.923 (2)0.1903 (19)0.111 (11)
H1BC0.8168240.8662040.1674370.166*
C2B0.7966 (19)1.044 (2)0.325 (2)0.102 (10)
H2B0.7275771.0852860.3451470.152*
C3B0.8214 (17)0.961 (3)0.3993 (19)0.090 (9)
H3BA0.8820440.9122420.3672640.135*
H3BB0.8584851.0275310.4956390.135*
C4B0.696 (2)0.855 (3)0.3734 (18)0.127 (10)
H4BA0.7122710.8058890.4207690.190*
H4BB0.6336900.9013760.4030480.190*
C5B0.650 (2)0.752 (3)0.2199 (19)0.126 (12)
H5B0.7089880.6999300.1853500.189*
C6B0.6221 (18)0.849 (3)0.156 (2)0.090 (10)
H6BA0.5798290.7938790.0591240.135*
H6BB0.5751650.9114830.2013530.135*
C7B0.9150 (19)1.146 (3)0.3710 (19)0.122 (10)
H7B0.9000501.1791220.3079750.183*
C8B1.0392 (19)1.128 (3)0.3662 (16)0.114 (14)
H8BA1.1017261.2173200.4054490.136*
H8BB1.0615561.0837820.4160520.136*
H8BC1.0365861.0691040.2739700.136*
C9B0.9385 (18)1.276 (3)0.4995 (17)0.120 (14)
H9BA1.0209891.3386220.5225620.144*
H9BB0.8740101.3189130.4912740.144*
H9BC0.9357951.2540790.5690120.144*
C10B0.517 (2)0.659 (4)0.1839 (19)0.129 (14)
H10D0.4860110.5939410.0881600.155*
H10E0.5192110.6086300.2302130.155*
H10F0.4616840.7160340.2104330.155*
O1C0.9350 (9)1.0837 (11)0.0450 (11)0.100 (12)
H1CA0.872 (4)1.028 (5)0.038 (7)0.150*0.5
H1CB0.9945 (19)1.050 (3)0.037 (5)0.150*0.5
C2C1.0528 (16)1.243 (2)0.0259 (16)0.101 (11)
H2C1.0732231.1666040.0451400.151*
C6C0.8204 (16)1.112 (3)0.1201 (15)0.075 (9)
H6CA0.8503691.0385930.1805050.112*
H6CB0.7350141.0707890.1227640.112*
C4C0.9420 (15)1.279 (3)0.1541 (14)0.103 (9)
H4CA0.9377881.3542950.1706800.155*
H4CB0.9695881.2114240.2241780.155*
C1C0.9095 (16)1.1919 (19)0.0210 (18)0.154 (14)
H1C0.8808061.2616330.0895050.231*
C5C0.8225 (14)1.214 (3)0.1545 (17)0.092 (10)
H5C0.7955851.2876940.0875510.138*
C3C1.0394 (18)1.339 (2)0.0095 (17)0.098 (11)
H3CA1.1225781.3865520.0070830.147*
H3CB1.0116591.4096680.0579780.147*
C7C1.1500 (12)1.302 (2)0.1602 (14)0.090 (9)
H7C1.1483461.2313520.1866030.135*
C8C1.1074 (17)1.429 (3)0.2601 (18)0.121 (14)
H8CA1.0227951.3933160.2611530.145*
H8CB1.1656391.4751770.3494850.145*
H8CC1.1081211.4937920.2297960.145*
C9C1.2803 (17)1.367 (3)0.1664 (17)0.096 (13)
H9CA1.3380391.4024620.2537830.115*
H9CB1.3072881.2987170.0981440.115*
H9CC1.2801681.4433220.1512010.115*
C10C0.7190 (19)1.144 (3)0.2900 (14)0.112 (14)
H10G0.7163381.2099890.3186540.134*
H10H0.7381191.0651040.3562170.134*
H10I0.6376981.1120680.2802230.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.136 (12)0.101 (19)0.090 (8)0.026 (12)0.051 (8)0.043 (10)
C10.086 (10)0.082 (13)0.079 (9)0.027 (9)0.041 (8)0.039 (8)
C20.060 (9)0.066 (12)0.068 (8)0.025 (8)0.026 (8)0.032 (7)
C30.071 (10)0.063 (12)0.061 (8)0.025 (8)0.012 (7)0.031 (7)
C40.097 (10)0.088 (13)0.096 (9)0.025 (9)0.027 (8)0.047 (8)
C50.108 (11)0.115 (14)0.105 (10)0.028 (9)0.046 (10)0.062 (8)
C60.092 (10)0.079 (13)0.077 (9)0.021 (8)0.031 (8)0.042 (8)
C70.083 (10)0.079 (13)0.061 (8)0.018 (8)0.032 (8)0.045 (7)
C80.100 (14)0.08 (2)0.069 (10)0.017 (14)0.011 (11)0.052 (11)
C90.101 (15)0.11 (2)0.121 (13)0.054 (14)0.056 (12)0.039 (12)
C100.117 (15)0.16 (2)0.138 (13)0.028 (13)0.067 (12)0.079 (12)
O1B0.122 (13)0.15 (2)0.133 (11)0.033 (12)0.058 (9)0.084 (11)
C1B0.112 (13)0.116 (15)0.109 (12)0.034 (9)0.035 (10)0.062 (9)
C2B0.103 (12)0.101 (15)0.105 (10)0.026 (9)0.044 (10)0.054 (9)
C3B0.097 (12)0.092 (14)0.084 (9)0.032 (9)0.017 (9)0.050 (8)
C4B0.134 (12)0.130 (14)0.121 (10)0.036 (9)0.044 (9)0.068 (8)
C5B0.127 (14)0.120 (16)0.123 (13)0.044 (10)0.021 (10)0.061 (10)
C6B0.097 (12)0.081 (14)0.092 (9)0.017 (9)0.020 (9)0.052 (9)
C7B0.132 (12)0.131 (15)0.110 (10)0.041 (9)0.053 (10)0.063 (8)
C8B0.116 (15)0.14 (2)0.097 (12)0.046 (14)0.050 (11)0.063 (12)
C9B0.127 (17)0.11 (2)0.110 (13)0.035 (14)0.022 (12)0.051 (13)
C10B0.144 (16)0.12 (2)0.117 (13)0.049 (14)0.066 (12)0.046 (12)
O1C0.094 (12)0.105 (19)0.107 (9)0.040 (12)0.043 (8)0.052 (10)
C2C0.096 (13)0.096 (15)0.104 (11)0.036 (9)0.032 (10)0.044 (9)
C6C0.093 (11)0.070 (13)0.062 (8)0.024 (9)0.020 (8)0.037 (8)
C4C0.105 (11)0.109 (13)0.104 (10)0.022 (9)0.041 (9)0.062 (8)
C1C0.154 (16)0.154 (18)0.156 (15)0.042 (10)0.045 (11)0.084 (11)
C5C0.092 (12)0.091 (14)0.092 (10)0.025 (9)0.038 (9)0.045 (9)
C3C0.097 (12)0.093 (15)0.106 (11)0.016 (9)0.026 (9)0.059 (9)
C7C0.101 (10)0.096 (13)0.081 (9)0.020 (8)0.041 (9)0.051 (7)
C8C0.128 (15)0.12 (2)0.104 (12)0.026 (15)0.024 (12)0.060 (12)
C9C0.072 (13)0.10 (2)0.114 (12)0.039 (13)0.027 (10)0.045 (12)
C10C0.130 (15)0.12 (2)0.091 (12)0.031 (14)0.003 (12)0.073 (12)
Geometric parameters (Å, º) top
O1—H1A0.8200 (15)C5B—C6B1.646 (10)
O1—H1B0.8200 (13)C5B—C10B1.505 (6)
O1—C11.4890 (13)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.488 (7)C7B—H7B0.9800
C1—C61.476 (5)C7B—C8B1.447 (9)
C2—H20.9800C7B—C9B1.463 (7)
C2—C31.4529 (14)C8B—H8BA0.9600
C2—C71.561 (7)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.573 (6)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.469 (7)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.5120 (14)O1C—H1CA0.8200 (12)
C5—C101.432 (4)O1C—H1CB0.8199 (12)
C6—H6A0.9700O1C—C1C1.449 (8)
C6—H6B0.9700C2C—H2C0.9800
C7—H70.9800C2C—C1C1.579 (8)
C7—C81.583 (10)C2C—C3C1.363 (3)
C7—C91.459 (7)C2C—C7C1.5060 (17)
C8—H8A0.9600C6C—H6CA0.9700
C8—H8B0.9600C6C—H6CB0.9700
C8—H8C0.9600C6C—C1C1.498 (3)
C9—H9A0.9600C6C—C5C1.393 (8)
C9—H9B0.9600C4C—H4CA0.9700
C9—H9C0.9600C4C—H4CB0.9700
C10—H10A0.9600C4C—C5C1.397 (5)
C10—H10B0.9600C4C—C3C1.5908 (17)
C10—H10C0.9600C1C—H1C0.9800
O1B—H1BA0.86 (10)C5C—H5C0.9800
O1B—H1BB0.8200 (12)C5C—C10C1.528 (10)
O1B—C1B1.488 (6)C3C—H3CA0.9700
C1B—H1BC0.9800C3C—H3CB0.9700
C1B—C2B1.442 (7)C7C—H7C0.9800
C1B—C6B1.481 (6)C7C—C8C1.592 (10)
C2B—H2B0.9800C7C—C9C1.480 (4)
C2B—C3B1.579 (9)C8C—H8CA0.9600
C2B—C7B1.407 (6)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.545 (7)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9600C10C—H10G0.9600
C4B—C5B1.535 (6)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1A—O1—H1B105.0 (13)C10B—C5B—C6B102 (3)
C1—O1—H1A91 (5)C1B—C6B—C5B95 (2)
C1—O1—H1B95 (7)C1B—C6B—H6BA112.8
O1—C1—H1114.6C1B—C6B—H6BB112.8
C2—C1—O1100.5 (11)C5B—C6B—H6BA112.8
C2—C1—H1114.6C5B—C6B—H6BB112.8
C6—C1—O1107.6 (15)H6BA—C6B—H6BB110.3
C6—C1—H1114.6C2B—C7B—H7B100.6
C6—C1—C2103.6 (10)C2B—C7B—C8B129.0 (19)
C1—C2—H2107.4C2B—C7B—C9B115.3 (14)
C1—C2—C7108.0 (10)C8B—C7B—H7B100.6
C3—C2—C1106.3 (12)C8B—C7B—C9B105.5 (16)
C3—C2—H2107.4C9B—C7B—H7B100.6
C3—C2—C7119.8 (13)C7B—C8B—H8BA109.5
C7—C2—H2107.4C7B—C8B—H8BB109.5
C2—C3—H3A109.2C7B—C8B—H8BC109.5
C2—C3—H3B109.2H8BA—C8B—H8BB109.5
C2—C3—C4112.1 (15)H8BA—C8B—H8BC109.5
H3A—C3—H3B107.9H8BB—C8B—H8BC109.5
C4—C3—H3A109.2C7B—C9B—H9BA109.5
C4—C3—H3B109.2C7B—C9B—H9BB109.5
C3—C4—H4A110.5C7B—C9B—H9BC109.5
C3—C4—H4B110.5H9BA—C9B—H9BB109.5
H4A—C4—H4B108.7H9BA—C9B—H9BC109.5
C5—C4—C3106.1 (11)H9BB—C9B—H9BC109.5
C5—C4—H4A110.5C5B—C10B—H10D109.5
C5—C4—H4B110.5C5B—C10B—H10E109.5
C4—C5—H5115.1C5B—C10B—H10F109.5
C4—C5—C6104.5 (15)H10D—C10B—H10E109.5
C6—C5—H5115.1H10D—C10B—H10F109.5
C10—C5—C4102.2 (13)H10E—C10B—H10F109.5
C10—C5—H5115.1H1CA—O1C—H1CB110.8 (14)
C10—C5—C6103.3 (19)C1C—O1C—H1CA115 (5)
C1—C6—C5111.9 (14)C1C—O1C—H1CB130 (5)
C1—C6—H6A109.2C1C—C2C—H2C109.8
C1—C6—H6B109.2C3C—C2C—H2C109.8
C5—C6—H6A109.2C3C—C2C—C1C97.1 (16)
C5—C6—H6B109.2C3C—C2C—C7C115 (2)
H6A—C6—H6B107.9C7C—C2C—H2C109.8
C2—C7—H7111.1C7C—C2C—C1C114.9 (13)
C2—C7—C8104.9 (12)H6CA—C6C—H6CB109.0
C8—C7—H7111.1C1C—C6C—H6CA111.1
C9—C7—C2110.4 (13)C1C—C6C—H6CB111.1
C9—C7—H7111.1C5C—C6C—H6CA111.1
C9—C7—C8107.9 (14)C5C—C6C—H6CB111.1
C7—C8—H8A109.5C5C—C6C—C1C103.5 (17)
C7—C8—H8B109.5H4CA—C4C—H4CB108.5
C7—C8—H8C109.5C5C—C4C—H4CA110.2
H8A—C8—H8B109.5C5C—C4C—H4CB110.2
H8A—C8—H8C109.5C5C—C4C—C3C107.5 (14)
H8B—C8—H8C109.5C3C—C4C—H4CA110.2
C7—C9—H9A109.5C3C—C4C—H4CB110.2
C7—C9—H9B109.5O1C—C1C—C2C90.9 (16)
C7—C9—H9C109.5O1C—C1C—C6C104 (2)
H9A—C9—H9B109.5O1C—C1C—H1C115.5
H9A—C9—H9C109.5C2C—C1C—H1C115.5
H9B—C9—H9C109.5C6C—C1C—C2C112.2 (15)
C5—C10—H10A109.5C6C—C1C—H1C115.5
C5—C10—H10B109.5C6C—C5C—C4C115 (2)
C5—C10—H10C109.5C6C—C5C—H5C107.2
H10A—C10—H10B109.5C6C—C5C—C10C106.0 (19)
H10A—C10—H10C109.5C4C—C5C—H5C107.2
H10B—C10—H10C109.5C4C—C5C—C10C113.8 (15)
H1BA—O1B—H1BB139 (10)C10C—C5C—H5C107.2
C1B—O1B—H1BA106 (10)C2C—C3C—C4C115.7 (19)
C1B—O1B—H1BB99 (5)C2C—C3C—H3CA108.4
O1B—C1B—H1BC117.6C2C—C3C—H3CB108.4
C2B—C1B—O1B96.3 (19)C4C—C3C—H3CA108.4
C2B—C1B—H1BC117.6C4C—C3C—H3CB108.4
C2B—C1B—C6B107.7 (13)H3CA—C3C—H3CB107.4
C6B—C1B—O1B96 (2)C2C—C7C—H7C111.9
C6B—C1B—H1BC117.6C2C—C7C—C8C102.8 (13)
C1B—C2B—H2B112.5C8C—C7C—H7C111.9
C1B—C2B—C3B95 (2)C9C—C7C—C2C113.0 (15)
C3B—C2B—H2B112.5C9C—C7C—H7C111.9
C7B—C2B—C1B118.2 (14)C9C—C7C—C8C104.9 (16)
C7B—C2B—H2B112.5C7C—C8C—H8CA109.5
C7B—C2B—C3B104 (2)C7C—C8C—H8CB109.5
C2B—C3B—H3BA109.4C7C—C8C—H8CC109.5
C2B—C3B—H3BB109.4H8CA—C8C—H8CB109.5
H3BA—C3B—H3BB108.0H8CA—C8C—H8CC109.5
C4B—C3B—C2B111 (2)H8CB—C8C—H8CC109.5
C4B—C3B—H3BA109.4C7C—C9C—H9CA109.5
C4B—C3B—H3BB109.4C7C—C9C—H9CB109.5
C3B—C4B—H4BA110.8C7C—C9C—H9CC109.5
C3B—C4B—H4BB110.8H9CA—C9C—H9CB109.5
H4BA—C4B—H4BB108.8H9CA—C9C—H9CC109.5
C5B—C4B—C3B105.0 (12)H9CB—C9C—H9CC109.5
C5B—C4B—H4BA110.8C5C—C10C—H10G109.5
C5B—C4B—H4BB110.8C5C—C10C—H10H109.5
C4B—C5B—H5B113.8C5C—C10C—H10I109.5
C4B—C5B—C6B105 (3)H10G—C10C—H10H109.5
C6B—C5B—H5B113.8H10G—C10C—H10I109.5
C10B—C5B—C4B108.0 (14)H10H—C10C—H10I109.5
C10B—C5B—H5B113.8
O1—C1—C2—C3175.8 (10)C3B—C2B—C7B—C9B85 (2)
O1—C1—C2—C754.5 (16)C3B—C4B—C5B—C6B63 (3)
O1—C1—C6—C5176.1 (10)C3B—C4B—C5B—C10B171 (3)
C1—C2—C3—C464.0 (16)C4B—C5B—C6B—C1B71.5 (16)
C1—C2—C7—C874.8 (16)C6B—C1B—C2B—C3B83 (3)
C1—C2—C7—C9169.2 (17)C6B—C1B—C2B—C7B168 (3)
C2—C1—C6—C570.2 (17)C7B—C2B—C3B—C4B173.5 (15)
C2—C3—C4—C562 (2)C10B—C5B—C6B—C1B176.1 (13)
C3—C2—C7—C846.9 (16)C1C—C2C—C3C—C4C61 (2)
C3—C2—C7—C969.1 (19)C1C—C2C—C7C—C8C59 (2)
C3—C4—C5—C658 (2)C1C—C2C—C7C—C9C171 (2)
C3—C4—C5—C10166 (3)C1C—C6C—C5C—C4C61 (2)
C4—C5—C6—C168.8 (15)C1C—C6C—C5C—C10C172.2 (15)
C6—C1—C2—C364.6 (18)C5C—C6C—C1C—O1C165.3 (15)
C6—C1—C2—C7165.7 (16)C5C—C6C—C1C—C2C68 (2)
C7—C2—C3—C4173.5 (13)C5C—C4C—C3C—C2C59 (3)
C10—C5—C6—C1175.4 (17)C3C—C2C—C1C—O1C174.2 (15)
O1B—C1B—C2B—C3B178.4 (12)C3C—C2C—C1C—C6C69 (2)
O1B—C1B—C2B—C7B69 (3)C3C—C2C—C7C—C8C52 (2)
O1B—C1B—C6B—C5B173.4 (13)C3C—C2C—C7C—C9C60 (3)
C1B—C2B—C3B—C4B65.6 (17)C3C—C4C—C5C—C6C55 (2)
C1B—C2B—C7B—C8B49 (4)C3C—C4C—C5C—C10C177 (2)
C1B—C2B—C7B—C9B171 (3)C7C—C2C—C1C—O1C64 (2)
C2B—C1B—C6B—C5B88 (2)C7C—C2C—C1C—C6C169.7 (19)
C2B—C3B—C4B—C5B62 (3)C7C—C2C—C3C—C4C177.3 (11)
C3B—C2B—C7B—C8B55 (2)
alpha-DL-2-Isopropyl-5-methylcyclohexanol (alpha_DL_120K) top
Crystal data top
C10H20OF(000) = 528
Mr = 156.26Dx = 1.022 Mg m3
Triclinic, P1Melting point: 308 K
a = 12.0054 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.2439 (10) ÅCell parameters from 5915 reflections
c = 12.6778 (9) Åθ = 1.9–26.2°
α = 117.176 (7)°µ = 0.06 mm1
β = 100.286 (7)°T = 120 K
γ = 103.377 (7)°Plate, colourless
V = 1523.4 (2) Å30.25 × 0.10 × 0.05 mm
Z = 6
Data collection top
Xcalibur, Eos
diffractometer
5915 independent reflections
Radiation source: Enhance (Mo) X-ray Source3346 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 26.2°, θmin = 1.9°
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1413
Tmin = 0.992, Tmax = 0.997k = 1515
11319 measured reflectionsl = 1115
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.061 w = 1/[σ2(Fo2) + (0.1068P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.220(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.30 e Å3
5915 reflectionsΔρmin = 0.27 e Å3
335 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
206 restraintsExtinction coefficient: 0.013 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.54999 (19)1.07582 (16)0.12517 (15)0.0521 (5)
H1BC0.6162021.0687390.1247390.078*0.5
H1A0.539 (6)1.053 (6)0.051 (2)0.078*0.5
C10.5630 (2)1.2121 (2)0.1790 (2)0.0450 (6)
H10.4851411.2169470.1460300.068*
C20.5961 (2)1.2772 (2)0.3204 (2)0.0446 (6)
H20.6746551.2718820.3503510.067*
C30.6164 (3)1.4245 (2)0.3785 (2)0.0493 (6)
H3A0.5410111.4343710.3495200.074*
H3B0.6402731.4669090.4691800.074*
C40.7137 (3)1.4912 (3)0.3432 (3)0.0572 (7)
H4A0.7230061.5831710.3799940.086*
H4B0.7903441.4869770.3777960.086*
C50.6831 (3)1.4278 (3)0.2026 (3)0.0558 (7)
H50.6087341.4389730.1704210.084*
C60.6578 (3)1.2802 (2)0.1425 (2)0.0486 (6)
H6A0.6307121.2392830.0518980.073*
H6B0.7327251.2673380.1669230.073*
C70.5074 (3)1.2073 (3)0.3630 (2)0.0498 (6)
H70.4891521.1128120.3091150.075*
C80.3871 (3)1.2287 (3)0.3478 (3)0.0569 (7)
H8A0.3518371.2055430.2628630.068*
H8B0.3331531.1746820.3669810.068*
H8C0.4004081.3194670.4039660.068*
C90.5646 (3)1.2436 (4)0.4972 (3)0.0710 (9)
H9A0.6404171.2297640.5057330.085*
H9B0.5783941.3344100.5537700.085*
H9C0.5111391.1896240.5167840.085*
C100.7820 (3)1.4918 (3)0.1674 (3)0.0720 (9)
H10G0.7593111.4488660.0776610.086*
H10H0.7929051.5830570.2025230.086*
H10I0.8565051.4838970.1997270.086*
O1B0.73921 (19)0.99140 (19)0.11098 (16)0.0578 (5)
H1B0.8059011.0251340.1093950.087*0.5
H1BA0.704 (4)1.044 (5)0.138 (5)0.087*0.5
C1B0.7526 (3)0.9361 (3)0.1883 (2)0.0488 (6)
H1BB0.8116910.8925400.1706400.073*
C2B0.7983 (3)1.0401 (3)0.3282 (2)0.0513 (7)
H2B0.7339791.0756570.3448020.077*
C3B0.8102 (3)0.9716 (3)0.4022 (3)0.0639 (8)
H3BA0.8380951.0362750.4913280.096*
H3BB0.8700140.9304750.3848770.096*
C4B0.6891 (3)0.8674 (3)0.3675 (3)0.0692 (9)
H4BA0.7002430.8239010.4139590.104*
H4BB0.6315200.9099830.3918690.104*
C5B0.6378 (3)0.7655 (3)0.2280 (3)0.0623 (8)
H5B0.6936990.7181300.2072200.093*
C6B0.6325 (3)0.8336 (3)0.1533 (2)0.0504 (6)
H6BA0.6064600.7680690.0646060.076*
H6BB0.5724750.8750560.1672810.076*
C7B0.9124 (3)1.1572 (3)0.3684 (2)0.0571 (7)
H7B0.8953671.1885010.3108240.086*
C8B1.0261 (3)1.1236 (4)0.3583 (3)0.0679 (9)
H8BA1.0094621.0515460.2753340.081*
H8BB1.0901491.1987800.3748110.081*
H8BC1.0502131.0994630.4185640.081*
C9B0.9376 (3)1.2717 (4)0.5000 (3)0.0846 (11)
H9BA0.8655781.2921930.5055180.102*
H9BB0.9615701.2478200.5604830.102*
H9BC1.0015061.3471360.5167300.102*
C10B0.5156 (3)0.6659 (3)0.1930 (3)0.0751 (10)
H10A0.4864080.6034760.1043470.090*
H10B0.5231830.6210030.2377060.090*
H10C0.4594010.7100950.2147660.090*
O1C0.93620 (19)1.07788 (18)0.05626 (18)0.0546 (5)
H1CA0.878 (2)1.039 (4)0.065 (3)0.082*0.5
H1C0.978 (6)1.041 (6)0.023 (6)0.082*0.5
C2C1.0475 (3)1.2496 (3)0.0295 (2)0.0471 (6)
H2C1.0748441.1858340.0303760.057*
C6C0.8305 (3)1.1055 (2)0.1063 (2)0.0467 (6)
H6CA0.7527041.0644140.1032430.070*
H6CB0.8519341.0367740.1665440.070*
C4C0.9415 (3)1.2732 (3)0.1458 (2)0.0558 (7)
H4CA0.9346191.3368400.1697010.084*
H4CB0.9692501.2114240.2056300.084*
C1C0.9253 (3)1.1730 (2)0.0223 (2)0.0463 (6)
H1CB0.8974961.2348970.0835250.056*
C5C0.8189 (3)1.2006 (3)0.1508 (2)0.0524 (7)
H5C0.7916041.2654710.0920080.079*
C3C1.0340 (3)1.3438 (3)0.0152 (3)0.0542 (8)
H3CA1.0091831.4102610.0433610.081*
H3CB1.1119321.3879520.0158910.073 (10)
C7C1.1443 (3)1.3171 (3)0.1605 (2)0.0520 (7)
H7C1.1473871.2479530.1786880.078*
C8C1.1144 (3)1.4180 (3)0.2665 (3)0.0656 (8)
H8CA1.0351401.3780320.2656400.079*
H8CB1.1731901.4490410.3454890.085 (11)
H8CC1.1160531.4906300.2550780.101*
C9C1.2686 (3)1.3774 (4)0.1597 (3)0.0692 (8)
H9CA1.2859321.3126010.0924600.083*
H9CB1.2708901.4498530.1478090.098 (13)
H9CC1.3280271.4082650.2382200.117*
C10C0.7245 (3)1.1300 (3)0.2807 (3)0.0632 (8)
H10D0.6481151.0852540.2794500.076*
H10E0.7158571.1928970.3037450.091 (12)
H10F0.7500581.0672430.3407140.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0695 (14)0.0449 (9)0.0463 (9)0.0247 (10)0.0257 (10)0.0228 (8)
C10.0503 (17)0.0443 (13)0.0432 (12)0.0205 (12)0.0175 (12)0.0224 (11)
C20.0460 (16)0.0482 (13)0.0439 (12)0.0205 (12)0.0180 (11)0.0244 (11)
C30.0516 (17)0.0469 (13)0.0462 (13)0.0207 (13)0.0187 (12)0.0194 (11)
C40.060 (2)0.0477 (14)0.0662 (17)0.0237 (14)0.0247 (15)0.0280 (13)
C50.065 (2)0.0529 (15)0.0699 (17)0.0307 (15)0.0356 (15)0.0380 (14)
C60.0594 (18)0.0510 (14)0.0495 (13)0.0284 (13)0.0276 (13)0.0295 (12)
C70.0560 (18)0.0549 (14)0.0433 (13)0.0228 (14)0.0212 (12)0.0262 (12)
C80.0517 (18)0.0590 (16)0.0597 (16)0.0226 (14)0.0230 (14)0.0276 (14)
C90.068 (2)0.101 (2)0.0570 (17)0.0273 (19)0.0279 (16)0.0499 (17)
C100.087 (3)0.0643 (18)0.102 (2)0.0418 (19)0.057 (2)0.0560 (18)
O1B0.0631 (14)0.0761 (13)0.0573 (11)0.0264 (11)0.0233 (10)0.0503 (10)
C1B0.0583 (18)0.0613 (15)0.0488 (13)0.0313 (14)0.0269 (13)0.0376 (12)
C2B0.0538 (18)0.0648 (16)0.0489 (14)0.0291 (15)0.0240 (13)0.0339 (13)
C3B0.070 (2)0.092 (2)0.0545 (15)0.0369 (18)0.0287 (15)0.0499 (16)
C4B0.082 (2)0.088 (2)0.0754 (19)0.0395 (19)0.0418 (18)0.0616 (18)
C5B0.074 (2)0.0700 (18)0.0790 (19)0.0410 (17)0.0446 (17)0.0522 (16)
C6B0.0565 (18)0.0547 (14)0.0510 (14)0.0248 (14)0.0258 (13)0.0308 (12)
C7B0.0562 (19)0.0699 (17)0.0515 (14)0.0272 (15)0.0216 (14)0.0329 (14)
C8B0.061 (2)0.102 (2)0.0610 (17)0.0397 (19)0.0275 (15)0.0507 (17)
C9B0.061 (2)0.091 (2)0.067 (2)0.020 (2)0.0229 (17)0.0169 (18)
C10B0.093 (3)0.0639 (18)0.100 (2)0.0370 (19)0.057 (2)0.0538 (18)
O1C0.0610 (14)0.0588 (11)0.0660 (12)0.0228 (10)0.0221 (10)0.0480 (10)
C2C0.0548 (18)0.0552 (14)0.0472 (13)0.0267 (13)0.0238 (12)0.0330 (12)
C6C0.0552 (17)0.0503 (13)0.0466 (13)0.0227 (13)0.0217 (12)0.0308 (11)
C4C0.073 (2)0.0585 (15)0.0515 (14)0.0236 (15)0.0229 (14)0.0400 (13)
C1C0.0577 (18)0.0562 (14)0.0470 (13)0.0298 (13)0.0254 (12)0.0363 (12)
C5C0.0633 (19)0.0584 (15)0.0485 (14)0.0280 (15)0.0209 (13)0.0340 (13)
C3C0.068 (2)0.0542 (16)0.0516 (15)0.0219 (16)0.0224 (15)0.0352 (13)
H3CB0.10 (3)0.05 (2)0.020 (15)0.02 (2)0.009 (17)0.001 (14)
C7C0.0530 (18)0.0575 (15)0.0540 (15)0.0221 (14)0.0168 (13)0.0348 (13)
C8C0.059 (2)0.079 (2)0.0476 (16)0.0242 (18)0.0111 (15)0.0274 (16)
H8CB0.03 (2)0.09 (2)0.08 (2)0.016 (19)0.012 (17)0.02 (2)
C9C0.056 (2)0.080 (2)0.0720 (19)0.0218 (18)0.0212 (16)0.0415 (18)
H9CB0.08 (3)0.10 (3)0.13 (3)0.02 (2)0.01 (2)0.10 (3)
C10C0.071 (2)0.0737 (19)0.0533 (16)0.0260 (17)0.0144 (15)0.0413 (15)
H10E0.17 (4)0.08 (2)0.06 (2)0.05 (2)0.03 (2)0.06 (2)
Geometric parameters (Å, º) top
O1—H1BC0.8200C5B—C6B1.523 (3)
O1—H1A0.825 (19)C5B—C10B1.510 (4)
O1—C11.441 (3)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.516 (3)C7B—H7B0.9800
C1—C61.519 (3)C7B—C8B1.523 (4)
C2—H20.9800C7B—C9B1.526 (4)
C2—C31.541 (3)C8B—H8BA0.9600
C2—C71.537 (3)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.520 (4)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10A0.9600
C4—C51.512 (4)C10B—H10B0.9600
C5—H50.9800C10B—H10C0.9600
C5—C61.531 (3)O1C—H1CA0.800 (14)
C5—C101.517 (4)O1C—H1C0.802 (19)
C6—H6A0.9700O1C—C1C1.438 (3)
C6—H6B0.9700C2C—H2C0.9800
C7—H70.9800C2C—C1C1.508 (4)
C7—C81.521 (4)C2C—C3C1.526 (3)
C7—C91.522 (4)C2C—C7C1.551 (4)
C8—H8A0.9600C6C—H6CA0.9700
C8—H8B0.9600C6C—H6CB0.9700
C8—H8C0.9600C6C—C1C1.519 (4)
C9—H9A0.9600C6C—C5C1.531 (3)
C9—H9B0.9600C4C—H4CA0.9700
C9—H9C0.9600C4C—H4CB0.9700
C10—H10G0.9600C4C—C5C1.507 (4)
C10—H10H0.9600C4C—C3C1.521 (4)
C10—H10I0.9600C1C—H1CB0.9800
O1B—H1B0.8200C5C—H5C0.9800
O1B—H1BA0.827 (18)C5C—C10C1.524 (4)
O1B—C1B1.430 (3)C3C—H3CA0.9700
C1B—H1BB0.9800C3C—H3CB0.9700
C1B—C2B1.528 (3)C7C—H7C0.9800
C1B—C6B1.510 (4)C7C—C8C1.524 (4)
C2B—H2B0.9800C7C—C9C1.508 (4)
C2B—C3B1.526 (4)C8C—H8CA0.9600
C2B—C7B1.539 (4)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.528 (4)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10D0.9600
C4B—C5B1.518 (4)C10C—H10E0.9600
C5B—H5B0.9800C10C—H10F0.9600
H1BC—O1—H1A84.5C10B—C5B—C6B111.7 (3)
C1—O1—H1BC109.5C1B—C6B—C5B113.0 (2)
C1—O1—H1A101 (4)C1B—C6B—H6BA109.0
O1—C1—H1108.7C1B—C6B—H6BB109.0
O1—C1—C2109.23 (19)C5B—C6B—H6BA109.0
O1—C1—C6110.04 (18)C5B—C6B—H6BB109.0
C2—C1—H1108.7H6BA—C6B—H6BB107.8
C2—C1—C6111.6 (2)C2B—C7B—H7B106.6
C6—C1—H1108.7C8B—C7B—C2B114.7 (2)
C1—C2—H2106.5C8B—C7B—H7B106.6
C1—C2—C3109.2 (2)C8B—C7B—C9B110.0 (3)
C1—C2—C7113.9 (2)C9B—C7B—C2B111.9 (2)
C3—C2—H2106.5C9B—C7B—H7B106.6
C7—C2—H2106.5C7B—C8B—H8BA109.5
C7—C2—C3113.70 (19)C7B—C8B—H8BB109.5
C2—C3—H3A109.3C7B—C8B—H8BC109.5
C2—C3—H3B109.4H8BA—C8B—H8BB109.5
H3A—C3—H3B108.0H8BA—C8B—H8BC109.5
C4—C3—C2111.39 (19)H8BB—C8B—H8BC109.5
C4—C3—H3A109.4C7B—C9B—H9BA109.5
C4—C3—H3B109.4C7B—C9B—H9BB109.5
C3—C4—H4A109.2C7B—C9B—H9BC109.5
C3—C4—H4B109.2H9BA—C9B—H9BB109.5
H4A—C4—H4B107.9H9BA—C9B—H9BC109.5
C5—C4—C3112.0 (2)H9BB—C9B—H9BC109.5
C5—C4—H4A109.2C5B—C10B—H10A109.5
C5—C4—H4B109.2C5B—C10B—H10B109.5
C4—C5—H5107.9C5B—C10B—H10C109.5
C4—C5—C6109.6 (2)H10A—C10B—H10B109.5
C4—C5—C10112.0 (3)H10A—C10B—H10C109.5
C6—C5—H5107.9H10B—C10B—H10C109.5
C10—C5—H5107.9H1CA—O1C—H1C121 (6)
C10—C5—C6111.3 (2)C1C—O1C—H1CA118 (4)
C1—C6—C5113.48 (19)C1C—O1C—H1C110 (5)
C1—C6—H6A108.9C1C—C2C—H2C106.7
C1—C6—H6B108.9C1C—C2C—C3C109.9 (2)
C5—C6—H6A108.9C1C—C2C—C7C112.63 (19)
C5—C6—H6B108.9C3C—C2C—H2C106.7
H6A—C6—H6B107.7C3C—C2C—C7C113.7 (2)
C2—C7—H7106.8C7C—C2C—H2C106.7
C8—C7—C2114.0 (2)H6CA—C6C—H6CB107.8
C8—C7—H7106.8C1C—C6C—H6CA109.1
C8—C7—C9110.2 (2)C1C—C6C—H6CB109.1
C9—C7—C2111.7 (2)C1C—C6C—C5C112.7 (2)
C9—C7—H7106.8C5C—C6C—H6CA109.1
C7—C8—H8A109.5C5C—C6C—H6CB109.1
C7—C8—H8B109.5H4CA—C4C—H4CB108.0
C7—C8—H8C109.5C5C—C4C—H4CA109.3
H8A—C8—H8B109.5C5C—C4C—H4CB109.3
H8A—C8—H8C109.5C5C—C4C—C3C111.5 (2)
H8B—C8—H8C109.5C3C—C4C—H4CA109.3
C7—C9—H9A109.5C3C—C4C—H4CB109.3
C7—C9—H9B109.5O1C—C1C—C2C110.1 (2)
C7—C9—H9C109.5O1C—C1C—C6C110.0 (2)
H9A—C9—H9B109.5O1C—C1C—H1CB107.9
H9A—C9—H9C109.5C2C—C1C—C6C112.78 (19)
H9B—C9—H9C109.5C2C—C1C—H1CB107.9
C5—C10—H10G109.5C6C—C1C—H1CB107.9
C5—C10—H10H109.5C6C—C5C—H5C107.7
C5—C10—H10I109.5C4C—C5C—C6C109.5 (2)
H10G—C10—H10H109.5C4C—C5C—H5C107.7
H10G—C10—H10I109.5C4C—C5C—C10C112.4 (2)
H10H—C10—H10I109.5C10C—C5C—C6C111.5 (2)
H1B—O1B—H1BA113.5C10C—C5C—H5C107.7
C1B—O1B—H1B109.5C2C—C3C—H3CA109.2
C1B—O1B—H1BA108 (5)C2C—C3C—H3CB109.2
O1B—C1B—H1BB108.3C4C—C3C—C2C112.1 (2)
O1B—C1B—C2B112.5 (2)C4C—C3C—H3CA109.2
O1B—C1B—C6B108.8 (2)C4C—C3C—H3CB109.2
C2B—C1B—H1BB108.3H3CA—C3C—H3CB107.9
C6B—C1B—H1BB108.3C2C—C7C—H7C106.9
C6B—C1B—C2B110.7 (2)C8C—C7C—C2C113.8 (2)
C1B—C2B—H2B106.5C8C—C7C—H7C106.9
C1B—C2B—C7B113.9 (2)C9C—C7C—C2C111.2 (2)
C3B—C2B—C1B108.4 (2)C9C—C7C—H7C106.9
C3B—C2B—H2B106.5C9C—C7C—C8C110.6 (3)
C3B—C2B—C7B114.5 (2)C7C—C8C—H8CA109.5
C7B—C2B—H2B106.5C7C—C8C—H8CB109.5
C2B—C3B—H3BA109.4C7C—C8C—H8CC109.5
C2B—C3B—H3BB109.4H8CA—C8C—H8CB109.5
C2B—C3B—C4B111.2 (3)H8CA—C8C—H8CC109.5
H3BA—C3B—H3BB108.0H8CB—C8C—H8CC109.5
C4B—C3B—H3BA109.4C7C—C9C—H9CA109.5
C4B—C3B—H3BB109.4C7C—C9C—H9CB109.5
C3B—C4B—H4BA109.2C7C—C9C—H9CC109.5
C3B—C4B—H4BB109.2H9CA—C9C—H9CB109.5
H4BA—C4B—H4BB107.9H9CA—C9C—H9CC109.5
C5B—C4B—C3B112.2 (2)H9CB—C9C—H9CC109.5
C5B—C4B—H4BA109.2C5C—C10C—H10D109.5
C5B—C4B—H4BB109.2C5C—C10C—H10E109.5
C4B—C5B—H5B107.7C5C—C10C—H10F109.5
C4B—C5B—C6B109.8 (2)H10D—C10C—H10E109.5
C6B—C5B—H5B107.7H10D—C10C—H10F109.5
C10B—C5B—C4B112.2 (2)H10E—C10C—H10F109.5
C10B—C5B—H5B107.7
O1—C1—C2—C3177.1 (2)C3B—C2B—C7B—C9B67.6 (3)
O1—C1—C2—C754.6 (3)C3B—C4B—C5B—C6B52.8 (3)
O1—C1—C6—C5176.4 (2)C3B—C4B—C5B—C10B177.5 (3)
C1—C2—C3—C457.1 (3)C4B—C5B—C6B—C1B53.6 (3)
C1—C2—C7—C874.4 (3)C6B—C1B—C2B—C3B58.4 (3)
C1—C2—C7—C9159.9 (2)C6B—C1B—C2B—C7B172.9 (2)
C2—C1—C6—C555.0 (3)C7B—C2B—C3B—C4B173.3 (2)
C2—C3—C4—C557.8 (3)C10B—C5B—C6B—C1B178.6 (2)
C3—C2—C7—C851.5 (3)C1C—C2C—C3C—C4C54.8 (3)
C3—C2—C7—C974.2 (3)C1C—C2C—C7C—C8C61.8 (3)
C3—C4—C5—C654.2 (3)C1C—C2C—C7C—C9C172.5 (2)
C3—C4—C5—C10178.3 (2)C1C—C6C—C5C—C4C54.2 (3)
C4—C5—C6—C153.1 (3)C1C—C6C—C5C—C10C179.2 (2)
C6—C1—C2—C355.3 (3)C5C—C6C—C1C—O1C177.2 (2)
C6—C1—C2—C7176.4 (2)C5C—C6C—C1C—C2C53.9 (3)
C7—C2—C3—C4174.5 (2)C5C—C4C—C3C—C2C57.8 (3)
C10—C5—C6—C1177.6 (2)C3C—C2C—C1C—O1C176.14 (19)
O1B—C1B—C2B—C3B179.7 (2)C3C—C2C—C1C—C6C52.8 (3)
O1B—C1B—C2B—C7B51.0 (3)C3C—C2C—C7C—C8C63.9 (3)
O1B—C1B—C6B—C5B178.35 (19)C3C—C2C—C7C—C9C61.8 (3)
C1B—C2B—C3B—C4B58.3 (3)C3C—C4C—C5C—C6C55.9 (3)
C1B—C2B—C7B—C8B66.9 (3)C3C—C4C—C5C—C10C179.6 (2)
C1B—C2B—C7B—C9B166.9 (2)C7C—C2C—C1C—O1C56.0 (3)
C2B—C1B—C6B—C5B57.6 (3)C7C—C2C—C1C—C6C179.4 (2)
C2B—C3B—C4B—C5B57.0 (3)C7C—C2C—C3C—C4C177.9 (2)
C3B—C2B—C7B—C8B58.6 (3)
alpha-DL-2-Isopropyl-5-methylcyclohexanol (alpha_DL_160K) top
Crystal data top
C10H20OF(000) = 528
Mr = 156.26Dx = 1.013 Mg m3
Triclinic, P1Melting point: 308 K
a = 11.9503 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.3527 (10) ÅCell parameters from 5994 reflections
c = 12.7242 (9) Åθ = 1.9–26.3°
α = 117.256 (7)°µ = 0.06 mm1
β = 99.818 (7)°T = 160 K
γ = 103.584 (8)°Plate, colourless
V = 1536.7 (2) Å30.25 × 0.1 × 0.05 mm
Z = 6
Data collection top
Xcalibur, Eos
diffractometer
Rint = 0.045
ω scansθmax = 26.3°, θmin = 1.9°
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1413
Tmin = 0.993, Tmax = 0.997k = 1515
11620 measured reflectionsl = 1115
5994 independent reflections3 standard reflections every 120 min
3295 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.062 w = 1/[σ2(Fo2) + (0.0948P)2 + 0.0212P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.212(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.23 e Å3
5994 reflectionsΔρmin = 0.18 e Å3
317 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
16 restraintsExtinction coefficient: 0.013 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.54777 (16)1.07505 (15)0.12528 (13)0.0592 (5)
H1A0.6132 (6)1.0643 (11)0.1289 (16)0.089*0.5
H1B0.511 (3)1.040 (3)0.0508 (4)0.089*0.5
C10.5599 (2)1.2100 (2)0.1786 (2)0.0516 (6)
H10.4812141.2139590.1466630.077*
C20.5941 (2)1.2754 (2)0.32005 (19)0.0510 (6)
H20.6731141.2703830.3489670.076*
C30.6140 (2)1.4207 (2)0.3772 (2)0.0574 (6)
H3A0.5379871.4301520.3496370.086*
H3B0.6390251.4632420.4674270.086*
C40.7101 (3)1.4872 (2)0.3401 (2)0.0666 (7)
H4A0.7189441.5782290.3767570.100*
H4B0.7875391.4833240.3729330.100*
C50.6771 (3)1.4234 (2)0.1997 (3)0.0655 (7)
H50.6015171.4336300.1692710.098*
C60.6529 (3)1.2772 (2)0.1402 (2)0.0581 (7)
H6A0.6247511.2361130.0501090.087*
H6B0.7286031.2652010.1634460.087*
C70.5057 (3)1.2058 (3)0.3631 (2)0.0589 (7)
H70.4878671.1121050.3099620.088*
C80.3853 (3)1.2268 (3)0.3494 (3)0.0679 (7)
H8A0.3490961.2026500.2647640.081*
H8B0.3318331.1740260.3700860.081*
H8C0.3986981.3170030.4046030.081*
C90.5642 (3)1.2438 (4)0.4971 (3)0.0854 (10)
H9A0.6403691.2302250.5049220.103*
H9B0.5780461.3340410.5526340.103*
H9C0.5111811.1910640.5181170.103*
C100.7737 (3)1.4871 (3)0.1619 (3)0.0896 (11)
H10A0.7494251.4439870.0725520.108*
H10B0.7835121.5773260.1967590.108*
H10C0.8492891.4802340.1925560.108*
O1B0.74222 (18)1.0001 (2)0.11826 (17)0.0724 (6)
H1BA0.8086 (9)1.017 (3)0.108 (2)0.109*0.5
H1BB0.7003 (11)1.0433 (19)0.1457 (12)0.109*0.5
C1B0.7580 (3)0.9447 (3)0.1941 (2)0.0586 (7)
H1BC0.8181800.9029220.1755090.088*
C2B0.8022 (3)1.0457 (3)0.3327 (2)0.0602 (7)
H2B0.7370971.0799080.3501140.090*
C3B0.8158 (3)0.9767 (3)0.4049 (3)0.0769 (9)
H3BA0.8763250.9368270.3863280.115*
H3BB0.8436551.0399940.4937590.115*
C4B0.6953 (3)0.8724 (3)0.3701 (3)0.0846 (10)
H4BA0.7067040.8288990.4158430.127*
H4BB0.6367220.9135760.3945400.127*
C5B0.6453 (3)0.7723 (3)0.2314 (3)0.0759 (9)
H5B0.7026720.7270860.2100010.114*
C6B0.6381 (3)0.8411 (2)0.1588 (2)0.0606 (7)
H6BA0.6122270.7771420.0702390.091*
H6BB0.5771280.8810730.1740360.091*
C7B0.9166 (3)1.1633 (3)0.3731 (3)0.0711 (8)
H7B0.8993501.1946670.3162580.107*
C8B1.0307 (3)1.1314 (4)0.3625 (3)0.0840 (9)
H8BA1.0146631.0605480.2796270.101*
H8BB1.0946641.2065820.3793190.101*
H8BC1.0549481.1068680.4218080.101*
C9B0.9399 (3)1.2755 (4)0.5039 (3)0.1101 (14)
H9BA0.8669341.2945360.5092160.132*
H9BB0.9638081.2514860.5637440.132*
H9BC1.0035241.3512010.5212550.132*
C10B0.5228 (4)0.6707 (3)0.1955 (3)0.0938 (11)
H10D0.4945860.6093780.1071790.113*
H10E0.5312020.6256440.2393290.113*
H10F0.4653040.7128410.2173610.113*
O1C0.93720 (18)1.07976 (17)0.05544 (16)0.0660 (5)
H1CA0.8939 (9)1.0451 (19)0.0832 (19)0.099*0.5
H1CB0.9750 (14)1.0347 (12)0.0204 (16)0.099*0.5
C2C1.0489 (2)1.2501 (2)0.0294 (2)0.0531 (6)
H2C1.0769461.1871280.0301790.080*
C6C0.8322 (2)1.1072 (2)0.1058 (2)0.0544 (6)
H6CA0.7539081.0662080.1027860.082*
H6CB0.8539741.0393040.1660150.082*
C4C0.9438 (3)1.2740 (3)0.1447 (2)0.0683 (8)
H4CA0.9369691.3371380.1682960.102*
H4CB0.9718791.2128520.2044840.102*
C1C0.9268 (2)1.1738 (2)0.0221 (2)0.0522 (6)
H1C0.8984121.2348850.0831480.078*
C5C0.8210 (3)1.2019 (2)0.1494 (2)0.0617 (7)
H5C0.7936391.2660860.0903270.093*
C3C1.0366 (3)1.3442 (2)0.0147 (2)0.0618 (7)
H3CA1.0119511.4104080.0438160.093*
H3CB1.1150681.3874820.0158500.093*
C7C1.1455 (3)1.3173 (3)0.1593 (2)0.0615 (7)
H7C1.1478311.2491100.1780480.092*
C8C1.1152 (3)1.4184 (3)0.2644 (2)0.0828 (9)
H8CA1.0352801.3792630.2636730.099*
H8CB1.1735201.4492280.3431280.099*
H8CC1.1177231.4901560.2525780.099*
C9C1.2710 (3)1.3767 (3)0.1587 (3)0.0892 (10)
H9CA1.2887691.3120750.0921400.107*
H9CB1.2740571.4483640.1464660.107*
H9CC1.3298541.4074370.2370160.107*
C10C0.7263 (3)1.1324 (3)0.2780 (2)0.0791 (9)
H10G0.6496821.0879290.2764170.095*
H10H0.7177121.1951800.3003770.095*
H10I0.7519031.0703840.3383990.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0756 (13)0.0450 (8)0.0485 (8)0.0227 (9)0.0196 (8)0.0175 (7)
C10.0557 (16)0.0476 (12)0.0470 (12)0.0216 (12)0.0146 (11)0.0202 (10)
C20.0512 (16)0.0529 (12)0.0424 (11)0.0197 (12)0.0119 (10)0.0203 (10)
C30.0560 (17)0.0500 (12)0.0485 (12)0.0181 (12)0.0143 (11)0.0134 (10)
C40.064 (2)0.0499 (13)0.0746 (17)0.0203 (13)0.0200 (14)0.0248 (12)
C50.073 (2)0.0587 (14)0.0802 (17)0.0325 (15)0.0369 (15)0.0398 (13)
C60.0701 (19)0.0582 (13)0.0569 (13)0.0325 (14)0.0293 (13)0.0308 (11)
C70.0640 (18)0.0631 (14)0.0490 (12)0.0243 (14)0.0207 (12)0.0271 (11)
C80.0582 (19)0.0653 (15)0.0709 (16)0.0224 (14)0.0235 (14)0.0273 (13)
C90.081 (2)0.121 (3)0.0651 (17)0.033 (2)0.0296 (16)0.0556 (18)
C100.110 (3)0.0699 (17)0.127 (3)0.046 (2)0.068 (2)0.0630 (19)
O1B0.0732 (15)0.0987 (14)0.0717 (11)0.0327 (12)0.0252 (10)0.0627 (11)
C1B0.0674 (19)0.0793 (16)0.0548 (13)0.0400 (15)0.0303 (13)0.0444 (13)
C2B0.0614 (18)0.0732 (16)0.0537 (13)0.0307 (15)0.0239 (12)0.0339 (12)
C3B0.080 (2)0.111 (2)0.0636 (16)0.040 (2)0.0303 (15)0.0585 (17)
C4B0.100 (3)0.109 (2)0.084 (2)0.043 (2)0.0416 (19)0.0731 (19)
C5B0.092 (3)0.0780 (18)0.093 (2)0.0477 (19)0.0476 (19)0.0572 (17)
C6B0.0686 (19)0.0639 (14)0.0576 (14)0.0280 (14)0.0278 (13)0.0334 (12)
C7B0.065 (2)0.0820 (18)0.0647 (16)0.0291 (16)0.0237 (14)0.0349 (14)
C8B0.074 (2)0.123 (3)0.0769 (18)0.047 (2)0.0328 (16)0.0598 (19)
C9B0.070 (3)0.100 (3)0.088 (2)0.011 (2)0.0212 (18)0.004 (2)
C10B0.116 (3)0.0695 (18)0.116 (3)0.037 (2)0.057 (2)0.0551 (19)
O1C0.0754 (14)0.0683 (11)0.0765 (11)0.0270 (10)0.0247 (10)0.0538 (10)
C2C0.0600 (17)0.0555 (12)0.0518 (12)0.0239 (12)0.0227 (12)0.0309 (11)
C6C0.0635 (18)0.0525 (12)0.0505 (12)0.0217 (12)0.0198 (12)0.0285 (10)
C4C0.091 (2)0.0642 (15)0.0566 (14)0.0223 (15)0.0214 (14)0.0400 (13)
C1C0.0614 (17)0.0571 (12)0.0516 (12)0.0263 (12)0.0235 (12)0.0344 (11)
C5C0.073 (2)0.0620 (14)0.0543 (13)0.0272 (14)0.0180 (13)0.0331 (12)
C3C0.076 (2)0.0536 (13)0.0568 (14)0.0163 (13)0.0184 (13)0.0333 (12)
C7C0.0586 (18)0.0656 (15)0.0602 (14)0.0215 (14)0.0128 (12)0.0352 (12)
C8C0.075 (2)0.095 (2)0.0540 (15)0.0294 (19)0.0080 (14)0.0249 (15)
C9C0.064 (2)0.102 (2)0.096 (2)0.0242 (19)0.0198 (17)0.050 (2)
C10C0.091 (3)0.0840 (19)0.0611 (16)0.0297 (18)0.0095 (15)0.0425 (15)
Geometric parameters (Å, º) top
O1—H1A0.8202 (10)C5B—C6B1.520 (4)
O1—H1B0.8201 (10)C5B—C10B1.520 (5)
O1—C11.442 (3)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.524 (3)C7B—H7B0.9800
C1—C61.511 (3)C7B—C8B1.515 (4)
C2—H20.9800C7B—C9B1.522 (4)
C2—C31.534 (3)C8B—H8BA0.9600
C2—C71.535 (3)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.519 (4)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.514 (4)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.531 (3)O1C—H1CA0.8200 (10)
C5—C101.513 (4)O1C—H1CB0.8201 (10)
C6—H6A0.9700O1C—C1C1.431 (3)
C6—H6B0.9700C2C—H2C0.9800
C7—H70.9800C2C—C1C1.502 (3)
C7—C81.517 (4)C2C—C3C1.529 (3)
C7—C91.524 (4)C2C—C7C1.548 (3)
C8—H8A0.9600C6C—H6CA0.9700
C8—H8B0.9600C6C—H6CB0.9700
C8—H8C0.9600C6C—C1C1.520 (3)
C9—H9A0.9600C6C—C5C1.528 (3)
C9—H9B0.9600C4C—H4CA0.9700
C9—H9C0.9600C4C—H4CB0.9700
C10—H10A0.9600C4C—C5C1.503 (4)
C10—H10B0.9600C4C—C3C1.526 (4)
C10—H10C0.9600C1C—H1C0.9800
O1B—H1BA0.8205 (10)C5C—H5C0.9800
O1B—H1BB0.8201 (10)C5C—C10C1.524 (4)
O1B—C1B1.427 (3)C3C—H3CA0.9700
C1B—H1BC0.9800C3C—H3CB0.9700
C1B—C2B1.518 (3)C7C—H7C0.9800
C1B—C6B1.512 (4)C7C—C8C1.525 (3)
C2B—H2B0.9800C7C—C9C1.510 (4)
C2B—C3B1.525 (4)C8C—H8CA0.9600
C2B—C7B1.545 (4)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.523 (5)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.515 (4)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1A—O1—H1B106.1 (18)C10B—C5B—C6B111.4 (3)
C1—O1—H1A113.1 (8)C1B—C6B—C5B112.8 (2)
C1—O1—H1B105.2 (19)C1B—C6B—H6BA109.0
O1—C1—H1108.6C1B—C6B—H6BB109.0
O1—C1—C2109.19 (18)C5B—C6B—H6BA109.0
O1—C1—C6110.11 (18)C5B—C6B—H6BB109.0
C2—C1—H1108.6H6BA—C6B—H6BB107.8
C6—C1—H1108.6C2B—C7B—H7B106.6
C6—C1—C2111.8 (2)C8B—C7B—C2B114.7 (3)
C1—C2—H2106.5C8B—C7B—H7B106.6
C1—C2—C3109.12 (19)C8B—C7B—C9B110.4 (3)
C1—C2—C7113.5 (2)C9B—C7B—C2B111.5 (2)
C3—C2—H2106.5C9B—C7B—H7B106.6
C3—C2—C7114.03 (19)C7B—C8B—H8BA109.5
C7—C2—H2106.5C7B—C8B—H8BB109.5
C2—C3—H3A109.3C7B—C8B—H8BC109.5
C2—C3—H3B109.3H8BA—C8B—H8BB109.5
H3A—C3—H3B107.9H8BA—C8B—H8BC109.5
C4—C3—C2111.79 (19)H8BB—C8B—H8BC109.5
C4—C3—H3A109.3C7B—C9B—H9BA109.5
C4—C3—H3B109.3C7B—C9B—H9BB109.5
C3—C4—H4A109.3C7B—C9B—H9BC109.5
C3—C4—H4B109.3H9BA—C9B—H9BB109.5
H4A—C4—H4B107.9H9BA—C9B—H9BC109.5
C5—C4—C3111.7 (2)H9BB—C9B—H9BC109.5
C5—C4—H4A109.3C5B—C10B—H10D109.5
C5—C4—H4B109.3C5B—C10B—H10E109.5
C4—C5—H5107.9C5B—C10B—H10F109.5
C4—C5—C6109.6 (2)H10D—C10B—H10E109.5
C6—C5—H5107.9H10D—C10B—H10F109.5
C10—C5—C4112.0 (3)H10E—C10B—H10F109.5
C10—C5—H5107.9H1CA—O1C—H1CB110.9 (13)
C10—C5—C6111.4 (2)C1C—O1C—H1CA130.1 (5)
C1—C6—C5113.44 (19)C1C—O1C—H1CB115.2 (9)
C1—C6—H6A108.9C1C—C2C—H2C106.7
C1—C6—H6B108.9C1C—C2C—C3C110.3 (2)
C5—C6—H6A108.9C1C—C2C—C7C112.83 (19)
C5—C6—H6B108.9C3C—C2C—H2C106.7
H6A—C6—H6B107.7C3C—C2C—C7C113.2 (2)
C2—C7—H7107.1C7C—C2C—H2C106.7
C8—C7—C2113.9 (2)H6CA—C6C—H6CB107.8
C8—C7—H7107.1C1C—C6C—H6CA109.1
C8—C7—C9110.0 (2)C1C—C6C—H6CB109.1
C9—C7—C2111.2 (2)C1C—C6C—C5C112.7 (2)
C9—C7—H7107.1C5C—C6C—H6CA109.1
C7—C8—H8A109.5C5C—C6C—H6CB109.1
C7—C8—H8B109.5H4CA—C4C—H4CB108.0
C7—C8—H8C109.5C5C—C4C—H4CA109.3
H8A—C8—H8B109.5C5C—C4C—H4CB109.3
H8A—C8—H8C109.5C5C—C4C—C3C111.6 (2)
H8B—C8—H8C109.5C3C—C4C—H4CA109.3
C7—C9—H9A109.5C3C—C4C—H4CB109.3
C7—C9—H9B109.5O1C—C1C—C2C110.3 (2)
C7—C9—H9C109.5O1C—C1C—C6C110.2 (2)
H9A—C9—H9B109.5O1C—C1C—H1C107.8
H9A—C9—H9C109.5C2C—C1C—C6C112.75 (18)
H9B—C9—H9C109.5C2C—C1C—H1C107.8
C5—C10—H10A109.5C6C—C1C—H1C107.8
C5—C10—H10B109.5C6C—C5C—H5C107.6
C5—C10—H10C109.5C4C—C5C—C6C109.6 (2)
H10A—C10—H10B109.5C4C—C5C—H5C107.6
H10A—C10—H10C109.5C4C—C5C—C10C112.5 (2)
H10B—C10—H10C109.5C10C—C5C—C6C111.5 (2)
H1BA—O1B—H1BB134 (3)C10C—C5C—H5C107.6
C1B—O1B—H1BA102.8 (5)C2C—C3C—H3CA109.3
C1B—O1B—H1BB104 (2)C2C—C3C—H3CB109.3
O1B—C1B—H1BC108.4C4C—C3C—C2C111.8 (2)
O1B—C1B—C2B112.7 (2)C4C—C3C—H3CA109.3
O1B—C1B—C6B108.2 (2)C4C—C3C—H3CB109.3
C2B—C1B—H1BC108.4H3CA—C3C—H3CB107.9
C6B—C1B—H1BC108.4C2C—C7C—H7C106.9
C6B—C1B—C2B110.51 (19)C8C—C7C—C2C113.7 (2)
C1B—C2B—H2B106.8C8C—C7C—H7C106.9
C1B—C2B—C3B108.5 (2)C9C—C7C—C2C111.6 (2)
C1B—C2B—C7B113.5 (2)C9C—C7C—H7C106.9
C3B—C2B—H2B106.8C9C—C7C—C8C110.4 (2)
C3B—C2B—C7B114.1 (3)C7C—C8C—H8CA109.5
C7B—C2B—H2B106.8C7C—C8C—H8CB109.5
C2B—C3B—H3BA109.5C7C—C8C—H8CC109.5
C2B—C3B—H3BB109.5H8CA—C8C—H8CB109.5
H3BA—C3B—H3BB108.1H8CA—C8C—H8CC109.5
C4B—C3B—C2B110.8 (3)H8CB—C8C—H8CC109.5
C4B—C3B—H3BA109.5C7C—C9C—H9CA109.5
C4B—C3B—H3BB109.5C7C—C9C—H9CB109.5
C3B—C4B—H4BA109.2C7C—C9C—H9CC109.5
C3B—C4B—H4BB109.2H9CA—C9C—H9CB109.5
H4BA—C4B—H4BB107.9H9CA—C9C—H9CC109.5
C5B—C4B—C3B112.0 (2)H9CB—C9C—H9CC109.5
C5B—C4B—H4BA109.2C5C—C10C—H10G109.5
C5B—C4B—H4BB109.2C5C—C10C—H10H109.5
C4B—C5B—H5B107.9C5C—C10C—H10I109.5
C4B—C5B—C6B109.5 (2)H10G—C10C—H10H109.5
C4B—C5B—C10B112.2 (2)H10G—C10C—H10I109.5
C6B—C5B—H5B107.9H10H—C10C—H10I109.5
C10B—C5B—H5B107.9
O1—C1—C2—C3176.8 (2)C3B—C2B—C7B—C9B68.6 (3)
O1—C1—C2—C754.8 (3)C3B—C4B—C5B—C6B53.7 (4)
O1—C1—C6—C5176.4 (2)C3B—C4B—C5B—C10B178.0 (3)
C1—C2—C3—C456.7 (3)C4B—C5B—C6B—C1B54.2 (3)
C1—C2—C7—C874.6 (3)C6B—C1B—C2B—C3B58.7 (3)
C1—C2—C7—C9160.4 (2)C6B—C1B—C2B—C7B173.3 (2)
C2—C1—C6—C554.8 (3)C7B—C2B—C3B—C4B173.5 (2)
C2—C3—C4—C558.0 (3)C10B—C5B—C6B—C1B178.9 (2)
C3—C2—C7—C851.3 (3)C1C—C2C—C3C—C4C54.4 (3)
C3—C2—C7—C973.8 (3)C1C—C2C—C7C—C8C62.6 (3)
C3—C4—C5—C654.4 (3)C1C—C2C—C7C—C9C171.7 (2)
C3—C4—C5—C10178.7 (2)C1C—C6C—C5C—C4C54.3 (3)
C4—C5—C6—C153.5 (3)C1C—C6C—C5C—C10C179.6 (2)
C6—C1—C2—C354.7 (3)C5C—C6C—C1C—O1C177.4 (2)
C6—C1—C2—C7176.8 (2)C5C—C6C—C1C—C2C53.7 (3)
C7—C2—C3—C4175.2 (2)C5C—C4C—C3C—C2C57.4 (3)
C10—C5—C6—C1178.1 (3)C3C—C2C—C1C—O1C176.16 (17)
O1B—C1B—C2B—C3B179.9 (2)C3C—C2C—C1C—C6C52.6 (2)
O1B—C1B—C2B—C7B52.1 (3)C3C—C2C—C7C—C8C63.6 (3)
O1B—C1B—C6B—C5B178.22 (19)C3C—C2C—C7C—C9C62.0 (3)
C1B—C2B—C3B—C4B58.9 (3)C3C—C4C—C5C—C6C56.0 (3)
C1B—C2B—C7B—C8B67.1 (3)C3C—C4C—C5C—C10C179.2 (2)
C1B—C2B—C7B—C9B166.4 (3)C7C—C2C—C1C—O1C56.1 (3)
C2B—C1B—C6B—C5B57.9 (3)C7C—C2C—C1C—C6C179.69 (19)
C2B—C3B—C4B—C5B57.7 (3)C7C—C2C—C3C—C4C178.1 (2)
C3B—C2B—C7B—C8B57.9 (3)
alpha-DL-2-Isopropyl-5-methylcyclohexanol (alpha_DL_190K) top
Crystal data top
C10H20OF(000) = 528
Mr = 156.26Dx = 1.006 Mg m3
Triclinic, P1Melting point: 308 K
a = 11.9443 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.4081 (9) ÅCell parameters from 6036 reflections
c = 12.7491 (10) Åθ = 1.9–26.2°
α = 117.321 (8)°µ = 0.06 mm1
β = 99.504 (7)°T = 190 K
γ = 103.673 (7)°Plate, colourless
V = 1547.0 (2) Å30.25 × 0.1 × 0.05 mm
Z = 6
Data collection top
Xcalibur, Eos
diffractometer
Rint = 0.035
Radiation source: Enhance (Mo) X-ray Sourceθmax = 26.3°, θmin = 1.9°
ω scansh = 1413
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1515
Tmin = 0.993, Tmax = 0.997l = 1115
11808 measured reflections3 standard reflections every 120 min
6036 independent reflections intensity decay: none
3297 reflections with I > 2σ(I)
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.062 w = 1/[σ2(Fo2) + (0.0879P)2 + 0.091P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.204(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.24 e Å3
6036 reflectionsΔρmin = 0.17 e Å3
314 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
14 restraintsExtinction coefficient: 0.016 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.54768 (14)1.07496 (14)0.12565 (13)0.0641 (5)
H1B0.6144631.0691730.1242190.096*0.5
H1A0.525 (5)1.0436 (15)0.0501 (3)0.096*0.5
C10.5583 (2)1.20891 (19)0.17845 (19)0.0553 (6)
H10.4793571.2122200.1469690.083*
C20.5930 (2)1.2742 (2)0.31931 (19)0.0554 (6)
H20.6719781.2689660.3473930.083*
C30.6130 (2)1.4188 (2)0.3769 (2)0.0637 (6)
H3A0.5367991.4284730.3509730.096*
H3B0.6389871.4609500.4668960.096*
C40.7078 (3)1.4847 (2)0.3383 (2)0.0738 (8)
H4A0.7165261.5753930.3750520.111*
H4B0.7855311.4809380.3699290.111*
C50.6736 (3)1.4211 (2)0.1984 (3)0.0717 (7)
H50.5974981.4305960.1687570.108*
C60.6515 (2)1.2766 (2)0.1396 (2)0.0626 (6)
H6A0.6238611.2354540.0497560.094*
H6B0.7276851.2657340.1630830.094*
C70.5053 (2)1.2055 (2)0.3632 (2)0.0648 (7)
H70.4876901.1122460.3102560.097*
C80.3843 (3)1.2256 (3)0.3502 (3)0.0776 (8)
H8A0.3481771.2018550.2659990.093*
H8B0.3311741.1724010.3706680.093*
H8C0.3971031.3151890.4056140.093*
C90.5637 (3)1.2428 (4)0.4963 (3)0.0969 (10)
H9A0.6400861.2297970.5036350.116*
H9B0.5769401.3324190.5520560.116*
H9C0.5110111.1896310.5171100.116*
C100.7698 (3)1.4853 (3)0.1600 (3)0.1004 (11)
H10A0.7453401.4427480.0709090.121*
H10B0.7793651.5752070.1951650.121*
H10C0.8456731.4786590.1897170.121*
O1B0.74404 (15)1.00584 (19)0.12238 (17)0.0824 (6)
H1BA0.8006 (14)1.0105 (8)0.094 (2)0.124*0.5
H1BB0.7056 (2)1.0549 (3)0.1364 (14)0.124*0.5
C1B0.7604 (3)0.9491 (3)0.1968 (2)0.0648 (7)
H1BC0.8207860.9079700.1771620.097*
C2B0.8049 (3)1.0485 (2)0.3351 (2)0.0683 (7)
H2B0.7398251.0826150.3531390.102*
C3B0.8175 (3)0.9787 (3)0.4058 (3)0.0860 (9)
H3BA0.8785240.9395370.3873570.129*
H3BB0.8445941.0410580.4945690.129*
C4B0.6977 (3)0.8740 (3)0.3707 (3)0.0934 (10)
H4BA0.7094890.8298500.4153770.140*
H4BB0.6387980.9142340.3957710.140*
C5B0.6483 (3)0.7755 (3)0.2322 (3)0.0831 (9)
H5B0.7062110.7312260.2103190.125*
C6B0.6412 (3)0.8450 (2)0.1613 (2)0.0660 (7)
H6BA0.6158810.7819870.0728540.099*
H6BB0.5798050.8841660.1769130.099*
C7B0.9187 (3)1.1659 (3)0.3757 (3)0.0799 (8)
H7B0.9012521.1974480.3193570.120*
C8B1.0333 (3)1.1348 (4)0.3643 (3)0.0929 (10)
H8BA1.0175141.0643880.2816240.112*
H8BB1.0968631.2099110.3809060.112*
H8BC1.0579901.1103950.4233220.112*
C9B0.9413 (3)1.2768 (4)0.5056 (3)0.1312 (16)
H9BA0.8681041.2952490.5112480.157*
H9BB0.9655791.2529680.5651030.157*
H9BC1.0044521.3524840.5226870.157*
C10B0.5269 (3)0.6733 (3)0.1958 (3)0.1058 (11)
H10D0.5345730.6312200.2422570.127*
H10E0.4675660.7137360.2135430.127*
H10F0.5015350.6102070.1083730.127*
O1C0.93803 (17)1.08066 (16)0.05543 (16)0.0731 (5)
H1CA0.8811 (15)1.0334 (5)0.061 (2)0.110*0.5
H1CB0.9750 (14)1.0347 (13)0.0200 (15)0.110*0.5
C2C1.0500 (2)1.2511 (2)0.0299 (2)0.0586 (6)
H2C1.0785181.1885950.0294180.088*
C6C0.8336 (2)1.1084 (2)0.1052 (2)0.0607 (6)
H6CA0.7552901.0676370.1019950.091*
H6CB0.8553991.0407380.1655740.091*
C4C0.9458 (3)1.2750 (3)0.1432 (2)0.0752 (8)
H4CA0.9390721.3382220.1662630.113*
H4CB0.9739031.2143120.2031670.113*
C1C0.9278 (2)1.1744 (2)0.0219 (2)0.0574 (6)
H1C0.8990461.2349490.0827330.086*
C5C0.8231 (3)1.2032 (2)0.1479 (2)0.0694 (7)
H5C0.7955851.2669670.0886780.104*
C3C1.0381 (3)1.3442 (2)0.0144 (2)0.0692 (7)
H3CA1.0136541.4105090.0441770.104*
H3CB1.1165371.3868540.0159910.104*
C7C1.1459 (2)1.3174 (2)0.1588 (2)0.0700 (7)
H7C1.1474191.2491090.1770670.105*
C8C1.1153 (3)1.4176 (3)0.2638 (2)0.0941 (10)
H8CA1.0349681.3788870.2625790.113*
H8CB1.1728001.4474590.3421820.113*
H8CC1.1187451.4897620.2527890.113*
C9C1.2720 (3)1.3757 (4)0.1583 (3)0.1025 (10)
H9CA1.2896201.3112660.0916520.123*
H9CB1.2761991.4476660.1468420.123*
H9CC1.3302541.4053630.2362350.123*
C10C0.7285 (3)1.1343 (3)0.2760 (3)0.0898 (9)
H10G0.6519091.0899660.2742620.108*
H10H0.7200401.1970710.2979400.108*
H10I0.7542121.0726890.3365450.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0807 (13)0.0469 (8)0.0535 (8)0.0212 (8)0.0211 (9)0.0184 (7)
C10.0618 (16)0.0450 (11)0.0502 (12)0.0206 (10)0.0161 (10)0.0179 (9)
C20.0533 (15)0.0553 (12)0.0475 (11)0.0189 (11)0.0128 (10)0.0203 (10)
C30.0633 (16)0.0510 (12)0.0543 (13)0.0166 (11)0.0152 (11)0.0131 (10)
C40.0692 (19)0.0499 (12)0.0844 (18)0.0164 (12)0.0224 (14)0.0241 (12)
C50.081 (2)0.0594 (13)0.0887 (18)0.0312 (13)0.0395 (15)0.0417 (13)
C60.0724 (18)0.0605 (13)0.0628 (14)0.0305 (12)0.0295 (12)0.0323 (11)
C70.0690 (18)0.0648 (14)0.0545 (13)0.0220 (13)0.0228 (12)0.0263 (11)
C80.0628 (19)0.0749 (16)0.0830 (18)0.0200 (14)0.0262 (14)0.0330 (14)
C90.093 (3)0.134 (3)0.0729 (18)0.035 (2)0.0336 (17)0.0606 (19)
C100.123 (3)0.0758 (18)0.143 (3)0.049 (2)0.077 (2)0.070 (2)
O1B0.0823 (15)0.1124 (15)0.0871 (12)0.0365 (12)0.0308 (10)0.0761 (12)
C1B0.0733 (18)0.0836 (16)0.0635 (14)0.0397 (14)0.0325 (13)0.0488 (13)
C2B0.0714 (19)0.0781 (16)0.0652 (15)0.0328 (14)0.0309 (13)0.0388 (13)
C3B0.086 (2)0.121 (2)0.0720 (17)0.0381 (19)0.0314 (15)0.0641 (17)
C4B0.104 (3)0.119 (2)0.093 (2)0.040 (2)0.0421 (19)0.079 (2)
C5B0.097 (2)0.0797 (18)0.109 (2)0.0479 (17)0.0523 (19)0.0629 (17)
C6B0.0750 (19)0.0677 (14)0.0640 (14)0.0303 (13)0.0307 (13)0.0356 (12)
C7B0.070 (2)0.0848 (18)0.0777 (17)0.0247 (15)0.0251 (14)0.0371 (15)
C8B0.072 (2)0.135 (3)0.090 (2)0.044 (2)0.0338 (16)0.066 (2)
C9B0.082 (3)0.113 (3)0.109 (3)0.009 (2)0.028 (2)0.002 (2)
C10B0.126 (3)0.0741 (18)0.136 (3)0.038 (2)0.061 (2)0.062 (2)
O1C0.0808 (14)0.0715 (10)0.0889 (12)0.0256 (9)0.0277 (10)0.0589 (10)
C2C0.0645 (16)0.0581 (12)0.0601 (13)0.0225 (11)0.0249 (11)0.0339 (11)
C6C0.0687 (17)0.0561 (12)0.0582 (13)0.0209 (11)0.0233 (12)0.0300 (10)
C4C0.095 (2)0.0717 (15)0.0659 (15)0.0212 (15)0.0240 (14)0.0454 (13)
C1C0.0672 (17)0.0593 (12)0.0589 (13)0.0265 (12)0.0253 (11)0.0372 (11)
C5C0.081 (2)0.0685 (15)0.0607 (14)0.0271 (14)0.0194 (13)0.0359 (12)
C3C0.080 (2)0.0591 (13)0.0678 (15)0.0165 (13)0.0203 (13)0.0377 (12)
C7C0.0629 (18)0.0715 (15)0.0711 (15)0.0214 (13)0.0141 (13)0.0372 (13)
C8C0.088 (2)0.104 (2)0.0606 (16)0.0306 (19)0.0083 (15)0.0273 (15)
C9C0.069 (2)0.118 (3)0.111 (3)0.0255 (19)0.0213 (18)0.058 (2)
C10C0.101 (3)0.093 (2)0.0703 (17)0.0298 (18)0.0095 (16)0.0460 (16)
Geometric parameters (Å, º) top
O1—H1B0.8200C5B—C6B1.514 (4)
O1—H1A0.8200 (10)C5B—C10B1.515 (4)
O1—C11.441 (2)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.521 (3)C7B—H7B0.9800
C1—C61.520 (3)C7B—C8B1.520 (4)
C2—H20.9800C7B—C9B1.514 (4)
C2—C31.531 (3)C8B—H8BA0.9600
C2—C71.532 (3)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.519 (3)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.512 (4)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.524 (3)O1C—H1CA0.8201 (10)
C5—C101.519 (4)O1C—H1CB0.8201 (10)
C6—H6A0.9700O1C—C1C1.434 (3)
C6—H6B0.9700C2C—H2C0.9800
C7—H70.9800C2C—C1C1.500 (3)
C7—C81.519 (4)C2C—C3C1.525 (3)
C7—C91.521 (4)C2C—C7C1.542 (3)
C8—H8A0.9600C6C—H6CA0.9700
C8—H8B0.9600C6C—H6CB0.9700
C8—H8C0.9600C6C—C1C1.518 (3)
C9—H9A0.9600C6C—C5C1.527 (3)
C9—H9B0.9600C4C—H4CA0.9700
C9—H9C0.9600C4C—H4CB0.9700
C10—H10A0.9600C4C—C5C1.501 (4)
C10—H10B0.9600C4C—C3C1.520 (3)
C10—H10C0.9600C1C—H1C0.9800
O1B—H1BA0.8204 (10)C5C—H5C0.9800
O1B—H1BB0.8201 (10)C5C—C10C1.525 (4)
O1B—C1B1.432 (3)C3C—H3CA0.9700
C1B—H1BC0.9800C3C—H3CB0.9700
C1B—C2B1.515 (3)C7C—H7C0.9800
C1B—C6B1.510 (4)C7C—C8C1.524 (4)
C2B—H2B0.9800C7C—C9C1.511 (4)
C2B—C3B1.524 (4)C8C—H8CA0.9600
C2B—C7B1.541 (4)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.520 (4)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.515 (4)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1B—O1—H1A90.9C10B—C5B—H5B107.7
C1—O1—H1B109.5C1B—C6B—C5B113.0 (2)
C1—O1—H1A105 (2)C1B—C6B—H6BA109.0
O1—C1—H1108.8C1B—C6B—H6BB109.0
O1—C1—C2109.09 (18)C5B—C6B—H6BA109.0
O1—C1—C6109.92 (17)C5B—C6B—H6BB109.0
C2—C1—H1108.8H6BA—C6B—H6BB107.8
C6—C1—H1108.8C2B—C7B—H7B106.4
C6—C1—C2111.48 (19)C8B—C7B—C2B114.7 (3)
C1—C2—H2106.5C8B—C7B—H7B106.4
C1—C2—C3109.48 (19)C9B—C7B—C2B111.8 (2)
C1—C2—C7113.57 (19)C9B—C7B—H7B106.4
C3—C2—H2106.5C9B—C7B—C8B110.5 (3)
C3—C2—C7113.73 (18)C7B—C8B—H8BA109.5
C7—C2—H2106.5C7B—C8B—H8BB109.5
C2—C3—H3A109.3C7B—C8B—H8BC109.5
C2—C3—H3B109.3H8BA—C8B—H8BB109.5
H3A—C3—H3B107.9H8BA—C8B—H8BC109.5
C4—C3—C2111.73 (19)H8BB—C8B—H8BC109.5
C4—C3—H3A109.3C7B—C9B—H9BA109.5
C4—C3—H3B109.3C7B—C9B—H9BB109.5
C3—C4—H4A109.3C7B—C9B—H9BC109.5
C3—C4—H4B109.3H9BA—C9B—H9BB109.5
H4A—C4—H4B107.9H9BA—C9B—H9BC109.5
C5—C4—C3111.7 (2)H9BB—C9B—H9BC109.5
C5—C4—H4A109.3C5B—C10B—H10D109.5
C5—C4—H4B109.3C5B—C10B—H10E109.5
C4—C5—H5108.1C5B—C10B—H10F109.5
C4—C5—C6109.5 (2)H10D—C10B—H10E109.5
C4—C5—C10111.6 (2)H10D—C10B—H10F109.5
C6—C5—H5108.1H10E—C10B—H10F109.5
C10—C5—H5108.1H1CA—O1C—H1CB106.1 (12)
C10—C5—C6111.1 (2)C1C—O1C—H1CA123.8 (16)
C1—C6—C5113.03 (19)C1C—O1C—H1CB115.7 (9)
C1—C6—H6A109.0C1C—C2C—H2C106.4
C1—C6—H6B109.0C1C—C2C—C3C110.4 (2)
C5—C6—H6A109.0C1C—C2C—C7C113.15 (19)
C5—C6—H6B109.0C3C—C2C—H2C106.4
H6A—C6—H6B107.8C3C—C2C—C7C113.5 (2)
C2—C7—H7106.9C7C—C2C—H2C106.4
C8—C7—C2114.2 (2)H6CA—C6C—H6CB107.8
C8—C7—H7106.9C1C—C6C—H6CA109.1
C8—C7—C9110.1 (2)C1C—C6C—H6CB109.1
C9—C7—C2111.5 (2)C1C—C6C—C5C112.43 (19)
C9—C7—H7106.9C5C—C6C—H6CA109.1
C7—C8—H8A109.5C5C—C6C—H6CB109.1
C7—C8—H8B109.5H4CA—C4C—H4CB107.9
C7—C8—H8C109.5C5C—C4C—H4CA109.3
H8A—C8—H8B109.5C5C—C4C—H4CB109.3
H8A—C8—H8C109.5C5C—C4C—C3C111.8 (2)
H8B—C8—H8C109.5C3C—C4C—H4CA109.3
C7—C9—H9A109.5C3C—C4C—H4CB109.3
C7—C9—H9B109.5O1C—C1C—C2C110.4 (2)
C7—C9—H9C109.5O1C—C1C—C6C110.30 (19)
H9A—C9—H9B109.5O1C—C1C—H1C107.6
H9A—C9—H9C109.5C2C—C1C—C6C113.19 (19)
H9B—C9—H9C109.5C2C—C1C—H1C107.6
C5—C10—H10A109.5C6C—C1C—H1C107.6
C5—C10—H10B109.5C6C—C5C—H5C107.6
C5—C10—H10C109.5C4C—C5C—C6C109.7 (2)
H10A—C10—H10B109.5C4C—C5C—H5C107.6
H10A—C10—H10C109.5C4C—C5C—C10C112.7 (2)
H10B—C10—H10C109.5C10C—C5C—C6C111.4 (2)
H1BA—O1B—H1BB124.6 (14)C10C—C5C—H5C107.6
C1B—O1B—H1BA108.8 (15)C2C—C3C—H3CA109.2
C1B—O1B—H1BB120.4 (12)C2C—C3C—H3CB109.2
O1B—C1B—H1BC108.3C4C—C3C—C2C112.1 (2)
O1B—C1B—C2B112.5 (2)C4C—C3C—H3CA109.2
O1B—C1B—C6B108.3 (2)C4C—C3C—H3CB109.2
C2B—C1B—H1BC108.3H3CA—C3C—H3CB107.9
C6B—C1B—H1BC108.3C2C—C7C—H7C106.7
C6B—C1B—C2B110.88 (19)C8C—C7C—C2C113.6 (2)
C1B—C2B—H2B106.5C8C—C7C—H7C106.7
C1B—C2B—C3B108.5 (2)C9C—C7C—C2C111.9 (2)
C1B—C2B—C7B113.8 (2)C9C—C7C—H7C106.7
C3B—C2B—H2B106.5C9C—C7C—C8C110.7 (2)
C3B—C2B—C7B114.5 (3)C7C—C8C—H8CA109.5
C7B—C2B—H2B106.5C7C—C8C—H8CB109.5
C2B—C3B—H3BA109.4C7C—C8C—H8CC109.5
C2B—C3B—H3BB109.4H8CA—C8C—H8CB109.5
H3BA—C3B—H3BB108.0H8CA—C8C—H8CC109.5
C4B—C3B—C2B111.3 (3)H8CB—C8C—H8CC109.5
C4B—C3B—H3BA109.4C7C—C9C—H9CA109.5
C4B—C3B—H3BB109.4C7C—C9C—H9CB109.5
C3B—C4B—H4BA109.2C7C—C9C—H9CC109.5
C3B—C4B—H4BB109.2H9CA—C9C—H9CB109.5
H4BA—C4B—H4BB107.9H9CA—C9C—H9CC109.5
C5B—C4B—C3B112.0 (2)H9CB—C9C—H9CC109.5
C5B—C4B—H4BA109.2C5C—C10C—H10G109.5
C5B—C4B—H4BB109.2C5C—C10C—H10H109.5
C4B—C5B—H5B107.7C5C—C10C—H10I109.5
C4B—C5B—C10B112.4 (3)H10G—C10C—H10H109.5
C6B—C5B—C4B109.5 (2)H10G—C10C—H10I109.5
C6B—C5B—H5B107.7H10H—C10C—H10I109.5
C6B—C5B—C10B111.6 (3)
O1—C1—C2—C3176.18 (19)C3B—C2B—C7B—C9B68.6 (4)
O1—C1—C2—C755.5 (3)C3B—C4B—C5B—C6B53.4 (4)
O1—C1—C6—C5176.5 (2)C3B—C4B—C5B—C10B178.1 (3)
C1—C2—C3—C456.2 (3)C4B—C5B—C6B—C1B54.0 (3)
C1—C2—C7—C874.2 (2)C6B—C1B—C2B—C3B57.7 (3)
C1—C2—C7—C9160.3 (2)C6B—C1B—C2B—C7B173.5 (2)
C2—C1—C6—C555.4 (3)C7B—C2B—C3B—C4B173.7 (2)
C2—C3—C4—C557.7 (3)C10B—C5B—C6B—C1B179.1 (2)
C3—C2—C7—C851.9 (3)C1C—C2C—C3C—C4C53.5 (3)
C3—C2—C7—C973.6 (3)C1C—C2C—C7C—C8C62.8 (3)
C3—C4—C5—C655.2 (3)C1C—C2C—C7C—C9C170.9 (2)
C3—C4—C5—C10178.7 (2)C1C—C6C—C5C—C4C54.2 (3)
C4—C5—C6—C154.5 (3)C1C—C6C—C5C—C10C179.6 (2)
C6—C1—C2—C354.6 (3)C5C—C6C—C1C—O1C177.56 (19)
C6—C1—C2—C7177.1 (2)C5C—C6C—C1C—C2C53.4 (3)
C7—C2—C3—C4175.6 (2)C5C—C4C—C3C—C2C56.9 (3)
C10—C5—C6—C1178.3 (2)C3C—C2C—C1C—O1C176.06 (18)
O1B—C1B—C2B—C3B179.2 (2)C3C—C2C—C1C—C6C51.9 (3)
O1B—C1B—C2B—C7B52.1 (3)C3C—C2C—C7C—C8C64.0 (3)
O1B—C1B—C6B—C5B178.56 (19)C3C—C2C—C7C—C9C62.3 (3)
C1B—C2B—C3B—C4B58.0 (3)C3C—C4C—C5C—C6C56.0 (3)
C1B—C2B—C7B—C8B67.4 (3)C3C—C4C—C5C—C10C179.3 (2)
C1B—C2B—C7B—C9B165.8 (3)C7C—C2C—C1C—O1C55.5 (3)
C2B—C1B—C6B—C5B57.5 (3)C7C—C2C—C1C—C6C179.66 (19)
C2B—C3B—C4B—C5B57.2 (4)C7C—C2C—C3C—C4C178.2 (2)
C3B—C2B—C7B—C8B58.2 (3)
alpha-DL-2-Isopropyl-5-methylcyclohexanol (alpha_DL_220K) top
Crystal data top
C10H20OF(000) = 528
Mr = 156.26Dx = 1.001 Mg m3
Triclinic, P1Melting point: 308 K
a = 11.9423 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.4458 (11) ÅCell parameters from 6062 reflections
c = 12.7755 (11) Åθ = 1.9–26.3°
α = 117.352 (9)°µ = 0.06 mm1
β = 99.261 (7)°T = 220 K
γ = 103.787 (8)°Plate, colourless
V = 1555.4 (3) Å30.25 × 0.1 × 0.05 mm
Z = 6
Data collection top
Xcalibur, Eos
diffractometer
3146 reflections with I > 2σ(I)
ω scansRint = 0.028
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 26.3°, θmin = 1.9°
Tmin = 0.993, Tmax = 0.997h = 1413
11917 measured reflectionsk = 1515
6069 independent reflectionsl = 1115
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.060 w = 1/[σ2(Fo2) + (0.0906P)2 + 0.078P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.203(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.25 e Å3
6069 reflectionsΔρmin = 0.14 e Å3
317 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
14 restraintsExtinction coefficient: 0.014 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.54740 (15)1.07544 (14)0.12533 (14)0.0707 (5)
H1A0.6127 (8)1.0649 (14)0.1271 (18)0.106*0.5
H1B0.508 (3)1.022 (4)0.05237 (18)0.106*0.5
C10.5581 (2)1.20849 (19)0.17873 (19)0.0613 (6)
H10.4790661.2116760.1478040.092*
C20.5927 (2)1.2740 (2)0.31892 (19)0.0612 (6)
H20.6716791.2688290.3465870.092*
C30.6126 (2)1.4177 (2)0.3770 (2)0.0710 (7)
H3A0.5363591.4275410.3521560.107*
H3B0.6391821.4593870.4666600.107*
C40.7066 (3)1.4835 (2)0.3377 (3)0.0831 (8)
H4A0.7152211.5738670.3745670.125*
H4B0.7844771.4797590.3685360.125*
C50.6719 (3)1.4203 (2)0.1984 (3)0.0797 (8)
H50.5955601.4294600.1694620.120*
C60.6505 (2)1.2764 (2)0.1395 (2)0.0692 (6)
H6A0.6225621.2354980.0499160.104*
H6B0.7268961.2659030.1622670.104*
C70.5051 (2)1.2046 (2)0.3627 (2)0.0721 (7)
H70.4879511.1116830.3099000.108*
C80.3839 (3)1.2241 (3)0.3503 (3)0.0886 (8)
H8A0.3476231.2003560.2664320.106*
H8B0.3311201.1709520.3710150.106*
H8C0.3964761.3134160.4056090.106*
C90.5631 (3)1.2422 (4)0.4955 (3)0.1078 (11)
H9A0.6396691.2296990.5029630.129*
H9B0.5758411.3314520.5509190.129*
H9C0.5104851.1889880.5163250.129*
C100.7676 (3)1.4845 (3)0.1589 (4)0.1104 (12)
H10A0.7425521.4419480.0700190.132*
H10B0.7770211.5740970.1940360.132*
H10C0.8436231.4779160.1877020.132*
O1B0.74687 (17)1.0092 (2)0.12566 (18)0.0926 (6)
H1BA0.7954 (16)1.016 (2)0.0883 (11)0.139*0.5
H1BB0.7041 (9)1.0529 (16)0.147 (2)0.139*0.5
C1B0.7622 (3)0.9522 (3)0.1987 (2)0.0715 (7)
H1BC0.8225190.9111200.1786280.107*
C2B0.8067 (2)1.0502 (2)0.3367 (2)0.0733 (7)
H2B0.7418131.0842620.3552230.110*
C3B0.8187 (3)0.9799 (3)0.4062 (3)0.0959 (9)
H3BA0.8447771.0415140.4947340.144*
H3BB0.8802780.9416190.3880820.144*
C4B0.6990 (3)0.8742 (4)0.3699 (3)0.1064 (11)
H4BA0.7109030.8293080.4134820.160*
H4BB0.6397910.9136410.3954970.160*
C5B0.6504 (3)0.7780 (3)0.2326 (3)0.0926 (9)
H5B0.7085850.7343090.2103120.139*
C6B0.6430 (3)0.8480 (2)0.1623 (2)0.0756 (7)
H6BA0.6182410.7856310.0740160.113*
H6BB0.5814240.8866600.1781060.113*
C7B0.9201 (3)1.1671 (3)0.3776 (3)0.0890 (8)
H7B0.9029761.1986400.3214280.134*
C8B1.0344 (3)1.1365 (4)0.3660 (3)0.1046 (10)
H8BA1.0187681.0663300.2834710.126*
H8BB1.0978401.2115130.3823320.126*
H8BC1.0591281.1122400.4247510.126*
C9B0.9415 (3)1.2772 (4)0.5064 (4)0.1510 (19)
H9BA0.8679871.2949610.5116440.181*
H9BB0.9656891.2537470.5659520.181*
H9BC1.0044011.3530190.5235330.181*
C10B0.5294 (4)0.6751 (3)0.1953 (4)0.1191 (12)
H10D0.5021670.6161520.1071470.143*
H10E0.5383510.6286060.2368380.143*
H10F0.4709690.7153610.2182740.143*
O1C0.93850 (17)1.08136 (16)0.05529 (16)0.0813 (5)
H1CA0.8716 (15)1.038 (2)0.0496 (10)0.122*0.5
H1CB0.9741 (14)1.0336 (14)0.0201 (15)0.122*0.5
C2C1.0514 (2)1.2517 (2)0.0302 (2)0.0649 (6)
H2C1.0800631.1895510.0290620.097*
C6C0.8354 (2)1.1098 (2)0.1042 (2)0.0679 (6)
H6CA0.7568561.0685760.1015190.102*
H6CB0.8576571.0426990.1644310.102*
C4C0.9481 (3)1.2760 (3)0.1422 (2)0.0853 (8)
H4CA0.9416661.3392300.1649470.128*
H4CB0.9764601.2156110.2019100.128*
C1C0.9284 (2)1.1749 (2)0.0223 (2)0.0631 (6)
H1C0.8994721.2351550.0830470.095*
C5C0.8247 (3)1.2040 (3)0.1467 (2)0.0770 (7)
H5C0.7973461.2676230.0873220.115*
C3C1.0395 (3)1.3446 (2)0.0133 (2)0.0763 (7)
H3CA1.1180731.3879440.0143070.114*
H3CB1.0143221.4101570.0450280.114*
C7C1.1462 (2)1.3172 (3)0.1589 (2)0.0788 (7)
H7C1.1472571.2490940.1772530.118*
C8C1.1158 (3)1.4183 (3)0.2636 (3)0.1074 (11)
H8CA1.0355371.3801590.2629590.129*
H8CB1.1733221.4485290.3417830.129*
H8CC1.1194821.4897820.2518840.129*
C9C1.2727 (3)1.3755 (4)0.1582 (3)0.1156 (11)
H9CA1.2906571.3109750.0920400.139*
H9CB1.2769021.4468010.1461550.139*
H9CC1.3307421.4055480.2360540.139*
C10C0.7309 (3)1.1368 (3)0.2739 (3)0.1032 (10)
H10G0.6540781.0923120.2723830.124*
H10H0.7228641.1999580.2948800.124*
H10I0.7565701.0755470.3346720.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0867 (13)0.0488 (8)0.0643 (9)0.0213 (8)0.0232 (9)0.0216 (7)
C10.0644 (15)0.0524 (12)0.0600 (13)0.0213 (11)0.0190 (11)0.0236 (10)
C20.0559 (14)0.0587 (12)0.0561 (12)0.0166 (11)0.0148 (10)0.0226 (10)
C30.0688 (17)0.0575 (13)0.0649 (14)0.0190 (12)0.0197 (12)0.0172 (11)
C40.0780 (19)0.0552 (13)0.099 (2)0.0187 (13)0.0280 (15)0.0290 (13)
C50.089 (2)0.0675 (15)0.102 (2)0.0363 (14)0.0461 (16)0.0496 (15)
C60.0790 (18)0.0645 (13)0.0726 (15)0.0320 (13)0.0337 (13)0.0361 (12)
C70.0700 (17)0.0740 (15)0.0651 (14)0.0216 (13)0.0258 (12)0.0311 (12)
C80.0695 (19)0.0824 (17)0.100 (2)0.0201 (14)0.0328 (15)0.0380 (15)
C90.102 (3)0.150 (3)0.0804 (19)0.040 (2)0.0385 (17)0.066 (2)
C100.127 (3)0.0841 (19)0.165 (3)0.050 (2)0.086 (3)0.080 (2)
O1B0.0895 (15)0.1286 (16)0.1048 (14)0.0424 (12)0.0380 (11)0.0909 (13)
C1B0.0833 (19)0.0903 (17)0.0753 (15)0.0456 (15)0.0390 (14)0.0579 (14)
C2B0.0719 (18)0.0836 (16)0.0756 (16)0.0329 (14)0.0350 (13)0.0436 (14)
C3B0.094 (2)0.138 (3)0.0814 (18)0.042 (2)0.0349 (16)0.0734 (19)
C4B0.116 (3)0.138 (3)0.109 (2)0.045 (2)0.049 (2)0.093 (2)
C5B0.106 (2)0.0866 (19)0.123 (3)0.0492 (18)0.057 (2)0.0694 (19)
C6B0.086 (2)0.0743 (15)0.0759 (15)0.0323 (14)0.0353 (14)0.0414 (13)
C7B0.0693 (19)0.0956 (19)0.094 (2)0.0255 (16)0.0305 (15)0.0433 (16)
C8B0.077 (2)0.146 (3)0.110 (2)0.046 (2)0.0407 (18)0.074 (2)
C9B0.082 (3)0.127 (3)0.134 (3)0.002 (2)0.035 (2)0.000 (2)
C10B0.137 (3)0.086 (2)0.161 (3)0.042 (2)0.068 (3)0.076 (2)
O1C0.0882 (14)0.0817 (11)0.1010 (13)0.0297 (10)0.0342 (10)0.0668 (10)
C2C0.0695 (16)0.0625 (13)0.0706 (14)0.0239 (12)0.0296 (12)0.0380 (11)
C6C0.0747 (17)0.0645 (13)0.0669 (14)0.0235 (12)0.0258 (12)0.0354 (11)
C4C0.106 (2)0.0797 (17)0.0788 (17)0.0236 (16)0.0288 (16)0.0526 (15)
C1C0.0739 (17)0.0635 (13)0.0661 (13)0.0281 (12)0.0288 (12)0.0405 (11)
C5C0.086 (2)0.0774 (16)0.0708 (15)0.0295 (15)0.0223 (13)0.0413 (13)
C3C0.086 (2)0.0621 (14)0.0802 (16)0.0160 (13)0.0258 (14)0.0417 (13)
C7C0.0697 (18)0.0788 (16)0.0824 (17)0.0207 (14)0.0179 (14)0.0423 (14)
C8C0.099 (3)0.115 (2)0.0736 (18)0.033 (2)0.0124 (16)0.0305 (17)
C9C0.077 (2)0.133 (3)0.127 (3)0.025 (2)0.0262 (19)0.067 (2)
C10C0.114 (3)0.108 (2)0.0850 (19)0.036 (2)0.0135 (18)0.0550 (18)
Geometric parameters (Å, º) top
O1—H1A0.8201 (11)C5B—C6B1.517 (4)
O1—H1B0.8199 (10)C5B—C10B1.513 (4)
O1—C11.434 (3)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.517 (3)C7B—H7B0.9800
C1—C61.519 (3)C7B—C8B1.514 (4)
C2—H20.9800C7B—C9B1.509 (4)
C2—C31.525 (3)C8B—H8BA0.9600
C2—C71.534 (3)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.517 (3)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.510 (4)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.523 (3)O1C—H1CA0.8201 (10)
C5—C101.524 (4)O1C—H1CB0.8201 (10)
C6—H6A0.9700O1C—C1C1.431 (3)
C6—H6B0.9700C2C—H2C0.9800
C7—H70.9800C2C—C1C1.508 (3)
C7—C81.519 (4)C2C—C3C1.521 (3)
C7—C91.521 (4)C2C—C7C1.542 (3)
C8—H8A0.9600C6C—H6CA0.9700
C8—H8B0.9600C6C—H6CB0.9700
C8—H8C0.9600C6C—C1C1.514 (3)
C9—H9A0.9600C6C—C5C1.523 (3)
C9—H9B0.9600C4C—H4CA0.9700
C9—H9C0.9600C4C—H4CB0.9700
C10—H10A0.9600C4C—C5C1.508 (4)
C10—H10B0.9600C4C—C3C1.522 (4)
C10—H10C0.9600C1C—H1C0.9800
O1B—H1BA0.8203 (9)C5C—H5C0.9800
O1B—H1BB0.8200 (10)C5C—C10C1.521 (4)
O1B—C1B1.423 (3)C3C—H3CA0.9700
C1B—H1BC0.9800C3C—H3CB0.9700
C1B—C2B1.513 (3)C7C—H7C0.9800
C1B—C6B1.509 (4)C7C—C8C1.527 (4)
C2B—H2B0.9800C7C—C9C1.515 (4)
C2B—C3B1.520 (4)C8C—H8CA0.9600
C2B—C7B1.536 (4)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.522 (4)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.503 (4)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1A—O1—H1B101 (4)C10B—C5B—C6B111.5 (3)
C1—O1—H1A113.5 (10)C1B—C6B—C5B112.6 (2)
C1—O1—H1B120 (5)C1B—C6B—H6BA109.1
O1—C1—H1108.5C1B—C6B—H6BB109.1
O1—C1—C2109.77 (19)C5B—C6B—H6BA109.1
O1—C1—C6109.95 (17)C5B—C6B—H6BB109.1
C2—C1—H1108.5H6BA—C6B—H6BB107.8
C2—C1—C6111.44 (19)C2B—C7B—H7B106.2
C6—C1—H1108.5C8B—C7B—C2B114.8 (3)
C1—C2—H2106.4C8B—C7B—H7B106.2
C1—C2—C3110.1 (2)C9B—C7B—C2B111.8 (2)
C1—C2—C7113.25 (19)C9B—C7B—H7B106.2
C3—C2—H2106.4C9B—C7B—C8B110.9 (3)
C3—C2—C7113.80 (19)C7B—C8B—H8BA109.5
C7—C2—H2106.4C7B—C8B—H8BB109.5
C2—C3—H3A109.3C7B—C8B—H8BC109.5
C2—C3—H3B109.3H8BA—C8B—H8BB109.5
H3A—C3—H3B108.0H8BA—C8B—H8BC109.5
C4—C3—C2111.61 (19)H8BB—C8B—H8BC109.5
C4—C3—H3A109.3C7B—C9B—H9BA109.5
C4—C3—H3B109.3C7B—C9B—H9BB109.5
C3—C4—H4A109.3C7B—C9B—H9BC109.5
C3—C4—H4B109.3H9BA—C9B—H9BB109.5
H4A—C4—H4B107.9H9BA—C9B—H9BC109.5
C5—C4—C3111.8 (2)H9BB—C9B—H9BC109.5
C5—C4—H4A109.3C5B—C10B—H10D109.5
C5—C4—H4B109.3C5B—C10B—H10E109.5
C4—C5—H5108.2C5B—C10B—H10F109.5
C4—C5—C6109.5 (2)H10D—C10B—H10E109.5
C4—C5—C10111.8 (3)H10D—C10B—H10F109.5
C6—C5—H5108.2H10E—C10B—H10F109.5
C6—C5—C10110.9 (2)H1CA—O1C—H1CB110 (2)
C10—C5—H5108.2C1C—O1C—H1CA111 (3)
C1—C6—C5112.98 (19)C1C—O1C—H1CB117.5 (14)
C1—C6—H6A109.0C1C—C2C—H2C106.5
C1—C6—H6B109.0C1C—C2C—C3C110.2 (2)
C5—C6—H6A109.0C1C—C2C—C7C112.75 (19)
C5—C6—H6B109.0C3C—C2C—H2C106.5
H6A—C6—H6B107.8C3C—C2C—C7C113.7 (2)
C2—C7—H7107.0C7C—C2C—H2C106.5
C8—C7—C2114.2 (2)H6CA—C6C—H6CB107.8
C8—C7—H7107.0C1C—C6C—H6CA109.0
C8—C7—C9109.7 (2)C1C—C6C—H6CB109.0
C9—C7—C2111.5 (2)C1C—C6C—C5C112.8 (2)
C9—C7—H7107.0C5C—C6C—H6CA109.0
C7—C8—H8A109.5C5C—C6C—H6CB109.0
C7—C8—H8B109.5H4CA—C4C—H4CB108.0
C7—C8—H8C109.5C5C—C4C—H4CA109.4
H8A—C8—H8B109.5C5C—C4C—H4CB109.4
H8A—C8—H8C109.5C5C—C4C—C3C111.3 (2)
H8B—C8—H8C109.5C3C—C4C—H4CA109.4
C7—C9—H9A109.5C3C—C4C—H4CB109.4
C7—C9—H9B109.5O1C—C1C—C2C110.2 (2)
C7—C9—H9C109.5O1C—C1C—C6C110.47 (19)
H9A—C9—H9B109.5O1C—C1C—H1C107.7
H9A—C9—H9C109.5C2C—C1C—C6C112.84 (18)
H9B—C9—H9C109.5C2C—C1C—H1C107.7
C5—C10—H10A109.5C6C—C1C—H1C107.7
C5—C10—H10B109.5C6C—C5C—H5C107.5
C5—C10—H10C109.5C4C—C5C—C6C109.6 (2)
H10A—C10—H10B109.5C4C—C5C—H5C107.5
H10A—C10—H10C109.5C4C—C5C—C10C112.4 (2)
H10B—C10—H10C109.5C10C—C5C—C6C112.0 (2)
H1BA—O1B—H1BB127 (4)C10C—C5C—H5C107.5
C1B—O1B—H1BA119 (3)C2C—C3C—C4C112.3 (2)
C1B—O1B—H1BB111 (3)C2C—C3C—H3CA109.2
O1B—C1B—H1BC108.1C2C—C3C—H3CB109.2
O1B—C1B—C2B112.8 (2)C4C—C3C—H3CA109.2
O1B—C1B—C6B108.3 (2)C4C—C3C—H3CB109.2
C2B—C1B—H1BC108.1H3CA—C3C—H3CB107.9
C6B—C1B—H1BC108.1C2C—C7C—H7C107.0
C6B—C1B—C2B111.21 (19)C8C—C7C—C2C113.7 (2)
C1B—C2B—H2B106.4C8C—C7C—H7C107.0
C1B—C2B—C3B108.7 (2)C9C—C7C—C2C111.5 (2)
C1B—C2B—C7B113.8 (2)C9C—C7C—H7C107.0
C3B—C2B—H2B106.4C9C—C7C—C8C110.3 (2)
C3B—C2B—C7B114.6 (3)C7C—C8C—H8CA109.5
C7B—C2B—H2B106.4C7C—C8C—H8CB109.5
C2B—C3B—H3BA109.3C7C—C8C—H8CC109.5
C2B—C3B—H3BB109.3H8CA—C8C—H8CB109.5
C2B—C3B—C4B111.5 (3)H8CA—C8C—H8CC109.5
H3BA—C3B—H3BB108.0H8CB—C8C—H8CC109.5
C4B—C3B—H3BA109.3C7C—C9C—H9CA109.5
C4B—C3B—H3BB109.3C7C—C9C—H9CB109.5
C3B—C4B—H4BA109.2C7C—C9C—H9CC109.5
C3B—C4B—H4BB109.2H9CA—C9C—H9CB109.5
H4BA—C4B—H4BB107.9H9CA—C9C—H9CC109.5
C5B—C4B—C3B112.3 (2)H9CB—C9C—H9CC109.5
C5B—C4B—H4BA109.2C5C—C10C—H10G109.5
C5B—C4B—H4BB109.2C5C—C10C—H10H109.5
C4B—C5B—H5B107.6C5C—C10C—H10I109.5
C4B—C5B—C6B109.9 (2)H10G—C10C—H10H109.5
C4B—C5B—C10B112.6 (3)H10G—C10C—H10I109.5
C6B—C5B—H5B107.6H10H—C10C—H10I109.5
C10B—C5B—H5B107.6
O1—C1—C2—C3176.20 (19)C3B—C2B—C7B—C9B69.2 (4)
O1—C1—C2—C755.1 (3)C3B—C4B—C5B—C6B53.3 (4)
O1—C1—C6—C5176.9 (2)C3B—C4B—C5B—C10B178.1 (3)
C1—C2—C3—C455.7 (3)C4B—C5B—C6B—C1B53.9 (3)
C1—C2—C7—C874.6 (3)C6B—C1B—C2B—C3B57.5 (3)
C1—C2—C7—C9160.3 (2)C6B—C1B—C2B—C7B173.5 (2)
C2—C1—C6—C554.9 (3)C7B—C2B—C3B—C4B174.2 (2)
C2—C3—C4—C557.4 (3)C10B—C5B—C6B—C1B179.4 (2)
C3—C2—C7—C852.2 (3)C1C—C2C—C3C—C4C54.1 (3)
C3—C2—C7—C972.9 (3)C1C—C2C—C7C—C8C63.6 (3)
C3—C4—C5—C655.4 (3)C1C—C2C—C7C—C9C171.0 (2)
C3—C4—C5—C10178.8 (2)C1C—C6C—C5C—C4C54.5 (3)
C4—C5—C6—C154.6 (3)C1C—C6C—C5C—C10C180.0 (2)
C6—C1—C2—C354.2 (3)C5C—C6C—C1C—O1C177.55 (19)
C6—C1—C2—C7177.2 (2)C5C—C6C—C1C—C2C53.7 (3)
C7—C2—C3—C4175.9 (2)C5C—C4C—C3C—C2C57.3 (3)
C10—C5—C6—C1178.5 (3)C3C—C2C—C1C—O1C176.13 (18)
O1B—C1B—C2B—C3B179.3 (2)C3C—C2C—C1C—C6C52.1 (3)
O1B—C1B—C2B—C7B51.6 (3)C3C—C2C—C7C—C8C62.8 (3)
O1B—C1B—C6B—C5B178.4 (2)C3C—C2C—C7C—C9C62.7 (3)
C1B—C2B—C3B—C4B57.2 (3)C3C—C4C—C5C—C6C56.0 (3)
C1B—C2B—C7B—C8B67.8 (3)C3C—C4C—C5C—C10C178.8 (2)
C1B—C2B—C7B—C9B164.8 (3)C7C—C2C—C1C—O1C55.6 (3)
C2B—C1B—C6B—C5B57.2 (3)C7C—C2C—C1C—C6C179.6 (2)
C2B—C3B—C4B—C5B56.6 (4)C7C—C2C—C3C—C4C178.2 (2)
C3B—C2B—C7B—C8B58.2 (3)
alpha-DL-2-Isopropyl-5-methylcyclohexanol (alpha_DL_260K) top
Crystal data top
C10H20OF(000) = 528
Mr = 156.26Dx = 0.989 Mg m3
Triclinic, P1Melting point: 308 K
a = 11.9801 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.5078 (12) ÅCell parameters from 6121 reflections
c = 12.8269 (16) Åθ = 1.8–26.3°
α = 117.531 (11)°µ = 0.06 mm1
β = 98.822 (10)°T = 260 K
γ = 103.945 (9)°Plate, colourless
V = 1573.9 (3) Å30.25 × 0.1 × 0.05 mm
Z = 6
Data collection top
Xcalibur, Eos
diffractometer
Rint = 0.062
ω scansθmax = 26.3°, θmin = 1.8°
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1413
Tmin = 0.993, Tmax = 0.997k = 1515
11914 measured reflectionsl = 1115
6121 independent reflections3 standard reflections every 120 min
1638 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.083 w = 1/[σ2(Fo2) + (0.1423P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.346(Δ/σ)max = 0.039
S = 0.93Δρmax = 0.19 e Å3
6121 reflectionsΔρmin = 0.21 e Å3
314 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
13 restraintsExtinction coefficient: 0.052 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.5481 (2)1.0748 (3)0.1252 (2)0.1019 (10)
H1B0.6150511.0697780.1245790.153*0.5
H1A0.513 (7)1.038 (6)0.0510 (10)0.153*0.5
C10.5577 (4)1.2082 (4)0.1780 (4)0.0913 (13)
H10.4787541.2108450.1477950.137*
C20.5928 (4)1.2731 (4)0.3183 (4)0.0903 (13)
H20.6715151.2681710.3455390.135*
C30.6110 (4)1.4167 (4)0.3765 (4)0.1045 (15)
H3A0.5348551.4256500.3514470.157*
H3B0.6368101.4584970.4658300.157*
C40.7052 (4)1.4823 (4)0.3371 (5)0.1163 (17)
H4A0.7140551.5725400.3742280.174*
H4B0.7825131.4782500.3670880.174*
C50.6704 (5)1.4193 (5)0.1976 (5)0.1125 (16)
H50.5941361.4280370.1695280.169*
C60.6496 (4)1.2765 (4)0.1390 (4)0.1001 (14)
H6A0.6221181.2356650.0498210.150*
H6B0.7258171.2663250.1613680.150*
C70.5043 (4)1.2038 (5)0.3618 (4)0.1040 (15)
H70.4869041.1110900.3091010.156*
C80.3840 (4)1.2239 (5)0.3505 (5)0.1273 (19)
H8A0.3478881.2000220.2670350.153*
H8B0.3312761.1714300.3716040.153*
H8C0.3969301.3130770.4055240.153*
C90.5628 (5)1.2419 (6)0.4953 (5)0.149 (2)
H9A0.6387701.2289560.5019870.178*
H9B0.5759041.3310410.5505170.178*
H9C0.5102501.1893950.5165970.178*
C100.7650 (5)1.4849 (5)0.1587 (6)0.150 (2)
H10A0.7404451.4428530.0703100.181*
H10B0.7733051.5738910.1942850.181*
H10C0.8411521.4792070.1870850.181*
O1B0.7480 (2)1.0142 (3)0.1293 (3)0.1271 (13)
H1BA0.8136 (19)1.046 (5)0.1241 (11)0.191*0.5
H1BB0.6985 (8)1.0431 (14)0.1114 (12)0.191*0.5
C1B0.7637 (5)0.9552 (5)0.2003 (4)0.1039 (15)
H1BC0.8239410.9147420.1787070.156*
C2B0.8078 (5)1.0501 (5)0.3373 (5)0.1056 (15)
H2B0.7430591.0837290.3569740.158*
C3B0.8198 (5)0.9784 (6)0.4053 (5)0.134 (2)
H3BA0.8806250.9397330.3858710.201*
H3BB0.8457581.0388390.4937170.201*
C4B0.6998 (6)0.8739 (7)0.3680 (6)0.142 (2)
H4BA0.7102840.8281010.4104000.213*
H4BB0.6413740.9139390.3942880.213*
C5B0.6510 (5)0.7788 (6)0.2312 (6)0.1251 (18)
H5B0.7087730.7351530.2080080.188*
C6B0.6449 (5)0.8499 (5)0.1631 (4)0.1050 (15)
H6BA0.5831450.8879160.1791340.157*
H6BB0.6209690.7885330.0750520.157*
C7B0.9212 (5)1.1683 (6)0.3796 (5)0.1250 (18)
H7B0.9046051.1994820.3235450.188*
C8B1.0352 (5)1.1371 (6)0.3671 (5)0.143 (2)
H8BA1.0194041.0667500.2849750.171*
H8BB1.0984371.2115290.3826280.171*
H8BC1.0598241.1134610.4257780.171*
C9B0.9420 (5)1.2777 (6)0.5064 (6)0.201 (4)
H9BA0.8687571.2953490.5117390.242*
H9BB0.9660071.2549510.5660200.242*
H9BC1.0046201.3530200.5228700.242*
C10B0.5307 (6)0.6761 (6)0.1943 (6)0.163 (2)
H10D0.5033170.6179180.1064400.196*
H10E0.5397560.6291550.2348100.196*
H10F0.4725430.7161270.2184220.196*
O1C0.9384 (3)1.0814 (3)0.0546 (3)0.1153 (11)
H1CA0.876 (2)1.0370 (15)0.055 (2)0.173*0.5
H1C0.9751 (15)1.0338 (17)0.022 (4)0.173*0.5
C2C1.0524 (4)1.2518 (5)0.0307 (4)0.0968 (14)
H2C1.0805911.1894360.0287260.145*
C6C0.8371 (4)1.1103 (4)0.1037 (4)0.1002 (14)
H6CA0.7588011.0692670.1008470.150*
H6CB0.8594321.0436490.1640780.150*
C4C0.9507 (5)1.2772 (5)0.1406 (5)0.1224 (18)
H4CA0.9449321.3406210.1625720.184*
H4CB0.9787131.2168120.2008030.184*
C1C0.9302 (4)1.1760 (5)0.0228 (4)0.0977 (14)
H1CB0.9012601.2361780.0835390.147*
C5C0.8273 (5)1.2056 (5)0.1448 (5)0.1122 (16)
H5C0.8003401.2691090.0849410.168*
C3C1.0414 (5)1.3445 (5)0.0128 (5)0.1117 (16)
H3CA1.0169681.4103680.0456950.168*
H3CB1.1199821.3868860.0142490.168*
C7C1.1467 (5)1.3163 (5)0.1576 (5)0.1123 (16)
H7C1.1471731.2485550.1759790.168*
C8C1.1170 (5)1.4181 (6)0.2623 (5)0.151 (2)
H8CA1.0369511.3808540.2622210.181*
H8CB1.1741191.4481340.3399150.181*
H8CC1.1214051.4892210.2504970.181*
C9C1.2720 (5)1.3737 (6)0.1569 (5)0.158 (2)
H9CA1.2900901.3092830.0909870.189*
H9CB1.2766231.4447420.1449630.189*
H9CC1.3293381.4036550.2343820.189*
C10C0.7338 (5)1.1393 (6)0.2712 (5)0.143 (2)
H10G0.6570861.0953000.2694410.171*
H10H0.7262691.2027080.2914660.171*
H10I0.7590121.0781690.3323950.171*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.115 (3)0.085 (2)0.099 (2)0.0316 (18)0.0276 (19)0.0462 (18)
C10.085 (3)0.087 (3)0.091 (3)0.020 (2)0.019 (2)0.046 (3)
C20.082 (3)0.087 (3)0.094 (3)0.018 (2)0.017 (2)0.050 (3)
C30.097 (4)0.081 (3)0.107 (3)0.019 (3)0.026 (3)0.035 (3)
C40.102 (4)0.086 (3)0.138 (4)0.019 (3)0.031 (3)0.049 (3)
C50.120 (4)0.096 (4)0.141 (4)0.042 (3)0.054 (3)0.071 (3)
C60.108 (4)0.090 (3)0.116 (3)0.042 (3)0.044 (3)0.058 (3)
C70.094 (4)0.108 (4)0.105 (3)0.030 (3)0.032 (3)0.054 (3)
C80.098 (4)0.130 (4)0.155 (5)0.035 (3)0.050 (3)0.074 (4)
C90.137 (5)0.201 (6)0.124 (4)0.052 (4)0.048 (4)0.099 (4)
C100.163 (6)0.113 (4)0.221 (6)0.060 (4)0.105 (5)0.102 (5)
O1B0.115 (3)0.173 (3)0.153 (3)0.056 (2)0.047 (2)0.126 (3)
C1B0.109 (4)0.130 (4)0.112 (4)0.054 (3)0.042 (3)0.084 (3)
C2B0.103 (4)0.120 (4)0.112 (4)0.048 (3)0.043 (3)0.067 (3)
C3B0.126 (5)0.181 (6)0.122 (4)0.052 (4)0.037 (4)0.101 (4)
C4B0.152 (6)0.173 (6)0.144 (5)0.049 (5)0.052 (4)0.119 (5)
C5B0.135 (5)0.124 (5)0.157 (5)0.053 (4)0.058 (4)0.097 (4)
C6B0.116 (4)0.104 (4)0.113 (3)0.039 (3)0.042 (3)0.068 (3)
C7B0.090 (4)0.134 (5)0.143 (5)0.034 (4)0.039 (3)0.068 (4)
C8B0.106 (5)0.192 (6)0.151 (5)0.058 (4)0.051 (4)0.099 (4)
C9B0.123 (5)0.171 (6)0.166 (6)0.012 (4)0.040 (4)0.001 (5)
C10B0.167 (7)0.131 (5)0.220 (7)0.048 (5)0.079 (5)0.110 (5)
O1C0.121 (3)0.116 (3)0.144 (3)0.041 (2)0.047 (2)0.093 (2)
C2C0.098 (4)0.105 (3)0.105 (3)0.031 (3)0.035 (3)0.070 (3)
C6C0.098 (4)0.103 (3)0.107 (3)0.026 (3)0.033 (3)0.065 (3)
C4C0.152 (5)0.122 (4)0.109 (4)0.037 (4)0.039 (4)0.078 (3)
C1C0.098 (4)0.105 (3)0.110 (4)0.038 (3)0.033 (3)0.071 (3)
C5C0.118 (4)0.123 (4)0.109 (4)0.039 (3)0.028 (3)0.075 (3)
C3C0.118 (4)0.106 (4)0.122 (4)0.025 (3)0.032 (3)0.076 (3)
C7C0.098 (4)0.121 (4)0.116 (4)0.035 (3)0.028 (3)0.064 (3)
C8C0.131 (5)0.170 (6)0.114 (4)0.051 (4)0.014 (4)0.054 (4)
C9C0.105 (5)0.181 (6)0.181 (6)0.039 (4)0.033 (4)0.098 (5)
C10C0.150 (5)0.155 (5)0.133 (5)0.046 (4)0.021 (4)0.092 (4)
Geometric parameters (Å, º) top
O1—H1B0.8200C5B—C6B1.512 (6)
O1—H1A0.8201 (10)C5B—C10B1.513 (7)
O1—C11.447 (5)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.526 (5)C7B—H7B0.9800
C1—C61.518 (6)C7B—C8B1.519 (7)
C2—H20.9800C7B—C9B1.495 (7)
C2—C31.534 (5)C8B—H8BA0.9600
C2—C71.541 (6)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.521 (6)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.518 (7)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.519 (6)O1C—H1CA0.8200 (10)
C5—C101.519 (6)O1C—H1C0.8203 (10)
C6—H6A0.9700O1C—C1C1.437 (5)
C6—H6B0.9700C2C—H2C0.9800
C7—H70.9800C2C—C1C1.499 (6)
C7—C81.518 (6)C2C—C3C1.525 (6)
C7—C91.538 (6)C2C—C7C1.536 (6)
C8—H8A0.9600C6C—H6CA0.9700
C8—H8B0.9600C6C—H6CB0.9700
C8—H8C0.9600C6C—C1C1.524 (6)
C9—H9A0.9600C6C—C5C1.530 (6)
C9—H9B0.9600C4C—H4CA0.9700
C9—H9C0.9600C4C—H4CB0.9700
C10—H10A0.9600C4C—C5C1.511 (6)
C10—H10B0.9600C4C—C3C1.521 (6)
C10—H10C0.9600C1C—H1CB0.9800
O1B—H1BA0.8200 (11)C5C—H5C0.9800
O1B—H1BB0.8200 (10)C5C—C10C1.524 (6)
O1B—C1B1.430 (5)C3C—H3CA0.9700
C1B—H1BC0.9800C3C—H3CB0.9700
C1B—C2B1.504 (6)C7C—H7C0.9800
C1B—C6B1.516 (6)C7C—C8C1.528 (6)
C2B—H2B0.9800C7C—C9C1.503 (6)
C2B—C3B1.528 (6)C8C—H8CA0.9600
C2B—C7B1.547 (7)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.519 (7)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.502 (7)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1B—O1—H1A101.2C10B—C5B—H5B107.4
C1—O1—H1B109.5C1B—C6B—H6BA108.9
C1—O1—H1A107 (4)C1B—C6B—H6BB108.9
O1—C1—H1108.8C5B—C6B—C1B113.1 (5)
O1—C1—C2108.8 (4)C5B—C6B—H6BA108.9
O1—C1—C6110.2 (3)C5B—C6B—H6BB108.9
C2—C1—H1108.8H6BA—C6B—H6BB107.8
C6—C1—H1108.8C2B—C7B—H7B106.0
C6—C1—C2111.3 (3)C8B—C7B—C2B114.1 (5)
C1—C2—H2106.9C8B—C7B—H7B106.0
C1—C2—C3109.6 (4)C9B—C7B—C2B112.7 (5)
C1—C2—C7113.0 (3)C9B—C7B—H7B106.0
C3—C2—H2106.9C9B—C7B—C8B111.2 (5)
C3—C2—C7113.1 (4)C7B—C8B—H8BA109.5
C7—C2—H2106.9C7B—C8B—H8BB109.5
C2—C3—H3A109.4C7B—C8B—H8BC109.5
C2—C3—H3B109.4H8BA—C8B—H8BB109.5
H3A—C3—H3B108.0H8BA—C8B—H8BC109.5
C4—C3—C2111.0 (4)H8BB—C8B—H8BC109.5
C4—C3—H3A109.4C7B—C9B—H9BA109.5
C4—C3—H3B109.4C7B—C9B—H9BB109.5
C3—C4—H4A109.3C7B—C9B—H9BC109.5
C3—C4—H4B109.3H9BA—C9B—H9BB109.5
H4A—C4—H4B107.9H9BA—C9B—H9BC109.5
C5—C4—C3111.8 (4)H9BB—C9B—H9BC109.5
C5—C4—H4A109.3C5B—C10B—H10D109.5
C5—C4—H4B109.3C5B—C10B—H10E109.5
C4—C5—H5108.1C5B—C10B—H10F109.5
C4—C5—C6109.3 (4)H10D—C10B—H10E109.5
C4—C5—C10111.6 (5)H10D—C10B—H10F109.5
C6—C5—H5108.1H10E—C10B—H10F109.5
C6—C5—C10111.6 (4)H1CA—O1C—H1C107 (3)
C10—C5—H5108.1C1C—O1C—H1CA117 (3)
C1—C6—C5113.2 (4)C1C—O1C—H1C120 (4)
C1—C6—H6A108.9C1C—C2C—H2C106.3
C1—C6—H6B108.9C1C—C2C—C3C110.2 (4)
C5—C6—H6A108.9C1C—C2C—C7C113.3 (4)
C5—C6—H6B108.9C3C—C2C—H2C106.3
H6A—C6—H6B107.8C3C—C2C—C7C113.8 (4)
C2—C7—H7107.1C7C—C2C—H2C106.3
C8—C7—C2114.5 (4)H6CA—C6C—H6CB107.9
C8—C7—H7107.1C1C—C6C—H6CA109.2
C8—C7—C9109.8 (4)C1C—C6C—H6CB109.2
C9—C7—C2111.0 (4)C1C—C6C—C5C112.1 (4)
C9—C7—H7107.1C5C—C6C—H6CA109.2
C7—C8—H8A109.5C5C—C6C—H6CB109.2
C7—C8—H8B109.5H4CA—C4C—H4CB108.0
C7—C8—H8C109.5C5C—C4C—H4CA109.4
H8A—C8—H8B109.5C5C—C4C—H4CB109.4
H8A—C8—H8C109.5C5C—C4C—C3C111.3 (4)
H8B—C8—H8C109.5C3C—C4C—H4CA109.4
C7—C9—H9A109.5C3C—C4C—H4CB109.4
C7—C9—H9B109.5O1C—C1C—C2C110.5 (4)
C7—C9—H9C109.5O1C—C1C—C6C109.7 (4)
H9A—C9—H9B109.5O1C—C1C—H1CB107.7
H9A—C9—H9C109.5C2C—C1C—C6C113.2 (4)
H9B—C9—H9C109.5C2C—C1C—H1CB107.7
C5—C10—H10A109.5C6C—C1C—H1CB107.7
C5—C10—H10B109.5C6C—C5C—H5C107.6
C5—C10—H10C109.5C4C—C5C—C6C109.6 (4)
H10A—C10—H10B109.5C4C—C5C—H5C107.6
H10A—C10—H10C109.5C4C—C5C—C10C112.5 (4)
H10B—C10—H10C109.5C10C—C5C—C6C111.8 (4)
H1BA—O1B—H1BB111 (5)C10C—C5C—H5C107.6
C1B—O1B—H1BA109 (4)C2C—C3C—H3CA109.1
C1B—O1B—H1BB136.4 (4)C2C—C3C—H3CB109.1
O1B—C1B—H1BC108.1C4C—C3C—C2C112.7 (4)
O1B—C1B—C2B113.0 (4)C4C—C3C—H3CA109.1
O1B—C1B—C6B108.3 (4)C4C—C3C—H3CB109.1
C2B—C1B—H1BC108.1H3CA—C3C—H3CB107.8
C2B—C1B—C6B111.2 (4)C2C—C7C—H7C107.1
C6B—C1B—H1BC108.1C8C—C7C—C2C113.4 (4)
C1B—C2B—H2B106.2C8C—C7C—H7C107.1
C1B—C2B—C3B109.3 (4)C9C—C7C—C2C112.0 (4)
C1B—C2B—C7B113.8 (4)C9C—C7C—H7C107.1
C3B—C2B—H2B106.2C9C—C7C—C8C109.9 (5)
C3B—C2B—C7B114.5 (5)C7C—C8C—H8CA109.5
C7B—C2B—H2B106.2C7C—C8C—H8CB109.5
C2B—C3B—H3BA109.5C7C—C8C—H8CC109.5
C2B—C3B—H3BB109.5H8CA—C8C—H8CB109.5
H3BA—C3B—H3BB108.1H8CA—C8C—H8CC109.5
C4B—C3B—C2B110.5 (5)H8CB—C8C—H8CC109.5
C4B—C3B—H3BA109.5C7C—C9C—H9CA109.5
C4B—C3B—H3BB109.5C7C—C9C—H9CB109.5
C3B—C4B—H4BA109.0C7C—C9C—H9CC109.5
C3B—C4B—H4BB109.0H9CA—C9C—H9CB109.5
H4BA—C4B—H4BB107.8H9CA—C9C—H9CC109.5
C5B—C4B—C3B112.8 (5)H9CB—C9C—H9CC109.5
C5B—C4B—H4BA109.0C5C—C10C—H10G109.5
C5B—C4B—H4BB109.0C5C—C10C—H10H109.5
C4B—C5B—H5B107.4C5C—C10C—H10I109.5
C4B—C5B—C6B109.7 (5)H10G—C10C—H10H109.5
C4B—C5B—C10B112.6 (5)H10G—C10C—H10I109.5
C6B—C5B—H5B107.4H10H—C10C—H10I109.5
C6B—C5B—C10B112.1 (5)
O1—C1—C2—C3176.6 (3)C3B—C2B—C7B—C9B70.1 (7)
O1—C1—C2—C756.3 (5)C3B—C4B—C5B—C6B53.6 (7)
O1—C1—C6—C5176.3 (4)C3B—C4B—C5B—C10B179.1 (5)
C1—C2—C3—C456.6 (5)C4B—C5B—C6B—C1B53.0 (6)
C1—C2—C7—C874.1 (5)C6B—C1B—C2B—C3B57.0 (6)
C1—C2—C7—C9161.0 (4)C6B—C1B—C2B—C7B173.6 (4)
C2—C1—C6—C555.5 (6)C7B—C2B—C3B—C4B173.6 (4)
C2—C3—C4—C558.2 (6)C10B—C5B—C6B—C1B178.8 (4)
C3—C2—C7—C851.2 (5)C1C—C2C—C3C—C4C53.6 (6)
C3—C2—C7—C973.8 (5)C1C—C2C—C7C—C8C64.0 (6)
C3—C4—C5—C655.8 (6)C1C—C2C—C7C—C9C171.0 (4)
C3—C4—C5—C10179.7 (4)C1C—C6C—C5C—C4C54.8 (5)
C4—C5—C6—C154.8 (6)C1C—C6C—C5C—C10C179.8 (4)
C6—C1—C2—C354.9 (5)C5C—C6C—C1C—O1C178.1 (3)
C6—C1—C2—C7177.9 (4)C5C—C6C—C1C—C2C54.1 (6)
C7—C2—C3—C4176.3 (4)C5C—C4C—C3C—C2C56.9 (6)
C10—C5—C6—C1178.7 (4)C3C—C2C—C1C—O1C175.6 (4)
O1B—C1B—C2B—C3B179.0 (4)C3C—C2C—C1C—C6C52.1 (6)
O1B—C1B—C2B—C7B51.6 (6)C3C—C2C—C7C—C8C62.9 (6)
O1B—C1B—C6B—C5B179.1 (4)C3C—C2C—C7C—C9C62.1 (6)
C1B—C2B—C3B—C4B57.4 (6)C3C—C4C—C5C—C6C56.1 (6)
C1B—C2B—C7B—C8B68.7 (6)C3C—C4C—C5C—C10C178.9 (4)
C1B—C2B—C7B—C9B163.2 (5)C7C—C2C—C1C—O1C55.7 (5)
C2B—C1B—C6B—C5B56.2 (6)C7C—C2C—C1C—C6C179.1 (4)
C2B—C3B—C4B—C5B57.1 (7)C7C—C2C—C3C—C4C177.9 (4)
C3B—C2B—C7B—C8B58.0 (6)
beta-DL-2-Isopropyl-5-methylcyclohexanol (beta_DL_0.10GPa) top
Crystal data top
C10H20OF(000) = 1056
Mr = 156.26Dx = 1.029 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.928 (6) ÅCell parameters from 1506 reflections
b = 21.3338 (19) Åθ = 4.6–26.8°
c = 12.235 (8) ŵ = 0.06 mm1
β = 103.71 (7)°T = 296 K
V = 3025 (3) Å3Plate, colourless
Z = 120.45 × 0.25 × 0.02 mm
Data collection top
Xcalibur, Eos
diffractometer
1506 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source600 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.168
Detector resolution: 16.4 pixels mm-1θmax = 26.8°, θmin = 4.6°
ω and φ scansh = 1010
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 2626
Tmin = 0.970, Tmax = 0.999l = 99
14374 measured reflections
Refinement top
Refinement on F2189 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.070H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.220 w = 1/[σ2(Fo2) + (0.1015P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1506 reflectionsΔρmax = 0.07 e Å3
296 parametersΔρmin = 0.07 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0014 (8)0.06447 (19)0.5071 (8)0.076 (9)
H1B0.0643060.0639410.4973560.113*0.5
H1A0.015 (14)0.0264 (13)0.50 (2)0.113*0.5
C10.0002 (11)0.0928 (3)0.6121 (13)0.058 (6)
H10.0685860.0786280.6364780.070*
C20.0075 (11)0.1629 (3)0.5974 (12)0.064 (6)
H20.0641110.1751360.5770030.096*
C30.0013 (11)0.1930 (3)0.7107 (12)0.068 (6)
H3A0.0693710.1812920.7364460.082*
H3B0.0018020.2381910.7022880.082*
C40.1052 (11)0.1738 (3)0.7985 (12)0.086 (6)
H4A0.1727580.1911960.7784390.103*
H4B0.1010840.1915130.8705110.103*
C50.1187 (13)0.1048 (3)0.8103 (15)0.087 (6)
H50.0538160.0902070.8398600.105*
C60.1063 (11)0.0735 (3)0.7007 (12)0.061 (6)
H6A0.1037120.0285590.7118800.074*
H6B0.1740620.0825090.6726230.074*
C70.1055 (14)0.1850 (4)0.4990 (17)0.071 (6)
H70.1072240.1583350.4333920.085*
C80.0915 (12)0.2522 (3)0.4676 (13)0.104 (11)
H8A0.0194080.2571760.4466430.156*
H8B0.1537340.2636890.4054400.156*
H8C0.0925170.2787470.5307840.156*
C90.2219 (16)0.1800 (4)0.532 (2)0.106 (11)
H9A0.2337640.1376040.5524940.158*
H9B0.2829510.1920290.4687360.158*
H9C0.2218120.2073460.5939920.158*
C100.2289 (15)0.0851 (4)0.8979 (16)0.128 (11)
H10A0.2324010.1068780.9672660.192*
H10B0.2272110.0407220.9105120.192*
H10C0.2955860.0954070.8703500.192*
O1B0.2004 (8)0.0540 (2)0.4253 (8)0.085 (9)
H1BB0.1419040.0579880.4488060.128*0.5
H1CA0.353 (13)0.041 (6)0.52 (3)0.128*0.5
C1B0.1920 (12)0.0920 (3)0.3297 (12)0.068 (6)
H1BC0.2564130.0815850.2959010.082*
C2B0.1954 (12)0.1606 (3)0.3525 (13)0.074 (6)
H2B0.1251650.1698030.3777900.088*
C3B0.1843 (12)0.1962 (3)0.2464 (13)0.091 (6)
H3BA0.2511280.1879810.2162190.109*
H3BB0.1826700.2406720.2620250.109*
C4B0.0760 (13)0.1784 (4)0.1596 (14)0.113 (7)
H4BA0.0093350.1930570.1847850.136*
H4BB0.0761110.1995440.0894490.136*
C5B0.0642 (13)0.1091 (4)0.1382 (14)0.101 (6)
H5B0.1263890.0963570.1029630.121*
C6B0.0806 (12)0.0740 (3)0.2470 (13)0.081 (6)
H6BA0.0811110.0293880.2321340.097*
H6BB0.0160340.0827160.2802520.097*
C7B0.2968 (16)0.1804 (4)0.4507 (19)0.095 (7)
H7B0.2986020.1504610.5118750.114*
C8B0.2822 (13)0.2436 (3)0.4965 (14)0.111 (11)
H8BA0.3475700.2530030.5569170.167*
H8BB0.2761670.2743120.4381320.167*
H8BC0.2132600.2442430.5241870.167*
C9B0.4147 (15)0.1741 (4)0.4171 (19)0.101 (11)
H9BA0.4211590.1327710.3879490.152*
H9BB0.4188090.2046110.3605580.152*
H9BC0.4767410.1808820.4820820.152*
C10B0.0518 (18)0.0928 (4)0.055 (2)0.136 (11)
H10D0.1142160.1117640.0801930.204*
H10E0.0619200.0481560.0514960.204*
H10F0.0512410.1084760.0185110.204*
O1C0.4130 (10)0.0230 (2)0.5483 (12)0.087 (9)
H1C0.4695070.0076660.5310560.131*0.5
H1BA0.267 (4)0.057 (5)0.462 (9)0.131*0.5
C1C0.4153 (13)0.0072 (4)0.6645 (16)0.075 (7)
H1CB0.3666280.0374460.6922500.090*
C2C0.5366 (11)0.0139 (3)0.7340 (12)0.062 (6)
H2C0.5826310.0159390.7020310.074*
C3C0.5433 (13)0.0084 (3)0.8513 (13)0.084 (6)
H3CA0.5016740.0206800.8881340.100*
H3CB0.6233980.0084590.8928950.100*
C4C0.4941 (11)0.0730 (3)0.8546 (11)0.076 (6)
H4CA0.5408920.1029030.8255060.091*
H4CB0.4965940.0841760.9319900.091*
C5C0.3730 (12)0.0765 (3)0.7871 (14)0.081 (6)
H5C0.3283150.0463900.8201100.097*
C6C0.3647 (11)0.0557 (3)0.6671 (13)0.064 (6)
H6CA0.4050850.0854150.6302830.096*
H6CB0.2843260.0549830.6263230.096*
C7C0.5922 (12)0.0787 (4)0.7265 (15)0.087 (6)
H7C0.5873240.0869640.6466800.104*
C8C0.7180 (14)0.0808 (4)0.7861 (18)0.109 (11)
H8CA0.7603420.0520080.7509030.163*
H8CB0.7266830.0692740.8635170.163*
H8CC0.7470580.1224680.7819600.163*
C9C0.5279 (13)0.1317 (4)0.7698 (15)0.116 (11)
H9CA0.5261570.1235170.8465140.173*
H9CB0.4504370.1341580.7244770.173*
H9CC0.5668540.1706960.7655650.173*
C10C0.3175 (12)0.1409 (3)0.7915 (14)0.101 (11)
H10G0.2396990.1401620.7465310.151*
H10H0.3609520.1720540.7628410.151*
H10I0.3169180.1507070.8679560.151*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.099 (12)0.062 (3)0.072 (14)0.008 (4)0.032 (12)0.008 (5)
C10.065 (9)0.048 (4)0.064 (10)0.008 (5)0.022 (8)0.006 (5)
C20.059 (9)0.061 (4)0.074 (10)0.002 (5)0.020 (8)0.005 (5)
C30.067 (9)0.060 (4)0.080 (10)0.002 (5)0.024 (8)0.019 (5)
C40.082 (9)0.094 (5)0.079 (10)0.011 (5)0.015 (8)0.029 (6)
C50.084 (9)0.097 (5)0.078 (10)0.004 (6)0.014 (8)0.010 (6)
C60.070 (9)0.057 (4)0.063 (10)0.010 (5)0.027 (8)0.011 (5)
C70.078 (9)0.068 (4)0.068 (10)0.016 (6)0.021 (8)0.009 (6)
C80.090 (14)0.103 (6)0.126 (17)0.003 (7)0.037 (14)0.038 (8)
C90.082 (15)0.109 (6)0.128 (18)0.014 (9)0.028 (15)0.020 (8)
C100.112 (15)0.160 (7)0.102 (17)0.030 (9)0.006 (14)0.013 (9)
O1B0.079 (11)0.094 (3)0.083 (14)0.006 (4)0.019 (12)0.019 (5)
C1B0.081 (9)0.062 (4)0.065 (10)0.016 (5)0.024 (8)0.015 (5)
C2B0.073 (9)0.071 (4)0.077 (10)0.013 (5)0.016 (8)0.003 (6)
C3B0.098 (9)0.080 (4)0.096 (10)0.012 (5)0.026 (8)0.020 (6)
C4B0.107 (10)0.121 (6)0.108 (10)0.021 (6)0.018 (8)0.034 (6)
C5B0.090 (9)0.114 (6)0.095 (10)0.008 (6)0.014 (8)0.012 (7)
C6B0.081 (9)0.087 (4)0.071 (10)0.002 (5)0.015 (8)0.010 (6)
C7B0.100 (10)0.079 (5)0.108 (11)0.002 (7)0.027 (8)0.013 (6)
C8B0.086 (14)0.108 (6)0.155 (17)0.029 (7)0.059 (14)0.040 (8)
C9B0.082 (14)0.099 (6)0.120 (18)0.001 (8)0.020 (14)0.009 (8)
C10B0.099 (15)0.192 (8)0.099 (18)0.008 (9)0.013 (14)0.004 (9)
O1C0.091 (12)0.095 (4)0.072 (14)0.006 (4)0.012 (12)0.006 (6)
C1C0.076 (10)0.074 (5)0.074 (10)0.004 (5)0.014 (8)0.006 (6)
C2C0.053 (9)0.062 (4)0.071 (10)0.003 (5)0.015 (8)0.008 (5)
C3C0.086 (9)0.090 (5)0.071 (10)0.003 (5)0.011 (8)0.011 (6)
C4C0.088 (9)0.072 (4)0.063 (10)0.002 (5)0.009 (8)0.005 (5)
C5C0.096 (10)0.071 (4)0.078 (10)0.004 (5)0.024 (8)0.002 (6)
C6C0.063 (9)0.063 (4)0.068 (10)0.003 (5)0.016 (8)0.004 (5)
C7C0.092 (9)0.084 (5)0.084 (10)0.003 (6)0.018 (8)0.003 (6)
C8C0.063 (14)0.133 (6)0.128 (18)0.027 (7)0.018 (14)0.001 (8)
C9C0.137 (16)0.086 (6)0.129 (17)0.010 (7)0.043 (14)0.006 (8)
C10C0.131 (15)0.087 (5)0.096 (17)0.011 (7)0.049 (14)0.016 (7)
Geometric parameters (Å, º) top
O1—H1B0.8200C5B—C6B1.50 (2)
O1—H1A0.83 (2)C5B—C10B1.551 (10)
O1—C11.417 (18)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.507 (8)C7B—H7B0.9800
C1—C61.519 (9)C7B—C8B1.486 (17)
C2—H20.9800C7B—C9B1.56 (4)
C2—C31.51 (2)C8B—H8BA0.9600
C2—C71.540 (11)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.513 (8)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.485 (9)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.47 (2)O1C—H1CA0.82 (2)
C5—C101.545 (9)O1C—H1C0.8200
C6—H6A0.9700O1C—C1C1.45 (3)
C6—H6B0.9700C1C—H1CB0.9800
C7—H70.9800C1C—C2C1.502 (12)
C7—C81.504 (13)C1C—C6C1.476 (12)
C7—C91.54 (4)C2C—H2C0.9800
C8—H8A0.9600C2C—C3C1.50 (2)
C8—H8B0.9600C2C—C7C1.545 (14)
C8—H8C0.9600C3C—H3CA0.9700
C9—H9A0.9600C3C—H3CB0.9700
C9—H9B0.9600C3C—C4C1.502 (11)
C9—H9C0.9600C4C—H4CA0.9700
C10—H10A0.9600C4C—H4CB0.9700
C10—H10B0.9600C4C—C5C1.486 (11)
C10—H10C0.9600C5C—H5C0.9800
O1B—H1BB0.8200C5C—C6C1.51 (2)
O1B—C1B1.407 (15)C5C—C10C1.532 (13)
O1B—H1BA0.81 (2)C6C—H6CA0.9700
C1B—H1BC0.9800C6C—H6CB0.9700
C1B—C2B1.489 (9)C7C—H7C0.9800
C1B—C6B1.517 (10)C7C—C8C1.505 (13)
C2B—H2B0.9800C7C—C9C1.53 (2)
C2B—C3B1.482 (19)C8C—H8CA0.9600
C2B—C7B1.548 (11)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.514 (9)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.502 (10)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1B—O1—H1A97.8C10B—C5B—H5B107.5
C1—O1—H1B109.5C1B—C6B—H6BA109.2
C1—O1—H1A118 (10)C1B—C6B—H6BB109.2
O1—C1—H1108.3C5B—C6B—C1B112.1 (12)
O1—C1—C2109.1 (12)C5B—C6B—H6BA109.2
O1—C1—C6111.0 (11)C5B—C6B—H6BB109.2
C2—C1—H1108.3H6BA—C6B—H6BB107.9
C2—C1—C6111.7 (5)C2B—C7B—H7B106.7
C6—C1—H1108.3C2B—C7B—C9B111 (2)
C1—C2—H2105.4C8B—C7B—C2B113.6 (9)
C1—C2—C3108.8 (11)C8B—C7B—H7B106.7
C1—C2—C7114.1 (6)C8B—C7B—C9B111.8 (12)
C3—C2—H2105.4C9B—C7B—H7B106.7
C3—C2—C7116.7 (12)C7B—C8B—H8BA109.5
C7—C2—H2105.4C7B—C8B—H8BB109.5
C2—C3—H3A109.0C7B—C8B—H8BC109.5
C2—C3—H3B109.0H8BA—C8B—H8BB109.5
C2—C3—C4112.7 (11)H8BA—C8B—H8BC109.5
H3A—C3—H3B107.8H8BB—C8B—H8BC109.5
C4—C3—H3A109.0C7B—C9B—H9BA109.5
C4—C3—H3B109.0C7B—C9B—H9BB109.5
C3—C4—H4A109.0C7B—C9B—H9BC109.5
C3—C4—H4B109.0H9BA—C9B—H9BB109.5
H4A—C4—H4B107.8H9BA—C9B—H9BC109.5
C5—C4—C3113.0 (5)H9BB—C9B—H9BC109.5
C5—C4—H4A109.0C5B—C10B—H10D109.5
C5—C4—H4B109.0C5B—C10B—H10E109.5
C4—C5—H5105.9C5B—C10B—H10F109.5
C4—C5—C10113.1 (6)H10D—C10B—H10E109.5
C6—C5—C4112.1 (12)H10D—C10B—H10F109.5
C6—C5—H5105.9H10E—C10B—H10F109.5
C6—C5—C10113.2 (14)H1CA—O1C—H1C136.7
C10—C5—H5105.9C1C—O1C—H1CA111.00
C1—C6—H6A108.7C1C—O1C—H1C109.5
C1—C6—H6B108.7O1C—C1C—H1CB108.2
C5—C6—C1114.4 (11)O1C—C1C—C2C108.9 (17)
C5—C6—H6A108.7O1C—C1C—C6C108.6 (9)
C5—C6—H6B108.7C2C—C1C—H1CB108.2
H6A—C6—H6B107.6C6C—C1C—H1CB108.2
C2—C7—H7109.1C6C—C1C—C2C114.7 (6)
C8—C7—C2112.4 (7)C1C—C2C—H2C105.6
C8—C7—H7109.1C1C—C2C—C7C114.9 (6)
C8—C7—C9107.1 (12)C3C—C2C—C1C109.8 (14)
C9—C7—C2109.9 (19)C3C—C2C—H2C105.6
C9—C7—H7109.1C3C—C2C—C7C114.5 (9)
C7—C8—H8A109.5C7C—C2C—H2C105.6
C7—C8—H8B109.5C2C—C3C—H3CA109.1
C7—C8—H8C109.5C2C—C3C—H3CB109.1
H8A—C8—H8B109.5C2C—C3C—C4C112.7 (8)
H8A—C8—H8C109.5H3CA—C3C—H3CB107.8
H8B—C8—H8C109.5C4C—C3C—H3CA109.1
C7—C9—H9A109.5C4C—C3C—H3CB109.1
C7—C9—H9B109.5C3C—C4C—H4CA109.3
C7—C9—H9C109.5C3C—C4C—H4CB109.3
H9A—C9—H9B109.5H4CA—C4C—H4CB108.0
H9A—C9—H9C109.5C5C—C4C—C3C111.4 (6)
H9B—C9—H9C109.5C5C—C4C—H4CA109.3
C5—C10—H10A109.5C5C—C4C—H4CB109.3
C5—C10—H10B109.5C4C—C5C—H5C106.9
C5—C10—H10C109.5C4C—C5C—C6C110.9 (15)
H10A—C10—H10B109.5C4C—C5C—C10C113.4 (6)
H10A—C10—H10C109.5C6C—C5C—H5C106.9
H10B—C10—H10C109.5C6C—C5C—C10C111.5 (9)
H1BB—O1B—H1BA126.8C10C—C5C—H5C106.9
C1B—O1B—H1BB109.5C1C—C6C—C5C110.7 (10)
C1B—O1B—H1BA106 (6)C1C—C6C—H6CA109.5
O1B—C1B—H1BC108.2C1C—C6C—H6CB109.5
O1B—C1B—C2B114.7 (12)C5C—C6C—H6CA109.5
O1B—C1B—C6B106.7 (10)C5C—C6C—H6CB109.5
C2B—C1B—H1BC108.2H6CA—C6C—H6CB108.1
C2B—C1B—C6B110.7 (6)C2C—C7C—H7C107.2
C6B—C1B—H1BC108.2C8C—C7C—C2C113.0 (6)
C1B—C2B—H2B105.6C8C—C7C—H7C107.2
C1B—C2B—C7B113.3 (6)C8C—C7C—C9C109.5 (9)
C3B—C2B—C1B110.3 (12)C9C—C7C—C2C112.5 (15)
C3B—C2B—H2B105.6C9C—C7C—H7C107.2
C3B—C2B—C7B115.6 (12)C7C—C8C—H8CA109.5
C7B—C2B—H2B105.6C7C—C8C—H8CB109.5
C2B—C3B—H3BA109.3C7C—C8C—H8CC109.5
C2B—C3B—H3BB109.3H8CA—C8C—H8CB109.5
C2B—C3B—C4B111.7 (11)H8CA—C8C—H8CC109.5
H3BA—C3B—H3BB107.9H8CB—C8C—H8CC109.5
C4B—C3B—H3BA109.3C7C—C9C—H9CA109.5
C4B—C3B—H3BB109.3C7C—C9C—H9CB109.5
C3B—C4B—H4BA108.9C7C—C9C—H9CC109.5
C3B—C4B—H4BB108.9H9CA—C9C—H9CB109.5
H4BA—C4B—H4BB107.7H9CA—C9C—H9CC109.5
C5B—C4B—C3B113.4 (6)H9CB—C9C—H9CC109.5
C5B—C4B—H4BA108.9C5C—C10C—H10G109.5
C5B—C4B—H4BB108.9C5C—C10C—H10H109.5
C4B—C5B—H5B107.5C5C—C10C—H10I109.5
C4B—C5B—C10B111.5 (7)H10G—C10C—H10H109.5
C6B—C5B—C4B110.4 (11)H10G—C10C—H10I109.5
C6B—C5B—H5B107.5H10H—C10C—H10I109.5
C6B—C5B—C10B112.3 (15)
O1—C1—C2—C3177.7 (11)C3B—C2B—C7B—C9B58.4 (14)
O1—C1—C2—C750 (2)C3B—C4B—C5B—C6B51 (2)
O1—C1—C6—C5175.5 (12)C3B—C4B—C5B—C10B176.1 (19)
C1—C2—C3—C455.7 (15)C4B—C5B—C6B—C1B52.7 (18)
C1—C2—C7—C8164.9 (18)C6B—C1B—C2B—C3B58.4 (19)
C1—C2—C7—C975.9 (18)C6B—C1B—C2B—C7B170.3 (18)
C2—C1—C6—C553 (2)C7B—C2B—C3B—C4B173.9 (13)
C2—C3—C4—C553.8 (19)C10B—C5B—C6B—C1B177.8 (13)
C3—C2—C7—C867 (2)O1C—C1C—C2C—C3C174.2 (8)
C3—C2—C7—C952.5 (13)O1C—C1C—C2C—C7C55.0 (17)
C3—C4—C5—C649 (2)O1C—C1C—C6C—C5C175.7 (14)
C3—C4—C5—C10178.7 (19)C1C—C2C—C3C—C4C52.2 (14)
C4—C5—C6—C149.6 (18)C1C—C2C—C7C—C8C173.1 (17)
C6—C1—C2—C354.7 (18)C1C—C2C—C7C—C9C62.2 (17)
C6—C1—C2—C7173.0 (18)C2C—C1C—C6C—C5C54 (2)
C7—C2—C3—C4173.4 (10)C2C—C3C—C4C—C5C55.9 (18)
C10—C5—C6—C1179.0 (12)C3C—C2C—C7C—C8C58 (2)
O1B—C1B—C2B—C3B179.2 (11)C3C—C2C—C7C—C9C66.2 (12)
O1B—C1B—C2B—C7B49 (2)C3C—C4C—C5C—C6C55.8 (16)
O1B—C1B—C6B—C5B177.0 (13)C3C—C4C—C5C—C10C177.9 (15)
C1B—C2B—C3B—C4B56.0 (17)C4C—C5C—C6C—C1C54.4 (14)
C1B—C2B—C7B—C8B162.7 (19)C6C—C1C—C2C—C3C52.3 (19)
C1B—C2B—C7B—C9B70.3 (19)C6C—C1C—C2C—C7C176.9 (17)
C2B—C1B—C6B—C5B58 (2)C7C—C2C—C3C—C4C176.9 (12)
C2B—C3B—C4B—C5B53 (2)C10C—C5C—C6C—C1C178.2 (12)
C3B—C2B—C7B—C8B69 (2)
beta-DL-2-Isopropyl-5-methylcyclohexanol (beta_DL_0.20GPa) top
Crystal data top
C10H20OF(000) = 1056
Mr = 156.26Dx = 1.024 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.031 (4) ÅCell parameters from 1533 reflections
b = 21.3330 (14) Åθ = 4.6–26.7°
c = 12.212 (5) ŵ = 0.06 mm1
β = 104.03 (5)°T = 296 K
V = 3040.9 (18) Å3Plate, colourless
Z = 120.45 × 0.35 × 0.02 mm
Data collection top
Xcalibur, Eos
diffractometer
574 reflections with I > 2σ(I)
Detector resolution: 16.2413 pixels mm-1Rint = 0.157
ω and φ scansθmax = 26.6°, θmin = 4.6°
Absorption correction: multi-scan
CrysAlisPro 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1010
Tmin = 0.865, Tmax = 1.000k = 2626
14702 measured reflectionsl = 99
1533 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.073 w = 1/[σ2(Fo2) + (0.139P)2 + 0.4033P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.283(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.07 e Å3
1533 reflectionsΔρmin = 0.08 e Å3
312 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
206 restraintsExtinction coefficient: 0.005 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0005 (9)0.0646 (2)0.5040 (11)0.085 (10)
H1B0.0658290.0643490.4949950.128*0.5
H1A0.008 (18)0.0261 (13)0.50 (2)0.128*0.5
C10.0007 (13)0.0930 (3)0.6105 (15)0.068 (6)
H10.0668290.0785710.6348990.081*
C20.0061 (13)0.1637 (3)0.5957 (15)0.077 (6)
H20.0647230.1773920.5767810.115*
C30.0069 (13)0.1929 (3)0.7158 (15)0.081 (6)
H3A0.0119720.2382470.7105720.098*
H3B0.0724590.1774940.7407990.098*
C40.1044 (13)0.1736 (3)0.7999 (15)0.093 (6)
H4A0.1688760.1923970.7774080.112*
H4B0.1038060.1897020.8740870.112*
C50.1201 (15)0.1047 (4)0.8069 (17)0.095 (7)
H50.0549580.0893700.8343780.113*
C60.1088 (13)0.0732 (3)0.6990 (14)0.077 (6)
H6A0.1068070.0282770.7103930.093*
H6B0.1756190.0825470.6705890.093*
C70.1064 (16)0.1855 (4)0.500 (2)0.080 (7)
H70.1084510.1591390.4337870.096*
C80.0905 (13)0.2532 (4)0.4682 (15)0.109 (11)
H8A0.0179540.2576560.4492130.164*
H8B0.1509280.2647540.4043720.164*
H8C0.0924870.2800360.5307880.164*
C90.2215 (18)0.1806 (5)0.529 (2)0.107 (11)
H9A0.2344040.1379600.5482370.160*
H9B0.2809040.1933780.4654920.160*
H9C0.2220590.2072320.5923760.160*
C100.2257 (17)0.0854 (5)0.8987 (19)0.136 (12)
H10A0.2268120.1080850.9668480.203*
H10B0.2225470.0412050.9127920.203*
H10C0.2937490.0947110.8740230.203*
O1B0.2002 (9)0.0541 (3)0.4263 (10)0.104 (10)
H1BB0.1411830.0589090.4477400.155*0.5
H1CA0.349 (11)0.034 (10)0.51 (3)0.155*0.5
C1B0.1946 (14)0.0916 (3)0.3260 (15)0.079 (6)
H1BC0.2590750.0816570.2930080.095*
C2B0.1946 (15)0.1602 (4)0.3546 (16)0.089 (6)
H2B0.1244240.1685290.3794340.107*
C3B0.1851 (14)0.1954 (4)0.2464 (15)0.094 (6)
H3BA0.2502220.1853690.2157930.113*
H3BB0.1864410.2400910.2611940.113*
C4B0.0752 (15)0.1785 (4)0.1610 (17)0.121 (7)
H4BA0.0105990.1929430.1886760.145*
H4BB0.0732440.2003120.0908750.145*
C5B0.0628 (15)0.1095 (5)0.1380 (17)0.115 (7)
H5B0.1243150.0974750.1022810.138*
C6B0.0817 (14)0.0743 (4)0.2447 (16)0.088 (6)
H6BA0.0813630.0297100.2286700.106*
H6BB0.0192920.0827410.2801310.106*
C7B0.2968 (18)0.1808 (4)0.451 (2)0.097 (7)
H7B0.2993780.1514520.5137570.117*
C8B0.2821 (15)0.2439 (4)0.4959 (17)0.126 (11)
H8BA0.3478010.2540380.5554190.189*
H8BB0.2743780.2741900.4363180.189*
H8BC0.2146340.2445160.5246710.189*
C9B0.4156 (18)0.1740 (5)0.418 (2)0.116 (11)
H9BA0.4219880.1325580.3892950.173*
H9BB0.4194420.2042220.3603830.173*
H9BC0.4772990.1812230.4828630.173*
C10B0.051 (2)0.0927 (5)0.054 (2)0.146 (12)
H10D0.1143560.1080150.0816000.219*
H10E0.0573870.0480440.0448170.219*
H10F0.0536150.1117390.0182010.219*
O1C0.4142 (11)0.0235 (3)0.5457 (14)0.097 (10)
H1C0.4705630.0079830.5294640.146*0.5
H1BA0.267 (4)0.056 (6)0.459 (9)0.146*0.5
C1C0.4153 (16)0.0083 (4)0.6613 (18)0.086 (7)
H1CB0.3676360.0389590.6885460.103*
C2C0.5374 (13)0.0141 (4)0.7327 (15)0.072 (6)
H2C0.5835170.0156490.7012480.086*
C3C0.5425 (16)0.0076 (4)0.8512 (17)0.101 (7)
H3CA0.5009760.0219200.8867780.121*
H3CB0.6217380.0077260.8940880.121*
C4C0.4921 (13)0.0730 (3)0.8558 (14)0.087 (6)
H4CA0.5382230.1033180.8272620.105*
H4CB0.4951650.0836570.9337050.105*
C5C0.3727 (15)0.0769 (4)0.7890 (17)0.095 (7)
H5C0.3283730.0468490.8218820.114*
C6C0.3646 (13)0.0556 (4)0.6668 (15)0.082 (6)
H6CA0.4044430.0856580.6303600.122*
H6CB0.2848090.0551180.6256000.122*
C7C0.5905 (14)0.0789 (4)0.7268 (17)0.090 (6)
H7C0.5850740.0873910.6468150.108*
C8C0.7174 (16)0.0804 (5)0.786 (2)0.123 (12)
H8CA0.7575650.0501990.7514770.184*
H8CB0.7271370.0703750.8641740.184*
H8CC0.7474790.1214680.7788390.184*
C9C0.5283 (15)0.1313 (4)0.7689 (18)0.124 (11)
H9CA0.5373170.1269500.8487870.185*
H9CB0.4483440.1294810.7314740.185*
H9CC0.5593490.1707550.7531520.185*
C10C0.3179 (13)0.1411 (4)0.7933 (16)0.107 (11)
H10G0.2404930.1403970.7482330.161*
H10H0.3607920.1722670.7643930.161*
H10I0.3178710.1510260.8699850.161*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.108 (13)0.068 (3)0.085 (15)0.005 (5)0.033 (12)0.008 (5)
C10.066 (9)0.068 (5)0.073 (10)0.002 (5)0.024 (8)0.005 (6)
C20.082 (9)0.069 (4)0.082 (10)0.007 (5)0.026 (8)0.002 (6)
C30.086 (9)0.072 (4)0.090 (10)0.004 (5)0.030 (8)0.027 (6)
C40.100 (9)0.096 (5)0.084 (10)0.009 (6)0.022 (8)0.027 (6)
C50.087 (10)0.105 (6)0.089 (10)0.001 (6)0.016 (8)0.002 (7)
C60.087 (10)0.066 (4)0.083 (10)0.001 (5)0.030 (8)0.004 (6)
C70.081 (10)0.076 (5)0.085 (11)0.012 (7)0.025 (8)0.004 (6)
C80.103 (15)0.103 (6)0.123 (18)0.006 (7)0.031 (14)0.035 (8)
C90.081 (15)0.116 (7)0.126 (19)0.013 (9)0.030 (15)0.014 (9)
C100.109 (16)0.159 (8)0.129 (19)0.014 (9)0.011 (15)0.005 (10)
O1B0.096 (12)0.107 (4)0.101 (15)0.008 (5)0.011 (13)0.012 (6)
C1B0.090 (10)0.071 (5)0.082 (11)0.008 (6)0.031 (8)0.021 (6)
C2B0.086 (9)0.095 (5)0.085 (10)0.000 (6)0.019 (8)0.005 (7)
C3B0.102 (10)0.091 (5)0.093 (10)0.011 (6)0.030 (8)0.014 (7)
C4B0.117 (10)0.124 (6)0.121 (11)0.026 (7)0.028 (8)0.038 (7)
C5B0.111 (10)0.120 (6)0.110 (11)0.015 (7)0.019 (8)0.011 (7)
C6B0.083 (9)0.092 (5)0.091 (10)0.002 (6)0.023 (8)0.007 (6)
C7B0.101 (10)0.085 (5)0.106 (11)0.000 (7)0.026 (8)0.008 (6)
C8B0.121 (15)0.106 (6)0.161 (18)0.029 (8)0.053 (15)0.047 (9)
C9B0.090 (15)0.117 (7)0.137 (19)0.009 (9)0.024 (15)0.012 (9)
C10B0.100 (15)0.197 (9)0.121 (19)0.008 (10)0.013 (15)0.008 (10)
O1C0.095 (13)0.115 (5)0.079 (15)0.007 (5)0.016 (13)0.009 (7)
C1C0.092 (10)0.078 (5)0.089 (11)0.009 (6)0.024 (8)0.001 (7)
C2C0.069 (9)0.074 (4)0.073 (10)0.000 (5)0.018 (8)0.000 (6)
C3C0.104 (10)0.104 (6)0.092 (11)0.002 (6)0.017 (8)0.013 (6)
C4C0.103 (9)0.082 (5)0.075 (10)0.004 (5)0.017 (8)0.010 (6)
C5C0.106 (10)0.089 (5)0.091 (10)0.009 (6)0.025 (8)0.003 (6)
C6C0.082 (10)0.078 (5)0.085 (10)0.003 (5)0.021 (8)0.004 (6)
C7C0.094 (9)0.093 (5)0.081 (10)0.000 (6)0.019 (8)0.004 (6)
C8C0.080 (15)0.140 (7)0.145 (19)0.002 (8)0.023 (15)0.007 (9)
C9C0.158 (17)0.084 (6)0.139 (19)0.013 (8)0.054 (15)0.004 (8)
C10C0.131 (15)0.089 (6)0.108 (18)0.010 (7)0.043 (14)0.002 (7)
Geometric parameters (Å, º) top
O1—H1B0.8200C5B—C6B1.47 (2)
O1—H1A0.83 (2)C5B—C10B1.547 (12)
O1—C11.43 (2)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.519 (10)C7B—H7B0.9800
C1—C61.535 (11)C7B—C8B1.477 (19)
C2—H20.9800C7B—C9B1.59 (4)
C2—C31.60 (3)C8B—H8BA0.9600
C2—C71.534 (12)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.534 (11)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.482 (10)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.46 (2)O1C—H1CA0.82 (2)
C5—C101.533 (11)O1C—H1C0.8200
C6—H6A0.9700O1C—C1C1.45 (3)
C6—H6B0.9700C1C—H1CB0.9800
C7—H70.9800C1C—C2C1.521 (14)
C7—C81.521 (16)C1C—C6C1.502 (15)
C7—C91.51 (4)C2C—H2C0.9800
C8—H8A0.9600C2C—C3C1.51 (3)
C8—H8B0.9600C2C—C7C1.533 (16)
C8—H8C0.9600C3C—H3CA0.9700
C9—H9A0.9600C3C—H3CB0.9700
C9—H9B0.9600C3C—C4C1.527 (14)
C9—H9C0.9600C4C—H4CA0.9700
C10—H10A0.9600C4C—H4CB0.9700
C10—H10B0.9600C4C—C5C1.473 (14)
C10—H10C0.9600C5C—H5C0.9800
O1B—H1BB0.8200C5C—C6C1.54 (3)
O1B—C1B1.45 (2)C5C—C10C1.526 (15)
O1B—H1BA0.81 (2)C6C—H6CA0.9700
C1B—H1BC0.9800C6C—H6CB0.9700
C1B—C2B1.506 (12)C7C—H7C0.9800
C1B—C6B1.521 (12)C7C—C8C1.522 (16)
C2B—H2B0.9800C7C—C9C1.50 (2)
C2B—C3B1.50 (2)C8C—H8CA0.9600
C2B—C7B1.549 (13)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.515 (11)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.500 (11)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1B—O1—H1A95.9C10B—C5B—H5B106.8
C1—O1—H1B109.5C1B—C6B—H6BA109.2
C1—O1—H1A115 (10)C1B—C6B—H6BB109.2
O1—C1—H1108.9C5B—C6B—C1B112.1 (14)
O1—C1—C2108.8 (14)C5B—C6B—H6BA109.2
O1—C1—C6109.7 (13)C5B—C6B—H6BB109.2
C2—C1—H1108.9H6BA—C6B—H6BB107.9
C2—C1—C6111.7 (6)C2B—C7B—H7B106.4
C6—C1—H1108.9C2B—C7B—C9B112 (2)
C1—C2—H2107.4C8B—C7B—C2B113.3 (10)
C1—C2—C3106.9 (14)C8B—C7B—H7B106.4
C1—C2—C7113.7 (7)C8B—C7B—C9B111.9 (13)
C3—C2—H2107.4C9B—C7B—H7B106.4
C7—C2—H2107.4C7B—C8B—H8BA109.5
C7—C2—C3113.8 (15)C7B—C8B—H8BB109.5
C2—C3—H3A110.1C7B—C8B—H8BC109.5
C2—C3—H3B110.1H8BA—C8B—H8BB109.5
H3A—C3—H3B108.4H8BA—C8B—H8BC109.5
C4—C3—C2108.2 (14)H8BB—C8B—H8BC109.5
C4—C3—H3A110.1C7B—C9B—H9BA109.5
C4—C3—H3B110.1C7B—C9B—H9BB109.5
C3—C4—H4A109.1C7B—C9B—H9BC109.5
C3—C4—H4B109.1H9BA—C9B—H9BB109.5
H4A—C4—H4B107.8H9BA—C9B—H9BC109.5
C5—C4—C3112.5 (6)H9BB—C9B—H9BC109.5
C5—C4—H4A109.1C5B—C10B—H10D109.5
C5—C4—H4B109.1C5B—C10B—H10E109.5
C4—C5—H5104.5C5B—C10B—H10F109.5
C4—C5—C10112.3 (7)H10D—C10B—H10E109.5
C6—C5—C4115.0 (14)H10D—C10B—H10F109.5
C6—C5—H5104.5H10E—C10B—H10F109.5
C6—C5—C10114.6 (16)H1CA—O1C—H1C138.2
C10—C5—H5104.5C1C—O1C—H1CA111
C1—C6—H6A109.0C1C—O1C—H1C109.5
C1—C6—H6B109.0O1C—C1C—H1CB108.3
C5—C6—C1112.8 (13)O1C—C1C—C2C109 (2)
C5—C6—H6A109.0O1C—C1C—C6C109.8 (11)
C5—C6—H6B109.0C2C—C1C—H1CB108.3
H6A—C6—H6B107.8C6C—C1C—H1CB108.3
C2—C7—H7108.2C6C—C1C—C2C113.2 (8)
C8—C7—C2111.0 (8)C1C—C2C—H2C106.4
C8—C7—H7108.2C1C—C2C—C7C113.7 (7)
C9—C7—C2113 (2)C3C—C2C—C1C109.5 (18)
C9—C7—H7108.2C3C—C2C—H2C106.4
C9—C7—C8107.7 (13)C3C—C2C—C7C113.7 (10)
C7—C8—H8A109.5C7C—C2C—H2C106.4
C7—C8—H8B109.5C2C—C3C—H3CA109.0
C7—C8—H8C109.5C2C—C3C—H3CB109.0
H8A—C8—H8B109.5C2C—C3C—C4C113.1 (10)
H8A—C8—H8C109.5H3CA—C3C—H3CB107.8
H8B—C8—H8C109.5C4C—C3C—H3CA109.0
C7—C9—H9A109.5C4C—C3C—H3CB109.0
C7—C9—H9B109.5C3C—C4C—H4CA109.2
C7—C9—H9C109.5C3C—C4C—H4CB109.2
H9A—C9—H9B109.5H4CA—C4C—H4CB107.9
H9A—C9—H9C109.5C5C—C4C—C3C112.0 (7)
H9B—C9—H9C109.5C5C—C4C—H4CA109.2
C5—C10—H10A109.5C5C—C4C—H4CB109.2
C5—C10—H10B109.5C4C—C5C—H5C106.9
C5—C10—H10C109.5C4C—C5C—C6C110.1 (18)
H10A—C10—H10B109.5C4C—C5C—C10C113.8 (7)
H10A—C10—H10C109.5C6C—C5C—H5C106.9
H10B—C10—H10C109.5C10C—C5C—H5C106.9
H1BB—O1B—H1BA132.0C10C—C5C—C6C111.8 (10)
C1B—O1B—H1BB109.5C1C—C6C—C5C112.3 (11)
C1B—O1B—H1BA103 (5)C1C—C6C—H6CA109.1
O1B—C1B—H1BC110.5C1C—C6C—H6CB109.1
O1B—C1B—C2B110.1 (15)C5C—C6C—H6CA109.1
O1B—C1B—C6B105.6 (12)C5C—C6C—H6CB109.1
C2B—C1B—H1BC110.5H6CA—C6C—H6CB107.9
C2B—C1B—C6B109.7 (8)C2C—C7C—H7C106.6
C6B—C1B—H1BC110.5C8C—C7C—C2C112.2 (7)
C1B—C2B—H2B107.2C8C—C7C—H7C106.6
C1B—C2B—C7B114.1 (7)C9C—C7C—C2C114.0 (18)
C3B—C2B—C1B106.7 (15)C9C—C7C—H7C106.6
C3B—C2B—H2B107.2C9C—C7C—C8C110.4 (11)
C3B—C2B—C7B114.1 (14)C7C—C8C—H8CA109.5
C7B—C2B—H2B107.2C7C—C8C—H8CB109.5
C2B—C3B—H3BA109.5C7C—C8C—H8CC109.5
C2B—C3B—H3BB109.5H8CA—C8C—H8CB109.5
C2B—C3B—C4B110.8 (14)H8CA—C8C—H8CC109.5
H3BA—C3B—H3BB108.1H8CB—C8C—H8CC109.5
C4B—C3B—H3BA109.5C7C—C9C—H9CA109.5
C4B—C3B—H3BB109.5C7C—C9C—H9CB109.5
C3B—C4B—H4BA108.9C7C—C9C—H9CC109.5
C3B—C4B—H4BB108.9H9CA—C9C—H9CB109.5
H4BA—C4B—H4BB107.8H9CA—C9C—H9CC109.5
C5B—C4B—C3B113.2 (7)H9CB—C9C—H9CC109.5
C5B—C4B—H4BA108.9C5C—C10C—H10G109.5
C5B—C4B—H4BB108.9C5C—C10C—H10H109.5
C4B—C5B—H5B106.8C5C—C10C—H10I109.5
C4B—C5B—C10B112.6 (8)H10G—C10C—H10H109.5
C6B—C5B—C4B110.3 (14)H10G—C10C—H10I109.5
C6B—C5B—H5B106.8H10H—C10C—H10I109.5
C6B—C5B—C10B113.2 (17)
O1—C1—C2—C3179.4 (12)C3B—C2B—C7B—C9B57.5 (16)
O1—C1—C2—C753 (2)C3B—C4B—C5B—C6B51 (2)
O1—C1—C6—C5174.8 (13)C3B—C4B—C5B—C10B178 (2)
C1—C2—C3—C460.3 (15)C4B—C5B—C6B—C1B53 (2)
C1—C2—C7—C8164 (2)C6B—C1B—C2B—C3B63 (2)
C1—C2—C7—C974 (2)C6B—C1B—C2B—C7B171 (2)
C2—C1—C6—C554 (2)C7B—C2B—C3B—C4B172.7 (14)
C2—C3—C4—C557 (2)C10B—C5B—C6B—C1B179.9 (16)
C3—C2—C7—C873 (3)O1C—C1C—C2C—C3C174.5 (10)
C3—C2—C7—C948.4 (14)O1C—C1C—C2C—C7C57.0 (19)
C3—C4—C5—C652 (2)O1C—C1C—C6C—C5C175.1 (16)
C3—C4—C5—C10175 (2)C1C—C2C—C3C—C4C53.1 (17)
C4—C5—C6—C149 (2)C1C—C2C—C7C—C8C172 (2)
C6—C1—C2—C359 (2)C1C—C2C—C7C—C9C61 (2)
C6—C1—C2—C7174 (2)C2C—C1C—C6C—C5C53 (2)
C7—C2—C3—C4173.4 (11)C2C—C3C—C4C—C5C57 (2)
C10—C5—C6—C1178.8 (15)C3C—C2C—C7C—C8C62 (2)
O1B—C1B—C2B—C3B178.3 (13)C3C—C2C—C7C—C9C64.8 (14)
O1B—C1B—C2B—C7B55 (2)C3C—C4C—C5C—C6C54.9 (19)
O1B—C1B—C6B—C5B179.3 (15)C3C—C4C—C5C—C10C178.7 (18)
C1B—C2B—C3B—C4B60.4 (19)C4C—C5C—C6C—C1C54.1 (17)
C1B—C2B—C7B—C8B167 (2)C6C—C1C—C2C—C3C52 (2)
C1B—C2B—C7B—C9B65 (2)C6C—C1C—C2C—C7C179 (2)
C2B—C1B—C6B—C5B61 (2)C7C—C2C—C3C—C4C178.5 (13)
C2B—C3B—C4B—C5B56 (2)C10C—C5C—C6C—C1C178.4 (14)
C3B—C2B—C7B—C8B70 (3)
beta-DL-2-Isopropyl-5-methylcyclohexanol (beta_DL_0.45GPa) top
Crystal data top
C10H20OF(000) = 1056
Mr = 156.26Dx = 1.050 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.855 (4) ÅCell parameters from 1684 reflections
b = 21.1144 (11) Åθ = 4.2–27.1°
c = 12.228 (4) ŵ = 0.07 mm1
β = 104.37 (4)°T = 296 K
V = 2964.9 (15) Å3Plate, colourless
Z = 120.48 × 0.48 × 0.05 mm
Data collection top
Xcalibur, Eos
diffractometer
1684 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source870 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
Detector resolution: 16.4 pixels mm-1θmax = 27.1°, θmin = 4.2°
ω and φ scansh = 1010
Absorption correction: integration
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 2627
Tmin = 0.969, Tmax = 0.997l = 1010
14984 measured reflections
Refinement top
Refinement on F28 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.064H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.199 w = 1/[σ2(Fo2) + (0.1046P)2 + 0.4325P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1684 reflectionsΔρmax = 0.12 e Å3
311 parametersΔρmin = 0.08 e Å3
Special details top

Experimental. Data were collected at room temperature and pressure of 0.45 (2) GPa (450000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0044 (7)0.06487 (14)0.5041 (7)0.087 (10)
H1B0.0619560.0657390.4952890.130*0.5
H1A0.042 (9)0.035 (5)0.519 (13)0.130*0.5
C10.0052 (9)0.0934 (2)0.6131 (8)0.094 (13)
H10.0743470.0793950.6368290.113*
C20.0089 (8)0.16442 (18)0.5962 (8)0.075 (12)
H20.0622860.1769480.5746520.112*
C30.0050 (8)0.1942 (2)0.7132 (8)0.065 (11)
H3A0.0073080.2399950.7067430.079*
H3B0.0725150.1806290.7383930.079*
C40.1038 (9)0.1745 (2)0.7979 (9)0.084 (13)
H4A0.1707450.1904310.7741430.101*
H4B0.1045200.1937660.8700940.101*
C50.1153 (9)0.1046 (2)0.8129 (8)0.084 (14)
H50.0508710.0898100.8432940.100*
C60.1031 (8)0.0738 (2)0.6993 (8)0.087 (12)
H6A0.1704870.0845780.6714450.105*
H6B0.1024620.0281890.7085070.105*
C70.1134 (12)0.1869 (3)0.5029 (13)0.093 (15)
H70.1166560.1593950.4376360.111*
C80.0894 (9)0.2548 (2)0.4660 (10)0.153 (15)
H8A0.0142350.2560740.4497300.229*
H8B0.1480960.2663120.3996510.229*
H8C0.0909190.2840240.5257350.229*
C90.2282 (12)0.1820 (3)0.5291 (14)0.103 (19)
H9A0.2402250.1392840.5507000.154*
H9B0.2881580.1933360.4636790.154*
H9C0.2307030.2101610.5901110.154*
C100.2287 (11)0.0847 (3)0.8947 (10)0.105 (17)
H10A0.2312890.0393570.9009700.157*
H10B0.2933590.0991710.8672080.157*
H10C0.2330040.1029620.9675000.157*
O1B0.1957 (7)0.05172 (15)0.4277 (7)0.107 (11)
H1BB0.1365560.0559190.4503550.160*0.5
H1BA0.268 (5)0.067 (3)0.458 (4)0.160*0.5
C1B0.1880 (10)0.0910 (2)0.3305 (9)0.108 (15)
H1BC0.2524650.0799470.2970550.129*
C2B0.1956 (10)0.1590 (2)0.3567 (9)0.105 (13)
H2B0.1255750.1692060.3820740.126*
C3B0.1846 (9)0.1953 (2)0.2469 (9)0.116 (13)
H3BA0.1856600.2403950.2622900.139*
H3BB0.2509010.1856280.2166770.139*
C4B0.0735 (10)0.1788 (3)0.1598 (10)0.129 (16)
H4BA0.0073750.1932190.1865620.154*
H4BB0.0722800.2013160.0903130.154*
C5B0.0610 (10)0.1108 (3)0.1357 (9)0.130 (15)
H5B0.1232950.0977760.1008140.156*
C6B0.0748 (9)0.0737 (2)0.2468 (8)0.114 (13)
H6BA0.0098780.0832380.2792270.137*
H6BB0.0737870.0286550.2313420.137*
C7B0.3003 (14)0.1782 (3)0.4552 (16)0.114 (19)
H7B0.3044430.1475690.5162280.137*
C8B0.2807 (10)0.2420 (3)0.5003 (10)0.110 (16)
H8BA0.3461730.2530340.5609720.165*
H8BB0.2717650.2729500.4412360.165*
H8BC0.2114660.2410150.5276720.165*
C9B0.4233 (15)0.1745 (3)0.4188 (19)0.12 (2)
H9BA0.4325250.1329860.3904040.187*
H9BB0.4234570.2053990.3612170.187*
H9BC0.4862900.1830570.4834120.187*
C10B0.0563 (13)0.0935 (3)0.0550 (13)0.12 (2)
H10D0.1185240.1051530.0884910.179*
H10E0.0589940.0487530.0409530.179*
H10F0.0648050.1158710.0149880.179*
O1C0.4128 (7)0.02179 (15)0.5459 (7)0.094 (9)
H1CA0.4690390.0045210.5309050.142*0.5
H1C0.345 (5)0.031 (5)0.489 (17)0.142*0.5
C1C0.4116 (9)0.0075 (2)0.6641 (9)0.095 (15)
H1CB0.3626240.0388290.6894070.115*
C2C0.5340 (8)0.0140 (2)0.7347 (8)0.069 (11)
H2C0.5804860.0161650.7034150.083*
C3C0.5416 (9)0.0079 (2)0.8541 (8)0.102 (13)
H3CA0.4994850.0216460.8900990.122*
H3CB0.6225080.0075990.8964210.122*
C4C0.4921 (9)0.0739 (2)0.8585 (8)0.100 (13)
H4CA0.5389020.1041140.8292770.120*
H4CB0.4964140.0849820.9364000.120*
C5C0.3687 (9)0.0785 (2)0.7917 (9)0.072 (13)
H5C0.3236950.0481800.8243030.086*
C6C0.3607 (8)0.0572 (2)0.6701 (8)0.069 (12)
H6CA0.4014900.0874710.6342080.104*
H6CB0.2796510.0568710.6283780.104*
C7C0.5895 (8)0.0797 (2)0.7277 (8)0.093 (13)
H7C0.5819320.0885840.6475300.112*
C8C0.7179 (11)0.0810 (3)0.7850 (13)0.133 (17)
H8CA0.7593360.0549020.7438680.200*
H8CB0.7300060.0652990.8607320.200*
H8CC0.7460600.1237550.7869990.200*
C9C0.5249 (9)0.1325 (2)0.7731 (9)0.133 (15)
H9CA0.5313730.1257090.8520420.199*
H9CB0.4442070.1320890.7330240.199*
H9CC0.5584830.1726850.7626010.199*
C10C0.3146 (9)0.1439 (2)0.7973 (9)0.110 (14)
H10G0.2355020.1437190.7527420.164*
H10H0.3582720.1751660.7683580.164*
H10I0.3159150.1536640.8742550.164*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.107 (12)0.068 (2)0.082 (12)0.004 (3)0.018 (12)0.007 (3)
C10.120 (17)0.061 (3)0.079 (15)0.012 (4)0.016 (16)0.016 (4)
C20.086 (16)0.059 (3)0.073 (15)0.008 (4)0.009 (16)0.004 (4)
C30.072 (14)0.062 (3)0.071 (14)0.000 (4)0.034 (13)0.016 (4)
C40.084 (17)0.086 (4)0.084 (16)0.002 (4)0.022 (17)0.029 (4)
C50.080 (18)0.095 (4)0.072 (16)0.008 (4)0.012 (17)0.003 (4)
C60.097 (15)0.064 (3)0.089 (15)0.005 (4)0.001 (15)0.001 (4)
C70.08 (2)0.060 (3)0.120 (18)0.001 (5)0.00 (2)0.006 (4)
C80.132 (19)0.095 (4)0.19 (2)0.002 (5)0.028 (19)0.050 (5)
C90.09 (2)0.097 (4)0.11 (2)0.013 (6)0.01 (2)0.012 (5)
C100.12 (2)0.137 (5)0.05 (2)0.027 (6)0.01 (2)0.009 (5)
O1B0.115 (14)0.092 (3)0.098 (12)0.012 (3)0.004 (13)0.034 (3)
C1B0.139 (19)0.078 (3)0.083 (18)0.010 (5)0.017 (19)0.033 (5)
C2B0.132 (16)0.066 (3)0.098 (16)0.005 (4)0.007 (16)0.003 (4)
C3B0.137 (18)0.071 (3)0.126 (16)0.001 (5)0.006 (17)0.034 (5)
C4B0.15 (2)0.114 (5)0.109 (19)0.015 (5)0.00 (2)0.040 (5)
C5B0.13 (2)0.134 (6)0.101 (19)0.004 (6)0.02 (2)0.031 (6)
C6B0.127 (16)0.074 (3)0.111 (15)0.005 (4)0.028 (16)0.002 (4)
C7B0.11 (2)0.067 (4)0.15 (2)0.006 (6)0.00 (2)0.008 (5)
C8B0.09 (2)0.117 (5)0.14 (2)0.010 (6)0.06 (2)0.054 (6)
C9B0.10 (3)0.105 (5)0.16 (3)0.009 (7)0.02 (3)0.005 (6)
C10B0.11 (2)0.188 (7)0.06 (2)0.011 (7)0.02 (3)0.002 (7)
O1C0.114 (13)0.095 (3)0.060 (11)0.004 (3)0.005 (12)0.009 (3)
C1C0.112 (19)0.075 (3)0.078 (17)0.004 (4)0.017 (18)0.001 (4)
C2C0.094 (15)0.068 (3)0.041 (14)0.004 (4)0.010 (14)0.005 (3)
C3C0.133 (17)0.081 (3)0.068 (15)0.008 (4)0.021 (16)0.005 (4)
C4C0.140 (17)0.072 (3)0.070 (15)0.012 (4)0.007 (16)0.014 (4)
C5C0.097 (17)0.070 (3)0.060 (16)0.002 (4)0.041 (16)0.004 (4)
C6C0.074 (16)0.066 (3)0.066 (14)0.004 (4)0.015 (15)0.006 (4)
C7C0.111 (17)0.071 (3)0.084 (16)0.002 (4)0.004 (16)0.002 (4)
C8C0.08 (2)0.126 (5)0.18 (2)0.012 (5)0.00 (2)0.004 (6)
C9C0.166 (19)0.061 (3)0.17 (2)0.008 (5)0.039 (19)0.006 (5)
C10C0.123 (17)0.073 (3)0.133 (18)0.010 (4)0.032 (17)0.018 (4)
Geometric parameters (Å, º) top
O1—H1B0.8200C5B—C6B1.542 (14)
O1—H1A0.822 (16)C5B—C10B1.536 (9)
O1—C11.465 (13)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.514 (6)C7B—H7B0.9800
C1—C61.503 (7)C7B—C8B1.495 (14)
C2—H20.9800C7B—C9B1.63 (4)
C2—C31.553 (14)C8B—H8BA0.9600
C2—C71.536 (8)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.499 (7)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.489 (6)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.507 (13)O1C—H1CA0.8200
C5—C101.523 (8)O1C—H1C0.95 (8)
C6—H6A0.9700O1C—C1C1.479 (17)
C6—H6B0.9700C1C—H1CB0.9800
C7—H70.9800C1C—C2C1.499 (9)
C7—C81.551 (12)C1C—C6C1.502 (9)
C7—C91.48 (3)C2C—H2C0.9800
C8—H8A0.9600C2C—C3C1.513 (15)
C8—H8B0.9600C2C—C7C1.546 (9)
C8—H8C0.9600C3C—H3CA0.9700
C9—H9A0.9600C3C—H3CB0.9700
C9—H9B0.9600C3C—C4C1.519 (8)
C9—H9C0.9600C4C—H4CA0.9700
C10—H10A0.9600C4C—H4CB0.9700
C10—H10B0.9600C4C—C5C1.490 (9)
C10—H10C0.9600C5C—H5C0.9800
O1B—H1BB0.8200C5C—C6C1.534 (15)
O1B—H1BA0.90 (5)C5C—C10C1.531 (9)
O1B—C1B1.434 (12)C6C—H6CA0.9700
C1B—H1BC0.9800C6C—H6CB0.9700
C1B—C2B1.468 (7)C7C—H7C0.9800
C1B—C6B1.517 (8)C7C—C8C1.510 (11)
C2B—H2B0.9800C7C—C9C1.533 (15)
C2B—C3B1.523 (14)C8C—H8CA0.9600
C2B—C7B1.553 (9)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.515 (8)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.466 (7)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1B—O1—H1A129.8C10B—C5B—C6B109.1 (10)
C1—O1—H1B109.5C1B—C6B—C5B110.8 (8)
C1—O1—H1A89 (10)C1B—C6B—H6BA109.5
O1—C1—H1109.9C1B—C6B—H6BB109.5
O1—C1—C2106.8 (8)C5B—C6B—H6BA109.5
O1—C1—C6109.2 (8)C5B—C6B—H6BB109.5
C2—C1—H1109.9H6BA—C6B—H6BB108.1
C6—C1—H1109.9C2B—C7B—H7B107.3
C6—C1—C2111.0 (4)C2B—C7B—C9B111.9 (19)
C1—C2—H2107.9C8B—C7B—C2B110.8 (7)
C1—C2—C3106.4 (8)C8B—C7B—H7B107.3
C1—C2—C7113.4 (4)C8B—C7B—C9B112.1 (9)
C3—C2—H2107.9C9B—C7B—H7B107.3
C7—C2—H2107.9C7B—C8B—H8BA109.5
C7—C2—C3113.1 (10)C7B—C8B—H8BB109.5
C2—C3—H3A109.6C7B—C8B—H8BC109.5
C2—C3—H3B109.6H8BA—C8B—H8BB109.5
H3A—C3—H3B108.1H8BA—C8B—H8BC109.5
C4—C3—C2110.4 (8)H8BB—C8B—H8BC109.5
C4—C3—H3A109.6C7B—C9B—H9BA109.5
C4—C3—H3B109.6C7B—C9B—H9BB109.5
C3—C4—H4A108.9C7B—C9B—H9BC109.5
C3—C4—H4B108.9H9BA—C9B—H9BB109.5
H4A—C4—H4B107.7H9BA—C9B—H9BC109.5
C5—C4—C3113.3 (4)H9BB—C9B—H9BC109.5
C5—C4—H4A108.9C5B—C10B—H10D109.5
C5—C4—H4B108.9C5B—C10B—H10E109.5
C4—C5—H5107.9C5B—C10B—H10F109.5
C4—C5—C6109.2 (7)H10D—C10B—H10E109.5
C4—C5—C10113.2 (5)H10D—C10B—H10F109.5
C6—C5—H5107.9H10E—C10B—H10F109.5
C6—C5—C10110.7 (9)H1CA—O1C—H1C121.4
C10—C5—H5107.9C1C—O1C—H1CA109.5
C1—C6—C5113.4 (8)C1C—O1C—H1C123 (10)
C1—C6—H6A108.9O1C—C1C—H1CB108.7
C1—C6—H6B108.9O1C—C1C—C2C107.6 (11)
C5—C6—H6A108.9O1C—C1C—C6C109.5 (6)
C5—C6—H6B108.9C2C—C1C—H1CB108.7
H6A—C6—H6B107.7C2C—C1C—C6C113.5 (4)
C2—C7—H7106.5C6C—C1C—H1CB108.7
C2—C7—C8109.2 (6)C1C—C2C—H2C105.9
C8—C7—H7106.5C1C—C2C—C3C110.2 (10)
C9—C7—C2115.7 (16)C1C—C2C—C7C114.5 (4)
C9—C7—H7106.5C3C—C2C—H2C105.9
C9—C7—C8111.9 (9)C3C—C2C—C7C113.8 (5)
C7—C8—H8A109.5C7C—C2C—H2C105.9
C7—C8—H8B109.5C2C—C3C—H3CA109.1
C7—C8—H8C109.5C2C—C3C—H3CB109.1
H8A—C8—H8B109.5C2C—C3C—C4C112.5 (5)
H8A—C8—H8C109.5H3CA—C3C—H3CB107.8
H8B—C8—H8C109.5C4C—C3C—H3CA109.1
C7—C9—H9A109.5C4C—C3C—H3CB109.1
C7—C9—H9B109.5C3C—C4C—H4CA109.2
C7—C9—H9C109.5C3C—C4C—H4CB109.2
H9A—C9—H9B109.5H4CA—C4C—H4CB107.9
H9A—C9—H9C109.5C5C—C4C—C3C112.1 (4)
H9B—C9—H9C109.5C5C—C4C—H4CA109.2
C5—C10—H10A109.5C5C—C4C—H4CB109.2
C5—C10—H10B109.5C4C—C5C—H5C107.1
C5—C10—H10C109.5C4C—C5C—C6C109.2 (10)
H10A—C10—H10B109.5C4C—C5C—C10C113.6 (4)
H10A—C10—H10C109.5C6C—C5C—H5C107.1
H10B—C10—H10C109.5C10C—C5C—H5C107.1
H1BB—O1B—H1BA128.9C10C—C5C—C6C112.5 (6)
C1B—O1B—H1BB109.5C1C—C6C—C5C112.7 (6)
C1B—O1B—H1BA90 (3)C1C—C6C—H6CA109.1
O1B—C1B—H1BC108.2C1C—C6C—H6CB109.1
O1B—C1B—C2B113.4 (9)C5C—C6C—H6CA109.1
O1B—C1B—C6B106.5 (8)C5C—C6C—H6CB109.1
C2B—C1B—H1BC108.2H6CA—C6C—H6CB107.8
C2B—C1B—C6B112.2 (5)C2C—C7C—H7C107.0
C6B—C1B—H1BC108.2C8C—C7C—C2C112.7 (4)
C1B—C2B—H2B105.9C8C—C7C—H7C107.0
C1B—C2B—C3B108.2 (8)C8C—C7C—C9C110.8 (7)
C1B—C2B—C7B114.8 (4)C9C—C7C—C2C112.0 (10)
C3B—C2B—H2B105.9C9C—C7C—H7C107.0
C3B—C2B—C7B115.4 (10)C7C—C8C—H8CA109.5
C7B—C2B—H2B105.9C7C—C8C—H8CB109.5
C2B—C3B—H3BA109.2C7C—C8C—H8CC109.5
C2B—C3B—H3BB109.2H8CA—C8C—H8CB109.5
H3BA—C3B—H3BB107.9H8CA—C8C—H8CC109.5
C4B—C3B—C2B112.0 (8)H8CB—C8C—H8CC109.5
C4B—C3B—H3BA109.2C7C—C9C—H9CA109.5
C4B—C3B—H3BB109.2C7C—C9C—H9CB109.5
C3B—C4B—H4BA108.9C7C—C9C—H9CC109.5
C3B—C4B—H4BB108.9H9CA—C9C—H9CB109.5
H4BA—C4B—H4BB107.8H9CA—C9C—H9CC109.5
C5B—C4B—C3B113.2 (5)H9CB—C9C—H9CC109.5
C5B—C4B—H4BA108.9C5C—C10C—H10G109.5
C5B—C4B—H4BB108.9C5C—C10C—H10H109.5
C4B—C5B—H5B108.3C5C—C10C—H10I109.5
C4B—C5B—C6B109.7 (8)H10G—C10C—H10H109.5
C4B—C5B—C10B113.1 (6)H10G—C10C—H10I109.5
C6B—C5B—H5B108.3H10H—C10C—H10I109.5
C10B—C5B—H5B108.3
O1—C1—C2—C3177.9 (7)C3B—C2B—C7B—C9B54.3 (11)
O1—C1—C2—C757.1 (15)C3B—C4B—C5B—C6B53.1 (15)
O1—C1—C6—C5175.7 (7)C3B—C4B—C5B—C10B175.1 (14)
C1—C2—C3—C459.4 (10)C4B—C5B—C6B—C1B53.8 (12)
C1—C2—C7—C8162.1 (12)C6B—C1B—C2B—C3B58.5 (15)
C1—C2—C7—C970.5 (15)C6B—C1B—C2B—C7B171.1 (15)
C2—C1—C6—C558.2 (14)C7B—C2B—C3B—C4B173.7 (11)
C2—C3—C4—C558.8 (14)C10B—C5B—C6B—C1B178.2 (9)
C3—C2—C7—C876.6 (16)O1C—C1C—C2C—C3C173.0 (5)
C3—C2—C7—C950.8 (9)O1C—C1C—C2C—C7C57.3 (10)
C3—C4—C5—C653.4 (14)O1C—C1C—C6C—C5C173.7 (9)
C3—C4—C5—C10177.2 (12)C1C—C2C—C3C—C4C52.8 (10)
C4—C5—C6—C152.7 (12)C1C—C2C—C7C—C8C171.0 (12)
C6—C1—C2—C359.0 (13)C1C—C2C—C7C—C9C63.3 (11)
C6—C1—C2—C7176.0 (13)C2C—C1C—C6C—C5C53.5 (14)
C7—C2—C3—C4175.4 (8)C2C—C3C—C4C—C5C56.8 (14)
C10—C5—C6—C1177.9 (8)C3C—C2C—C7C—C8C61.0 (15)
O1B—C1B—C2B—C3B179.2 (9)C3C—C2C—C7C—C9C64.7 (9)
O1B—C1B—C2B—C7B50.4 (18)C3C—C4C—C5C—C6C55.5 (11)
O1B—C1B—C6B—C5B176.8 (9)C3C—C4C—C5C—C10C178.1 (11)
C1B—C2B—C3B—C4B56.2 (13)C4C—C5C—C6C—C1C54.1 (10)
C1B—C2B—C7B—C8B161.6 (15)C6C—C1C—C2C—C3C51.6 (12)
C1B—C2B—C7B—C9B72.6 (16)C6C—C1C—C2C—C7C178.6 (11)
C2B—C1B—C6B—C5B58.6 (15)C7C—C2C—C3C—C4C177.0 (8)
C2B—C3B—C4B—C5B55.7 (16)C10C—C5C—C6C—C1C178.8 (9)
C3B—C2B—C7B—C8B72 (2)
beta-DL-2-Isopropyl-5-methylcyclohexanol (beta_DL_0.56GPa) top
Crystal data top
C10H20OF(000) = 1056
Mr = 156.26Dx = 1.062 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.728 (11) ÅCell parameters from 1645 reflections
b = 21.0850 (12) Åθ = 2.9–28.4°
c = 12.258 (2) ŵ = 0.07 mm1
β = 104.60 (5)°T = 296 K
V = 2933 (3) Å3Plate, colourless
Z = 120.4 × 0.4 × 0.05 mm
Data collection top
Xcalibur, Eos
diffractometer
713 reflections with I > 2σ(I)
Detector resolution: 16.4 pixels mm-1Rint = 0.082
ω and π scansθmax = 28.4°, θmin = 2.9°
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 55
Tmin = 0.974, Tmax = 0.997k = 2827
16901 measured reflectionsl = 1616
1645 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.066 w = 1/[σ2(Fo2) + (0.1321P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.232(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.08 e Å3
1645 reflectionsΔρmin = 0.09 e Å3
312 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
205 restraintsExtinction coefficient: 0.002 (4)
Special details top

Experimental. Data were collected at room temperature and pressure of 0.56 (2) GPa (560000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0061 (10)0.06487 (15)0.5018 (4)0.076 (7)
H1B0.0605770.0644370.4920330.115*0.5
H1A0.020 (17)0.0280 (15)0.518 (12)0.115*0.5
C10.0028 (17)0.0927 (2)0.6092 (7)0.067 (4)
H10.0721760.0780020.6327820.081*
C20.011 (2)0.1645 (3)0.5967 (8)0.073 (5)
H20.0613640.1779030.5769410.110*
C30.0057 (18)0.1939 (3)0.7125 (7)0.078 (5)
H3A0.0057670.2397870.7060460.093*
H3B0.0753890.1816150.7362300.093*
C40.1018 (19)0.1734 (3)0.7998 (8)0.092 (5)
H4A0.1713150.1898540.7802210.111*
H4B0.0994280.1913270.8721180.111*
C50.111 (2)0.1037 (3)0.8100 (8)0.083 (5)
H50.0440560.0882620.8368880.100*
C60.1049 (18)0.0736 (3)0.6983 (7)0.070 (4)
H6A0.1053920.0278660.7068240.084*
H6B0.1745380.0853810.6738600.084*
C70.111 (2)0.1872 (3)0.5025 (10)0.079 (5)
H70.1137230.1593710.4378460.095*
C80.089 (2)0.2551 (3)0.4653 (8)0.144 (8)
H8A0.1547270.2681900.4052360.216*
H8B0.0812820.2835470.5279950.216*
H8C0.0185060.2558850.4396310.216*
C90.233 (3)0.1852 (4)0.5250 (12)0.107 (9)
H9A0.2488750.1431480.5478250.161*
H9B0.2915750.1964300.4575700.161*
H9C0.2365070.2146620.5838690.161*
C100.226 (2)0.0829 (4)0.8960 (9)0.107 (8)
H10A0.2291080.0374070.9003950.160*
H10B0.2929070.0982230.8719210.160*
H10C0.2276190.1000790.9688300.160*
O1B0.1959 (13)0.05220 (19)0.4292 (5)0.107 (7)
H1BB0.1360480.0573180.4512340.161*0.5
H1CA0.337 (14)0.015 (12)0.519 (19)0.161*0.5
C1B0.189 (2)0.0903 (3)0.3306 (8)0.084 (5)
H1BC0.2548830.0785340.2986870.101*
C2B0.198 (2)0.1590 (3)0.3554 (8)0.085 (5)
H2B0.1266790.1695190.3799880.102*
C3B0.187 (2)0.1955 (3)0.2476 (9)0.093 (5)
H3BA0.1832430.2404280.2629300.111*
H3BB0.2569810.1881200.2207550.111*
C4B0.084 (2)0.1778 (4)0.1603 (9)0.109 (5)
H4BA0.0890740.1989240.0913100.131*
H4BB0.0155260.1942470.1809500.131*
C5B0.065 (3)0.1104 (4)0.1359 (10)0.113 (5)
H5B0.1283100.0955950.1024950.135*
C6B0.077 (2)0.0737 (3)0.2465 (8)0.079 (5)
H6BA0.0102770.0838990.2773210.095*
H6BB0.0747140.0284890.2314850.095*
C7B0.301 (3)0.1782 (4)0.4531 (11)0.097 (5)
H7B0.3023830.1469840.5128160.117*
C8B0.2810 (19)0.2427 (3)0.5034 (8)0.145 (8)
H8BA0.2041830.2435960.5175240.218*
H8BB0.3397710.2490890.5727850.218*
H8BC0.2868030.2757450.4511590.218*
C9B0.422 (4)0.1755 (5)0.4299 (16)0.137 (9)
H9BA0.4803480.1883120.4961360.206*
H9BB0.4378810.1329540.4101110.206*
H9BC0.4240200.2035510.3687570.206*
C10B0.054 (3)0.0938 (5)0.0524 (11)0.131 (9)
H10D0.1176560.1040420.0861110.197*
H10E0.0566730.0493030.0352260.197*
H10F0.0630580.1177770.0157930.197*
O1C0.4098 (11)0.0210 (3)0.5460 (5)0.087 (7)
H1C0.4667130.0055210.5282120.130*0.5
H1BA0.258 (5)0.064 (4)0.472 (6)0.130*0.5
C1C0.417 (2)0.0061 (4)0.6638 (9)0.078 (5)
H1CB0.3676440.0376960.6893680.094*
C2C0.538 (2)0.0145 (4)0.7357 (9)0.080 (5)
H2C0.5868420.0152330.7058680.096*
C3C0.5452 (15)0.0079 (2)0.8553 (6)0.077 (4)
H3CA0.6269750.0080500.8979100.092*
H3CB0.5029620.0218110.8912080.092*
C4C0.494 (2)0.0734 (4)0.8585 (9)0.080 (5)
H4CA0.4997710.0847040.9364160.096*
H4CB0.5411790.1035020.8288940.096*
C5C0.363 (2)0.0795 (4)0.7902 (9)0.088 (5)
H5C0.3167530.0492600.8221120.105*
C6C0.3576 (15)0.0581 (2)0.6689 (6)0.073 (4)
H6CA0.3958460.0897370.6329490.109*
H6CB0.2757650.0554830.6267390.109*
C7C0.595 (3)0.0812 (5)0.7303 (11)0.080 (5)
H7C0.5875100.0902400.6504430.096*
C8C0.714 (4)0.0805 (7)0.7828 (14)0.142 (11)
H8CA0.7527720.0501920.7462170.213*
H8CB0.7250110.0690390.8605320.213*
H8CC0.7463600.1218990.7779450.213*
C9C0.5235 (19)0.1326 (3)0.7734 (9)0.108 (8)
H9CA0.5336650.1275990.8531550.162*
H9CB0.4415040.1284000.7356710.162*
H9CC0.5508950.1737500.7583200.162*
C10C0.3116 (17)0.1438 (3)0.7954 (7)0.096 (8)
H10G0.3172410.1547770.8726200.144*
H10H0.2303550.1436920.7540860.144*
H10I0.3541730.1743150.7629670.144*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.08 (2)0.066 (2)0.079 (4)0.000 (4)0.006 (8)0.016 (2)
C10.065 (13)0.063 (3)0.073 (5)0.002 (6)0.016 (7)0.010 (3)
C20.074 (13)0.067 (4)0.076 (5)0.003 (7)0.012 (8)0.005 (3)
C30.077 (13)0.058 (3)0.092 (5)0.003 (6)0.011 (7)0.015 (4)
C40.096 (13)0.088 (5)0.090 (5)0.006 (7)0.018 (8)0.017 (4)
C50.082 (13)0.090 (4)0.081 (5)0.009 (7)0.027 (7)0.001 (4)
C60.073 (13)0.064 (3)0.071 (5)0.005 (6)0.012 (7)0.002 (3)
C70.080 (13)0.071 (4)0.085 (6)0.005 (7)0.018 (8)0.007 (4)
C80.15 (2)0.098 (5)0.171 (9)0.002 (9)0.027 (12)0.046 (5)
C90.11 (3)0.107 (5)0.110 (9)0.015 (13)0.032 (13)0.019 (5)
C100.11 (2)0.130 (5)0.074 (6)0.019 (10)0.008 (11)0.002 (5)
O1B0.12 (2)0.106 (3)0.088 (4)0.006 (6)0.007 (9)0.037 (3)
C1B0.084 (13)0.086 (5)0.081 (5)0.002 (7)0.019 (7)0.012 (4)
C2B0.088 (13)0.085 (4)0.077 (5)0.003 (7)0.008 (8)0.008 (4)
C3B0.096 (13)0.069 (4)0.110 (6)0.000 (6)0.021 (8)0.016 (4)
C4B0.114 (13)0.111 (6)0.095 (6)0.003 (8)0.011 (8)0.030 (4)
C5B0.113 (13)0.128 (6)0.102 (6)0.000 (8)0.036 (8)0.005 (5)
C6B0.078 (13)0.069 (4)0.085 (6)0.008 (6)0.008 (8)0.008 (4)
C7B0.100 (13)0.073 (4)0.109 (7)0.000 (7)0.008 (9)0.006 (4)
C8B0.14 (2)0.104 (5)0.188 (9)0.002 (9)0.040 (12)0.067 (5)
C9B0.13 (3)0.133 (7)0.154 (11)0.009 (15)0.054 (16)0.003 (6)
C10B0.13 (3)0.156 (8)0.120 (8)0.003 (11)0.045 (13)0.015 (6)
O1C0.10 (2)0.094 (3)0.066 (4)0.007 (6)0.019 (8)0.012 (2)
C1C0.076 (13)0.084 (5)0.077 (6)0.002 (8)0.024 (8)0.007 (4)
C2C0.079 (13)0.074 (4)0.086 (6)0.008 (8)0.021 (8)0.001 (4)
C3C0.083 (13)0.081 (4)0.063 (4)0.006 (6)0.009 (7)0.004 (3)
C4C0.083 (13)0.078 (4)0.077 (6)0.008 (8)0.014 (8)0.010 (4)
C5C0.090 (13)0.083 (5)0.086 (7)0.011 (8)0.015 (8)0.012 (4)
C6C0.070 (13)0.068 (3)0.077 (5)0.005 (6)0.012 (7)0.002 (3)
C7C0.078 (14)0.083 (5)0.080 (6)0.023 (8)0.024 (9)0.002 (4)
C8C0.14 (3)0.145 (9)0.141 (12)0.010 (16)0.029 (16)0.011 (8)
C9C0.09 (2)0.077 (4)0.152 (8)0.014 (8)0.027 (12)0.019 (5)
C10C0.10 (2)0.082 (4)0.106 (6)0.033 (8)0.022 (10)0.009 (4)
Geometric parameters (Å, º) top
O1—H1B0.8200C5B—C6B1.537 (11)
O1—H1A0.83 (2)C5B—C10B1.56 (4)
O1—C11.433 (7)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.522 (8)C7B—H7B0.9800
C1—C61.50 (2)C7B—C8B1.535 (11)
C2—H20.9800C7B—C9B1.52 (4)
C2—C31.536 (9)C8B—H8BA0.9600
C2—C71.50 (3)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.50 (2)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.478 (10)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.494 (9)O1C—H1CA0.84 (18)
C5—C101.55 (3)O1C—H1C0.8200
C6—H6A0.9700O1C—C1C1.460 (12)
C6—H6B0.9700C1C—H1CB0.9800
C7—H70.9800C1C—C2C1.48 (4)
C7—C81.544 (10)C1C—C6C1.529 (15)
C7—C91.53 (4)C2C—H2C0.9800
C8—H8A0.9600C2C—C3C1.522 (10)
C8—H8B0.9600C2C—C7C1.56 (2)
C8—H8C0.9600C3C—H3CA0.9700
C9—H9A0.9600C3C—H3CB0.9700
C9—H9B0.9600C3C—C4C1.510 (13)
C9—H9C0.9600C4C—H4CA0.9700
C10—H10A0.9600C4C—H4CB0.9700
C10—H10B0.9600C4C—C5C1.56 (4)
C10—H10C0.9600C5C—H5C0.9800
O1B—H1BB0.8200C5C—C6C1.540 (10)
O1B—C1B1.438 (8)C5C—C10C1.493 (14)
O1B—H1BA0.82 (2)C6C—H6CA0.9700
C1B—H1BC0.9800C6C—H6CB0.9700
C1B—C2B1.478 (10)C7C—H7C0.9800
C1B—C6B1.50 (3)C7C—C8C1.38 (5)
C2B—H2B0.9800C7C—C9C1.54 (2)
C2B—C3B1.506 (10)C8C—H8CA0.9600
C2B—C7B1.53 (4)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.44 (3)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.458 (12)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1B—O1—H1A106.3C10B—C5B—H5B107.7
C1—O1—H1B109.5C1B—C6B—C5B110.7 (14)
C1—O1—H1A97 (7)C1B—C6B—H6BA109.5
O1—C1—H1108.0C1B—C6B—H6BB109.5
O1—C1—C2109.2 (5)C5B—C6B—H6BA109.5
O1—C1—C6112.4 (11)C5B—C6B—H6BB109.5
C2—C1—H1108.0H6BA—C6B—H6BB108.1
C6—C1—H1108.0C2B—C7B—H7B105.8
C6—C1—C2111.1 (12)C2B—C7B—C8B112.3 (19)
C1—C2—H2106.0C8B—C7B—H7B105.8
C1—C2—C3108.8 (6)C9B—C7B—C2B115.9 (11)
C3—C2—H2106.0C9B—C7B—H7B105.8
C7—C2—C1114.3 (13)C9B—C7B—C8B110.5 (17)
C7—C2—H2106.0C7B—C8B—H8BA109.5
C7—C2—C3115.0 (14)C7B—C8B—H8BB109.5
C2—C3—H3A109.2C7B—C8B—H8BC109.5
C2—C3—H3B109.2H8BA—C8B—H8BB109.5
H3A—C3—H3B107.9H8BA—C8B—H8BC109.5
C4—C3—C2112.0 (13)H8BB—C8B—H8BC109.5
C4—C3—H3A109.2C7B—C9B—H9BA109.5
C4—C3—H3B109.2C7B—C9B—H9BB109.5
C3—C4—H4A109.2C7B—C9B—H9BC109.5
C3—C4—H4B109.2H9BA—C9B—H9BB109.5
H4A—C4—H4B107.9H9BA—C9B—H9BC109.5
C5—C4—C3112.2 (13)H9BB—C9B—H9BC109.5
C5—C4—H4A109.2C5B—C10B—H10D109.5
C5—C4—H4B109.2C5B—C10B—H10E109.5
C4—C5—H5108.1C5B—C10B—H10F109.5
C4—C5—C6111.1 (6)H10D—C10B—H10E109.5
C4—C5—C10111.8 (14)H10D—C10B—H10F109.5
C6—C5—H5108.1H10E—C10B—H10F109.5
C6—C5—C10109.5 (13)H1CA—O1C—H1C130.5
C10—C5—H5108.1C1C—O1C—H1CA98 (10)
C1—C6—H6A109.0C1C—O1C—H1C109.5
C1—C6—H6B109.0O1C—C1C—H1CB106.3
C5—C6—C1112.9 (12)O1C—C1C—C2C111.5 (17)
C5—C6—H6A109.0O1C—C1C—C6C108.5 (9)
C5—C6—H6B109.0C2C—C1C—H1CB106.3
H6A—C6—H6B107.8C2C—C1C—C6C117.2 (11)
C2—C7—H7106.9C6C—C1C—H1CB106.3
C2—C7—C8111.5 (18)C1C—C2C—H2C105.4
C2—C7—C9116.1 (10)C1C—C2C—C3C110.3 (18)
C8—C7—H7106.9C1C—C2C—C7C115.8 (15)
C9—C7—H7106.9C3C—C2C—H2C105.4
C9—C7—C8108.1 (15)C3C—C2C—C7C113.5 (11)
C7—C8—H8A109.5C7C—C2C—H2C105.4
C7—C8—H8B109.5C2C—C3C—H3CA109.1
C7—C8—H8C109.5C2C—C3C—H3CB109.1
H8A—C8—H8B109.5H3CA—C3C—H3CB107.8
H8A—C8—H8C109.5C4C—C3C—C2C112.6 (9)
H8B—C8—H8C109.5C4C—C3C—H3CA109.1
C7—C9—H9A109.5C4C—C3C—H3CB109.1
C7—C9—H9B109.5C3C—C4C—H4CA108.8
C7—C9—H9C109.5C3C—C4C—H4CB108.8
H9A—C9—H9B109.5C3C—C4C—C5C113.9 (12)
H9A—C9—H9C109.5H4CA—C4C—H4CB107.7
H9B—C9—H9C109.5C5C—C4C—H4CA108.8
C5—C10—H10A109.5C5C—C4C—H4CB108.8
C5—C10—H10B109.5C4C—C5C—H5C107.6
C5—C10—H10C109.5C6C—C5C—C4C106.9 (16)
H10A—C10—H10B109.5C6C—C5C—H5C107.6
H10A—C10—H10C109.5C10C—C5C—C4C113.9 (12)
H10B—C10—H10C109.5C10C—C5C—H5C107.6
H1BB—O1B—H1BA116.5C10C—C5C—C6C112.9 (9)
C1B—O1B—H1BB109.5C1C—C6C—C5C112.9 (8)
C1B—O1B—H1BA103 (5)C1C—C6C—H6CA109.0
O1B—C1B—H1BC108.2C1C—C6C—H6CB109.0
O1B—C1B—C2B112.9 (6)C5C—C6C—H6CA109.0
O1B—C1B—C6B107.4 (12)C5C—C6C—H6CB109.0
C2B—C1B—H1BC108.2H6CA—C6C—H6CB107.8
C2B—C1B—C6B111.9 (16)C2C—C7C—H7C106.7
C6B—C1B—H1BC108.2C8C—C7C—C2C111.2 (17)
C1B—C2B—H2B105.4C8C—C7C—H7C106.7
C1B—C2B—C3B109.4 (6)C8C—C7C—C9C114.7 (15)
C1B—C2B—C7B114.8 (15)C9C—C7C—C2C110.2 (17)
C3B—C2B—H2B105.4C9C—C7C—H7C106.7
C3B—C2B—C7B115.4 (15)C7C—C8C—H8CA109.5
C7B—C2B—H2B105.4C7C—C8C—H8CB109.5
C2B—C3B—H3BA109.0C7C—C8C—H8CC109.5
C2B—C3B—H3BB109.0H8CA—C8C—H8CB109.5
H3BA—C3B—H3BB107.8H8CA—C8C—H8CC109.5
C4B—C3B—C2B112.8 (14)H8CB—C8C—H8CC109.5
C4B—C3B—H3BA109.0C7C—C9C—H9CA109.5
C4B—C3B—H3BB109.0C7C—C9C—H9CB109.5
C3B—C4B—H4BA108.0C7C—C9C—H9CC109.5
C3B—C4B—H4BB108.0H9CA—C9C—H9CB109.5
C3B—C4B—C5B117.4 (15)H9CA—C9C—H9CC109.5
H4BA—C4B—H4BB107.2H9CB—C9C—H9CC109.5
C5B—C4B—H4BA108.0C5C—C10C—H10G109.5
C5B—C4B—H4BB108.0C5C—C10C—H10H109.5
C4B—C5B—H5B107.7C5C—C10C—H10I109.5
C4B—C5B—C6B109.6 (8)H10G—C10C—H10H109.5
C4B—C5B—C10B114.8 (17)H10G—C10C—H10I109.5
C6B—C5B—H5B107.7H10H—C10C—H10I109.5
C6B—C5B—C10B109.2 (16)
O1—C1—C2—C3179.2 (15)C3B—C2B—C7B—C9B55.7 (16)
O1—C1—C2—C751 (2)C3B—C4B—C5B—C6B49 (2)
O1—C1—C6—C5178.5 (8)C3B—C4B—C5B—C10B172.5 (14)
C1—C2—C3—C455 (2)C4B—C5B—C6B—C1B51 (2)
C1—C2—C7—C8158.9 (10)C6B—C1B—C2B—C3B57 (2)
C1—C2—C7—C976.7 (13)C6B—C1B—C2B—C7B171.1 (14)
C2—C1—C6—C555.9 (14)C7B—C2B—C3B—C4B176.7 (16)
C2—C3—C4—C555.9 (16)C10B—C5B—C6B—C1B177.9 (14)
C3—C2—C7—C874.3 (18)O1C—C1C—C2C—C3C174.0 (5)
C3—C2—C7—C950.2 (15)O1C—C1C—C2C—C7C55.3 (17)
C3—C4—C5—C654.2 (19)O1C—C1C—C6C—C5C178.2 (16)
C3—C4—C5—C10176.8 (11)C1C—C2C—C3C—C4C50.3 (18)
C4—C5—C6—C154.6 (19)C1C—C2C—C7C—C8C168.7 (15)
C6—C1—C2—C355 (2)C1C—C2C—C7C—C9C62.9 (16)
C6—C1—C2—C7175.2 (13)C2C—C1C—C6C—C5C51 (2)
C7—C2—C3—C4175.1 (13)C2C—C3C—C4C—C5C57.5 (19)
C10—C5—C6—C1178.5 (11)C3C—C2C—C7C—C8C62 (2)
O1B—C1B—C2B—C3B178.6 (18)C3C—C2C—C7C—C9C66 (2)
O1B—C1B—C2B—C7B50 (2)C3C—C4C—C5C—C6C55.9 (13)
O1B—C1B—C6B—C5B177.3 (9)C3C—C4C—C5C—C10C178.7 (5)
C1B—C2B—C3B—C4B52 (2)C4C—C5C—C6C—C1C50.7 (16)
C1B—C2B—C7B—C8B158.8 (11)C6C—C1C—C2C—C3C48.1 (16)
C1B—C2B—C7B—C9B72.9 (15)C6C—C1C—C2C—C7C178.8 (7)
C2B—C1B—C6B—C5B58.3 (16)C7C—C2C—C3C—C4C177.8 (18)
C2B—C3B—C4B—C5B50 (2)C10C—C5C—C6C—C1C176.7 (16)
C3B—C2B—C7B—C8B73 (2)
beta-DL-2-Isopropyl-5-methylcyclohexanol (beta_DL_0.57GPa) top
Crystal data top
C10H20OF(000) = 1056
Mr = 156.26Dx = 1.088 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.707 (10) ÅCell parameters from 1419 reflections
b = 20.974 (3) Åθ = 26.6–3.4°
c = 11.987 (10) ŵ = 0.07 mm1
β = 103.48 (10)°T = 296 K
V = 2862 (4) Å3Plate, colourless
Z = 120.45 × 0.45 × 0.02 mm
Data collection top
Xcalibur, Eos
diffractometer
1419 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source564 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.189
ω and φ scansθmax = 28.4°, θmin = 3.4°
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1010
Tmin = 0.970, Tmax = 0.999k = 2727
16614 measured reflectionsl = 1010
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.095 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.348(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.12 e Å3
1419 reflectionsΔρmin = 0.12 e Å3
312 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
206 restraintsExtinction coefficient: 0.007 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0119 (14)0.0653 (3)0.5043 (12)0.086 (11)
H1B0.0528940.0632920.4892310.130*0.5
H1A0.01 (2)0.0259 (11)0.51 (2)0.130*0.5
C10.0017 (17)0.0932 (4)0.6059 (17)0.061 (7)
H10.0708420.0788040.6318760.073*
C20.0142 (17)0.1653 (4)0.5983 (16)0.072 (7)
H20.0577880.1781900.5758630.108*
C30.0011 (18)0.1953 (4)0.7071 (16)0.068 (7)
H3A0.0719140.1873430.7337490.082*
H3B0.0037190.2409510.6960450.082*
C40.1019 (18)0.1758 (4)0.8004 (17)0.083 (7)
H4A0.1727280.1943670.7852370.099*
H4B0.0921040.1927990.8728380.099*
C50.117 (2)0.1054 (5)0.811 (2)0.087 (7)
H50.0507590.0907390.8415920.105*
C60.1007 (18)0.0735 (4)0.6999 (16)0.076 (7)
H6A0.0938940.0281200.7124270.091*
H6B0.1716540.0798560.6725770.091*
C70.110 (3)0.1881 (5)0.496 (3)0.082 (7)
H70.1118990.1603760.4300070.098*
C80.092 (2)0.2569 (5)0.4635 (18)0.108 (12)
H8A0.1538190.2691770.3994850.162*
H8B0.0925170.2842610.5275320.162*
H8C0.0176780.2605310.4429440.162*
C90.237 (3)0.1838 (5)0.532 (2)0.082 (12)
H9A0.2518540.1405070.5506410.124*
H9B0.2987610.1976580.4684170.124*
H9C0.2359830.2106450.5968660.124*
C100.226 (2)0.0848 (5)0.899 (2)0.109 (12)
H10A0.2305140.1076840.9691600.163*
H10B0.2221450.0398660.9128520.163*
H10C0.2944480.0938510.8704410.163*
O1B0.1917 (14)0.0486 (3)0.4252 (13)0.101 (11)
H1BB0.1327000.0519820.4506240.152*0.5
H1CA0.339 (5)0.029 (13)0.530 (11)0.152*0.5
C1B0.182 (2)0.0893 (4)0.3296 (18)0.075 (7)
H1BC0.2476680.0774700.2960370.089*
C2B0.196 (2)0.1587 (4)0.3515 (19)0.088 (7)
H2B0.1258640.1683560.3801220.106*
C3B0.174 (2)0.1948 (4)0.2498 (19)0.088 (7)
H3BA0.2437610.1918120.2187950.106*
H3BB0.1669010.2390350.2704240.106*
C4B0.072 (2)0.1789 (5)0.157 (2)0.115 (7)
H4BA0.0815030.1993530.0870940.138*
H4BB0.0025300.1969780.1757530.138*
C5B0.051 (2)0.1096 (6)0.133 (2)0.108 (7)
H5B0.1137070.0968610.0965380.129*
C6B0.0733 (18)0.0730 (5)0.2387 (17)0.086 (7)
H6BA0.0781170.0283710.2190840.103*
H6BB0.0059890.0776180.2723100.103*
C7B0.294 (3)0.1771 (6)0.454 (3)0.084 (7)
H7B0.2939210.1457570.5149540.101*
C8B0.278 (2)0.2414 (5)0.5020 (19)0.116 (12)
H8BA0.3417920.2501190.5661790.174*
H8BB0.2752280.2731290.4438560.174*
H8BC0.2051800.2421160.5265660.174*
C9B0.418 (3)0.1716 (6)0.420 (3)0.107 (13)
H9BA0.4253180.1298080.3894010.160*
H9BB0.4217480.2030230.3625030.160*
H9BC0.4801920.1785610.4862150.160*
C10B0.058 (3)0.0929 (6)0.047 (3)0.140 (13)
H10D0.1244940.1097420.0711870.209*
H10E0.0643720.0473920.0408170.209*
H10F0.0546390.1107970.0255980.209*
O1C0.4103 (13)0.0219 (3)0.5455 (15)0.094 (11)
H1C0.4670430.0067320.5256330.141*0.5
H1BA0.258 (5)0.053 (5)0.463 (9)0.141*0.5
C1C0.416 (2)0.0060 (5)0.660 (2)0.084 (7)
H1CB0.3653130.0372500.6847160.100*
C2C0.5290 (18)0.0144 (4)0.7383 (18)0.066 (7)
H2C0.5793810.0145460.7069470.080*
C3C0.5429 (19)0.0091 (4)0.8540 (19)0.081 (7)
H3CA0.5022250.0191420.8958900.098*
H3CB0.6255850.0088580.8923440.098*
C4C0.4956 (17)0.0752 (4)0.8560 (16)0.077 (7)
H4CA0.5035540.0884490.9349600.092*
H4CB0.5414630.1041710.8208170.092*
C5C0.3676 (19)0.0794 (4)0.7928 (18)0.084 (7)
H5C0.3211560.0507690.8295070.100*
C6C0.3575 (18)0.0576 (4)0.6689 (17)0.070 (7)
H6CA0.3926760.0897620.6292090.105*
H6CB0.2750510.0544850.6305140.105*
C7C0.5852 (18)0.0796 (5)0.7284 (18)0.079 (7)
H7C0.5801690.0876760.6468960.095*
C8C0.713 (2)0.0840 (5)0.791 (3)0.117 (12)
H8CA0.7607240.0675690.7425050.175*
H8CB0.7253910.0596100.8600950.175*
H8CC0.7325540.1278240.8087030.175*
C9C0.518 (2)0.1338 (5)0.774 (2)0.126 (12)
H9CA0.5344390.1317910.8559600.189*
H9CB0.4354140.1288910.7426880.189*
H9CC0.5434720.1742400.7507170.189*
C10C0.321 (2)0.1462 (5)0.794 (2)0.110 (12)
H10G0.2402440.1473740.7537410.165*
H10H0.3659540.1744610.7578210.165*
H10I0.3280690.1595290.8721870.165*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.119 (17)0.073 (4)0.066 (15)0.004 (7)0.019 (14)0.017 (6)
C10.064 (11)0.062 (5)0.057 (10)0.008 (6)0.016 (8)0.002 (6)
C20.062 (11)0.073 (5)0.078 (10)0.008 (6)0.014 (8)0.011 (6)
C30.067 (11)0.072 (5)0.067 (10)0.002 (6)0.018 (8)0.011 (6)
C40.075 (11)0.090 (6)0.080 (10)0.001 (7)0.013 (8)0.019 (7)
C50.082 (11)0.094 (6)0.086 (11)0.008 (7)0.021 (8)0.001 (7)
C60.079 (11)0.069 (5)0.081 (10)0.003 (6)0.019 (8)0.001 (6)
C70.086 (11)0.078 (6)0.084 (11)0.007 (8)0.023 (9)0.002 (7)
C80.090 (19)0.105 (7)0.128 (17)0.001 (9)0.026 (15)0.043 (10)
C90.090 (19)0.083 (6)0.081 (18)0.013 (11)0.033 (16)0.017 (9)
C100.097 (19)0.129 (8)0.096 (18)0.010 (10)0.016 (15)0.009 (10)
O1B0.110 (16)0.095 (4)0.085 (15)0.014 (7)0.003 (14)0.001 (7)
C1B0.071 (11)0.075 (5)0.078 (10)0.008 (7)0.018 (8)0.011 (7)
C2B0.090 (11)0.081 (6)0.098 (11)0.010 (7)0.030 (8)0.004 (7)
C3B0.087 (11)0.088 (6)0.091 (10)0.008 (7)0.022 (8)0.009 (7)
C4B0.110 (11)0.127 (7)0.106 (11)0.017 (8)0.017 (9)0.023 (8)
C5B0.097 (11)0.126 (7)0.094 (11)0.000 (8)0.009 (8)0.009 (8)
C6B0.080 (11)0.094 (6)0.080 (10)0.001 (7)0.011 (8)0.007 (7)
C7B0.082 (11)0.084 (6)0.086 (11)0.006 (8)0.021 (9)0.012 (7)
C8B0.11 (2)0.120 (8)0.124 (18)0.009 (10)0.033 (15)0.046 (11)
C9B0.10 (2)0.108 (8)0.110 (19)0.008 (13)0.025 (16)0.016 (10)
C10B0.12 (2)0.177 (11)0.103 (18)0.015 (12)0.002 (16)0.003 (12)
O1C0.091 (16)0.102 (5)0.077 (14)0.000 (6)0.005 (14)0.007 (6)
C1C0.082 (11)0.086 (6)0.081 (11)0.000 (7)0.015 (8)0.001 (7)
C2C0.068 (11)0.074 (5)0.056 (10)0.012 (6)0.011 (8)0.002 (6)
C3C0.071 (11)0.088 (6)0.079 (10)0.014 (7)0.008 (8)0.002 (7)
C4C0.087 (11)0.079 (5)0.062 (10)0.008 (6)0.014 (8)0.006 (6)
C5C0.088 (11)0.076 (5)0.090 (11)0.001 (7)0.026 (8)0.011 (7)
C6C0.073 (11)0.068 (5)0.069 (10)0.003 (6)0.015 (8)0.004 (6)
C7C0.081 (11)0.089 (6)0.067 (10)0.003 (7)0.015 (8)0.006 (7)
C8C0.084 (19)0.132 (9)0.129 (18)0.036 (10)0.015 (16)0.024 (10)
C9C0.15 (2)0.095 (7)0.133 (19)0.008 (10)0.044 (16)0.023 (10)
C10C0.126 (19)0.092 (7)0.115 (18)0.009 (10)0.035 (16)0.007 (9)
Geometric parameters (Å, º) top
O1—H1B0.8200C5B—C6B1.45 (3)
O1—H1A0.83 (2)C5B—C10B1.474 (16)
O1—C11.33 (2)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.520 (11)C7B—H7B0.9800
C1—C61.500 (12)C7B—C8B1.49 (2)
C2—H20.9800C7B—C9B1.60 (7)
C2—C31.42 (3)C8B—H8BA0.9600
C2—C71.535 (16)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.498 (12)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.489 (12)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.46 (3)O1C—H1CA0.82 (2)
C5—C101.522 (14)O1C—H1C0.8200
C6—H6A0.9700O1C—C1C1.39 (3)
C6—H6B0.9700C1C—H1CB0.9800
C7—H70.9800C1C—C2C1.443 (15)
C7—C81.52 (2)C1C—C6C1.52 (2)
C7—C91.64 (6)C2C—H2C0.9800
C8—H8A0.9600C2C—C3C1.44 (3)
C8—H8B0.9600C2C—C7C1.53 (2)
C8—H8C0.9600C3C—H3CA0.9700
C9—H9A0.9600C3C—H3CB0.9700
C9—H9B0.9700C3C—C4C1.495 (16)
C9—H9C0.9600C4C—H4CA0.9700
C10—H10A0.9600C4C—H4CB0.9700
C10—H10B0.9600C4C—C5C1.516 (19)
C10—H10C0.9600C5C—H5C0.9800
O1B—H1BB0.8200C5C—C6C1.53 (3)
O1B—C1B1.41 (2)C5C—C10C1.504 (19)
O1B—H1BA0.81 (2)C6C—H6CA0.9700
C1B—H1BC0.9800C6C—H6CB0.9700
C1B—C2B1.482 (12)C7C—H7C0.9800
C1B—C6B1.508 (14)C7C—C8C1.51 (2)
C2B—H2B0.9800C7C—C9C1.55 (3)
C2B—C3B1.41 (3)C8C—H8CA0.9600
C2B—C7B1.525 (16)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.473 (14)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.491 (14)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1B—O1—H1A88.00C10B—C5B—H5B103.9
C1—O1—H1B109.5C1B—C6B—H6BA107.9
C1—O1—H1A113 (10)C1B—C6B—H6BB107.9
O1—C1—H1104.5C5B—C6B—C1B117.6 (17)
O1—C1—C2113.4 (14)C5B—C6B—H6BA107.9
O1—C1—C6116.8 (17)C5B—C6B—H6BB107.9
C2—C1—H1104.5H6BA—C6B—H6BB107.2
C6—C1—H1104.5C2B—C7B—H7B107.4
C6—C1—C2111.6 (7)C2B—C7B—C9B109 (3)
C1—C2—H2102.4C8B—C7B—C2B113.5 (13)
C1—C2—C7113.6 (8)C8B—C7B—H7B107.4
C3—C2—C1113.3 (14)C8B—C7B—C9B111.6 (17)
C3—C2—H2102.4C9B—C7B—H7B107.4
C3—C2—C7119.7 (18)C7B—C8B—H8BA109.5
C7—C2—H2102.4C7B—C8B—H8BB109.5
C2—C3—H3A108.0C7B—C8B—H8BC109.5
C2—C3—H3B108.0H8BA—C8B—H8BB109.5
C2—C3—C4117.4 (16)H8BA—C8B—H8BC109.5
H3A—C3—H3B107.2H8BB—C8B—H8BC109.5
C4—C3—H3A108.0C7B—C9B—H9BA109.5
C4—C3—H3B108.0C7B—C9B—H9BB109.5
C3—C4—H4A109.0C7B—C9B—H9BC109.5
C3—C4—H4B109.0H9BA—C9B—H9BB109.5
H4A—C4—H4B107.8H9BA—C9B—H9BC109.5
C5—C4—C3112.9 (7)H9BB—C9B—H9BC109.5
C5—C4—H4A109.0C5B—C10B—H10D109.5
C5—C4—H4B109.0C5B—C10B—H10E109.5
C4—C5—H5104.9C5B—C10B—H10F109.5
C4—C5—C10113.6 (9)H10D—C10B—H10E109.5
C6—C5—C4113.1 (15)H10D—C10B—H10F109.5
C6—C5—H5104.9H10E—C10B—H10F109.5
C6—C5—C10114 (2)H1CA—O1C—H1C147.7
C10—C5—H5104.9C1C—O1C—H1CA95 (9)
C1—C6—H6A107.8C1C—O1C—H1C109.5
C1—C6—H6B107.8O1C—C1C—H1CB104.3
C5—C6—C1117.9 (16)O1C—C1C—C2C116 (2)
C5—C6—H6A107.8O1C—C1C—C6C111.2 (11)
C5—C6—H6B107.8C2C—C1C—H1CB104.3
H6A—C6—H6B107.2C2C—C1C—C6C114.8 (10)
C2—C7—H7109.3C6C—C1C—H1CB104.3
C2—C7—C9108 (3)C1C—C2C—H2C102.4
C8—C7—C2112.2 (11)C1C—C2C—C3C118 (2)
C8—C7—H7109.3C1C—C2C—C7C113.7 (10)
C8—C7—C9108.1 (18)C3C—C2C—H2C102.4
C9—C7—H7109.3C3C—C2C—C7C115.1 (10)
C7—C8—H8A109.5C7C—C2C—H2C102.4
C7—C8—H8B109.5C2C—C3C—H3CA109.3
C7—C8—H8C109.5C2C—C3C—H3CB109.3
H8A—C8—H8B109.5C2C—C3C—C4C111.8 (11)
H8A—C8—H8C109.5H3CA—C3C—H3CB107.9
H8B—C8—H8C109.5C4C—C3C—H3CA109.3
C7—C9—H9A109.5C4C—C3C—H3CB109.3
C7—C9—H9B109.5C3C—C4C—H4CA109.2
C7—C9—H9C109.5C3C—C4C—H4CB109.2
H9A—C9—H9B109.5C3C—C4C—C5C111.9 (8)
H9A—C9—H9C109.5H4CA—C4C—H4CB107.9
H9B—C9—H9C109.5C5C—C4C—H4CA109.2
C5—C10—H10A109.5C5C—C4C—H4CB109.2
C5—C10—H10B109.5C4C—C5C—H5C109.1
C5—C10—H10C109.5C4C—C5C—C6C108 (2)
H10A—C10—H10B109.5C6C—C5C—H5C109.1
H10A—C10—H10C109.5C10C—C5C—C4C111.4 (9)
H10B—C10—H10C109.5C10C—C5C—H5C109.1
H1BB—O1B—H1BA124.3C10C—C5C—C6C110.0 (13)
C1B—O1B—H1BB109.5C1C—C6C—C5C113.6 (12)
C1B—O1B—H1BA106 (6)C1C—C6C—H6CA108.9
O1B—C1B—H1BC104.9C1C—C6C—H6CB108.9
O1B—C1B—C2B117.7 (17)C5C—C6C—H6CA108.9
O1B—C1B—C6B110.1 (16)C5C—C6C—H6CB108.9
C2B—C1B—H1BC104.9H6CA—C6C—H6CB107.7
C2B—C1B—C6B113.0 (8)C2C—C7C—H7C107.7
C6B—C1B—H1BC104.9C2C—C7C—C9C111 (2)
C1B—C2B—H2B101.4C8C—C7C—C2C114.2 (9)
C1B—C2B—C7B115.0 (9)C8C—C7C—H7C107.7
C3B—C2B—C1B112.6 (16)C8C—C7C—C9C107.7 (13)
C3B—C2B—H2B101.4C9C—C7C—H7C107.7
C3B—C2B—C7B120.8 (18)C7C—C8C—H8CA109.5
C7B—C2B—H2B101.4C7C—C8C—H8CB109.5
C2B—C3B—H3BA107.6C7C—C8C—H8CC109.5
C2B—C3B—H3BB107.6H8CA—C8C—H8CB109.5
C2B—C3B—C4B118.9 (17)H8CA—C8C—H8CC109.5
H3BA—C3B—H3BB107.0H8CB—C8C—H8CC109.5
C4B—C3B—H3BA107.6C7C—C9C—H9CA109.5
C4B—C3B—H3BB107.6C7C—C9C—H9CB109.5
C3B—C4B—H4BA108.3C7C—C9C—H9CC109.5
C3B—C4B—H4BB108.3H9CA—C9C—H9CB109.5
C3B—C4B—C5B115.9 (8)H9CA—C9C—H9CC109.5
H4BA—C4B—H4BB107.4H9CB—C9C—H9CC109.5
C5B—C4B—H4BA108.3C5C—C10C—H10G109.5
C5B—C4B—H4BB108.3C5C—C10C—H10H109.5
C4B—C5B—H5B103.9C5C—C10C—H10I109.5
C6B—C5B—C4B111.0 (15)H10G—C10C—H10H109.5
C6B—C5B—H5B103.9H10G—C10C—H10I109.5
C6B—C5B—C10B116 (2)H10H—C10C—H10I109.5
C10B—C5B—C4B116.3 (10)
O1—C1—C2—C3178.9 (19)C3B—C2B—C7B—C9B63 (2)
O1—C1—C2—C740 (3)C3B—C4B—C5B—C6B39 (3)
O1—C1—C6—C5177.4 (18)C3B—C4B—C5B—C10B175 (3)
C1—C2—C3—C448 (3)C4B—C5B—C6B—C1B43 (3)
C1—C2—C7—C8158 (2)C6B—C1B—C2B—C3B45 (4)
C1—C2—C7—C982 (3)C6B—C1B—C2B—C7B171 (3)
C2—C1—C6—C545 (3)C7B—C2B—C3B—C4B174 (2)
C2—C3—C4—C547 (3)C10B—C5B—C6B—C1B179 (2)
C3—C2—C7—C863 (4)O1C—C1C—C2C—C3C172.2 (14)
C3—C2—C7—C956 (2)O1C—C1C—C2C—C7C49 (3)
C3—C4—C5—C643 (3)O1C—C1C—C6C—C5C176.7 (19)
C3—C4—C5—C10176 (3)C1C—C2C—C3C—C4C47 (2)
C4—C5—C6—C145 (3)C1C—C2C—C7C—C8C167 (2)
C6—C1—C2—C345 (3)C1C—C2C—C7C—C9C70 (2)
C6—C1—C2—C7174 (3)C2C—C1C—C6C—C5C42 (3)
C7—C2—C3—C4173.7 (19)C2C—C3C—C4C—C5C57 (3)
C10—C5—C6—C1177.1 (18)C3C—C2C—C7C—C8C52 (3)
O1B—C1B—C2B—C3B175 (2)C3C—C2C—C7C—C9C70.0 (19)
O1B—C1B—C2B—C7B41 (4)C3C—C4C—C5C—C6C58 (2)
O1B—C1B—C6B—C5B179 (2)C3C—C4C—C5C—C10C179 (2)
C1B—C2B—C3B—C4B44 (3)C4C—C5C—C6C—C1C51 (2)
C1B—C2B—C7B—C8B157 (3)C6C—C1C—C2C—C3C40 (3)
C1B—C2B—C7B—C9B77 (3)C6C—C1C—C2C—C7C179 (2)
C2B—C1B—C6B—C5B47 (3)C7C—C2C—C3C—C4C174.8 (19)
C2B—C3B—C4B—C5B43 (4)C10C—C5C—C6C—C1C172.7 (19)
C3B—C2B—C7B—C8B62 (4)
beta-DL-2-Isopropyl-5-methylcyclohexanol (beta_DL_0.64GPa) top
Crystal data top
C10H20OF(000) = 1056
Mr = 156.26Dx = 1.064 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.638 (5) ÅCell parameters from 2311 reflections
b = 21.198 (6) Åθ = 5.0–26.4°
c = 12.2482 (19) ŵ = 0.07 mm1
β = 104.36 (2)°T = 296 K
V = 2927.4 (16) Å3Plate, colourless
Z = 120.45 × 0.45 × 0.05 mm
Data collection top
Xcalibur, Eos
diffractometer
740 reflections with I > 2σ(I)
Detector resolution: 16.2413 pixels mm-1Rint = 0.134
ω and π scansθmax = 26.3°, θmin = 5.0°
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1010
Tmin = 0.971, Tmax = 0.997k = 2121
13201 measured reflectionsl = 1514
2311 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.083 w = 1/[σ2(Fo2) + (0.1662P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.301(Δ/σ)max < 0.001
S = 0.90Δρmax = 0.16 e Å3
2311 reflectionsΔρmin = 0.11 e Å3
312 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
207 restraintsExtinction coefficient: 0.010 (7)
Special details top

Experimental. Data were collected at room temperature and pressure of 0.64 (2) GPa (640000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0081 (6)0.0644 (3)0.5036 (4)0.113 (2)
H1B0.0588710.0637890.4932690.170*0.5
H1A0.04 (2)0.033 (4)0.524 (8)0.170*0.5
C10.0048 (8)0.0943 (4)0.6095 (5)0.101 (3)
H10.0757220.0811350.6330770.121*
C20.0097 (8)0.1663 (4)0.5952 (6)0.101 (3)
H20.0620870.1794970.5731560.152*
C30.0044 (8)0.1947 (4)0.7118 (5)0.103 (3)
H3A0.0031510.2403060.7067380.124*
H3B0.0751280.1826340.7350260.124*
C40.1046 (8)0.1726 (5)0.8000 (6)0.108 (3)
H4A0.1749870.1886040.7805250.130*
H4B0.1023630.1904030.8724160.130*
C50.1138 (8)0.1028 (5)0.8108 (5)0.110 (3)
H50.0469040.0883530.8396160.132*
C60.1021 (7)0.0724 (3)0.6980 (5)0.092 (2)
H6A0.0973290.0270030.7064060.110*
H6B0.1728830.0813140.6723830.110*
C70.1165 (11)0.1864 (5)0.5016 (6)0.106 (3)
H70.1203940.1583640.4372440.127*
C80.0915 (10)0.2536 (5)0.4651 (7)0.154 (4)
H8A0.0154790.2544980.4477990.231*
H8B0.1518630.2654440.3994720.231*
H8C0.0917170.2826470.5251390.231*
C90.2357 (10)0.1844 (4)0.5290 (7)0.123 (3)
H9A0.2530780.1418480.5464990.184*
H9B0.2956340.1989570.4652090.184*
H9C0.2343660.2110510.5926230.184*
C100.2280 (9)0.0842 (4)0.8978 (5)0.128 (3)
H10A0.2327360.0390590.9038790.191*
H10B0.2954090.0998780.8742210.191*
H10C0.2273860.1019550.9697620.191*
O1B0.1956 (6)0.0541 (3)0.4318 (4)0.123 (2)
H1BB0.1353050.0590630.4540190.185*0.5
H1CA0.355 (7)0.034 (11)0.498 (10)0.185*0.5
C1B0.1879 (8)0.0914 (5)0.3319 (6)0.104 (3)
H1BC0.2559410.0801810.3020310.124*
C2B0.1968 (8)0.1593 (5)0.3579 (6)0.101 (3)
H2B0.1245420.1699500.3813450.121*
C3B0.1883 (9)0.1952 (4)0.2483 (6)0.120 (3)
H3BA0.1868060.2401630.2628190.144*
H3BB0.2580860.1863750.2210420.144*
C4B0.0778 (9)0.1772 (5)0.1579 (6)0.133 (3)
H4BA0.0089950.1939600.1793920.160*
H4BB0.0816280.1974510.0878850.160*
C5B0.0596 (9)0.1085 (5)0.1367 (6)0.116 (3)
H5B0.1236770.0950520.1029800.139*
C6B0.0799 (8)0.0740 (4)0.2459 (5)0.103 (3)
H6BA0.0120150.0809460.2770290.124*
H6BB0.0832180.0291580.2308090.124*
C7B0.2973 (11)0.1788 (5)0.4534 (7)0.117 (3)
H7B0.2988510.1478900.5132180.141*
C8B0.2773 (10)0.2416 (5)0.5030 (7)0.154 (4)
H8BA0.3443980.2517050.5637090.230*
H8BB0.2674490.2735420.4458920.230*
H8BC0.2072730.2394640.5308820.230*
C9B0.4197 (10)0.1760 (4)0.4310 (7)0.123 (3)
H9BA0.4778250.1893940.4971160.184*
H9BB0.4364230.1335440.4126170.184*
H9BC0.4222570.2033750.3692160.184*
C10B0.0534 (9)0.0913 (4)0.0523 (6)0.147 (4)
H10D0.1199640.1036330.0806090.220*
H10E0.0556400.0466020.0397940.220*
H10F0.0567860.1128360.0174000.220*
O1C0.4107 (5)0.0204 (2)0.5470 (3)0.108 (2)
H1C0.4678410.0048840.5289520.162*0.5
H1BA0.262 (5)0.042 (7)0.450 (8)0.162*0.5
C1C0.4175 (9)0.0063 (4)0.6616 (5)0.104 (3)
H1CB0.3659520.0371150.6856410.125*
C2C0.5322 (8)0.0144 (4)0.7371 (5)0.103 (3)
H2C0.5825770.0150570.7082380.124*
C3C0.5408 (8)0.0086 (4)0.8553 (5)0.105 (3)
H3CA0.6235260.0089040.8965130.127*
H3CB0.4993890.0208310.8926730.127*
C4C0.4901 (10)0.0733 (4)0.8606 (6)0.121 (3)
H4CA0.5410610.1041080.8373710.145*
H4CB0.4891340.0826080.9379000.145*
C5C0.3731 (9)0.0793 (4)0.7908 (6)0.111 (3)
H5C0.3252970.0493110.8215060.133*
C6C0.3609 (8)0.0588 (4)0.6714 (5)0.100 (3)
H6CA0.2773930.0570740.6330270.150*
H6CB0.3979900.0900300.6333750.150*
C7C0.5910 (12)0.0811 (5)0.7285 (6)0.105 (3)
H7C0.5833450.0900770.6485560.126*
C8C0.7191 (11)0.0812 (4)0.7861 (9)0.153 (4)
H8CA0.7586950.0488680.7542850.229*
H8CB0.7289270.0731530.8650170.229*
H8CC0.7525970.1215030.7762310.229*
C9C0.5245 (10)0.1317 (5)0.7746 (7)0.145 (4)
H9CA0.5272400.1227170.8519930.218*
H9CB0.4434760.1326040.7315350.218*
H9CC0.5606990.1719310.7694430.218*
C10C0.3145 (9)0.1444 (5)0.7969 (6)0.138 (4)
H10G0.2362320.1445860.7476820.207*
H10H0.3613800.1767640.7740930.207*
H10I0.3096710.1522220.8728670.207*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.143 (7)0.097 (6)0.094 (3)0.001 (3)0.019 (3)0.012 (3)
C10.109 (8)0.105 (7)0.081 (4)0.002 (4)0.010 (4)0.012 (4)
C20.098 (8)0.103 (7)0.105 (5)0.005 (4)0.030 (4)0.002 (4)
C30.110 (8)0.092 (6)0.103 (4)0.006 (4)0.016 (4)0.015 (4)
C40.109 (8)0.115 (7)0.096 (4)0.005 (4)0.015 (4)0.006 (5)
C50.121 (8)0.122 (7)0.085 (4)0.011 (5)0.020 (4)0.017 (5)
C60.091 (7)0.096 (6)0.088 (4)0.005 (4)0.021 (4)0.006 (4)
C70.115 (8)0.103 (7)0.100 (5)0.003 (5)0.025 (5)0.003 (4)
C80.141 (12)0.132 (11)0.177 (7)0.006 (6)0.016 (6)0.028 (7)
C90.103 (12)0.138 (10)0.125 (6)0.006 (5)0.024 (6)0.012 (5)
C100.144 (11)0.148 (9)0.089 (4)0.014 (5)0.026 (5)0.005 (4)
O1B0.118 (8)0.137 (7)0.112 (3)0.014 (4)0.023 (4)0.039 (3)
C1B0.106 (8)0.103 (7)0.093 (5)0.006 (4)0.007 (4)0.018 (5)
C2B0.104 (8)0.096 (7)0.095 (4)0.004 (4)0.012 (4)0.009 (5)
C3B0.121 (8)0.109 (7)0.131 (5)0.009 (4)0.030 (5)0.014 (5)
C4B0.142 (9)0.137 (8)0.111 (5)0.009 (5)0.015 (5)0.033 (5)
C5B0.117 (8)0.129 (7)0.102 (5)0.002 (5)0.027 (5)0.010 (5)
C6B0.110 (8)0.093 (7)0.096 (4)0.000 (4)0.006 (4)0.011 (4)
C7B0.125 (9)0.110 (7)0.119 (5)0.013 (5)0.033 (6)0.012 (5)
C8B0.139 (12)0.146 (11)0.180 (7)0.004 (6)0.049 (6)0.062 (6)
C9B0.103 (11)0.126 (10)0.139 (6)0.017 (5)0.032 (6)0.006 (5)
C10B0.139 (12)0.187 (11)0.099 (5)0.005 (6)0.001 (6)0.018 (5)
O1C0.120 (7)0.124 (6)0.074 (3)0.007 (3)0.012 (3)0.015 (3)
C1C0.122 (8)0.112 (7)0.072 (4)0.005 (4)0.011 (4)0.013 (4)
C2C0.113 (8)0.105 (7)0.078 (4)0.001 (4)0.003 (4)0.006 (4)
C3C0.128 (8)0.109 (7)0.074 (4)0.009 (5)0.012 (4)0.009 (4)
C4C0.135 (8)0.120 (8)0.095 (4)0.002 (5)0.006 (5)0.021 (4)
C5C0.113 (8)0.123 (8)0.091 (4)0.006 (5)0.018 (5)0.025 (4)
C6C0.112 (7)0.099 (7)0.086 (4)0.004 (4)0.019 (4)0.005 (4)
C7C0.118 (8)0.106 (8)0.088 (4)0.003 (5)0.023 (5)0.001 (4)
C8C0.116 (12)0.155 (12)0.174 (7)0.010 (6)0.009 (7)0.010 (6)
C9C0.152 (12)0.133 (11)0.165 (7)0.008 (6)0.069 (7)0.005 (6)
C10C0.169 (12)0.124 (10)0.124 (5)0.018 (6)0.043 (6)0.022 (5)
Geometric parameters (Å, º) top
O1—H1B0.8200C5B—C6B1.491 (9)
O1—H1A0.81 (2)C5B—C10B1.502 (11)
O1—C11.435 (7)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.537 (9)C7B—H7B0.9800
C1—C61.507 (9)C7B—C8B1.504 (10)
C2—H20.9800C7B—C9B1.516 (11)
C2—C31.535 (9)C8B—H8BA0.9600
C2—C71.528 (12)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.521 (9)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.486 (9)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.501 (9)O1C—H1CA0.82 (2)
C5—C101.535 (10)O1C—H1C0.8200
C6—H6A0.9700O1C—C1C1.418 (7)
C6—H6B0.9700C1C—H1CB0.9800
C7—H70.9800C1C—C2C1.433 (10)
C7—C81.542 (10)C1C—C6C1.545 (10)
C7—C91.506 (10)C2C—H2C0.9800
C8—H8A0.9600C2C—C3C1.508 (9)
C8—H8B0.9600C2C—C7C1.585 (12)
C8—H8C0.9600C3C—H3CA0.9700
C9—H9A0.9600C3C—H3CB0.9700
C9—H9B0.9600C3C—C4C1.500 (10)
C9—H9C0.9600C4C—H4CA0.9700
C10—H10A0.9600C4C—H4CB0.9700
C10—H10B0.9600C4C—C5C1.423 (11)
C10—H10C0.9600C5C—H5C0.9800
O1B—H1BB0.8200C5C—C6C1.498 (8)
O1B—C1B1.441 (8)C5C—C10C1.549 (10)
O1B—H1BA0.80 (2)C6C—H6CA0.9700
C1B—H1BC0.9800C6C—H6CB0.9700
C1B—C2B1.472 (9)C7C—H7C0.9800
C1B—C6B1.473 (10)C7C—C8C1.483 (12)
C2B—H2B0.9800C7C—C9C1.512 (12)
C2B—C3B1.525 (9)C8C—H8CA0.9600
C2B—C7B1.493 (11)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.523 (11)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.486 (10)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1B—O1—H1A123.00C10B—C5B—H5B105.5
C1—O1—H1B109.5C1B—C6B—C5B115.8 (7)
C1—O1—H1A90.1 (16)C1B—C6B—H6BA108.3
O1—C1—H1107.8C1B—C6B—H6BB108.3
O1—C1—C2110.1 (6)C5B—C6B—H6BA108.3
O1—C1—C6110.3 (7)C5B—C6B—H6BB108.3
C2—C1—H1107.8H6BA—C6B—H6BB107.4
C6—C1—H1107.8C2B—C7B—H7B105.4
C6—C1—C2112.9 (6)C2B—C7B—C8B113.0 (8)
C1—C2—H2107.7C2B—C7B—C9B115.9 (8)
C3—C2—C1106.9 (6)C8B—C7B—H7B105.4
C3—C2—H2107.7C8B—C7B—C9B110.7 (8)
C7—C2—C1111.2 (7)C9B—C7B—H7B105.4
C7—C2—H2107.7C7B—C8B—H8BA109.5
C7—C2—C3115.2 (7)C7B—C8B—H8BB109.5
C2—C3—H3A109.2C7B—C8B—H8BC109.5
C2—C3—H3B109.2H8BA—C8B—H8BB109.5
H3A—C3—H3B107.9H8BA—C8B—H8BC109.5
C4—C3—C2112.0 (6)H8BB—C8B—H8BC109.5
C4—C3—H3A109.2C7B—C9B—H9BA109.5
C4—C3—H3B109.2C7B—C9B—H9BB109.5
C3—C4—H4A108.9C7B—C9B—H9BC109.5
C3—C4—H4B108.9H9BA—C9B—H9BB109.5
H4A—C4—H4B107.7H9BA—C9B—H9BC109.5
C5—C4—C3113.5 (6)H9BB—C9B—H9BC109.5
C5—C4—H4A108.9C5B—C10B—H10D109.5
C5—C4—H4B108.9C5B—C10B—H10E109.5
C4—C5—H5107.3C5B—C10B—H10F109.5
C4—C5—C6111.0 (6)H10D—C10B—H10E109.5
C4—C5—C10110.4 (7)H10D—C10B—H10F109.5
C6—C5—H5107.3H10E—C10B—H10F109.5
C6—C5—C10113.1 (7)H1CA—O1C—H1C119.6
C10—C5—H5107.3C1C—O1C—H1CA129 (9)
C1—C6—H6A108.9C1C—O1C—H1C109.5
C1—C6—H6B108.9O1C—C1C—H1CB105.6
C5—C6—C1113.6 (7)O1C—C1C—C2C115.3 (7)
C5—C6—H6A108.9O1C—C1C—C6C110.1 (6)
C5—C6—H6B108.9C2C—C1C—H1CB105.6
H6A—C6—H6B107.7C2C—C1C—C6C113.8 (6)
C2—C7—H7107.5C6C—C1C—H1CB105.6
C2—C7—C8107.3 (8)C1C—C2C—H2C103.7
C8—C7—H7107.5C1C—C2C—C3C114.2 (7)
C9—C7—C2116.6 (7)C1C—C2C—C7C114.4 (7)
C9—C7—H7107.5C3C—C2C—H2C103.7
C9—C7—C8110.0 (8)C3C—C2C—C7C115.1 (6)
C7—C8—H8A109.5C7C—C2C—H2C103.7
C7—C8—H8B109.5C2C—C3C—H3CA108.8
C7—C8—H8C109.5C2C—C3C—H3CB108.8
H8A—C8—H8B109.5H3CA—C3C—H3CB107.7
H8A—C8—H8C109.5C4C—C3C—C2C113.8 (6)
H8B—C8—H8C109.5C4C—C3C—H3CA108.8
C7—C9—H9A109.5C4C—C3C—H3CB108.8
C7—C9—H9B109.5C3C—C4C—H4CA109.1
C7—C9—H9C109.5C3C—C4C—H4CB109.1
H9A—C9—H9B109.5H4CA—C4C—H4CB107.8
H9A—C9—H9C109.5C5C—C4C—C3C112.5 (7)
H9B—C9—H9C109.5C5C—C4C—H4CA109.1
C5—C10—H10A109.5C5C—C4C—H4CB109.1
C5—C10—H10B109.5C4C—C5C—H5C105.1
C5—C10—H10C109.5C4C—C5C—C6C113.9 (8)
H10A—C10—H10B109.5C4C—C5C—C10C114.7 (8)
H10A—C10—H10C109.5C6C—C5C—H5C105.1
H10B—C10—H10C109.5C6C—C5C—C10C111.7 (7)
H1BB—O1B—H1BA143.4C10C—C5C—H5C105.1
C1B—O1B—H1BB109.5C1C—C6C—H6CA108.9
C1B—O1B—H1BA106 (5)C1C—C6C—H6CB108.9
O1B—C1B—H1BC107.3C5C—C6C—C1C113.3 (6)
O1B—C1B—C2B111.4 (6)C5C—C6C—H6CA108.9
O1B—C1B—C6B109.4 (7)C5C—C6C—H6CB108.9
C2B—C1B—H1BC107.3H6CA—C6C—H6CB107.7
C2B—C1B—C6B113.7 (6)C2C—C7C—H7C107.8
C6B—C1B—H1BC107.3C8C—C7C—C2C111.7 (7)
C1B—C2B—H2B105.6C8C—C7C—H7C107.8
C1B—C2B—C3B108.2 (6)C8C—C7C—C9C111.6 (8)
C1B—C2B—C7B116.1 (7)C9C—C7C—C2C109.8 (11)
C3B—C2B—H2B105.6C9C—C7C—H7C107.8
C7B—C2B—H2B105.6C7C—C8C—H8CA109.5
C7B—C2B—C3B114.7 (8)C7C—C8C—H8CB109.5
C2B—C3B—H3BA109.2C7C—C8C—H8CC109.5
C2B—C3B—H3BB109.2H8CA—C8C—H8CB109.5
H3BA—C3B—H3BB107.9H8CA—C8C—H8CC109.5
C4B—C3B—C2B111.9 (7)H8CB—C8C—H8CC109.5
C4B—C3B—H3BA109.2C7C—C9C—H9CA109.5
C4B—C3B—H3BB109.2C7C—C9C—H9CB109.5
C3B—C4B—H4BA108.4C7C—C9C—H9CC109.5
C3B—C4B—H4BB108.4H9CA—C9C—H9CB109.5
H4BA—C4B—H4BB107.5H9CA—C9C—H9CC109.5
C5B—C4B—C3B115.5 (7)H9CB—C9C—H9CC109.5
C5B—C4B—H4BA108.4C5C—C10C—H10G109.5
C5B—C4B—H4BB108.4C5C—C10C—H10H109.5
C4B—C5B—H5B105.5C5C—C10C—H10I109.5
C4B—C5B—C6B109.9 (7)H10G—C10C—H10H109.5
C4B—C5B—C10B114.8 (7)H10G—C10C—H10I109.5
C6B—C5B—H5B105.5H10H—C10C—H10I109.5
C6B—C5B—C10B114.6 (8)
O1—C1—C2—C3179.4 (7)C3B—C2B—C7B—C9B55.5 (11)
O1—C1—C2—C754.1 (9)C3B—C4B—C5B—C6B45.7 (10)
O1—C1—C6—C5178.4 (6)C3B—C4B—C5B—C10B176.5 (8)
C1—C2—C3—C456.0 (9)C4B—C5B—C6B—C1B46.9 (10)
C1—C2—C7—C8160.5 (7)C6B—C1B—C2B—C3B56.0 (9)
C1—C2—C7—C975.7 (9)C6B—C1B—C2B—C7B173.4 (8)
C2—C1—C6—C554.8 (10)C7B—C2B—C3B—C4B174.8 (9)
C2—C3—C4—C556.5 (9)C10B—C5B—C6B—C1B177.9 (8)
C3—C2—C7—C877.6 (10)O1C—C1C—C2C—C3C172.7 (7)
C3—C2—C7—C946.2 (11)O1C—C1C—C2C—C7C51.7 (11)
C3—C4—C5—C651.5 (8)O1C—C1C—C6C—C5C175.5 (7)
C3—C4—C5—C10177.8 (7)C1C—C2C—C3C—C4C47.8 (11)
C4—C5—C6—C150.7 (10)C1C—C2C—C7C—C8C165.8 (8)
C6—C1—C2—C355.7 (8)C1C—C2C—C7C—C9C69.8 (9)
C6—C1—C2—C7177.7 (8)C2C—C1C—C6C—C5C44.3 (12)
C7—C2—C3—C4179.8 (8)C2C—C3C—C4C—C5C51.3 (11)
C10—C5—C6—C1175.5 (8)C3C—C2C—C7C—C8C59.0 (12)
O1B—C1B—C2B—C3B179.8 (7)C3C—C2C—C7C—C9C65.4 (11)
O1B—C1B—C2B—C7B49.2 (9)C3C—C4C—C5C—C6C52.0 (11)
O1B—C1B—C6B—C5B179.7 (7)C3C—C4C—C5C—C10C177.5 (8)
C1B—C2B—C3B—C4B53.8 (9)C4C—C5C—C6C—C1C48.5 (11)
C1B—C2B—C7B—C8B158.7 (8)C6C—C1C—C2C—C3C44.1 (11)
C1B—C2B—C7B—C9B71.9 (9)C6C—C1C—C2C—C7C179.7 (7)
C2B—C1B—C6B—C5B55.0 (10)C7C—C2C—C3C—C4C176.9 (9)
C2B—C3B—C4B—C5B51.5 (10)C10C—C5C—C6C—C1C179.5 (9)
C3B—C2B—C7B—C8B73.8 (11)
beta-DL-2-Isopropyl-5-methylcyclohexanol (beta_DL_0.67GPa) top
Crystal data top
C10H20OF(000) = 1056
Mr = 156.26Dx = 1.072 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.745 (5) ÅCell parameters from 1202 reflections
b = 21.172 (3) Åθ = 3.4–22.0°
c = 12.054 (8) ŵ = 0.07 mm1
β = 104.29 (7)°T = 296 K
V = 2905 (3) Å3Plate, colourless
Z = 120.45 × 0.45 × 0.02 mm
Data collection top
Xcalibur, Eos
diffractometer
584 reflections with I > 2σ(I)
Detector resolution: 16.2413 pixels mm-1Rint = 0.276
ω and π scansθmax = 22.0°, θmin = 3.4°
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1010
Tmin = 0.971, Tmax = 0.999k = 2122
20654 measured reflectionsl = 99
1202 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.100 w = 1/[σ2(Fo2) + (0.1098P)2 + 11.5695P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.307(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.11 e Å3
1202 reflectionsΔρmin = 0.11 e Å3
312 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
205 restraintsExtinction coefficient: 0.005 (3)
Special details top

Experimental. Data were collected at room temperature and pressure of 0.67 (2) GPa (670000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0052 (14)0.0648 (4)0.5045 (16)0.070 (6)
H1B0.0613640.0644480.4945700.105*0.5
H1A0.056 (18)0.037 (11)0.50 (4)0.105*0.5
C10.0028 (19)0.0932 (6)0.614 (2)0.066 (5)
H10.0721490.0793230.6384440.079*
C20.0092 (19)0.1644 (5)0.596 (2)0.061 (5)
H20.0636610.1767870.5759380.092*
C30.0049 (18)0.1940 (6)0.712 (2)0.067 (5)
H3A0.0062920.2397080.7055990.080*
H3B0.0730670.1809610.7382930.080*
C40.1037 (18)0.1739 (6)0.796 (2)0.074 (5)
H4A0.1709350.1906450.7723950.089*
H4B0.1042190.1919620.8699510.089*
C50.117 (2)0.1051 (6)0.808 (2)0.080 (6)
H50.0512480.0905410.8388170.096*
C60.1052 (18)0.0724 (5)0.700 (2)0.055 (5)
H6A0.1013210.0272480.7123920.066*
H6B0.1738440.0808270.6714340.066*
C70.110 (2)0.1871 (6)0.497 (3)0.065 (5)
H70.1119620.1603450.4307130.078*
C80.093 (2)0.2540 (6)0.465 (2)0.092 (6)
H8A0.0186400.2577630.4454750.138*
H8B0.1549400.2657570.4003060.138*
H8C0.0937390.2812970.5282930.138*
C90.228 (2)0.1804 (7)0.529 (3)0.092 (7)
H9A0.2376980.1373900.5496320.139*
H9B0.2900120.1918140.4640030.139*
H9C0.2289170.2076600.5918860.139*
C100.229 (2)0.0857 (7)0.896 (3)0.108 (8)
H10A0.2344700.1080440.9663820.162*
H10B0.2278500.0410790.9096500.162*
H10C0.2961910.0958450.8669550.162*
O1B0.1936 (14)0.0513 (4)0.4279 (16)0.080 (6)
H1BA0.1337140.0561090.4504170.120*0.5
H1BB0.25 (2)0.066 (12)0.474 (11)0.120*0.5
C1B0.188 (2)0.0899 (6)0.329 (2)0.073 (5)
H1BC0.2530630.0785530.2960160.087*
C2B0.194 (2)0.1597 (7)0.354 (3)0.092 (6)
H2B0.1220580.1701140.3779250.110*
C3B0.185 (2)0.1945 (6)0.241 (2)0.086 (6)
H3BA0.1873550.2396740.2541990.104*
H3BB0.2510130.1831590.2103450.104*
C4B0.072 (2)0.1776 (7)0.155 (3)0.113 (7)
H4BA0.0054290.1919410.1828640.135*
H4BB0.0688930.1988710.0831080.135*
C5B0.063 (2)0.1085 (7)0.136 (3)0.091 (6)
H5B0.1262960.0950170.1009990.109*
C6B0.072 (2)0.0717 (6)0.243 (2)0.077 (5)
H6BA0.0708580.0267810.2271910.093*
H6BB0.0055050.0813790.2750210.093*
C7B0.294 (2)0.1787 (7)0.453 (3)0.082 (6)
H7B0.2954430.1485100.5144270.099*
C8B0.280 (2)0.2430 (6)0.499 (2)0.098 (7)
H8BA0.3467690.2521540.5615890.148*
H8BB0.2746080.2739600.4402890.148*
H8BC0.2099080.2439100.5266870.148*
C9B0.413 (2)0.1728 (7)0.423 (3)0.093 (7)
H9BA0.4203150.1314220.3927310.139*
H9BB0.4182110.2039480.3661050.139*
H9BC0.4750560.1795170.4901940.139*
C10B0.057 (3)0.0935 (11)0.052 (3)0.138 (9)
H10D0.1186040.0983700.0916640.207*
H10E0.0570380.0508570.0254180.207*
H10F0.0706140.1220210.0114000.207*
O1C0.4132 (16)0.0224 (5)0.5438 (19)0.081 (6)
H1CA0.4711330.0063230.5287190.122*0.5
H1C0.343 (6)0.031 (15)0.53 (4)0.122*0.5
C1C0.412 (2)0.0072 (6)0.666 (3)0.072 (6)
H1CB0.3622370.0373290.6933360.087*
C2C0.5359 (18)0.0138 (5)0.734 (2)0.059 (5)
H2C0.5812040.0165420.7007810.071*
C3C0.542 (2)0.0092 (6)0.850 (2)0.072 (5)
H3CA0.4981940.0193430.8866780.086*
H3CB0.6234670.0082530.8936150.086*
C4C0.4957 (17)0.0743 (5)0.854 (2)0.068 (5)
H4CA0.5423290.1036500.8217560.082*
H4CB0.5019230.0862490.9327810.082*
C5C0.371 (2)0.0780 (6)0.788 (3)0.081 (6)
H5C0.3272720.0471770.8220340.098*
C6C0.3635 (19)0.0571 (5)0.665 (2)0.062 (5)
H6CA0.4073150.0861740.6289640.093*
H6CB0.2821630.0574400.6212910.093*
C7C0.590 (2)0.0782 (6)0.722 (2)0.075 (5)
H7C0.5855210.0863940.6406370.090*
C8C0.715 (2)0.0821 (8)0.789 (3)0.103 (8)
H8CA0.7616510.0534820.7574420.155*
H8CB0.7194230.0708440.8672610.155*
H8CC0.7429950.1244010.7859290.155*
C9C0.524 (2)0.1321 (7)0.770 (3)0.103 (8)
H9CA0.5259750.1231940.8485070.154*
H9CB0.4444070.1343700.7259490.154*
H9CC0.5628340.1716560.7654110.154*
C10C0.3163 (19)0.1439 (6)0.797 (2)0.095 (7)
H10G0.2359680.1439800.7536990.143*
H10H0.3594700.1755030.7676250.143*
H10I0.3194170.1530420.8760040.143*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.072 (8)0.066 (5)0.076 (9)0.004 (5)0.025 (7)0.006 (6)
C10.066 (6)0.066 (6)0.066 (7)0.000 (4)0.017 (4)0.004 (4)
C20.062 (6)0.060 (5)0.062 (6)0.000 (4)0.017 (4)0.000 (4)
C30.068 (6)0.066 (5)0.068 (6)0.001 (4)0.018 (4)0.002 (4)
C40.073 (6)0.075 (6)0.073 (7)0.005 (4)0.017 (4)0.006 (4)
C50.080 (7)0.080 (6)0.081 (7)0.000 (4)0.020 (4)0.001 (4)
C60.056 (6)0.054 (5)0.057 (6)0.001 (4)0.016 (4)0.000 (4)
C70.066 (6)0.064 (5)0.066 (7)0.001 (4)0.018 (4)0.002 (4)
C80.092 (6)0.091 (6)0.092 (6)0.001 (2)0.023 (2)0.001 (2)
C90.088 (10)0.096 (8)0.092 (11)0.002 (7)0.020 (8)0.003 (7)
C100.106 (10)0.114 (8)0.103 (11)0.004 (7)0.023 (8)0.003 (8)
O1B0.075 (8)0.085 (5)0.078 (9)0.003 (5)0.015 (7)0.014 (6)
C1B0.076 (6)0.070 (6)0.074 (7)0.001 (4)0.021 (4)0.004 (4)
C2B0.092 (7)0.091 (6)0.092 (7)0.002 (4)0.023 (4)0.001 (4)
C3B0.088 (7)0.085 (6)0.087 (7)0.001 (4)0.022 (4)0.003 (4)
C4B0.112 (8)0.113 (7)0.112 (8)0.004 (4)0.027 (4)0.004 (4)
C5B0.089 (7)0.093 (6)0.089 (7)0.001 (4)0.021 (4)0.002 (4)
C6B0.077 (6)0.077 (6)0.077 (7)0.003 (4)0.019 (4)0.005 (4)
C7B0.083 (7)0.081 (6)0.083 (7)0.000 (4)0.021 (4)0.000 (4)
C8B0.098 (10)0.097 (8)0.102 (11)0.010 (7)0.028 (8)0.010 (8)
C9B0.091 (10)0.094 (8)0.095 (11)0.003 (7)0.023 (8)0.001 (7)
C10B0.130 (11)0.148 (10)0.132 (12)0.002 (8)0.026 (8)0.000 (8)
O1C0.078 (8)0.089 (6)0.075 (10)0.008 (6)0.016 (7)0.007 (7)
C1C0.072 (7)0.071 (6)0.074 (7)0.003 (4)0.018 (4)0.001 (4)
C2C0.059 (6)0.059 (5)0.059 (6)0.002 (4)0.015 (4)0.001 (4)
C3C0.071 (6)0.073 (6)0.070 (7)0.000 (4)0.017 (4)0.001 (4)
C4C0.071 (6)0.068 (5)0.066 (6)0.002 (4)0.017 (4)0.002 (4)
C5C0.082 (7)0.079 (6)0.083 (7)0.001 (4)0.022 (4)0.001 (4)
C6C0.064 (6)0.061 (5)0.063 (6)0.000 (4)0.017 (4)0.000 (4)
C7C0.075 (6)0.076 (6)0.073 (7)0.002 (4)0.018 (4)0.000 (4)
C8C0.098 (10)0.109 (8)0.102 (11)0.003 (7)0.024 (8)0.001 (8)
C9C0.109 (10)0.096 (8)0.107 (11)0.005 (7)0.032 (8)0.002 (8)
C10C0.100 (10)0.089 (7)0.099 (11)0.006 (7)0.030 (8)0.002 (7)
Geometric parameters (Å, º) top
O1—H1B0.8200C5B—C6B1.49 (4)
O1—H1A0.82 (2)C5B—C10B1.55 (2)
O1—C11.44 (3)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.523 (17)C7B—H7B0.9800
C1—C61.496 (16)C7B—C8B1.50 (3)
C2—H20.9800C7B—C9B1.53 (5)
C2—C31.53 (4)C8B—H8BA0.9600
C2—C71.532 (19)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.481 (15)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9700
C4—C51.467 (16)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.45 (3)O1C—H1CA0.8200
C5—C101.532 (18)O1C—H1C0.82 (2)
C6—H6A0.9700O1C—C1C1.51 (5)
C6—H6B0.9700C1C—H1CB0.9800
C7—H70.9800C1C—C2C1.49 (2)
C7—C81.50 (2)C1C—C6C1.48 (2)
C7—C91.52 (5)C2C—H2C0.9800
C8—H8A0.9600C2C—C3C1.47 (4)
C8—H8B0.9600C2C—C7C1.53 (2)
C8—H8C0.9600C3C—H3CA0.9700
C9—H9A0.9600C3C—H3CB0.9700
C9—H9B0.9600C3C—C4C1.49 (2)
C9—H9C0.9600C4C—H4CA0.9700
C10—H10A0.9600C4C—H4CB0.9700
C10—H10B0.9600C4C—C5C1.48 (2)
C10—H10C0.9600C5C—H5C0.9800
O1B—H1BA0.8200C5C—C6C1.53 (4)
O1B—H1BB0.82 (2)C5C—C10C1.55 (2)
O1B—C1B1.43 (3)C6C—H6CA0.9700
C1B—H1BC0.9800C6C—H6CB0.9700
C1B—C2B1.508 (19)C7C—H7C0.9800
C1B—C6B1.541 (17)C7C—C8C1.49 (2)
C2B—H2B0.9800C7C—C9C1.57 (4)
C2B—C3B1.53 (4)C8C—H8CA0.9600
C2B—C7B1.51 (2)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.510 (17)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.481 (18)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1B—O1—H1A132.3C10B—C5B—H5B109.0
C1—O1—H1B109.5C1B—C6B—H6BA110.1
C1—O1—H1A102.00C1B—C6B—H6BB110.1
O1—C1—H1108.9C5B—C6B—C1B108 (2)
O1—C1—C2107 (2)C5B—C6B—H6BA110.1
O1—C1—C6110 (2)C5B—C6B—H6BB110.1
C2—C1—H1108.9H6BA—C6B—H6BB108.4
C6—C1—H1108.9C2B—C7B—H7B106.6
C6—C1—C2113.2 (10)C2B—C7B—C9B112 (3)
C1—C2—H2106.4C8B—C7B—C2B113.6 (15)
C1—C2—C3107 (2)C8B—C7B—H7B106.6
C1—C2—C7114.9 (10)C8B—C7B—C9B110.8 (18)
C3—C2—H2106.4C9B—C7B—H7B106.6
C3—C2—C7115 (2)C7B—C8B—H8BA109.5
C7—C2—H2106.4C7B—C8B—H8BB109.5
C2—C3—H3A109.7C7B—C8B—H8BC109.5
C2—C3—H3B109.7H8BA—C8B—H8BB109.5
H3A—C3—H3B108.2H8BA—C8B—H8BC109.5
C4—C3—C2110 (2)H8BB—C8B—H8BC109.5
C4—C3—H3A109.7C7B—C9B—H9BA109.5
C4—C3—H3B109.7C7B—C9B—H9BB109.5
C3—C4—H4A108.8C7B—C9B—H9BC109.5
C3—C4—H4B108.8H9BA—C9B—H9BB109.5
H4A—C4—H4B107.7H9BA—C9B—H9BC109.5
C5—C4—C3113.9 (11)H9BB—C9B—H9BC109.5
C5—C4—H4A108.8C5B—C10B—H10D109.5
C5—C4—H4B108.8C5B—C10B—H10E109.5
C4—C5—H5106.2C5B—C10B—H10F109.5
C4—C5—C10112.7 (11)H10D—C10B—H10E109.5
C6—C5—C4113 (2)H10D—C10B—H10F109.5
C6—C5—H5106.2H10E—C10B—H10F109.5
C6—C5—C10111 (2)H1CA—O1C—H1C153.00
C10—C5—H5106.2C1C—O1C—H1CA109.5
C1—C6—H6A109.4C1C—O1C—H1C90.00
C1—C6—H6B109.4O1C—C1C—H1CB109.8
C5—C6—C1111.1 (19)C2C—C1C—O1C106 (3)
C5—C6—H6A109.4C2C—C1C—H1CB109.8
C5—C6—H6B109.4C6C—C1C—O1C106.5 (18)
H6A—C6—H6B108.0C6C—C1C—H1CB109.8
C2—C7—H7108.1C6C—C1C—C2C114.6 (12)
C8—C7—C2111.7 (12)C1C—C2C—H2C105.5
C8—C7—H7108.1C1C—C2C—C7C113.7 (11)
C8—C7—C9110.1 (18)C3C—C2C—C1C108 (3)
C9—C7—C2111 (3)C3C—C2C—H2C105.5
C9—C7—H7108.1C3C—C2C—C7C117.8 (15)
C7—C8—H8A109.5C7C—C2C—H2C105.5
C7—C8—H8B109.5C2C—C3C—H3CA108.8
C7—C8—H8C109.5C2C—C3C—H3CB108.8
H8A—C8—H8B109.5C2C—C3C—C4C113.9 (15)
H8A—C8—H8C109.5H3CA—C3C—H3CB107.7
H8B—C8—H8C109.5C4C—C3C—H3CA108.8
C7—C9—H9A109.5C4C—C3C—H3CB108.8
C7—C9—H9B109.5C3C—C4C—H4CA109.5
C7—C9—H9C109.5C3C—C4C—H4CB109.5
H9A—C9—H9B109.5H4CA—C4C—H4CB108.1
H9A—C9—H9C109.5C5C—C4C—C3C110.7 (11)
H9B—C9—H9C109.5C5C—C4C—H4CA109.5
C5—C10—H10A109.5C5C—C4C—H4CB109.5
C5—C10—H10B109.5C4C—C5C—H5C107.3
C5—C10—H10C109.5C4C—C5C—C6C108 (3)
H10A—C10—H10B109.5C4C—C5C—C10C112.6 (12)
H10A—C10—H10C109.5C6C—C5C—H5C107.3
H10B—C10—H10C109.5C6C—C5C—C10C113.5 (16)
H1BA—O1B—H1BB110.00C10C—C5C—H5C107.3
C1B—O1B—H1BA109.5C1C—C6C—C5C109.1 (18)
C1B—O1B—H1BB103 (4)C1C—C6C—H6CA109.9
O1B—C1B—H1BC108.5C1C—C6C—H6CB109.9
O1B—C1B—C2B114 (2)C5C—C6C—H6CA109.9
O1B—C1B—C6B105.7 (18)C5C—C6C—H6CB109.9
C2B—C1B—H1BC108.5H6CA—C6C—H6CB108.3
C2B—C1B—C6B111.8 (12)C2C—C7C—H7C109.5
C6B—C1B—H1BC108.5C2C—C7C—C9C111 (3)
C1B—C2B—H2B106.0C8C—C7C—C2C111.7 (12)
C1B—C2B—C3B108 (2)C8C—C7C—H7C109.5
C3B—C2B—H2B106.0C8C—C7C—C9C105.2 (18)
C7B—C2B—C1B114.2 (12)C9C—C7C—H7C109.5
C7B—C2B—H2B106.0C7C—C8C—H8CA109.5
C7B—C2B—C3B116 (2)C7C—C8C—H8CB109.5
C2B—C3B—H3BA109.5C7C—C8C—H8CC109.5
C2B—C3B—H3BB109.5H8CA—C8C—H8CB109.5
H3BA—C3B—H3BB108.1H8CA—C8C—H8CC109.5
C4B—C3B—C2B111 (2)H8CB—C8C—H8CC109.5
C4B—C3B—H3BA109.5C7C—C9C—H9CA109.5
C4B—C3B—H3BB109.5C7C—C9C—H9CB109.5
C3B—C4B—H4BA109.5C7C—C9C—H9CC109.5
C3B—C4B—H4BB109.5H9CA—C9C—H9CB109.5
H4BA—C4B—H4BB108.1H9CA—C9C—H9CC109.5
C5B—C4B—C3B110.7 (13)H9CB—C9C—H9CC109.5
C5B—C4B—H4BA109.5C5C—C10C—H10G109.5
C5B—C4B—H4BB109.5C5C—C10C—H10H109.5
C4B—C5B—H5B109.0C5C—C10C—H10I109.5
C4B—C5B—C6B113 (2)H10G—C10C—H10H109.5
C4B—C5B—C10B108.5 (15)H10G—C10C—H10I109.5
C6B—C5B—H5B109.0H10H—C10C—H10I109.5
C6B—C5B—C10B108 (2)
O1—C1—C2—C3179.2 (19)C3B—C2B—C7B—C9B55 (3)
O1—C1—C2—C752 (3)C3B—C4B—C5B—C6B57 (4)
O1—C1—C6—C5174 (2)C3B—C4B—C5B—C10B177 (3)
C1—C2—C3—C458 (2)C4B—C5B—C6B—C1B56 (3)
C1—C2—C7—C8165 (3)C6B—C1B—C2B—C3B60 (3)
C1—C2—C7—C972 (3)C6B—C1B—C2B—C7B170 (3)
C2—C1—C6—C554 (3)C7B—C2B—C3B—C4B172 (2)
C2—C3—C4—C557 (3)C10B—C5B—C6B—C1B176 (2)
C3—C2—C7—C870 (4)O1C—C1C—C2C—C3C172.1 (15)
C3—C2—C7—C953 (2)O1C—C1C—C2C—C7C55 (3)
C3—C4—C5—C653 (4)O1C—C1C—C6C—C5C175 (2)
C3—C4—C5—C10180 (3)C1C—C2C—C3C—C4C54 (3)
C4—C5—C6—C150 (3)C1C—C2C—C7C—C8C179 (3)
C6—C1—C2—C358 (3)C1C—C2C—C7C—C9C64 (3)
C6—C1—C2—C7173 (3)C2C—C1C—C6C—C5C58 (4)
C7—C2—C3—C4173.4 (18)C2C—C3C—C4C—C5C59 (3)
C10—C5—C6—C1178 (2)C3C—C2C—C7C—C8C54 (4)
O1B—C1B—C2B—C3B179 (2)C3C—C2C—C7C—C9C63 (2)
O1B—C1B—C2B—C7B50 (4)C3C—C4C—C5C—C6C58 (3)
O1B—C1B—C6B—C5B177 (2)C3C—C4C—C5C—C10C176 (3)
C1B—C2B—C3B—C4B58 (3)C4C—C5C—C6C—C1C57 (3)
C1B—C2B—C7B—C8B163 (3)C6C—C1C—C2C—C3C55 (3)
C1B—C2B—C7B—C9B71 (3)C6C—C1C—C2C—C7C173 (3)
C2B—C1B—C6B—C5B58 (4)C7C—C2C—C3C—C4C175.6 (19)
C2B—C3B—C4B—C5B57 (4)C10C—C5C—C6C—C1C177 (2)
C3B—C2B—C7B—C8B71 (4)
beta-DL-2-Isopropyl-5-methylcyclohexanol (beta_DL_0.70GPa) top
Crystal data top
C10H20OF(000) = 1056
Mr = 156.26Dx = 1.073 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.7042 (12) ÅCell parameters from 2354 reflections
b = 21.036 (3) Åθ = 4.8–26.4°
c = 12.178 (3) ŵ = 0.07 mm1
β = 104.505 (14)°T = 296 K
V = 2902.8 (8) Å3Plate, colourless
Z = 120.45 × 0.45 × 0.05 mm
Data collection top
Xcalibur, Eos
diffractometer
Rint = 0.090
ω and π scansθmax = 26.4°, θmin = 4.8°
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1414
Tmin = 0.971, Tmax = 0.997k = 2121
13598 measured reflectionsl = 1010
2354 independent reflections3 standard reflections every 120 min
1080 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.079 w = 1/[σ2(Fo2) + (0.142P)2 + 0.2464P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.273(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.15 e Å3
2354 reflectionsΔρmin = 0.15 e Å3
312 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
206 restraintsExtinction coefficient: 0.006 (5)
Special details top

Experimental. Data were collected at room temperature and pressure of 0.70 (2) GPa (700000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0078 (4)0.0648 (2)0.5018 (4)0.0913 (17)
H1A0.0590120.0644780.4920150.137*0.5
H1B0.002 (8)0.0309 (12)0.536 (3)0.137*0.5
C10.0057 (5)0.0945 (3)0.6075 (6)0.077 (2)
H10.0752290.0799000.6314490.092*
C20.0137 (5)0.1656 (3)0.5963 (6)0.073 (2)
H20.0583310.1790020.5755500.110*
C30.0073 (5)0.1953 (3)0.7111 (6)0.074 (2)
H3A0.0765160.1829460.7362530.089*
H3B0.0079520.2412080.7038460.089*
C40.1029 (5)0.1750 (3)0.7994 (6)0.093 (2)
H4A0.1718140.1916790.7785570.111*
H4B0.1011150.1932240.8721950.111*
C50.1136 (6)0.1040 (4)0.8109 (6)0.083 (2)
H50.0468930.0890370.8390780.100*
C60.1028 (5)0.0736 (3)0.6971 (6)0.073 (2)
H6A0.1003770.0277770.7054880.088*
H6B0.1725650.0837810.6711410.088*
C70.1158 (5)0.1882 (3)0.5005 (6)0.077 (2)
H70.1189010.1602170.4354360.092*
C80.0933 (5)0.2551 (4)0.4642 (8)0.120 (3)
H8A0.0174540.2567870.4474520.179*
H8B0.1534050.2664930.3977290.179*
H8C0.0948740.2843030.5243300.179*
C90.2355 (5)0.1847 (3)0.5272 (7)0.095 (2)
H9A0.2500290.1418470.5474720.142*
H9B0.2957100.1973360.4617950.142*
H9C0.2364790.2125570.5893790.142*
C100.2258 (5)0.0835 (3)0.8966 (6)0.102 (2)
H10A0.2297460.1037470.9680480.153*
H10B0.2253100.0381810.9059350.153*
H10C0.2931520.0955790.8697690.153*
O1B0.1942 (3)0.0515 (2)0.4277 (5)0.102 (2)
H1BB0.1348980.0559570.4511700.153*0.5
H1BA0.263 (4)0.043 (8)0.452 (17)0.153*0.5
C1B0.1842 (5)0.0890 (3)0.3293 (6)0.077 (2)
H1BC0.2498720.0773890.2968250.092*
C2B0.1954 (6)0.1581 (3)0.3561 (7)0.086 (2)
H2B0.1237810.1689560.3799120.104*
C3B0.1857 (5)0.1958 (3)0.2458 (7)0.088 (2)
H3BA0.1861890.2410480.2616690.106*
H3BB0.2529040.1863780.2155010.106*
C4B0.0739 (6)0.1786 (4)0.1603 (7)0.113 (3)
H4BA0.0723880.2006190.0899570.135*
H4BB0.0075860.1939110.1872450.135*
C5B0.0575 (6)0.1085 (4)0.1358 (7)0.099 (3)
H5B0.1214810.0954310.1019740.118*
C6B0.0753 (5)0.0733 (3)0.2453 (6)0.078 (2)
H6BA0.0090900.0820730.2774850.094*
H6BB0.0750110.0280520.2297160.094*
C7B0.2984 (5)0.1778 (3)0.4570 (6)0.084 (2)
H7B0.2999310.1475530.5186070.100*
C8B0.2811 (5)0.2419 (4)0.5003 (8)0.115 (3)
H8BA0.2054550.2439380.5174620.173*
H8BB0.3420170.2503060.5677980.173*
H8BC0.2845500.2731410.4437090.173*
C9B0.4195 (5)0.1744 (3)0.4294 (7)0.109 (3)
H9BA0.4305120.1327690.4013820.164*
H9BB0.4230210.2055470.3727860.164*
H9BC0.4804870.1827120.4968760.164*
C10B0.0556 (6)0.0931 (4)0.0509 (8)0.118 (3)
H10D0.1210360.1048610.0808620.176*
H10E0.0587600.0483160.0352470.176*
H10F0.0594550.1162330.0179030.176*
O1C0.4103 (3)0.0201 (2)0.5464 (4)0.0872 (18)
H1C0.4678570.0045930.5294860.131*0.5
H1CA0.347 (13)0.023 (8)0.532 (6)0.131*0.5
C1C0.4146 (5)0.0057 (3)0.6605 (7)0.078 (2)
H1CB0.3643500.0372030.6847930.094*
C2C0.5330 (5)0.0146 (3)0.7340 (6)0.071 (2)
H2C0.5829880.0144950.7039020.085*
C3C0.5430 (5)0.0083 (3)0.8546 (6)0.083 (2)
H3CA0.6255770.0084600.8955390.100*
H3CB0.5022420.0214880.8922830.100*
C4C0.4924 (6)0.0743 (3)0.8609 (7)0.099 (2)
H4CA0.5407860.1051890.8342620.119*
H4CB0.4952280.0841640.9393320.119*
C5C0.3703 (5)0.0797 (3)0.7930 (7)0.084 (2)
H5C0.3240210.0494360.8252490.101*
C6C0.3597 (5)0.0587 (3)0.6718 (6)0.074 (2)
H6CA0.2766900.0571370.6324560.111*
H6CB0.3968660.0903490.6344340.111*
C7C0.5865 (5)0.0795 (3)0.7282 (6)0.078 (2)
H7C0.5771800.0885300.6474370.094*
C8C0.7178 (5)0.0813 (4)0.7822 (7)0.116 (3)
H8CA0.7559700.0477590.7513710.175*
H8CB0.7315260.0755980.8627110.175*
H8CC0.7492230.1215240.7669380.175*
C9C0.5237 (6)0.1335 (3)0.7739 (7)0.117 (3)
H9CA0.5415090.1309640.8550850.176*
H9CB0.4400030.1296790.7432080.176*
H9CC0.5500850.1736270.7519050.176*
C10C0.3153 (5)0.1447 (3)0.7988 (7)0.098 (2)
H10G0.2357930.1447890.7525030.147*
H10H0.3604870.1764570.7716580.147*
H10I0.3150090.1539680.8759140.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.110 (3)0.077 (5)0.081 (6)0.001 (2)0.013 (3)0.023 (2)
C10.086 (4)0.066 (6)0.074 (7)0.009 (3)0.013 (4)0.007 (3)
C20.075 (3)0.056 (5)0.084 (6)0.003 (3)0.013 (3)0.003 (3)
C30.079 (4)0.059 (5)0.078 (6)0.003 (3)0.007 (3)0.012 (3)
C40.095 (4)0.095 (6)0.084 (7)0.008 (4)0.015 (4)0.027 (3)
C50.087 (4)0.097 (6)0.067 (7)0.007 (3)0.021 (4)0.004 (3)
C60.078 (4)0.068 (5)0.075 (6)0.004 (3)0.023 (4)0.001 (3)
C70.072 (4)0.069 (5)0.085 (6)0.008 (3)0.012 (4)0.005 (3)
C80.086 (4)0.107 (8)0.156 (10)0.006 (4)0.012 (5)0.048 (5)
C90.076 (4)0.103 (7)0.101 (8)0.002 (3)0.015 (4)0.020 (3)
C100.101 (4)0.128 (7)0.071 (7)0.014 (4)0.011 (4)0.003 (3)
O1B0.091 (3)0.115 (5)0.089 (6)0.000 (3)0.003 (3)0.045 (3)
C1B0.087 (4)0.071 (6)0.071 (6)0.005 (3)0.017 (4)0.009 (3)
C2B0.094 (4)0.082 (6)0.081 (7)0.005 (4)0.019 (4)0.014 (3)
C3B0.093 (4)0.073 (5)0.100 (7)0.008 (3)0.024 (4)0.022 (3)
C4B0.125 (5)0.115 (7)0.092 (7)0.015 (4)0.016 (5)0.036 (4)
C5B0.094 (4)0.104 (6)0.097 (7)0.008 (4)0.021 (4)0.013 (4)
C6B0.072 (4)0.080 (5)0.075 (6)0.001 (3)0.005 (4)0.008 (3)
C7B0.076 (4)0.081 (6)0.096 (6)0.005 (3)0.025 (4)0.009 (3)
C8B0.087 (4)0.112 (8)0.145 (9)0.011 (4)0.028 (5)0.055 (5)
C9B0.082 (4)0.113 (7)0.134 (9)0.010 (4)0.029 (4)0.003 (4)
C10B0.101 (5)0.161 (9)0.079 (9)0.009 (4)0.000 (5)0.005 (4)
O1C0.093 (3)0.109 (5)0.055 (6)0.001 (3)0.009 (3)0.017 (2)
C1C0.081 (4)0.076 (6)0.075 (7)0.001 (3)0.014 (4)0.009 (3)
C2C0.082 (4)0.072 (5)0.053 (6)0.001 (3)0.008 (3)0.009 (3)
C3C0.096 (4)0.074 (6)0.070 (7)0.004 (3)0.002 (4)0.004 (3)
C4C0.125 (5)0.079 (6)0.082 (6)0.003 (4)0.006 (4)0.023 (3)
C5C0.092 (4)0.087 (6)0.078 (7)0.001 (3)0.028 (4)0.019 (3)
C6C0.074 (3)0.062 (5)0.079 (6)0.004 (3)0.007 (3)0.006 (3)
C7C0.086 (4)0.073 (6)0.069 (6)0.008 (3)0.009 (4)0.003 (3)
C8C0.087 (5)0.135 (8)0.121 (9)0.012 (4)0.016 (5)0.016 (4)
C9C0.135 (5)0.071 (7)0.154 (10)0.009 (4)0.051 (5)0.004 (4)
C10C0.115 (5)0.083 (7)0.101 (8)0.008 (4)0.039 (4)0.019 (3)
Geometric parameters (Å, º) top
O1—H1A0.8200C5B—C6B1.494 (10)
O1—H1B0.82 (2)C5B—C10B1.497 (9)
O1—C11.426 (8)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.501 (8)C7B—H7B0.9800
C1—C61.518 (8)C7B—C8B1.482 (8)
C2—H20.9800C7B—C9B1.538 (9)
C2—C31.516 (9)C8B—H8BA0.9600
C2—C71.523 (8)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.519 (8)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.504 (8)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.503 (9)O1C—H1C0.8200
C5—C101.520 (8)O1C—H1CA0.72 (15)
C6—H6A0.9700O1C—C1C1.410 (7)
C6—H6B0.9700C1C—H1CB0.9800
C7—H70.9800C1C—C2C1.462 (6)
C7—C81.518 (8)C1C—C6C1.519 (7)
C7—C91.518 (8)C2C—H2C0.9800
C8—H8A0.9600C2C—C3C1.523 (9)
C8—H8B0.9600C2C—C7C1.511 (6)
C8—H8C0.9600C3C—H3CA0.9700
C9—H9A0.9600C3C—H3CB0.9700
C9—H9B0.9600C3C—C4C1.518 (7)
C9—H9C0.9600C4C—H4CA0.9700
C10—H10A0.9600C4C—H4CB0.9700
C10—H10B0.9600C4C—C5C1.465 (8)
C10—H10C0.9600C5C—H5C0.9800
O1B—H1BB0.8200C5C—C6C1.515 (9)
O1B—H1BA0.81 (2)C5C—C10C1.521 (7)
O1B—C1B1.414 (8)C6C—H6CA0.9700
C1B—H1BC0.9800C6C—H6CB0.9700
C1B—C2B1.489 (9)C7C—H7C0.9800
C1B—C6B1.458 (8)C7C—C8C1.513 (7)
C2B—H2B0.9800C7C—C9C1.531 (9)
C2B—C3B1.539 (11)C8C—H8CA0.9600
C2B—C7B1.547 (8)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.498 (8)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.508 (9)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1A—O1—H1B92.4C10B—C5B—H5B106.6
C1—O1—H1A109.5C1B—C6B—C5B114.6 (6)
C1—O1—H1B88 (2)C1B—C6B—H6BA108.6
O1—C1—H1107.6C1B—C6B—H6BB108.6
O1—C1—C2111.6 (6)C5B—C6B—H6BA108.6
O1—C1—C6110.1 (5)C5B—C6B—H6BB108.6
C2—C1—H1107.6H6BA—C6B—H6BB107.6
C2—C1—C6112.1 (5)C2B—C7B—H7B107.2
C6—C1—H1107.6C8B—C7B—C2B112.2 (5)
C1—C2—H2105.8C8B—C7B—H7B107.2
C1—C2—C3109.8 (6)C8B—C7B—C9B109.6 (5)
C1—C2—C7113.5 (5)C9B—C7B—C2B113.1 (6)
C3—C2—H2105.8C9B—C7B—H7B107.2
C3—C2—C7115.2 (5)C7B—C8B—H8BA109.5
C7—C2—H2105.8C7B—C8B—H8BB109.5
C2—C3—H3A109.2C7B—C8B—H8BC109.5
C2—C3—H3B109.2H8BA—C8B—H8BB109.5
C2—C3—C4112.0 (5)H8BA—C8B—H8BC109.5
H3A—C3—H3B107.9H8BB—C8B—H8BC109.5
C4—C3—H3A109.2C7B—C9B—H9BA109.5
C4—C3—H3B109.2C7B—C9B—H9BB109.5
C3—C4—H4A109.1C7B—C9B—H9BC109.5
C3—C4—H4B109.1H9BA—C9B—H9BB109.5
H4A—C4—H4B107.9H9BA—C9B—H9BC109.5
C5—C4—C3112.4 (5)H9BB—C9B—H9BC109.5
C5—C4—H4A109.1C5B—C10B—H10D109.5
C5—C4—H4B109.1C5B—C10B—H10E109.5
C4—C5—H5107.2C5B—C10B—H10F109.5
C4—C5—C10112.5 (5)H10D—C10B—H10E109.5
C6—C5—C4110.6 (6)H10D—C10B—H10F109.5
C6—C5—H5107.2H10E—C10B—H10F109.5
C6—C5—C10111.8 (6)H1C—O1C—H1CA146.7
C10—C5—H5107.2C1C—O1C—H1C109.5
C1—C6—H6A108.8C1C—O1C—H1CA92 (7)
C1—C6—H6B108.8O1C—C1C—H1CB106.0
C5—C6—C1113.6 (5)O1C—C1C—C2C111.7 (5)
C5—C6—H6A108.8O1C—C1C—C6C111.7 (5)
C5—C6—H6B108.8C2C—C1C—H1CB106.0
H6A—C6—H6B107.7C2C—C1C—C6C114.6 (5)
C2—C7—H7107.2C6C—C1C—H1CB106.0
C8—C7—C2110.7 (5)C1C—C2C—H2C104.7
C8—C7—H7107.2C1C—C2C—C3C112.5 (5)
C9—C7—C2114.2 (6)C1C—C2C—C7C115.4 (4)
C9—C7—H7107.2C3C—C2C—H2C104.7
C9—C7—C8110.2 (5)C7C—C2C—H2C104.7
C7—C8—H8A109.5C7C—C2C—C3C113.5 (5)
C7—C8—H8B109.5C2C—C3C—H3CA108.8
C7—C8—H8C109.5C2C—C3C—H3CB108.8
H8A—C8—H8B109.5H3CA—C3C—H3CB107.7
H8A—C8—H8C109.5C4C—C3C—C2C113.7 (5)
H8B—C8—H8C109.5C4C—C3C—H3CA108.8
C7—C9—H9A109.5C4C—C3C—H3CB108.8
C7—C9—H9B109.5C3C—C4C—H4CA109.1
C7—C9—H9C109.5C3C—C4C—H4CB109.1
H9A—C9—H9B109.5H4CA—C4C—H4CB107.9
H9A—C9—H9C109.5C5C—C4C—C3C112.4 (5)
H9B—C9—H9C109.5C5C—C4C—H4CA109.1
C5—C10—H10A109.5C5C—C4C—H4CB109.1
C5—C10—H10B109.5C4C—C5C—H5C106.4
C5—C10—H10C109.5C4C—C5C—C6C111.0 (5)
H10A—C10—H10B109.5C4C—C5C—C10C114.1 (5)
H10A—C10—H10C109.5C6C—C5C—H5C106.4
H10B—C10—H10C109.5C6C—C5C—C10C112.1 (5)
H1BB—O1B—H1BA138.8C10C—C5C—H5C106.4
C1B—O1B—H1BB109.5C1C—C6C—H6CA108.6
C1B—O1B—H1BA107 (10)C1C—C6C—H6CB108.6
O1B—C1B—H1BC107.2C5C—C6C—C1C114.5 (5)
O1B—C1B—C2B112.1 (7)C5C—C6C—H6CA108.6
O1B—C1B—C6B109.9 (5)C5C—C6C—H6CB108.6
C2B—C1B—H1BC107.2H6CA—C6C—H6CB107.6
C6B—C1B—H1BC107.2C2C—C7C—H7C106.2
C6B—C1B—C2B112.9 (5)C2C—C7C—C8C112.9 (5)
C1B—C2B—H2B104.9C2C—C7C—C9C114.2 (6)
C1B—C2B—C3B109.3 (7)C8C—C7C—H7C106.2
C1B—C2B—C7B116.3 (5)C8C—C7C—C9C110.6 (6)
C3B—C2B—H2B104.9C9C—C7C—H7C106.2
C3B—C2B—C7B115.3 (6)C7C—C8C—H8CA109.5
C7B—C2B—H2B104.9C7C—C8C—H8CB109.5
C2B—C3B—H3BA109.7C7C—C8C—H8CC109.5
C2B—C3B—H3BB109.7H8CA—C8C—H8CB109.5
H3BA—C3B—H3BB108.2H8CA—C8C—H8CC109.5
C4B—C3B—C2B110.0 (6)H8CB—C8C—H8CC109.5
C4B—C3B—H3BA109.7C7C—C9C—H9CA109.5
C4B—C3B—H3BB109.7C7C—C9C—H9CB109.5
C3B—C4B—H4BA108.6C7C—C9C—H9CC109.5
C3B—C4B—H4BB108.6H9CA—C9C—H9CB109.5
C3B—C4B—C5B114.8 (5)H9CA—C9C—H9CC109.5
H4BA—C4B—H4BB107.5H9CB—C9C—H9CC109.5
C5B—C4B—H4BA108.6C5C—C10C—H10G109.5
C5B—C4B—H4BB108.6C5C—C10C—H10H109.5
C4B—C5B—H5B106.6C5C—C10C—H10I109.5
C6B—C5B—C4B109.0 (7)H10G—C10C—H10H109.5
C6B—C5B—H5B106.6H10G—C10C—H10I109.5
C6B—C5B—C10B114.2 (6)H10H—C10C—H10I109.5
C10B—C5B—C4B113.3 (6)
O1—C1—C2—C3178.3 (5)C3B—C2B—C7B—C9B56.1 (9)
O1—C1—C2—C751.2 (7)C3B—C4B—C5B—C6B51.0 (8)
O1—C1—C6—C5178.6 (7)C3B—C4B—C5B—C10B179.4 (8)
C1—C2—C3—C455.6 (7)C4B—C5B—C6B—C1B50.9 (9)
C1—C2—C7—C8158.3 (6)C6B—C1B—C2B—C3B56.2 (8)
C1—C2—C7—C976.7 (7)C6B—C1B—C2B—C7B171.1 (7)
C2—C1—C6—C553.8 (9)C7B—C2B—C3B—C4B172.3 (5)
C2—C3—C4—C555.7 (8)C10B—C5B—C6B—C1B178.8 (6)
C3—C2—C7—C873.8 (8)O1C—C1C—C2C—C3C173.0 (5)
C3—C2—C7—C951.1 (8)O1C—C1C—C2C—C7C54.5 (8)
C3—C4—C5—C652.4 (7)O1C—C1C—C6C—C5C175.1 (5)
C3—C4—C5—C10178.2 (7)C1C—C2C—C3C—C4C48.3 (8)
C4—C5—C6—C151.7 (8)C1C—C2C—C7C—C8C165.7 (7)
C6—C1—C2—C354.3 (7)C1C—C2C—C7C—C9C66.7 (8)
C6—C1—C2—C7175.1 (6)C2C—C1C—C6C—C5C46.8 (9)
C7—C2—C3—C4174.7 (5)C2C—C3C—C4C—C5C53.7 (8)
C10—C5—C6—C1177.9 (6)C3C—C2C—C7C—C8C62.3 (8)
O1B—C1B—C2B—C3B179.1 (6)C3C—C2C—C7C—C9C65.2 (7)
O1B—C1B—C2B—C7B46.4 (8)C3C—C4C—C5C—C6C53.5 (8)
O1B—C1B—C6B—C5B177.9 (8)C3C—C4C—C5C—C10C178.8 (6)
C1B—C2B—C3B—C4B54.5 (9)C4C—C5C—C6C—C1C50.4 (8)
C1B—C2B—C7B—C8B161.7 (7)C6C—C1C—C2C—C3C44.6 (9)
C1B—C2B—C7B—C9B73.7 (8)C6C—C1C—C2C—C7C177.1 (6)
C2B—C1B—C6B—C5B56.2 (10)C7C—C2C—C3C—C4C178.4 (5)
C2B—C3B—C4B—C5B54.3 (10)C10C—C5C—C6C—C1C179.2 (5)
C3B—C2B—C7B—C8B68.4 (10)
beta-DL-2-Isopropyl-5-methylcyclohexanol (beta_DL_0.90GPa) top
Crystal data top
C10H20OF(000) = 1056
Mr = 156.26Dx = 1.096 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.665 (4) ÅCell parameters from 1440 reflections
b = 20.8990 (9) Åθ = 27.1–4.3°
c = 12.025 (4) ŵ = 0.07 mm1
β = 104.25 (4)°T = 296 K
V = 2841.2 (14) Å3Plate, colourless
Z = 120.45 × 0.45 × 0.02 mm
Data collection top
Xcalibur, Eos
diffractometer
1440 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source709 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
Detector resolution: 16.2413 pixels mm-1θmax = 27.1°, θmin = 4.3°
ω and φ scansh = 99
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 2626
Tmin = 0.970, Tmax = 0.999l = 1010
14619 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.085 w = 1/[σ2(Fo2) + (0.1337P)2 + 3.4124P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.288(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.10 e Å3
1440 reflectionsΔρmin = 0.13 e Å3
312 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
206 restraintsExtinction coefficient: 0.005 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0128 (12)0.0649 (2)0.5021 (11)0.074 (10)
H1B0.0532280.0636740.4897270.112*0.5
H1A0.02 (2)0.0300 (17)0.532 (6)0.112*0.5
C10.0060 (15)0.0941 (3)0.6068 (15)0.058 (6)
H10.0756980.0804250.6325260.069*
C20.0122 (15)0.1656 (3)0.5958 (14)0.061 (6)
H20.0601080.1788310.5744460.091*
C30.0067 (15)0.1958 (4)0.7106 (14)0.062 (6)
H3A0.0750780.1826640.7373740.074*
H3B0.0090910.2420240.7026380.074*
C40.1048 (16)0.1766 (4)0.7977 (15)0.071 (7)
H4A0.1052540.1960300.8710210.085*
H4B0.1728810.1925030.7734300.085*
C50.1149 (17)0.1045 (4)0.8122 (16)0.070 (6)
H50.0490490.0900710.8431610.084*
C60.1011 (15)0.0739 (4)0.6981 (14)0.063 (6)
H6A0.0978750.0279440.7077080.076*
H6B0.1709990.0832840.6710180.076*
C70.116 (2)0.1896 (4)0.499 (2)0.067 (7)
H70.1194120.1618780.4324000.081*
C80.0938 (18)0.2571 (4)0.4622 (16)0.101 (12)
H8A0.0181680.2587850.4440400.151*
H8B0.1545600.2688590.3958260.151*
H8C0.0943860.2863380.5236550.151*
C90.234 (2)0.1832 (5)0.529 (2)0.084 (12)
H9A0.2470050.1391260.5443000.126*
H9B0.2955120.1978580.4656580.126*
H9C0.2331960.2084820.5955300.126*
C100.2295 (18)0.0841 (5)0.8965 (17)0.092 (12)
H10A0.2354100.1046560.9690030.137*
H10B0.2294800.0384780.9064620.137*
H10C0.2956950.0961780.8669230.137*
O1B0.1908 (11)0.0479 (3)0.4235 (10)0.085 (10)
H1BB0.1309240.0522710.4469130.128*0.5
H1CA0.352 (8)0.030 (10)0.491 (9)0.128*0.5
C1B0.1833 (17)0.0876 (4)0.3264 (15)0.065 (7)
H1BC0.2484140.0761110.2920040.078*
C2B0.1923 (17)0.1576 (4)0.3526 (15)0.074 (7)
H2B0.1212690.1673580.3790970.088*
C3B0.1781 (17)0.1947 (4)0.2457 (16)0.080 (7)
H3BA0.2454630.1865780.2139090.097*
H3BB0.1779290.2399140.2637480.097*
C4B0.0667 (18)0.1789 (5)0.1569 (16)0.093 (7)
H4BA0.0656330.2030090.0876630.112*
H4BB0.0006990.1924490.1847260.112*
C5B0.0540 (18)0.1087 (5)0.1274 (17)0.093 (7)
H5B0.1176320.0961710.0917460.111*
C6B0.0675 (15)0.0706 (4)0.2407 (14)0.072 (7)
H6BA0.0015640.0803600.2737650.086*
H6BB0.0658680.0251440.2244370.086*
C7B0.295 (2)0.1760 (5)0.454 (2)0.074 (7)
H7B0.2969650.1449730.5152700.089*
C8B0.2779 (18)0.2410 (4)0.4999 (16)0.101 (12)
H8BA0.2026900.2424970.5190370.152*
H8BB0.3397670.2493140.5674360.152*
H8BC0.2798880.2728460.4428890.152*
C9B0.415 (2)0.1715 (6)0.422 (2)0.096 (12)
H9BA0.4244200.1295230.3926840.143*
H9BB0.4184090.2028460.3643260.143*
H9BC0.4782870.1793140.4888720.143*
C10B0.064 (2)0.0931 (6)0.046 (2)0.116 (12)
H10D0.1263290.1116980.0737910.174*
H10E0.0735900.0475000.0406850.174*
H10F0.0653800.1101160.0287230.174*
O1C0.4083 (11)0.0207 (3)0.5440 (11)0.077 (10)
H1C0.4657740.0050960.5262380.115*0.5
H1BA0.257 (5)0.052 (5)0.464 (8)0.115*0.5
C1C0.4127 (16)0.0054 (4)0.6606 (16)0.065 (7)
H1CB0.3625450.0370450.6861340.078*
C2C0.5322 (14)0.0139 (3)0.7353 (14)0.056 (6)
H2C0.5827810.0149770.7041810.067*
C3C0.5420 (16)0.0089 (4)0.8559 (15)0.064 (6)
H3CA0.6244700.0086940.8977750.077*
H3CB0.4995650.0203340.8939920.077*
C4C0.4928 (15)0.0751 (4)0.8585 (14)0.070 (6)
H4CA0.5416980.1051780.8293960.084*
H4CB0.4960330.0866850.9373620.084*
C5C0.3710 (16)0.0802 (4)0.7905 (15)0.069 (6)
H5C0.3251520.0499130.8243600.083*
C6C0.3575 (15)0.0594 (4)0.6712 (14)0.057 (6)
H6CA0.2739190.0575050.6333530.085*
H6CB0.3935620.0909990.6314450.085*
C7C0.5823 (15)0.0798 (4)0.7279 (15)0.068 (7)
H7C0.5749460.0884590.6463010.082*
C8C0.715 (2)0.0828 (5)0.787 (2)0.093 (12)
H8CA0.7594860.0643120.7379610.139*
H8CB0.7298640.0593210.8579530.139*
H8CC0.7382150.1265810.8027680.139*
C9C0.5183 (18)0.1342 (4)0.7730 (17)0.103 (12)
H9CA0.5306000.1301440.8546470.155*
H9CB0.4351920.1320710.7373200.155*
H9CC0.5490220.1745870.7554590.155*
C10C0.3154 (18)0.1463 (4)0.7976 (18)0.097 (12)
H10G0.2356790.1465120.7511440.145*
H10H0.3606760.1783820.7702140.145*
H10I0.3152310.1553100.8758220.145*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.104 (15)0.063 (3)0.056 (14)0.000 (6)0.019 (13)0.019 (5)
C10.062 (10)0.056 (4)0.052 (9)0.004 (6)0.011 (8)0.005 (6)
C20.057 (10)0.063 (4)0.062 (10)0.007 (6)0.014 (8)0.008 (6)
C30.060 (10)0.065 (4)0.061 (10)0.001 (6)0.016 (8)0.013 (6)
C40.067 (10)0.078 (5)0.066 (10)0.003 (6)0.014 (8)0.021 (6)
C50.072 (10)0.071 (5)0.067 (10)0.000 (6)0.015 (8)0.000 (6)
C60.062 (10)0.063 (4)0.064 (10)0.002 (6)0.014 (8)0.002 (6)
C70.069 (11)0.063 (5)0.072 (10)0.014 (7)0.021 (8)0.005 (6)
C80.084 (17)0.090 (6)0.122 (16)0.001 (8)0.015 (14)0.044 (8)
C90.091 (18)0.090 (6)0.070 (17)0.007 (10)0.017 (15)0.026 (8)
C100.079 (17)0.124 (7)0.063 (16)0.020 (9)0.003 (14)0.002 (9)
O1B0.090 (14)0.084 (4)0.069 (13)0.002 (6)0.004 (13)0.026 (5)
C1B0.065 (10)0.076 (5)0.052 (10)0.008 (6)0.011 (8)0.009 (6)
C2B0.068 (10)0.077 (5)0.076 (10)0.007 (6)0.018 (8)0.004 (6)
C3B0.083 (10)0.079 (5)0.080 (10)0.009 (6)0.022 (8)0.019 (6)
C4B0.090 (10)0.108 (6)0.076 (10)0.012 (7)0.010 (8)0.022 (7)
C5B0.076 (10)0.115 (6)0.079 (10)0.002 (7)0.002 (8)0.011 (7)
C6B0.066 (10)0.077 (5)0.066 (10)0.007 (6)0.004 (8)0.001 (6)
C7B0.073 (11)0.068 (5)0.083 (10)0.005 (7)0.021 (8)0.012 (6)
C8B0.091 (18)0.102 (7)0.111 (17)0.021 (9)0.024 (15)0.030 (9)
C9B0.086 (18)0.090 (6)0.108 (18)0.007 (10)0.020 (15)0.008 (9)
C10B0.080 (17)0.163 (9)0.086 (17)0.023 (10)0.016 (15)0.000 (10)
O1C0.081 (14)0.090 (4)0.048 (12)0.009 (5)0.006 (12)0.018 (5)
C1C0.062 (10)0.074 (5)0.054 (10)0.000 (6)0.007 (8)0.004 (6)
C2C0.055 (10)0.063 (4)0.046 (9)0.005 (5)0.006 (8)0.005 (5)
C3C0.065 (10)0.070 (5)0.055 (10)0.001 (6)0.008 (8)0.006 (6)
C4C0.076 (10)0.072 (5)0.058 (10)0.001 (6)0.010 (8)0.011 (6)
C5C0.073 (10)0.065 (4)0.071 (10)0.005 (6)0.022 (8)0.000 (6)
C6C0.049 (10)0.067 (4)0.051 (9)0.005 (5)0.005 (8)0.002 (5)
C7C0.060 (10)0.082 (5)0.058 (10)0.004 (6)0.007 (8)0.000 (6)
C8C0.070 (17)0.115 (7)0.095 (17)0.014 (9)0.022 (15)0.001 (9)
C9C0.128 (18)0.067 (5)0.121 (17)0.002 (8)0.042 (15)0.021 (8)
C10C0.098 (18)0.074 (5)0.123 (18)0.003 (8)0.036 (15)0.003 (8)
Geometric parameters (Å, º) top
O1—H1B0.8200C5B—C6B1.55 (2)
O1—H1A0.82 (2)C5B—C10B1.512 (14)
O1—C11.38 (2)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.502 (10)C7B—H7B0.9800
C1—C61.506 (10)C7B—C8B1.50 (2)
C2—H20.9800C7B—C9B1.54 (5)
C2—C31.50 (2)C8B—H8BA0.9600
C2—C71.545 (13)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.510 (11)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.518 (10)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.48 (2)O1C—H1CA0.82 (2)
C5—C101.526 (12)O1C—H1C0.8200
C6—H6A0.9700O1C—C1C1.43 (3)
C6—H6B0.9700C1C—H1CB0.9800
C7—H70.9800C1C—C2C1.471 (14)
C7—C81.519 (19)C1C—C6C1.518 (17)
C7—C91.51 (5)C2C—H2C0.9800
C8—H8A0.9600C2C—C3C1.50 (3)
C8—H8B0.9600C2C—C7C1.507 (16)
C8—H8C0.9600C3C—H3CA0.9700
C9—H9A0.9600C3C—H3CB0.9700
C9—H9B0.9600C3C—C4C1.500 (14)
C9—H9C0.9600C4C—H4CA0.9700
C10—H10A0.9600C4C—H4CB0.9700
C10—H10B0.9600C4C—C5C1.458 (16)
C10—H10C0.9600C5C—H5C0.9800
O1B—H1BB0.8200C5C—C6C1.47 (2)
O1B—C1B1.42 (2)C5C—C10C1.538 (18)
O1B—H1BA0.81 (2)C6C—H6CA0.9700
C1B—H1BC0.9800C6C—H6CB0.9700
C1B—C2B1.494 (12)C7C—H7C0.9800
C1B—C6B1.526 (12)C7C—C8C1.54 (2)
C2B—H2B0.9800C7C—C9C1.53 (3)
C2B—C3B1.47 (2)C8C—H8CA0.9600
C2B—C7B1.534 (13)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.501 (12)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.508 (13)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1B—O1—H1A104.9C10B—C5B—C6B109.7 (18)
C1—O1—H1B109.5C1B—C6B—C5B110.8 (14)
C1—O1—H1A89.1 (19)C1B—C6B—H6BA109.5
O1—C1—H1107.0C1B—C6B—H6BB109.5
O1—C1—C2111.6 (13)C5B—C6B—H6BA109.5
O1—C1—C6113.0 (14)C5B—C6B—H6BB109.5
C2—C1—H1107.0H6BA—C6B—H6BB108.1
C2—C1—C6110.8 (6)C2B—C7B—H7B107.3
C6—C1—H1107.0C8B—C7B—C2B111.6 (12)
C1—C2—H2106.1C8B—C7B—H7B107.3
C1—C2—C3110.2 (14)C8B—C7B—C9B111.2 (14)
C1—C2—C7113.7 (7)C9B—C7B—C2B112 (3)
C3—C2—H2106.1C9B—C7B—H7B107.3
C3—C2—C7113.9 (16)C7B—C8B—H8BA109.5
C7—C2—H2106.1C7B—C8B—H8BB109.5
C2—C3—H3A109.4C7B—C8B—H8BC109.5
C2—C3—H3B109.4H8BA—C8B—H8BB109.5
C2—C3—C4111.0 (14)H8BA—C8B—H8BC109.5
H3A—C3—H3B108.0H8BB—C8B—H8BC109.5
C4—C3—H3A109.4C7B—C9B—H9BA109.5
C4—C3—H3B109.4C7B—C9B—H9BB109.5
C3—C4—H4A109.2C7B—C9B—H9BC109.5
C3—C4—H4B109.2H9BA—C9B—H9BB109.5
C3—C4—C5111.9 (7)H9BA—C9B—H9BC109.5
H4A—C4—H4B107.9H9BB—C9B—H9BC109.5
C5—C4—H4A109.2C5B—C10B—H10D109.5
C5—C4—H4B109.2C5B—C10B—H10E109.5
C4—C5—H5107.6C5B—C10B—H10F109.5
C4—C5—C10112.6 (8)H10D—C10B—H10E109.5
C6—C5—C4109.4 (13)H10D—C10B—H10F109.5
C6—C5—H5107.6H10E—C10B—H10F109.5
C6—C5—C10111.8 (16)H1CA—O1C—H1C116.5
C10—C5—H5107.6C1C—O1C—H1CA130 (10)
C1—C6—H6A108.3C1C—O1C—H1C109.5
C1—C6—H6B108.3O1C—C1C—H1CB106.1
C5—C6—C1115.8 (14)O1C—C1C—C2C112 (2)
C5—C6—H6A108.3O1C—C1C—C6C111.6 (10)
C5—C6—H6B108.3C2C—C1C—H1CB106.1
H6A—C6—H6B107.4C2C—C1C—C6C114.5 (7)
C2—C7—H7106.7C6C—C1C—H1CB106.1
C8—C7—C2111.1 (11)C1C—C2C—H2C105.2
C8—C7—H7106.7C1C—C2C—C3C112.7 (18)
C9—C7—C2112 (2)C1C—C2C—C7C113.4 (7)
C9—C7—H7106.7C3C—C2C—H2C105.2
C9—C7—C8112.6 (15)C3C—C2C—C7C114.1 (9)
C7—C8—H8A109.5C7C—C2C—H2C105.2
C7—C8—H8B109.5C2C—C3C—H3CA109.2
C7—C8—H8C109.5C2C—C3C—H3CB109.2
H8A—C8—H8B109.5H3CA—C3C—H3CB107.9
H8A—C8—H8C109.5C4C—C3C—C2C112.0 (9)
H8B—C8—H8C109.5C4C—C3C—H3CA109.2
C7—C9—H9A109.5C4C—C3C—H3CB109.2
C7—C9—H9B109.5C3C—C4C—H4CA109.1
C7—C9—H9C109.5C3C—C4C—H4CB109.1
H9A—C9—H9B109.5H4CA—C4C—H4CB107.9
H9A—C9—H9C109.5C5C—C4C—C3C112.3 (7)
H9B—C9—H9C109.5C5C—C4C—H4CA109.1
C5—C10—H10A109.5C5C—C4C—H4CB109.1
C5—C10—H10B109.5C4C—C5C—H5C106.0
C5—C10—H10C109.5C4C—C5C—C6C112.4 (18)
H10A—C10—H10B109.5C4C—C5C—C10C113.6 (8)
H10A—C10—H10C109.5C6C—C5C—H5C106.0
H10B—C10—H10C109.5C6C—C5C—C10C112.0 (10)
H1BB—O1B—H1BA123.1C10C—C5C—H5C106.0
C1B—O1B—H1BB109.5C1C—C6C—H6CA108.9
C1B—O1B—H1BA107 (6)C1C—C6C—H6CB108.9
O1B—C1B—H1BC107.9C5C—C6C—C1C113.6 (10)
O1B—C1B—C2B114.4 (15)C5C—C6C—H6CA108.9
O1B—C1B—C6B106.6 (14)C5C—C6C—H6CB108.9
C2B—C1B—H1BC107.9H6CA—C6C—H6CB107.7
C2B—C1B—C6B112.0 (8)C2C—C7C—H7C106.7
C6B—C1B—H1BC107.9C2C—C7C—C8C111.7 (8)
C1B—C2B—H2B104.5C2C—C7C—C9C115.3 (19)
C1B—C2B—C7B114.4 (7)C8C—C7C—H7C106.7
C3B—C2B—C1B110.1 (14)C9C—C7C—H7C106.7
C3B—C2B—H2B104.5C9C—C7C—C8C109.2 (11)
C3B—C2B—C7B117.2 (16)C7C—C8C—H8CA109.5
C7B—C2B—H2B104.5C7C—C8C—H8CB109.5
C2B—C3B—H3BA108.9C7C—C8C—H8CC109.5
C2B—C3B—H3BB108.9H8CA—C8C—H8CB109.5
C2B—C3B—C4B113.4 (15)H8CA—C8C—H8CC109.5
H3BA—C3B—H3BB107.7H8CB—C8C—H8CC109.5
C4B—C3B—H3BA108.9C7C—C9C—H9CA109.5
C4B—C3B—H3BB108.9C7C—C9C—H9CB109.5
C3B—C4B—H4BA108.9C7C—C9C—H9CC109.5
C3B—C4B—H4BB108.9H9CA—C9C—H9CB109.5
C3B—C4B—C5B113.5 (8)H9CA—C9C—H9CC109.5
H4BA—C4B—H4BB107.7H9CB—C9C—H9CC109.5
C5B—C4B—H4BA108.9C5C—C10C—H10G109.5
C5B—C4B—H4BB108.9C5C—C10C—H10H109.5
C4B—C5B—H5B108.8C5C—C10C—H10I109.5
C4B—C5B—C6B108.0 (14)H10G—C10C—H10H109.5
C4B—C5B—C10B112.6 (10)H10G—C10C—H10I109.5
C6B—C5B—H5B108.8H10H—C10C—H10I109.5
C10B—C5B—H5B108.8
O1—C1—C2—C3179.0 (14)C3B—C2B—C7B—C9B57.9 (19)
O1—C1—C2—C750 (3)C3B—C4B—C5B—C6B53 (3)
O1—C1—C6—C5178.9 (14)C3B—C4B—C5B—C10B175 (2)
C1—C2—C3—C457.9 (19)C4B—C5B—C6B—C1B55 (2)
C1—C2—C7—C8159 (2)C6B—C1B—C2B—C3B56 (3)
C1—C2—C7—C974 (2)C6B—C1B—C2B—C7B169 (2)
C2—C1—C6—C553 (3)C7B—C2B—C3B—C4B172.8 (18)
C2—C3—C4—C558 (2)C10B—C5B—C6B—C1B177.7 (17)
C3—C2—C7—C874 (3)O1C—C1C—C2C—C3C173.5 (10)
C3—C2—C7—C953.6 (16)O1C—C1C—C2C—C7C55 (2)
C3—C4—C5—C653 (2)O1C—C1C—C6C—C5C174.0 (16)
C3—C4—C5—C10178 (2)C1C—C2C—C3C—C4C49.8 (19)
C4—C5—C6—C151 (2)C1C—C2C—C7C—C8C168 (2)
C6—C1—C2—C354 (2)C1C—C2C—C7C—C9C66 (2)
C6—C1—C2—C7177 (2)C2C—C1C—C6C—C5C46 (3)
C7—C2—C3—C4173.0 (14)C2C—C3C—C4C—C5C55 (2)
C10—C5—C6—C1176.6 (15)C3C—C2C—C7C—C8C61 (3)
O1B—C1B—C2B—C3B177.4 (16)C3C—C2C—C7C—C9C64.7 (15)
O1B—C1B—C2B—C7B48 (3)C3C—C4C—C5C—C6C55 (2)
O1B—C1B—C6B—C5B176.6 (15)C3C—C4C—C5C—C10C176 (2)
C1B—C2B—C3B—C4B54 (2)C4C—C5C—C6C—C1C50.0 (19)
C1B—C2B—C7B—C8B162 (2)C6C—C1C—C2C—C3C45 (2)
C1B—C2B—C7B—C9B73 (2)C6C—C1C—C2C—C7C176.9 (19)
C2B—C1B—C6B—C5B58 (3)C7C—C2C—C3C—C4C179.0 (15)
C2B—C3B—C4B—C5B55 (3)C10C—C5C—C6C—C1C179.3 (16)
C3B—C2B—C7B—C8B67 (3)
beta-DL-2-Isopropyl-5-methylcyclohexanol (beta_DL_1.28GPa) top
Crystal data top
C10H20OF(000) = 1056
Mr = 156.26Dx = 1.122 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.528 (2) ÅCell parameters from 2237 reflections
b = 20.785 (6) Åθ = 4.8–26.4°
c = 11.959 (5) ŵ = 0.07 mm1
β = 104.36 (3)°T = 296 K
V = 2775.9 (15) Å3Plate, colourless
Z = 120.45 × 0.45 × 0.05 mm
Data collection top
Xcalibur, Eos
diffractometer
873 reflections with I > 2σ(I)
Detector resolution: 16.4 pixels mm-1Rint = 0.135
ω and π scansθmax = 26.4°, θmin = 4.8°
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1314
Tmin = 0.969, Tmax = 0.997k = 2021
12745 measured reflectionsl = 1010
2237 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.092 w = 1/[σ2(Fo2) + (0.1731P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.322(Δ/σ)max < 0.001
S = 0.99Δρmax = 0.16 e Å3
2237 reflectionsΔρmin = 0.16 e Å3
312 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
207 restraintsExtinction coefficient: 0.010 (6)
Special details top

Experimental. Data were collected at room temperature and pressure of 1.28 (2) GPa (1280000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0164 (5)0.0641 (3)0.4991 (6)0.105 (2)
H1B0.0501420.0621590.4861600.157*0.5
H1A0.004 (10)0.0299 (13)0.533 (3)0.157*0.5
C10.0079 (7)0.0951 (5)0.6039 (9)0.089 (3)
H10.0781960.0814520.6301000.107*
C20.0168 (7)0.1674 (4)0.5922 (8)0.084 (3)
H20.0564920.1803930.5707440.126*
C30.0082 (6)0.1986 (4)0.7081 (8)0.085 (3)
H3A0.0786050.1877580.7347770.102*
H3B0.0061440.2450230.6997630.102*
C40.1038 (7)0.1766 (4)0.7972 (8)0.095 (3)
H4A0.1739680.1927330.7752350.113*
H4B0.1033750.1952330.8715050.113*
C50.1133 (7)0.1053 (5)0.8094 (8)0.091 (3)
H50.0465890.0909670.8404770.109*
C60.1007 (6)0.0723 (4)0.6962 (7)0.075 (2)
H6A0.0940940.0262990.7069900.090*
H6B0.1724040.0798400.6694240.090*
C70.1187 (7)0.1907 (4)0.4932 (8)0.085 (3)
H70.1224800.1625730.4265770.102*
C80.0959 (7)0.2574 (4)0.4598 (9)0.121 (4)
H8A0.1608240.2712330.3974760.181*
H8B0.0896200.2854760.5247230.181*
H8C0.0225440.2585640.4355320.181*
C90.2420 (7)0.1885 (4)0.5233 (9)0.108 (3)
H9A0.2583750.1452600.5432270.163*
H9B0.3032690.2023400.4577660.163*
H9C0.2406080.2164540.5874530.163*
C100.2276 (7)0.0846 (4)0.8942 (8)0.103 (3)
H10A0.2299630.0385360.8993380.155*
H10B0.2952290.0996840.8683030.155*
H10C0.2301160.1025270.9687630.155*
O1B0.1901 (4)0.0460 (3)0.4231 (6)0.102 (2)
H1BB0.1304030.0494500.4483110.154*0.5
H1CA0.338 (6)0.031 (9)0.526 (10)0.154*0.5
C1B0.1795 (7)0.0882 (5)0.3261 (9)0.091 (3)
H1BC0.2462090.0775260.2920940.109*
C2B0.1913 (7)0.1559 (4)0.3542 (8)0.090 (3)
H2B0.1187540.1666330.3791270.108*
C3B0.1821 (7)0.1962 (4)0.2443 (9)0.098 (3)
H3BA0.1819610.2417130.2624530.118*
H3BB0.2502820.1875740.2125860.118*
C4B0.0682 (8)0.1786 (5)0.1582 (9)0.122 (4)
H4BA0.0655070.2016860.0871590.146*
H4BB0.0015320.1935470.1872430.146*
C5B0.0496 (8)0.1080 (5)0.1297 (9)0.102 (3)
H5B0.1142290.0954800.0941910.123*
C6B0.0694 (6)0.0707 (4)0.2391 (8)0.089 (3)
H6BA0.0013740.0771820.2720620.106*
H6BB0.0726490.0252750.2214590.106*
C7B0.2946 (6)0.1752 (4)0.4558 (8)0.084 (3)
H7B0.2962910.1447000.5186610.101*
C8B0.2797 (7)0.2414 (4)0.5003 (9)0.120 (4)
H8BA0.3466300.2511230.5637890.179*
H8BB0.2758390.2722790.4398070.179*
H8BC0.2071180.2431740.5258830.179*
C9B0.4182 (7)0.1720 (4)0.4257 (9)0.115 (3)
H9BA0.4292620.1298650.3970440.172*
H9BB0.4209130.2035070.3678120.172*
H9BC0.4806090.1805140.4937910.172*
C10B0.0640 (8)0.0932 (4)0.0431 (10)0.122 (4)
H10D0.1306900.1056290.0729610.184*
H10E0.0681000.0479370.0269780.184*
H10F0.0665420.1166410.0267220.184*
O1C0.4073 (4)0.0177 (3)0.5438 (5)0.094 (2)
H1C0.4662350.0012890.5285130.140*0.5
H1BA0.259 (3)0.037 (7)0.444 (9)0.140*0.5
C1C0.4099 (7)0.0058 (4)0.6618 (9)0.088 (3)
H1CB0.3587020.0381570.6852080.106*
C2C0.5303 (6)0.0147 (4)0.7336 (8)0.086 (3)
H2C0.5788690.0152050.7010230.104*
C3C0.5448 (7)0.0088 (4)0.8556 (8)0.091 (3)
H3CA0.6293580.0092380.8945270.110*
H3CB0.5054420.0211200.8963720.110*
C4C0.4941 (7)0.0751 (4)0.8623 (8)0.100 (3)
H4CA0.5432000.1061580.8345420.120*
H4CB0.4985320.0851210.9425140.120*
C5C0.3722 (7)0.0820 (4)0.7969 (9)0.099 (3)
H5C0.3257940.0517310.8313200.119*
C6C0.3554 (6)0.0606 (4)0.6742 (9)0.094 (3)
H6CA0.2703790.0593030.6374450.141*
H6CB0.3915870.0921680.6335640.141*
C7C0.5861 (7)0.0802 (4)0.7231 (9)0.089 (3)
H7C0.5757240.0883760.6404700.107*
C8C0.7174 (7)0.0849 (4)0.7780 (9)0.119 (3)
H8CA0.7589380.0517440.7477230.179*
H8CB0.7310500.0796920.8599930.179*
H8CC0.7463290.1262400.7614930.179*
C9C0.5213 (8)0.1345 (4)0.7693 (10)0.118 (3)
H9CA0.4368440.1315290.7352610.177*
H9CB0.5504180.1752880.7500880.177*
H9CC0.5360900.1308110.8516830.177*
C10C0.3153 (7)0.1481 (4)0.8030 (8)0.109 (3)
H10G0.2343690.1477850.7566920.163*
H10H0.3603500.1803000.7745340.163*
H10I0.3156390.1575510.8816470.163*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.125 (4)0.084 (6)0.088 (7)0.017 (3)0.008 (4)0.020 (3)
C10.088 (5)0.094 (7)0.082 (8)0.011 (4)0.014 (5)0.019 (5)
C20.085 (5)0.082 (6)0.081 (8)0.002 (4)0.013 (4)0.001 (4)
C30.088 (5)0.076 (6)0.082 (8)0.003 (4)0.003 (4)0.013 (4)
C40.098 (5)0.097 (7)0.077 (7)0.002 (4)0.002 (5)0.021 (4)
C50.092 (5)0.091 (7)0.087 (8)0.002 (4)0.019 (5)0.001 (4)
C60.076 (4)0.069 (6)0.074 (7)0.002 (3)0.011 (4)0.001 (3)
C70.083 (5)0.079 (6)0.090 (7)0.009 (4)0.016 (5)0.015 (4)
C80.096 (6)0.105 (9)0.150 (11)0.004 (5)0.009 (6)0.040 (6)
C90.088 (6)0.112 (9)0.117 (11)0.005 (5)0.010 (5)0.005 (4)
C100.104 (6)0.136 (9)0.069 (9)0.012 (5)0.021 (5)0.013 (4)
O1B0.095 (3)0.108 (6)0.093 (7)0.001 (3)0.003 (4)0.028 (3)
C1B0.092 (5)0.084 (7)0.089 (8)0.008 (4)0.008 (5)0.007 (4)
C2B0.097 (5)0.091 (7)0.080 (8)0.001 (4)0.018 (5)0.010 (4)
C3B0.106 (5)0.086 (7)0.099 (8)0.010 (4)0.019 (5)0.020 (4)
C4B0.125 (6)0.127 (8)0.104 (8)0.016 (5)0.010 (6)0.030 (5)
C5B0.102 (5)0.108 (7)0.096 (8)0.003 (5)0.023 (5)0.001 (5)
C6B0.079 (5)0.085 (6)0.089 (7)0.008 (4)0.003 (5)0.007 (4)
C7B0.080 (5)0.083 (6)0.089 (7)0.008 (4)0.020 (4)0.018 (4)
C8B0.091 (5)0.128 (9)0.140 (11)0.007 (5)0.027 (6)0.048 (6)
C9B0.085 (5)0.118 (9)0.137 (11)0.005 (5)0.018 (6)0.003 (5)
C10B0.105 (6)0.144 (10)0.105 (10)0.012 (5)0.001 (6)0.021 (5)
O1C0.101 (4)0.102 (6)0.065 (7)0.008 (3)0.002 (4)0.009 (3)
C1C0.088 (5)0.081 (7)0.084 (8)0.010 (4)0.002 (5)0.008 (4)
C2C0.085 (5)0.082 (6)0.078 (7)0.002 (4)0.006 (4)0.007 (4)
C3C0.103 (5)0.082 (7)0.074 (7)0.001 (4)0.007 (5)0.002 (4)
C4C0.114 (5)0.085 (7)0.087 (7)0.000 (4)0.001 (5)0.023 (4)
C5C0.105 (5)0.089 (7)0.101 (8)0.001 (4)0.020 (5)0.021 (4)
C6C0.090 (5)0.082 (7)0.099 (8)0.005 (4)0.003 (5)0.012 (4)
C7C0.094 (5)0.077 (7)0.086 (7)0.003 (4)0.005 (5)0.001 (4)
C8C0.101 (6)0.132 (9)0.112 (10)0.002 (5)0.003 (6)0.011 (5)
C9C0.128 (6)0.096 (9)0.140 (11)0.017 (5)0.051 (6)0.004 (5)
C10C0.123 (6)0.093 (9)0.117 (10)0.007 (5)0.043 (6)0.022 (4)
Geometric parameters (Å, º) top
O1—H1B0.8200C5B—C6B1.489 (12)
O1—H1A0.81 (2)C5B—C10B1.487 (10)
O1—C11.391 (11)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.510 (10)C7B—H7B0.9800
C1—C61.524 (10)C7B—C8B1.500 (9)
C2—H20.9800C7B—C9B1.555 (11)
C2—C31.511 (12)C8B—H8BA0.9600
C2—C71.526 (10)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.527 (9)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.490 (10)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.494 (12)O1C—H1CA0.82 (2)
C5—C101.512 (9)O1C—H1C0.8200
C6—H6A0.9700O1C—C1C1.426 (10)
C6—H6B0.9700C1C—H1CB0.9800
C7—H70.9800C1C—C2C1.452 (9)
C7—C81.485 (9)C1C—C6C1.539 (9)
C7—C91.551 (11)C2C—H2C0.9800
C8—H8A0.9600C2C—C3C1.509 (11)
C8—H8B0.9600C2C—C7C1.524 (10)
C8—H8C0.9600C3C—H3CA0.9700
C9—H9A0.9600C3C—H3CB0.9700
C9—H9B0.9600C3C—C4C1.507 (8)
C9—H9C0.9600C4C—H4CA0.9700
C10—H10A0.9600C4C—H4CB0.9700
C10—H10B0.9600C4C—C5C1.435 (9)
C10—H10C0.9600C5C—H5C0.9800
O1B—H1BB0.8200C5C—C6C1.499 (12)
O1B—C1B1.435 (10)C5C—C10C1.532 (9)
O1B—H1BA0.80 (2)C6C—H6CA0.9700
C1B—H1BC0.9800C6C—H6CB0.9700
C1B—C2B1.446 (11)C7C—H7C0.9800
C1B—C6B1.473 (10)C7C—C8C1.496 (9)
C2B—H2B0.9800C7C—C9C1.530 (12)
C2B—C3B1.540 (13)C8C—H8CA0.9600
C2B—C7B1.529 (10)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.500 (11)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.508 (11)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1B—O1—H1A89.9C10B—C5B—C6B114.9 (8)
C1—O1—H1B109.5C1B—C6B—C5B114.1 (7)
C1—O1—H1A89 (2)C1B—C6B—H6BA108.7
O1—C1—H1106.0C1B—C6B—H6BB108.7
O1—C1—C2112.9 (9)C5B—C6B—H6BA108.7
O1—C1—C6111.7 (7)C5B—C6B—H6BB108.7
C2—C1—H1106.0H6BA—C6B—H6BB107.6
C2—C1—C6113.6 (6)C2B—C7B—H7B107.7
C6—C1—H1106.0C2B—C7B—C9B112.5 (7)
C1—C2—H2104.9C8B—C7B—C2B112.8 (6)
C1—C2—C7114.2 (6)C8B—C7B—H7B107.7
C3—C2—C1110.8 (8)C8B—C7B—C9B108.3 (6)
C3—C2—H2104.9C9B—C7B—H7B107.7
C3—C2—C7116.0 (7)C7B—C8B—H8BA109.5
C7—C2—H2104.9C7B—C8B—H8BB109.5
C2—C3—H3A109.4C7B—C8B—H8BC109.5
C2—C3—H3B109.4H8BA—C8B—H8BB109.5
C2—C3—C4111.3 (7)H8BA—C8B—H8BC109.5
H3A—C3—H3B108.0H8BB—C8B—H8BC109.5
C4—C3—H3A109.4C7B—C9B—H9BA109.5
C4—C3—H3B109.4C7B—C9B—H9BB109.5
C3—C4—H4A108.9C7B—C9B—H9BC109.5
C3—C4—H4B108.9H9BA—C9B—H9BB109.5
H4A—C4—H4B107.7H9BA—C9B—H9BC109.5
C5—C4—C3113.3 (6)H9BB—C9B—H9BC109.5
C5—C4—H4A108.9C5B—C10B—H10D109.5
C5—C4—H4B108.9C5B—C10B—H10E109.5
C4—C5—H5107.1C5B—C10B—H10F109.5
C4—C5—C6112.4 (7)H10D—C10B—H10E109.5
C4—C5—C10112.3 (6)H10D—C10B—H10F109.5
C6—C5—H5107.1H10E—C10B—H10F109.5
C6—C5—C10110.5 (7)H1CA—O1C—H1C152.5
C10—C5—H5107.1C1C—O1C—H1CA95 (10)
C1—C6—H6A109.0C1C—O1C—H1C109.5
C1—C6—H6B109.0O1C—C1C—H1CB107.4
C5—C6—C1113.0 (7)O1C—C1C—C2C110.2 (8)
C5—C6—H6A109.0O1C—C1C—C6C110.0 (7)
C5—C6—H6B109.0C2C—C1C—H1CB107.4
H6A—C6—H6B107.8C2C—C1C—C6C114.3 (6)
C2—C7—H7108.2C6C—C1C—H1CB107.4
C2—C7—C9112.6 (7)C1C—C2C—H2C103.9
C8—C7—C2110.6 (6)C1C—C2C—C3C113.0 (8)
C8—C7—H7108.2C1C—C2C—C7C115.3 (6)
C8—C7—C9108.9 (7)C3C—C2C—H2C103.9
C9—C7—H7108.2C3C—C2C—C7C114.9 (6)
C7—C8—H8A109.5C7C—C2C—H2C103.9
C7—C8—H8B109.5C2C—C3C—H3CA108.9
C7—C8—H8C109.5C2C—C3C—H3CB108.9
H8A—C8—H8B109.5H3CA—C3C—H3CB107.7
H8A—C8—H8C109.5C4C—C3C—C2C113.4 (6)
H8B—C8—H8C109.5C4C—C3C—H3CA108.9
C7—C9—H9A109.5C4C—C3C—H3CB108.9
C7—C9—H9B109.5C3C—C4C—H4CA108.8
C7—C9—H9C109.5C3C—C4C—H4CB108.8
H9A—C9—H9B109.5H4CA—C4C—H4CB107.7
H9A—C9—H9C109.5C5C—C4C—C3C113.7 (6)
H9B—C9—H9C109.5C5C—C4C—H4CA108.8
C5—C10—H10A109.5C5C—C4C—H4CB108.8
C5—C10—H10B109.5C4C—C5C—H5C105.7
C5—C10—H10C109.5C4C—C5C—C6C112.1 (7)
H10A—C10—H10B109.5C4C—C5C—C10C115.8 (7)
H10A—C10—H10C109.5C6C—C5C—H5C105.7
H10B—C10—H10C109.5C6C—C5C—C10C111.1 (7)
H1BB—O1B—H1BA140.3C10C—C5C—H5C105.7
C1B—O1B—H1BB109.5C1C—C6C—H6CA108.8
C1B—O1B—H1BA106 (5)C1C—C6C—H6CB108.8
O1B—C1B—H1BC106.2C5C—C6C—C1C113.8 (7)
O1B—C1B—C2B115.0 (10)C5C—C6C—H6CA108.8
O1B—C1B—C6B107.8 (7)C5C—C6C—H6CB108.8
C2B—C1B—H1BC106.2H6CA—C6C—H6CB107.7
C2B—C1B—C6B114.8 (7)C2C—C7C—H7C106.8
C6B—C1B—H1BC106.2C2C—C7C—C9C112.0 (8)
C1B—C2B—H2B104.7C8C—C7C—C2C115.0 (7)
C1B—C2B—C3B110.4 (9)C8C—C7C—H7C106.8
C1B—C2B—C7B116.7 (7)C8C—C7C—C9C108.9 (7)
C3B—C2B—H2B104.7C9C—C7C—H7C106.8
C7B—C2B—H2B104.7C7C—C8C—H8CA109.5
C7B—C2B—C3B114.3 (8)C7C—C8C—H8CB109.5
C2B—C3B—H3BA110.0C7C—C8C—H8CC109.5
C2B—C3B—H3BB110.0H8CA—C8C—H8CB109.5
H3BA—C3B—H3BB108.4H8CA—C8C—H8CC109.5
C4B—C3B—C2B108.4 (7)H8CB—C8C—H8CC109.5
C4B—C3B—H3BA110.0C7C—C9C—H9CA109.5
C4B—C3B—H3BB110.0C7C—C9C—H9CB109.5
C3B—C4B—H4BA108.2C7C—C9C—H9CC109.5
C3B—C4B—H4BB108.2H9CA—C9C—H9CB109.5
C3B—C4B—C5B116.4 (7)H9CA—C9C—H9CC109.5
H4BA—C4B—H4BB107.3H9CB—C9C—H9CC109.5
C5B—C4B—H4BA108.2C5C—C10C—H10G109.5
C5B—C4B—H4BB108.2C5C—C10C—H10H109.5
C4B—C5B—H5B106.0C5C—C10C—H10I109.5
C6B—C5B—C4B109.0 (9)H10G—C10C—H10H109.5
C6B—C5B—H5B106.0H10G—C10C—H10I109.5
C10B—C5B—C4B114.2 (7)H10H—C10C—H10I109.5
C10B—C5B—H5B106.0
O1—C1—C2—C3179.5 (7)C3B—C2B—C7B—C9B57.0 (11)
O1—C1—C2—C746.4 (10)C3B—C4B—C5B—C6B50.6 (11)
O1—C1—C6—C5179.2 (9)C3B—C4B—C5B—C10B179.4 (10)
C1—C2—C3—C453.5 (10)C4B—C5B—C6B—C1B47.6 (12)
C1—C2—C7—C8159.1 (8)C6B—C1B—C2B—C3B55.8 (11)
C1—C2—C7—C978.8 (10)C6B—C1B—C2B—C7B171.6 (9)
C2—C1—C6—C550.1 (11)C7B—C2B—C3B—C4B172.2 (7)
C2—C3—C4—C554.6 (10)C10B—C5B—C6B—C1B177.2 (8)
C3—C2—C7—C870.2 (11)O1C—C1C—C2C—C3C169.2 (7)
C3—C2—C7—C951.8 (10)O1C—C1C—C2C—C7C55.8 (10)
C3—C4—C5—C652.2 (9)O1C—C1C—C6C—C5C170.6 (7)
C3—C4—C5—C10177.4 (9)C1C—C2C—C3C—C4C47.8 (11)
C4—C5—C6—C149.2 (10)C1C—C2C—C7C—C8C168.2 (9)
C6—C1—C2—C352.0 (10)C1C—C2C—C7C—C9C66.6 (11)
C6—C1—C2—C7174.9 (8)C2C—C1C—C6C—C5C46.0 (12)
C7—C2—C3—C4174.3 (6)C2C—C3C—C4C—C5C52.3 (11)
C10—C5—C6—C1175.5 (7)C3C—C2C—C7C—C8C57.6 (11)
O1B—C1B—C2B—C3B178.3 (7)C3C—C2C—C7C—C9C67.5 (10)
O1B—C1B—C2B—C7B45.7 (11)C3C—C4C—C5C—C6C52.5 (11)
O1B—C1B—C6B—C5B176.7 (10)C3C—C4C—C5C—C10C178.6 (8)
C1B—C2B—C3B—C4B53.9 (11)C4C—C5C—C6C—C1C49.1 (11)
C1B—C2B—C7B—C8B163.3 (9)C6C—C1C—C2C—C3C44.8 (12)
C1B—C2B—C7B—C9B73.8 (10)C6C—C1C—C2C—C7C179.8 (8)
C2B—C1B—C6B—C5B53.8 (13)C7C—C2C—C3C—C4C177.1 (7)
C2B—C3B—C4B—C5B53.9 (13)C10C—C5C—C6C—C1C179.6 (7)
C3B—C2B—C7B—C8B65.8 (12)
beta-DL-2-Isopropyl-5-methylcyclohexanol (beta_DL_1.34GPa) top
Crystal data top
C10H20OF(000) = 1056
Mr = 156.26Dx = 1.132 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.529 (6) ÅCell parameters from 1401 reflections
b = 20.7315 (15) Åθ = 27.3–4.3°
c = 11.880 (6) ŵ = 0.07 mm1
β = 104.42 (6)°T = 296 K
V = 2750 (2) Å3Plate, colourless
Z = 120.45 × 0.45 × 0.02 mm
Data collection top
Xcalibur, Eos
diffractometer
1401 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source707 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.116
Detector resolution: 16.2413 pixels mm-1θmax = 27.3°, θmin = 4.3°
ω and φ scansh = 99
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 2626
Tmin = 0.970, Tmax = 0.999l = 1010
14113 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.098 w = 1/[σ2(Fo2) + (0.155P)2 + 4.5958P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.330(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.12 e Å3
1401 reflectionsΔρmin = 0.13 e Å3
312 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
206 restraintsExtinction coefficient: 0.006 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0165 (13)0.0649 (3)0.4995 (12)0.072 (11)
H1B0.0499670.0635770.4862480.109*0.5
H1A0.020 (19)0.0257 (16)0.51 (2)0.109*0.5
C10.0081 (18)0.0941 (4)0.6051 (17)0.059 (7)
H10.0784290.0800400.6308740.071*
C20.0170 (17)0.1665 (4)0.5939 (17)0.061 (7)
H20.0565860.1795780.5728610.091*
C30.0084 (18)0.1973 (4)0.7093 (17)0.064 (7)
H3A0.0783470.1856360.7363400.077*
H3B0.0081530.2437790.7006010.077*
C40.1015 (19)0.1772 (4)0.7977 (17)0.070 (7)
H4A0.1001690.1963680.8718420.085*
H4B0.1710710.1939140.7752850.085*
C50.1144 (19)0.1053 (4)0.8127 (18)0.068 (7)
H50.0483080.0906500.8445180.081*
C60.0984 (18)0.0742 (4)0.6982 (16)0.064 (7)
H6A0.0940370.0280030.7088840.077*
H6B0.1694700.0826200.6707220.077*
C70.119 (2)0.1917 (5)0.494 (2)0.067 (7)
H70.1226650.1638120.4264850.080*
C80.0965 (19)0.2587 (5)0.4599 (18)0.088 (12)
H8A0.1618590.2725270.3974870.132*
H8B0.0896910.2869210.5252940.132*
H8C0.0234830.2599610.4348600.132*
C90.242 (2)0.1850 (5)0.529 (2)0.076 (12)
H9A0.2535770.1409700.5487160.115*
H9B0.3063850.1980760.4651150.115*
H9C0.2408890.2120740.5950770.115*
C100.228 (2)0.0841 (5)0.8959 (19)0.079 (12)
H10A0.2356020.1051530.9693720.119*
H10B0.2261710.0381960.9064100.119*
H10C0.2950260.0952290.8654330.119*
O1B0.1895 (12)0.0456 (3)0.4188 (12)0.080 (11)
H1BB0.1294750.0494990.4434820.120*0.5
H1CA0.349 (11)0.018 (11)0.486 (12)0.120*0.5
C1B0.1802 (19)0.0858 (4)0.3231 (18)0.062 (7)
H1BC0.2462120.0753100.2878720.075*
C2B0.1871 (19)0.1560 (4)0.3506 (17)0.071 (7)
H2B0.1156900.1665820.3776700.085*
C3B0.179 (2)0.1941 (5)0.2418 (19)0.079 (7)
H3BA0.2456600.1833310.2093140.095*
H3BB0.1827630.2397800.2596630.095*
C4B0.062 (2)0.1790 (5)0.1542 (18)0.086 (7)
H4BA0.0039410.1939130.1843800.103*
H4BB0.0595580.2024560.0829970.103*
C5B0.046 (2)0.1085 (5)0.1272 (18)0.084 (7)
H5B0.1113540.0963620.0914790.100*
C6B0.0647 (17)0.0695 (4)0.2361 (16)0.070 (7)
H6BA0.0648580.0240880.2167520.084*
H6BB0.0016350.0770990.2710700.084*
C7B0.297 (2)0.1756 (5)0.449 (2)0.067 (7)
H7B0.2991600.1443610.5118520.080*
C8B0.276 (2)0.2401 (5)0.4994 (19)0.099 (12)
H8BA0.1981490.2404090.5154760.148*
H8BB0.3360630.2475200.5701330.148*
H8BC0.2795780.2735610.4445500.148*
C9B0.418 (3)0.1695 (6)0.420 (2)0.083 (12)
H9BA0.4250700.1273700.3890440.124*
H9BB0.4243830.2016330.3640150.124*
H9BC0.4808680.1755910.4895980.124*
C10B0.067 (2)0.0915 (6)0.041 (2)0.098 (12)
H10D0.1338530.1036910.0710980.147*
H10E0.0692550.0458610.0271880.147*
H10F0.0709950.1140300.0303230.147*
O1C0.4057 (13)0.0199 (3)0.5426 (13)0.071 (10)
H1C0.4636430.0042090.5241840.107*0.5
H1BA0.256 (4)0.031 (5)0.436 (8)0.107*0.5
C1C0.4119 (19)0.0052 (5)0.6597 (19)0.064 (7)
H1CB0.3611720.0371990.6849270.077*
C2C0.5307 (16)0.0138 (4)0.7357 (17)0.058 (6)
H2C0.5811730.0155310.7038340.069*
C3C0.5449 (18)0.0088 (4)0.8554 (17)0.063 (7)
H3CA0.5040120.0206070.8960610.075*
H3CB0.6292420.0088030.8954230.075*
C4C0.4947 (17)0.0762 (4)0.8587 (17)0.068 (7)
H4CA0.5408480.1061630.8246550.081*
H4CB0.5032610.0887420.9390480.081*
C5C0.3666 (19)0.0807 (5)0.7953 (18)0.071 (7)
H5C0.3221180.0495760.8304310.085*
C6C0.3554 (18)0.0604 (4)0.6730 (17)0.057 (7)
H6CA0.2711060.0588020.6331770.085*
H6CB0.3926380.0929100.6348390.085*
C7C0.5835 (18)0.0810 (5)0.7243 (17)0.066 (7)
H7C0.5751770.0891810.6413920.079*
C8C0.715 (2)0.0846 (6)0.784 (2)0.085 (12)
H8CA0.7590120.0571660.7452010.127*
H8CB0.7266810.0707370.8636020.127*
H8CC0.7418960.1282910.7828890.127*
C9C0.512 (2)0.1356 (5)0.772 (2)0.095 (12)
H9CA0.5219610.1301410.8539100.142*
H9CB0.4280580.1324950.7332090.142*
H9CC0.5412580.1771710.7568430.142*
C10C0.312 (2)0.1491 (5)0.805 (2)0.095 (12)
H10G0.2296550.1495500.7628040.142*
H10H0.3556780.1808210.7731500.142*
H10I0.3181770.1588300.8853270.142*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.095 (16)0.070 (4)0.050 (14)0.006 (6)0.015 (13)0.026 (6)
C10.057 (10)0.059 (5)0.058 (10)0.004 (6)0.010 (8)0.004 (6)
C20.061 (10)0.061 (5)0.059 (10)0.000 (6)0.014 (8)0.004 (6)
C30.061 (10)0.068 (5)0.063 (10)0.003 (6)0.013 (8)0.007 (6)
C40.072 (10)0.078 (5)0.060 (10)0.000 (6)0.014 (8)0.017 (6)
C50.068 (10)0.068 (5)0.066 (10)0.001 (6)0.014 (8)0.004 (6)
C60.059 (10)0.065 (5)0.064 (10)0.005 (6)0.010 (8)0.000 (6)
C70.067 (11)0.067 (5)0.065 (10)0.011 (7)0.014 (8)0.002 (6)
C80.081 (18)0.085 (7)0.095 (17)0.003 (9)0.016 (15)0.042 (9)
C90.066 (18)0.089 (7)0.072 (17)0.018 (10)0.012 (15)0.018 (9)
C100.072 (17)0.116 (7)0.044 (16)0.007 (10)0.005 (14)0.003 (9)
O1B0.074 (15)0.083 (4)0.072 (14)0.005 (6)0.002 (13)0.034 (6)
C1B0.058 (10)0.075 (5)0.051 (10)0.006 (7)0.007 (8)0.005 (7)
C2B0.069 (10)0.075 (5)0.066 (10)0.004 (6)0.013 (8)0.002 (7)
C3B0.077 (11)0.083 (6)0.077 (10)0.004 (7)0.018 (8)0.028 (7)
C4B0.081 (11)0.101 (6)0.069 (10)0.018 (7)0.007 (8)0.016 (7)
C5B0.070 (11)0.102 (6)0.071 (10)0.010 (7)0.003 (8)0.002 (7)
C6B0.060 (10)0.080 (5)0.063 (10)0.001 (6)0.000 (8)0.006 (6)
C7B0.061 (11)0.067 (5)0.073 (11)0.005 (7)0.016 (8)0.015 (7)
C8B0.090 (18)0.090 (7)0.113 (17)0.011 (9)0.019 (15)0.016 (9)
C9B0.083 (18)0.089 (7)0.076 (18)0.025 (11)0.018 (15)0.006 (9)
C10B0.072 (18)0.139 (9)0.067 (17)0.024 (10)0.014 (15)0.008 (10)
O1C0.070 (15)0.089 (5)0.046 (13)0.005 (5)0.002 (13)0.016 (6)
C1C0.057 (10)0.077 (5)0.052 (10)0.011 (7)0.004 (8)0.010 (7)
C2C0.051 (10)0.067 (5)0.050 (10)0.001 (6)0.002 (8)0.006 (6)
C3C0.061 (10)0.069 (5)0.053 (10)0.003 (6)0.003 (8)0.001 (6)
C4C0.072 (10)0.071 (5)0.055 (10)0.001 (6)0.009 (8)0.004 (6)
C5C0.076 (11)0.069 (5)0.067 (10)0.003 (6)0.018 (8)0.003 (6)
C6C0.052 (10)0.067 (5)0.047 (10)0.002 (6)0.006 (8)0.003 (6)
C7C0.057 (10)0.083 (6)0.054 (10)0.001 (7)0.007 (8)0.002 (7)
C8C0.057 (18)0.111 (8)0.087 (17)0.013 (9)0.020 (15)0.003 (10)
C9C0.103 (18)0.078 (6)0.104 (18)0.010 (9)0.028 (15)0.022 (9)
C10C0.109 (19)0.077 (6)0.102 (18)0.005 (9)0.034 (15)0.003 (9)
Geometric parameters (Å, º) top
O1—H1B0.8200C5B—C6B1.50 (2)
O1—H1A0.82 (2)C5B—C10B1.487 (14)
O1—C11.37 (2)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.510 (12)C7B—H7B0.9800
C1—C61.491 (12)C7B—C8B1.51 (2)
C2—H20.9800C7B—C9B1.53 (6)
C2—C31.49 (3)C8B—H8BA0.9600
C2—C71.537 (14)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.490 (13)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.503 (12)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.47 (3)O1C—H1CA0.82 (2)
C5—C101.498 (14)O1C—H1C0.8200
C6—H6A0.9700O1C—C1C1.41 (3)
C6—H6B0.9700C1C—H1CB0.9800
C7—H70.9800C1C—C2C1.452 (15)
C7—C81.49 (2)C1C—C6C1.53 (2)
C7—C91.58 (6)C2C—H2C0.9800
C8—H8A0.9600C2C—C3C1.47 (3)
C8—H8B0.9600C2C—C7C1.539 (19)
C8—H8C0.9600C3C—H3CA0.9700
C9—H9A0.9600C3C—H3CB0.9700
C9—H9B0.9600C3C—C4C1.516 (17)
C9—H9C0.9600C4C—H4CA0.9700
C10—H10A0.9600C4C—H4CB0.9700
C10—H10B0.9600C4C—C5C1.48 (2)
C10—H10C0.9600C5C—H5C0.9800
O1B—H1BB0.8200C5C—C6C1.49 (3)
O1B—C1B1.39 (2)C5C—C10C1.57 (2)
O1B—H1BA0.80 (2)C6C—H6CA0.9700
C1B—H1BC0.9800C6C—H6CB0.9700
C1B—C2B1.490 (14)C7C—H7C0.9800
C1B—C6B1.506 (14)C7C—C8C1.51 (2)
C2B—H2B0.9800C7C—C9C1.59 (3)
C2B—C3B1.50 (3)C8C—H8CA0.9600
C2B—C7B1.551 (14)C8C—H8CB0.9700
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.514 (15)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.499 (14)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1B—O1—H1A94.4C10B—C5B—C6B112.2 (18)
C1—O1—H1B109.5C1B—C6B—H6BA109.1
C1—O1—H1A108 (10)C1B—C6B—H6BB109.1
O1—C1—H1106.2C5B—C6B—C1B112.5 (16)
O1—C1—C2111.7 (15)C5B—C6B—H6BA109.1
O1—C1—C6114.5 (16)C5B—C6B—H6BB109.1
C2—C1—H1106.2H6BA—C6B—H6BB107.8
C6—C1—H1106.2C2B—C7B—H7B105.3
C6—C1—C2111.4 (7)C8B—C7B—C2B110.4 (14)
C1—C2—H2104.6C8B—C7B—H7B105.3
C1—C2—C7115.3 (7)C8B—C7B—C9B114.2 (15)
C3—C2—C1110.9 (16)C9B—C7B—C2B115 (3)
C3—C2—H2104.6C9B—C7B—H7B105.3
C3—C2—C7115.3 (18)C7B—C8B—H8BA109.5
C7—C2—H2104.6C7B—C8B—H8BB109.5
C2—C3—H3A109.2C7B—C8B—H8BC109.5
C2—C3—H3B109.2H8BA—C8B—H8BB109.5
C2—C3—C4112.3 (17)H8BA—C8B—H8BC109.5
H3A—C3—H3B107.9H8BB—C8B—H8BC109.5
C4—C3—H3A109.2C7B—C9B—H9BA109.5
C4—C3—H3B109.2C7B—C9B—H9BB109.5
C3—C4—H4A108.8C7B—C9B—H9BC109.5
C3—C4—H4B108.8H9BA—C9B—H9BB109.5
C3—C4—C5113.7 (8)H9BA—C9B—H9BC109.5
H4A—C4—H4B107.7H9BB—C9B—H9BC109.5
C5—C4—H4A108.8C5B—C10B—H10D109.5
C5—C4—H4B108.8C5B—C10B—H10E109.5
C4—C5—H5106.8C5B—C10B—H10F109.5
C6—C5—C4109.8 (15)H10D—C10B—H10E109.5
C6—C5—H5106.8H10D—C10B—H10F109.5
C6—C5—C10111.6 (18)H10E—C10B—H10F109.5
C10—C5—C4114.5 (9)H1CA—O1C—H1C107.5
C10—C5—H5106.8C1C—O1C—H1CA130 (10)
C1—C6—H6A108.0C1C—O1C—H1C109.5
C1—C6—H6B108.0O1C—C1C—H1CB105.6
C5—C6—C1117.0 (16)O1C—C1C—C2C113 (2)
C5—C6—H6A108.0O1C—C1C—C6C112.1 (11)
C5—C6—H6B108.0C2C—C1C—H1CB105.6
H6A—C6—H6B107.3C2C—C1C—C6C113.9 (9)
C2—C7—H7107.7C6C—C1C—H1CB105.6
C2—C7—C9109 (3)C1C—C2C—H2C104.0
C8—C7—C2112.1 (12)C1C—C2C—C3C115 (2)
C8—C7—H7107.7C1C—C2C—C7C112.9 (8)
C8—C7—C9112.3 (17)C3C—C2C—H2C104.0
C9—C7—H7107.7C3C—C2C—C7C115.1 (10)
C7—C8—H8A109.5C7C—C2C—H2C104.0
C7—C8—H8B109.5C2C—C3C—H3CA109.3
C7—C8—H8C109.5C2C—C3C—H3CB109.3
H8A—C8—H8B109.5C2C—C3C—C4C111.6 (10)
H8A—C8—H8C109.5H3CA—C3C—H3CB108.0
H8B—C8—H8C109.5C4C—C3C—H3CA109.3
C7—C9—H9A109.5C4C—C3C—H3CB109.3
C7—C9—H9B109.5C3C—C4C—H4CA109.1
C7—C9—H9C109.5C3C—C4C—H4CB109.1
H9A—C9—H9B109.5H4CA—C4C—H4CB107.8
H9A—C9—H9C109.5C5C—C4C—C3C112.5 (8)
H9B—C9—H9C109.5C5C—C4C—H4CA109.1
C5—C10—H10A109.5C5C—C4C—H4CB109.1
C5—C10—H10B109.5C4C—C5C—H5C107.6
C5—C10—H10C109.5C4C—C5C—C6C108 (2)
H10A—C10—H10B109.5C4C—C5C—C10C112.7 (9)
H10A—C10—H10C109.5C6C—C5C—H5C107.6
H10B—C10—H10C109.5C6C—C5C—C10C112.9 (11)
H1BB—O1B—H1BA141.3C10C—C5C—H5C107.6
C1B—O1B—H1BB109.5C1C—C6C—H6CA108.6
C1B—O1B—H1BA108 (6)C1C—C6C—H6CB108.6
O1B—C1B—H1BC107.8C5C—C6C—C1C114.6 (11)
O1B—C1B—C2B114.6 (17)C5C—C6C—H6CA108.6
O1B—C1B—C6B107.6 (15)C5C—C6C—H6CB108.6
C2B—C1B—H1BC107.8H6CA—C6C—H6CB107.6
C2B—C1B—C6B111.0 (9)C2C—C7C—H7C107.7
C6B—C1B—H1BC107.8C2C—C7C—C9C111 (2)
C1B—C2B—H2B106.7C8C—C7C—C2C112.1 (9)
C1B—C2B—C3B109.7 (17)C8C—C7C—H7C107.7
C1B—C2B—C7B114.2 (8)C8C—C7C—C9C110.3 (13)
C3B—C2B—H2B106.7C9C—C7C—H7C107.7
C3B—C2B—C7B112.3 (17)C7C—C8C—H8CA109.5
C7B—C2B—H2B106.7C7C—C8C—H8CB109.5
C2B—C3B—H3BA109.7C7C—C8C—H8CC109.5
C2B—C3B—H3BB109.7H8CA—C8C—H8CB109.5
C2B—C3B—C4B109.9 (17)H8CA—C8C—H8CC109.5
H3BA—C3B—H3BB108.2H8CB—C8C—H8CC109.5
C4B—C3B—H3BA109.7C7C—C9C—H9CA109.5
C4B—C3B—H3BB109.7C7C—C9C—H9CB109.5
C3B—C4B—H4BA109.0C7C—C9C—H9CC109.5
C3B—C4B—H4BB109.0H9CA—C9C—H9CB109.5
H4BA—C4B—H4BB107.8H9CA—C9C—H9CC109.5
C5B—C4B—C3B112.8 (9)H9CB—C9C—H9CC109.5
C5B—C4B—H4BA109.0C5C—C10C—H10G109.5
C5B—C4B—H4BB109.0C5C—C10C—H10H109.5
C4B—C5B—H5B106.1C5C—C10C—H10I109.5
C6B—C5B—C4B110.9 (15)H10G—C10C—H10H109.5
C6B—C5B—H5B106.1H10G—C10C—H10I109.5
C10B—C5B—C4B114.6 (10)H10H—C10C—H10I109.5
C10B—C5B—H5B106.1
O1—C1—C2—C3179.7 (17)C3B—C2B—C7B—C9B57 (2)
O1—C1—C2—C746 (3)C3B—C4B—C5B—C6B52 (3)
O1—C1—C6—C5178.2 (17)C3B—C4B—C5B—C10B180 (3)
C1—C2—C3—C454 (2)C4B—C5B—C6B—C1B51 (3)
C1—C2—C7—C8159 (3)C6B—C1B—C2B—C3B59 (3)
C1—C2—C7—C976 (3)C6B—C1B—C2B—C7B174 (3)
C2—C1—C6—C550 (3)C7B—C2B—C3B—C4B172.8 (18)
C2—C3—C4—C555 (3)C10B—C5B—C6B—C1B179 (2)
C3—C2—C7—C870 (3)O1C—C1C—C2C—C3C172.5 (12)
C3—C2—C7—C955.1 (18)O1C—C1C—C2C—C7C53 (2)
C3—C4—C5—C650 (3)O1C—C1C—C6C—C5C176.0 (19)
C3—C4—C5—C10176 (2)C1C—C2C—C3C—C4C48 (2)
C4—C5—C6—C149 (3)C1C—C2C—C7C—C8C168 (2)
C6—C1—C2—C351 (3)C1C—C2C—C7C—C9C68 (2)
C6—C1—C2—C7176 (3)C2C—C1C—C6C—C5C46 (3)
C7—C2—C3—C4172.2 (17)C2C—C3C—C4C—C5C57 (3)
C10—C5—C6—C1176.7 (17)C3C—C2C—C7C—C8C57 (3)
O1B—C1B—C2B—C3B178.7 (18)C3C—C2C—C7C—C9C67.2 (18)
O1B—C1B—C2B—C7B52 (3)C3C—C4C—C5C—C6C58 (2)
O1B—C1B—C6B—C5B178.2 (17)C3C—C4C—C5C—C10C176 (2)
C1B—C2B—C3B—C4B59 (2)C4C—C5C—C6C—C1C52 (2)
C1B—C2B—C7B—C8B160 (3)C6C—C1C—C2C—C3C43 (3)
C1B—C2B—C7B—C9B68 (3)C6C—C1C—C2C—C7C178 (2)
C2B—C1B—C6B—C5B56 (3)C7C—C2C—C3C—C4C177.9 (17)
C2B—C3B—C4B—C5B56 (3)C10C—C5C—C6C—C1C177.7 (19)
C3B—C2B—C7B—C8B74 (3)
beta-DL-2-Isopropyl-5-methylcyclohexanol (beta_DL_1.67GPa) top
Crystal data top
C10H20OF(000) = 1056
Mr = 156.26Dx = 1.149 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.48 (2) ÅCell parameters from 1267 reflections
b = 20.557 (6) Åθ = 4.4–26.8°
c = 11.79 (2) ŵ = 0.07 mm1
β = 103.2 (2)°T = 296 K
V = 2709 (8) Å3Plate, colourless
Z = 120.45 × 0.45 × 0.02 mm
Data collection top
Xcalibur, Eos
diffractometer
460 reflections with I > 2σ(I)
Detector resolution: 16.2413 pixels mm-1Rint = 0.189
ω and φ scansθmax = 26.8°, θmin = 4.4°
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 99
Tmin = 0.969, Tmax = 0.999k = 2626
12550 measured reflectionsl = 1010
1267 independent reflections
Refinement top
Refinement on F2206 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.081H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.294 w = 1/[σ2(Fo2) + (0.1646P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
1267 reflectionsΔρmax = 0.11 e Å3
311 parametersΔρmin = 0.10 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0204 (14)0.0663 (3)0.4980 (13)0.098 (3)
H1B0.0452030.0639860.4817700.147*0.5
H1A0.02 (3)0.024 (7)0.52 (3)0.147*0.5
C10.0082 (18)0.0941 (5)0.6045 (17)0.085 (7)
H10.0781720.0818020.6341380.102*
C20.0118 (18)0.1682 (4)0.5875 (17)0.087 (7)
H20.0629920.1818470.5679700.130*
C30.0147 (16)0.1973 (4)0.7126 (15)0.074 (7)
H3A0.0230110.2442930.7086850.089*
H3B0.0811570.1792720.7402790.089*
C40.1054 (17)0.1780 (4)0.7944 (16)0.083 (7)
H4A0.1708190.1942040.7629190.100*
H4B0.1114760.1978540.8701630.100*
C50.1160 (19)0.1067 (4)0.8080 (18)0.079 (7)
H50.0491300.0924060.8407740.095*
C60.1019 (17)0.0738 (4)0.6946 (16)0.082 (7)
H6A0.0985920.0271880.7065840.098*
H6B0.1720030.0826290.6642630.098*
C70.116 (2)0.1940 (5)0.493 (2)0.084 (7)
H70.1207480.1662700.4246490.101*
C80.0940 (18)0.2611 (5)0.4568 (17)0.112 (12)
H8A0.1611170.2755640.3977700.169*
H8B0.0828610.2896350.5228220.169*
H8C0.0233320.2614380.4261960.169*
C90.244 (2)0.1872 (5)0.528 (2)0.086 (12)
H9A0.2530510.1435940.5536230.130*
H9B0.3069520.1967170.4610290.130*
H9C0.2473670.2171950.5892890.130*
C100.2290 (19)0.0850 (5)0.8920 (18)0.100 (12)
H10A0.2361360.1070600.9650790.149*
H10B0.2260230.0388970.9039640.149*
H10C0.2968200.0952780.8605070.149*
O1B0.1893 (13)0.0447 (3)0.4179 (13)0.101 (11)
H1BB0.1316490.0457200.4479660.151*0.5
H1CA0.336 (6)0.015 (9)0.51 (3)0.151*0.5
C1B0.1716 (19)0.0860 (5)0.3284 (17)0.094 (7)
H1BC0.2366130.0754800.2902140.112*
C2B0.1855 (19)0.1544 (5)0.3487 (17)0.091 (7)
H2B0.1169630.1674540.3799750.109*
C3B0.1765 (19)0.1939 (5)0.2415 (17)0.093 (7)
H3BA0.2441000.1843190.2077460.111*
H3BB0.1794680.2397050.2615130.111*
C4B0.0602 (19)0.1793 (5)0.1522 (17)0.103 (7)
H4BA0.0065100.1959070.1814020.123*
H4BB0.0609790.2022710.0805100.123*
C5B0.0413 (19)0.1098 (5)0.1265 (18)0.094 (7)
H5B0.1057420.0972490.0890320.113*
C6B0.0617 (16)0.0689 (4)0.2379 (15)0.084 (7)
H6BA0.0072970.0736000.2716920.100*
H6BB0.0666630.0234750.2170380.100*
C7B0.302 (2)0.1751 (6)0.447 (2)0.091 (7)
H7B0.3064000.1431510.5093920.109*
C8B0.2686 (19)0.2410 (5)0.5004 (16)0.122 (12)
H8BA0.1903300.2372240.5158380.183*
H8BB0.3259070.2500250.5717280.183*
H8BC0.2689130.2757470.4460860.183*
C9B0.422 (3)0.1702 (6)0.416 (3)0.106 (12)
H9BA0.4302930.1277790.3846680.159*
H9BB0.4273280.2026530.3589090.159*
H9BC0.4843220.1769310.4845510.159*
C10B0.072 (2)0.0915 (5)0.041 (2)0.108 (12)
H10D0.1395270.1097470.0650550.162*
H10E0.0796640.0450290.0368690.162*
H10F0.0701220.1081880.0349790.162*
O1C0.4082 (12)0.0187 (3)0.5403 (13)0.095 (11)
H1C0.4673830.0024510.5237130.143*0.5
H1BA0.251 (6)0.052 (4)0.465 (8)0.143*0.5
C1C0.4096 (15)0.0055 (5)0.6583 (15)0.092 (7)
H1CB0.3588250.0386670.6824700.110*
C2C0.5331 (16)0.0155 (4)0.7330 (16)0.079 (7)
H2C0.5840950.0137040.6999080.095*
C3C0.5411 (17)0.0110 (4)0.8589 (16)0.082 (7)
H3CA0.6238550.0097660.9018920.098*
H3CB0.4955460.0173760.8983090.098*
C4C0.4959 (16)0.0776 (4)0.8603 (15)0.079 (7)
H4CA0.5088530.0924330.9403350.095*
H4CB0.5403660.1060130.8198650.095*
C5C0.3636 (19)0.0820 (5)0.8028 (18)0.100 (7)
H5C0.3191660.0513860.8407020.120*
C6C0.3539 (17)0.0609 (4)0.6772 (16)0.075 (7)
H6CA0.2698580.0598060.6382460.112*
H6CB0.3915380.0940100.6390490.112*
C7C0.5832 (16)0.0824 (5)0.7228 (16)0.082 (7)
H7C0.5747130.0917110.6397580.098*
C8C0.7144 (19)0.0868 (5)0.781 (2)0.094 (12)
H8CA0.7589170.0576340.7437430.140*
H8CB0.7258290.0751340.8619330.140*
H8CC0.7418530.1305440.7754110.140*
C9C0.504 (2)0.1369 (5)0.7752 (19)0.115 (12)
H9CA0.5403130.1445800.8559470.172*
H9CB0.4241540.1211220.7677550.172*
H9CC0.5021730.1768260.7324800.172*
C10C0.3136 (18)0.1496 (5)0.8077 (18)0.114 (12)
H10G0.2300270.1497420.7702900.171*
H10H0.3552660.1794660.7683510.171*
H10I0.3236940.1627170.8875400.171*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.098 (4)0.100 (3)0.096 (4)0.001 (2)0.021 (2)0.002 (2)
C10.073 (11)0.096 (6)0.085 (10)0.012 (7)0.012 (8)0.010 (7)
C20.084 (11)0.100 (6)0.072 (10)0.004 (7)0.008 (8)0.001 (7)
C30.066 (11)0.078 (5)0.074 (10)0.004 (6)0.010 (8)0.006 (6)
C40.080 (11)0.097 (6)0.071 (10)0.013 (7)0.013 (8)0.009 (6)
C50.084 (11)0.083 (5)0.068 (10)0.003 (7)0.014 (8)0.006 (6)
C60.067 (11)0.091 (5)0.082 (10)0.014 (6)0.008 (8)0.010 (7)
C70.082 (11)0.084 (6)0.086 (11)0.004 (8)0.018 (9)0.008 (7)
C80.082 (18)0.110 (7)0.137 (17)0.011 (9)0.007 (15)0.005 (10)
C90.066 (18)0.104 (7)0.088 (17)0.001 (10)0.015 (15)0.008 (9)
C100.077 (18)0.136 (8)0.078 (17)0.023 (10)0.003 (15)0.021 (10)
O1B0.086 (15)0.120 (5)0.088 (14)0.004 (7)0.002 (14)0.037 (7)
C1B0.087 (11)0.109 (6)0.077 (10)0.001 (8)0.002 (8)0.004 (7)
C2B0.082 (11)0.100 (6)0.089 (10)0.010 (7)0.015 (8)0.002 (7)
C3B0.094 (11)0.092 (6)0.092 (11)0.008 (7)0.022 (9)0.008 (7)
C4B0.095 (11)0.125 (7)0.081 (10)0.009 (7)0.005 (8)0.001 (7)
C5B0.085 (11)0.107 (6)0.084 (10)0.005 (7)0.008 (8)0.003 (7)
C6B0.074 (11)0.092 (5)0.079 (10)0.006 (6)0.006 (8)0.010 (7)
C7B0.085 (12)0.090 (7)0.097 (11)0.004 (8)0.020 (9)0.014 (7)
C8B0.129 (19)0.136 (9)0.093 (17)0.022 (11)0.008 (16)0.005 (10)
C9B0.100 (19)0.108 (8)0.104 (18)0.014 (12)0.011 (16)0.020 (10)
C10B0.089 (19)0.139 (8)0.087 (18)0.007 (10)0.004 (16)0.008 (9)
O1C0.085 (15)0.115 (5)0.074 (14)0.000 (6)0.006 (14)0.011 (6)
C1C0.082 (11)0.108 (7)0.081 (11)0.005 (7)0.008 (9)0.018 (8)
C2C0.076 (10)0.093 (6)0.062 (10)0.000 (6)0.003 (8)0.004 (6)
C3C0.077 (11)0.089 (6)0.077 (11)0.009 (7)0.012 (8)0.003 (6)
C4C0.089 (11)0.088 (6)0.059 (10)0.002 (7)0.014 (8)0.012 (6)
C5C0.104 (11)0.101 (6)0.092 (11)0.007 (7)0.016 (9)0.011 (7)
C6C0.060 (11)0.083 (5)0.078 (10)0.009 (6)0.007 (8)0.008 (6)
C7C0.061 (10)0.094 (6)0.086 (10)0.019 (7)0.008 (8)0.014 (7)
C8C0.047 (18)0.124 (7)0.110 (17)0.020 (9)0.017 (15)0.001 (9)
C9C0.104 (18)0.100 (7)0.139 (18)0.022 (10)0.024 (16)0.022 (10)
C10C0.106 (18)0.097 (7)0.135 (18)0.007 (9)0.019 (16)0.009 (9)
Geometric parameters (Å, º) top
O1—H1B0.8200C5B—C6B1.53 (2)
O1—H1A0.9 (3)C5B—C10B1.504 (13)
O1—C11.36 (2)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.537 (12)C7B—H7B0.9800
C1—C61.511 (13)C7B—C8B1.58 (3)
C2—H20.9800C7B—C9B1.50 (6)
C2—C31.60 (3)C8B—H8BA0.9600
C2—C71.532 (15)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.543 (14)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.477 (11)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.47 (3)O1C—H1CA0.82 (2)
C5—C101.508 (13)O1C—H1C0.8200
C6—H6A0.9700O1C—C1C1.41 (2)
C6—H6B0.9700C1C—H1CB0.9800
C7—H70.9800C1C—C2C1.502 (15)
C7—C81.49 (2)C1C—C6C1.545 (19)
C7—C91.61 (5)C2C—H2C0.9800
C8—H8A0.9600C2C—C3C1.56 (3)
C8—H8B0.9600C2C—C7C1.507 (17)
C8—H8C0.9600C3C—H3CA0.9700
C9—H9A0.9600C3C—H3CB0.9700
C9—H9B0.9600C3C—C4C1.465 (15)
C9—H9C0.9600C4C—H4CA0.9700
C10—H10A0.9600C4C—H4CB0.9700
C10—H10B0.9600C4C—C5C1.52 (2)
C10—H10C0.9600C5C—H5C0.9800
O1B—H1BB0.8200C5C—C6C1.52 (3)
O1B—C1B1.33 (2)C5C—C10C1.511 (19)
O1B—H1BA0.81 (2)C6C—H6CA0.9700
C1B—H1BC0.9800C6C—H6CB0.9700
C1B—C2B1.428 (12)C7C—H7C0.9800
C1B—C6B1.496 (14)C7C—C8C1.509 (19)
C2B—H2B0.9800C7C—C9C1.65 (3)
C2B—C3B1.49 (3)C8C—H8CA0.9600
C2B—C7B1.617 (16)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.529 (14)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.467 (11)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1B—O1—H1A93.9C10B—C5B—C6B112.3 (17)
C1—O1—H1B109.5C1B—C6B—C5B114.8 (15)
C1—O1—H1A98 (10)C1B—C6B—H6BA108.6
O1—C1—H1107.5C1B—C6B—H6BB108.6
O1—C1—C2107.6 (15)C5B—C6B—H6BA108.6
O1—C1—C6115.2 (16)C5B—C6B—H6BB108.6
C2—C1—H1107.5H6BA—C6B—H6BB107.5
C6—C1—H1107.5C2B—C7B—H7B104.4
C6—C1—C2111.0 (8)C8B—C7B—C2B105.8 (15)
C1—C2—H2108.3C8B—C7B—H7B104.4
C1—C2—C3104.9 (16)C9B—C7B—C2B118 (3)
C3—C2—H2108.3C9B—C7B—H7B104.4
C7—C2—C1115.5 (8)C9B—C7B—C8B118.5 (15)
C7—C2—H2108.3C7B—C8B—H8BA109.5
C7—C2—C3111.2 (19)C7B—C8B—H8BB109.5
C2—C3—H3A110.5C7B—C8B—H8BC109.5
C2—C3—H3B110.5H8BA—C8B—H8BB109.5
H3A—C3—H3B108.7H8BA—C8B—H8BC109.5
C4—C3—C2106.0 (16)H8BB—C8B—H8BC109.5
C4—C3—H3A110.5C7B—C9B—H9BA109.5
C4—C3—H3B110.5C7B—C9B—H9BB109.5
C3—C4—H4A109.4C7B—C9B—H9BC109.5
C3—C4—H4B109.4H9BA—C9B—H9BB109.5
H4A—C4—H4B108.0H9BA—C9B—H9BC109.5
C5—C4—C3111.3 (8)H9BB—C9B—H9BC109.5
C5—C4—H4A109.4C5B—C10B—H10D109.5
C5—C4—H4B109.4C5B—C10B—H10E109.5
C4—C5—H5106.7C5B—C10B—H10F109.5
C4—C5—C10113.7 (9)H10D—C10B—H10E109.5
C6—C5—C4111.6 (14)H10D—C10B—H10F109.5
C6—C5—H5106.7H10E—C10B—H10F109.5
C6—C5—C10111.1 (17)H1CA—O1C—H1C131.00
C10—C5—H5106.7C1C—O1C—H1CA101.00
C1—C6—H6A108.7C1C—O1C—H1C109.5
C1—C6—H6B108.7O1C—C1C—H1CB106.2
C5—C6—C1114.3 (16)O1C—C1C—C2C110.3 (17)
C5—C6—H6A108.7O1C—C1C—C6C113.5 (11)
C5—C6—H6B108.7C2C—C1C—H1CB106.2
H6A—C6—H6B107.6C2C—C1C—C6C113.7 (9)
C2—C7—H7106.3C6C—C1C—H1CB106.2
C2—C7—C9113 (3)C1C—C2C—H2C104.7
C8—C7—C2111.8 (13)C1C—C2C—C3C110.5 (18)
C8—C7—H7106.3C1C—C2C—C7C113.9 (8)
C8—C7—C9112.4 (16)C3C—C2C—H2C104.7
C9—C7—H7106.3C7C—C2C—H2C104.7
C7—C8—H8A109.5C7C—C2C—C3C116.9 (10)
C7—C8—H8B109.5C2C—C3C—H3CA109.0
C7—C8—H8C109.5C2C—C3C—H3CB109.0
H8A—C8—H8B109.5H3CA—C3C—H3CB107.8
H8A—C8—H8C109.5C4C—C3C—C2C113.1 (11)
H8B—C8—H8C109.5C4C—C3C—H3CA109.0
C7—C9—H9A109.5C4C—C3C—H3CB109.0
C7—C9—H9B109.5C3C—C4C—H4CA109.3
C7—C9—H9C109.5C3C—C4C—H4CB109.3
H9A—C9—H9B109.5C3C—C4C—C5C111.8 (9)
H9A—C9—H9C109.5H4CA—C4C—H4CB107.9
H9B—C9—H9C109.5C5C—C4C—H4CA109.3
C5—C10—H10A109.5C5C—C4C—H4CB109.3
C5—C10—H10B109.5C4C—C5C—H5C109.3
C5—C10—H10C109.5C4C—C5C—C6C105.1 (19)
H10A—C10—H10B109.5C6C—C5C—H5C109.3
H10A—C10—H10C109.5C10C—C5C—C4C112.9 (9)
H10B—C10—H10C109.5C10C—C5C—H5C109.3
H1BB—O1B—H1BA111.7C10C—C5C—C6C110.8 (12)
C1B—O1B—H1BB109.5C1C—C6C—H6CA108.1
C1B—O1B—H1BA112 (6)C1C—C6C—H6CB108.1
O1B—C1B—H1BC103.2C5C—C6C—C1C116.8 (10)
O1B—C1B—C2B120.2 (15)C5C—C6C—H6CA108.1
O1B—C1B—C6B111.4 (14)C5C—C6C—H6CB108.1
C2B—C1B—H1BC103.2H6CA—C6C—H6CB107.3
C2B—C1B—C6B113.3 (9)C2C—C7C—H7C107.8
C6B—C1B—H1BC103.2C2C—C7C—C8C112.2 (8)
C1B—C2B—H2B105.4C2C—C7C—C9C109.7 (19)
C1B—C2B—C3B114.3 (16)C8C—C7C—H7C107.8
C1B—C2B—C7B115.0 (9)C8C—C7C—C9C111.4 (12)
C3B—C2B—H2B105.4C9C—C7C—H7C107.8
C3B—C2B—C7B110.4 (17)C7C—C8C—H8CA109.5
C7B—C2B—H2B105.4C7C—C8C—H8CB109.5
C2B—C3B—H3BA109.4C7C—C8C—H8CC109.5
C2B—C3B—H3BB109.4H8CA—C8C—H8CB109.5
C2B—C3B—C4B111.0 (16)H8CA—C8C—H8CC109.5
H3BA—C3B—H3BB108.0H8CB—C8C—H8CC109.5
C4B—C3B—H3BA109.4C7C—C9C—H9CA109.5
C4B—C3B—H3BB109.4C7C—C9C—H9CB109.5
C3B—C4B—H4BA108.9C7C—C9C—H9CC109.5
C3B—C4B—H4BB108.9H9CA—C9C—H9CB109.5
H4BA—C4B—H4BB107.7H9CA—C9C—H9CC109.5
C5B—C4B—C3B113.4 (9)H9CB—C9C—H9CC109.5
C5B—C4B—H4BA108.9C5C—C10C—H10G109.5
C5B—C4B—H4BB108.9C5C—C10C—H10H109.5
C4B—C5B—H5B105.0C5C—C10C—H10I109.5
C4B—C5B—C6B111.8 (13)H10G—C10C—H10H109.5
C4B—C5B—C10B116.5 (10)H10G—C10C—H10I109.5
C6B—C5B—H5B105.0H10H—C10C—H10I109.5
C10B—C5B—H5B105.0
O1—C1—C2—C3172.6 (15)C3B—C2B—C7B—C9B58 (2)
O1—C1—C2—C750 (3)C3B—C4B—C5B—C6B48 (3)
O1—C1—C6—C5177.5 (16)C3B—C4B—C5B—C10B179 (2)
C1—C2—C3—C464.4 (18)C4B—C5B—C6B—C1B45 (3)
C1—C2—C7—C8162 (2)C6B—C1B—C2B—C3B51 (3)
C1—C2—C7—C970 (3)C6B—C1B—C2B—C7B179 (3)
C2—C1—C6—C555 (3)C7B—C2B—C3B—C4B174.6 (17)
C2—C3—C4—C564 (2)C10B—C5B—C6B—C1B178 (2)
C3—C2—C7—C878 (3)O1C—C1C—C2C—C3C169.6 (11)
C3—C2—C7—C949.7 (16)O1C—C1C—C2C—C7C56 (2)
C3—C4—C5—C656 (3)O1C—C1C—C6C—C5C173.8 (16)
C3—C4—C5—C10177 (2)C1C—C2C—C3C—C4C51 (2)
C4—C5—C6—C151 (3)C1C—C2C—C7C—C8C170 (2)
C6—C1—C2—C360 (3)C1C—C2C—C7C—C9C66 (2)
C6—C1—C2—C7177 (3)C2C—C1C—C6C—C5C47 (3)
C7—C2—C3—C4170.1 (14)C2C—C3C—C4C—C5C63 (2)
C10—C5—C6—C1178.7 (16)C3C—C2C—C7C—C8C59 (3)
O1B—C1B—C2B—C3B173 (2)C3C—C2C—C7C—C9C65.0 (17)
O1B—C1B—C2B—C7B44 (4)C3C—C4C—C5C—C6C61.6 (19)
O1B—C1B—C6B—C5B174.3 (18)C3C—C4C—C5C—C10C178 (2)
C1B—C2B—C3B—C4B54 (3)C4C—C5C—C6C—C1C53.7 (19)
C1B—C2B—C7B—C8B152 (2)C6C—C1C—C2C—C3C41 (2)
C1B—C2B—C7B—C9B73 (3)C6C—C1C—C2C—C7C175 (2)
C2B—C1B—C6B—C5B47 (3)C7C—C2C—C3C—C4C177.0 (16)
C2B—C3B—C4B—C5B53 (3)C10C—C5C—C6C—C1C175.9 (17)
C3B—C2B—C7B—C8B77 (3)
beta-DL-2-Isopropyl-5-methylcyclohexanol (beta_DL_2.10GPa) top
Crystal data top
C10H20OF(000) = 1056
Mr = 156.26Dx = 1.194 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.24 (2) ÅCell parameters from 1252 reflections
b = 20.451 (5) Åθ = 4.4–27.1°
c = 11.661 (18) ŵ = 0.07 mm1
β = 103.31 (7)°T = 296 K
V = 2609 (6) Å3Plate, colourless
Z = 120.45 × 0.45 × 0.02 mm
Data collection top
Xcalibur, Eos
diffractometer
477 reflections with I > 2σ(I)
Detector resolution: 16.1544 pixels mm-1Rint = 0.241
ω and φ scansθmax = 27.1°, θmin = 4.4°
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 99
Tmin = 0.968, Tmax = 0.999k = 2625
12410 measured reflectionsl = 1010
1252 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.095 w = 1/[σ2(Fo2) + (0.1917P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.341(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.11 e Å3
1252 reflectionsΔρmin = 0.12 e Å3
312 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
206 restraintsExtinction coefficient: 0.021 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0251 (16)0.0656 (4)0.4991 (14)0.091 (3)
H1B0.0399990.0623920.4792130.137*0.5
H1A0.02 (2)0.026 (2)0.51 (2)0.137*0.5
C10.007 (2)0.0947 (5)0.601 (2)0.078 (7)
H10.0754280.0826270.6358840.093*
C20.013 (2)0.1716 (5)0.583 (2)0.088 (7)
H20.0640800.1858310.5649590.132*
C30.016 (2)0.1983 (5)0.712 (2)0.082 (7)
H3A0.0241480.2455790.7103600.098*
H3B0.0856420.1799490.7369830.098*
C40.102 (2)0.1786 (5)0.797 (2)0.090 (7)
H4A0.1709330.1933410.7678610.109*
H4B0.1059390.1992000.8731460.109*
C50.106 (3)0.1064 (5)0.812 (2)0.088 (7)
H50.0371940.0903010.8415790.106*
C60.1072 (19)0.0747 (5)0.6864 (18)0.067 (7)
H6A0.1780400.0897900.6596280.081*
H6B0.1112240.0274190.6928780.081*
C70.115 (3)0.1948 (6)0.487 (3)0.079 (7)
H70.1195500.1665590.4184420.095*
C80.099 (2)0.2599 (6)0.453 (2)0.104 (13)
H8A0.1676350.2725340.3913210.156*
H8B0.0939870.2883360.5196110.156*
H8C0.0254580.2629510.4254600.156*
C90.247 (3)0.1876 (6)0.529 (3)0.090 (13)
H9A0.2568010.1432410.5516880.135*
H9B0.3132410.1993790.4644860.135*
H9C0.2459380.2161360.5944130.135*
C100.227 (2)0.0868 (5)0.892 (2)0.095 (12)
H10A0.2303100.0400880.9015390.143*
H10B0.2934780.1008300.8588650.143*
H10C0.2349530.1069650.9681210.143*
O1B0.1892 (16)0.0431 (4)0.4130 (15)0.097 (11)
H1BB0.1301180.0444330.4431070.146*0.5
H1CA0.34 (2)0.010 (10)0.49 (3)0.146*0.5
C1B0.174 (2)0.0865 (6)0.325 (2)0.082 (7)
H1BC0.2397040.0757980.2856340.099*
C2B0.188 (2)0.1551 (5)0.346 (2)0.086 (7)
H2B0.1144840.1675210.3727400.103*
C3B0.178 (2)0.1929 (6)0.236 (2)0.096 (8)
H3BA0.2470140.1825270.2021190.116*
H3BB0.1814250.2393200.2541270.116*
C4B0.061 (2)0.1774 (6)0.1489 (19)0.095 (7)
H4BA0.0067680.1941890.1792290.114*
H4BB0.0602070.2003280.0760160.114*
C5B0.040 (3)0.1084 (7)0.123 (2)0.112 (8)
H5B0.1048240.0949010.0845860.135*
C6B0.059 (2)0.0691 (5)0.234 (2)0.086 (7)
H6BA0.0626390.0231380.2144220.104*
H6BB0.0106340.0751590.2687050.104*
C7B0.295 (3)0.1723 (6)0.452 (3)0.077 (7)
H7B0.2978830.1401350.5145400.092*
C8B0.272 (2)0.2412 (6)0.498 (2)0.114 (13)
H8BA0.3373490.2524480.5634810.171*
H8BB0.2671180.2727610.4362560.171*
H8BC0.1959960.2408940.5229400.171*
C9B0.432 (3)0.1677 (7)0.403 (3)0.111 (13)
H9BA0.4413730.1242680.3754410.167*
H9BB0.4285120.1983020.3398960.167*
H9BC0.4994180.1781280.4669720.167*
C10B0.076 (3)0.0901 (9)0.039 (2)0.118 (13)
H10D0.1410370.0890560.0802410.177*
H10E0.0673950.0477430.0068490.177*
H10F0.0947040.1217570.0230310.177*
O1C0.4022 (17)0.0193 (4)0.5456 (19)0.102 (12)
H1C0.4613880.0032960.5260420.153*0.5
H1BA0.246 (7)0.052 (4)0.466 (7)0.153*0.5
C1C0.408 (3)0.0054 (6)0.661 (2)0.084 (7)
H1CB0.3570700.0380600.6879890.100*
C2C0.535 (2)0.0160 (5)0.730 (2)0.075 (7)
H2C0.5844330.0155750.6983440.090*
C3C0.539 (2)0.0098 (5)0.861 (2)0.080 (7)
H3CA0.6220200.0071270.9087920.096*
H3CB0.4872710.0173510.8975270.096*
C4C0.497 (2)0.0765 (5)0.8562 (19)0.079 (7)
H4CA0.5452620.1024810.8136520.095*
H4CB0.5110410.0936850.9356970.095*
C5C0.370 (2)0.0828 (6)0.800 (2)0.100 (8)
H5C0.3289780.0497570.8375490.120*
C6C0.353 (2)0.0610 (5)0.6775 (19)0.069 (7)
H6CA0.2663860.0595780.6422210.103*
H6CB0.3891950.0934080.6348400.103*
C7C0.590 (2)0.0818 (6)0.713 (2)0.087 (7)
H7C0.5828160.0898120.6289850.105*
C8C0.722 (3)0.0877 (7)0.778 (2)0.104 (13)
H8CA0.7610610.1208970.7419120.156*
H8CB0.7623830.0466500.7756090.156*
H8CC0.7257750.0993910.8587990.156*
C9C0.507 (3)0.1370 (6)0.767 (3)0.115 (13)
H9CA0.5127430.1283000.8494320.173*
H9CB0.4229780.1342330.7252310.173*
H9CC0.5374240.1801520.7586430.173*
C10C0.303 (3)0.1500 (6)0.815 (2)0.118 (13)
H10G0.2193740.1475790.7731150.177*
H10H0.3429870.1852150.7840140.177*
H10I0.3076960.1575760.8971260.177*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.091 (4)0.092 (3)0.090 (4)0.001 (2)0.020 (2)0.002 (2)
C10.076 (11)0.080 (6)0.076 (11)0.012 (7)0.015 (9)0.004 (7)
C20.079 (11)0.104 (7)0.074 (11)0.005 (8)0.006 (8)0.003 (8)
C30.074 (11)0.084 (6)0.087 (11)0.009 (7)0.018 (9)0.002 (7)
C40.087 (11)0.104 (7)0.075 (10)0.000 (8)0.008 (8)0.007 (7)
C50.083 (11)0.095 (7)0.083 (11)0.006 (7)0.015 (9)0.001 (7)
C60.056 (11)0.077 (5)0.064 (10)0.008 (6)0.004 (8)0.004 (7)
C70.076 (12)0.076 (6)0.084 (11)0.004 (8)0.019 (9)0.012 (7)
C80.092 (19)0.122 (9)0.094 (18)0.026 (11)0.012 (16)0.029 (11)
C90.09 (2)0.089 (7)0.093 (18)0.030 (11)0.015 (16)0.016 (9)
C100.065 (18)0.119 (8)0.088 (18)0.006 (10)0.012 (15)0.002 (10)
O1B0.077 (16)0.114 (6)0.095 (15)0.015 (7)0.007 (14)0.024 (8)
C1B0.073 (11)0.102 (7)0.064 (11)0.001 (8)0.000 (8)0.003 (8)
C2B0.085 (11)0.092 (6)0.080 (11)0.003 (7)0.017 (9)0.011 (7)
C3B0.095 (12)0.100 (7)0.093 (11)0.006 (8)0.019 (9)0.011 (8)
C4B0.078 (11)0.119 (7)0.080 (10)0.005 (8)0.000 (8)0.005 (7)
C5B0.095 (12)0.132 (8)0.102 (11)0.014 (8)0.007 (9)0.005 (8)
C6B0.077 (11)0.093 (6)0.087 (11)0.000 (7)0.014 (8)0.010 (7)
C7B0.085 (12)0.064 (6)0.085 (11)0.009 (8)0.026 (9)0.012 (7)
C8B0.10 (2)0.134 (9)0.100 (18)0.003 (12)0.014 (16)0.003 (11)
C9B0.11 (2)0.120 (9)0.097 (19)0.000 (14)0.016 (16)0.011 (12)
C10B0.10 (2)0.164 (10)0.077 (19)0.006 (13)0.009 (16)0.003 (11)
O1C0.087 (17)0.117 (6)0.087 (15)0.004 (7)0.012 (14)0.012 (8)
C1C0.071 (11)0.104 (7)0.070 (11)0.009 (8)0.002 (9)0.011 (8)
C2C0.073 (11)0.084 (6)0.063 (10)0.003 (7)0.007 (8)0.003 (7)
C3C0.078 (11)0.085 (6)0.072 (11)0.006 (7)0.009 (8)0.003 (7)
C4C0.081 (11)0.091 (6)0.061 (11)0.004 (7)0.010 (8)0.008 (7)
C5C0.102 (12)0.106 (7)0.089 (11)0.001 (8)0.016 (9)0.003 (8)
C6C0.059 (11)0.077 (6)0.067 (11)0.007 (7)0.007 (8)0.003 (7)
C7C0.077 (11)0.091 (7)0.092 (11)0.017 (8)0.017 (9)0.005 (7)
C8C0.084 (19)0.141 (9)0.079 (18)0.024 (11)0.001 (15)0.023 (10)
C9C0.09 (2)0.114 (9)0.139 (19)0.002 (11)0.025 (16)0.014 (11)
C10C0.13 (2)0.098 (8)0.125 (19)0.002 (11)0.027 (16)0.027 (10)
Geometric parameters (Å, º) top
O1—H1B0.8200C5B—C6B1.50 (3)
O1—H1A0.82 (2)C5B—C10B1.481 (17)
O1—C11.30 (2)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.586 (14)C7B—H7B0.9800
C1—C61.490 (14)C7B—C8B1.55 (3)
C2—H20.9800C7B—C9B1.76 (6)
C2—C31.61 (4)C8B—H8BA0.9600
C2—C71.488 (16)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.515 (17)C9B—H9BB0.9600
C4—H4A0.9600C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.487 (14)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.60 (4)O1C—H1CA0.82 (2)
C5—C101.519 (17)O1C—H1C0.8200
C6—H6A0.9700O1C—C1C1.36 (4)
C6—H6B0.9700C1C—H1CB0.9800
C7—H70.9800C1C—C2C1.49 (2)
C7—C81.41 (2)C1C—C6C1.52 (3)
C7—C91.66 (6)C2C—H2C0.9800
C8—H8A0.9600C2C—C3C1.61 (3)
C8—H8B0.9600C2C—C7C1.51 (3)
C8—H8C0.9600C3C—H3CA0.9700
C9—H9A0.9600C3C—H3CB0.9700
C9—H9B0.9600C3C—C4C1.438 (16)
C9—H9C0.9600C4C—H4CA0.9700
C10—H10A0.9600C4C—H4CB0.9700
C10—H10B0.9600C4C—C5C1.43 (2)
C10—H10C0.9600C5C—H5C0.9800
O1B—H1BB0.8200C5C—C6C1.46 (3)
O1B—C1B1.34 (2)C5C—C10C1.60 (3)
O1B—H1BA0.80 (2)C6C—H6CA0.9700
C1B—H1BC0.9800C6C—H6CB0.9700
C1B—C2B1.427 (14)C7C—H7C0.9800
C1B—C6B1.510 (16)C7C—C8C1.50 (2)
C2B—H2B0.9800C7C—C9C1.68 (4)
C2B—C3B1.48 (3)C8C—H8CA0.9600
C2B—C7B1.555 (17)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9700
C3B—C4B1.505 (16)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.452 (15)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1B—O1—H1A85.4C10B—C5B—C6B111 (2)
C1—O1—H1B109.5C1B—C6B—H6BA108.7
C1—O1—H1A108 (10)C1B—C6B—H6BB108.7
O1—C1—H1107.0C5B—C6B—C1B114.4 (19)
O1—C1—C2109.8 (17)C5B—C6B—H6BA108.7
O1—C1—C6114.5 (19)C5B—C6B—H6BB108.7
C2—C1—H1107.0H6BA—C6B—H6BB107.6
C6—C1—H1107.0C2B—C7B—H7B109.1
C6—C1—C2111.3 (9)C2B—C7B—C9B108 (3)
C1—C2—H2108.2C8B—C7B—C2B108.6 (15)
C1—C2—C3102.9 (19)C8B—C7B—H7B109.1
C3—C2—H2108.2C8B—C7B—C9B113.1 (19)
C7—C2—C1114.6 (10)C9B—C7B—H7B109.1
C7—C2—H2108.2C7B—C8B—H8BA109.5
C7—C2—C3114 (3)C7B—C8B—H8BB109.5
C2—C3—H3A110.0C7B—C8B—H8BC109.5
C2—C3—H3B110.0H8BA—C8B—H8BB109.5
H3A—C3—H3B108.4H8BA—C8B—H8BC109.5
C4—C3—C2109 (2)H8BB—C8B—H8BC109.5
C4—C3—H3A110.0C7B—C9B—H9BA109.5
C4—C3—H3B110.0C7B—C9B—H9BB109.5
C3—C4—H4A109.7C7B—C9B—H9BC109.5
C3—C4—H4B109.7H9BA—C9B—H9BB109.5
H4A—C4—H4B108.2H9BA—C9B—H9BC109.5
C5—C4—C3110.0 (11)H9BB—C9B—H9BC109.5
C5—C4—H4A109.7C5B—C10B—H10D109.5
C5—C4—H4B109.7C5B—C10B—H10E109.5
C4—C5—H5111.2C5B—C10B—H10F109.5
C4—C5—C6108 (2)H10D—C10B—H10E109.5
C4—C5—C10109.7 (12)H10D—C10B—H10F109.5
C6—C5—H5111.2H10E—C10B—H10F109.5
C10—C5—H5111.2H1CA—O1C—H1C106.3
C10—C5—C6106 (2)C1C—O1C—H1CA122 (10)
C1—C6—C5108.3 (19)C1C—O1C—H1C109.5
C1—C6—H6A110.0O1C—C1C—H1CB106.3
C1—C6—H6B110.0O1C—C1C—C2C109 (3)
C5—C6—H6A110.0O1C—C1C—C6C112.7 (13)
C5—C6—H6B110.0C2C—C1C—H1CB106.3
H6A—C6—H6B108.4C2C—C1C—C6C115.1 (10)
C2—C7—H7108.0C6C—C1C—H1CB106.3
C2—C7—C9110 (3)C1C—C2C—H2C104.5
C8—C7—C2112.6 (15)C1C—C2C—C3C107 (2)
C8—C7—H7108.0C1C—C2C—C7C115.3 (11)
C8—C7—C9110 (2)C3C—C2C—H2C104.5
C9—C7—H7108.0C7C—C2C—H2C104.5
C7—C8—H8A109.5C7C—C2C—C3C119.7 (13)
C7—C8—H8B109.5C2C—C3C—H3CA109.7
C7—C8—H8C109.5C2C—C3C—H3CB109.7
H8A—C8—H8B109.5H3CA—C3C—H3CB108.2
H8A—C8—H8C109.5C4C—C3C—C2C109.6 (14)
H8B—C8—H8C109.5C4C—C3C—H3CA109.7
C7—C9—H9A109.5C4C—C3C—H3CB109.7
C7—C9—H9B109.5C3C—C4C—H4CA109.1
C7—C9—H9C109.5C3C—C4C—H4CB109.1
H9A—C9—H9B109.5H4CA—C4C—H4CB107.8
H9A—C9—H9C109.5C5C—C4C—C3C112.6 (11)
H9B—C9—H9C109.5C5C—C4C—H4CA109.1
C5—C10—H10A109.5C5C—C4C—H4CB109.1
C5—C10—H10B109.5C4C—C5C—H5C105.0
C5—C10—H10C109.5C4C—C5C—C6C108 (2)
H10A—C10—H10B109.5C4C—C5C—C10C118.1 (11)
H10A—C10—H10C109.5C6C—C5C—H5C105.0
H10B—C10—H10C109.5C6C—C5C—C10C114.2 (12)
H1BB—O1B—H1BA104.1C10C—C5C—H5C105.0
C1B—O1B—H1BB109.5C1C—C6C—H6CA108.4
C1B—O1B—H1BA113 (7)C1C—C6C—H6CB108.4
O1B—C1B—H1BC103.5C5C—C6C—C1C115.6 (13)
O1B—C1B—C2B122.1 (18)C5C—C6C—H6CA108.4
O1B—C1B—C6B108.7 (16)C5C—C6C—H6CB108.4
C2B—C1B—H1BC103.5H6CA—C6C—H6CB107.4
C2B—C1B—C6B113.2 (10)C2C—C7C—H7C109.8
C6B—C1B—H1BC103.5C2C—C7C—C9C105 (2)
C1B—C2B—H2B104.1C8C—C7C—C2C112.9 (11)
C1B—C2B—C3B113 (2)C8C—C7C—H7C109.8
C1B—C2B—C7B113.1 (9)C8C—C7C—C9C108.9 (14)
C3B—C2B—H2B104.1C9C—C7C—H7C109.8
C3B—C2B—C7B117 (2)C7C—C8C—H8CA109.5
C7B—C2B—H2B104.1C7C—C8C—H8CB109.5
C2B—C3B—H3BA109.5C7C—C8C—H8CC109.5
C2B—C3B—H3BB109.5H8CA—C8C—H8CB109.5
C2B—C3B—C4B111 (2)H8CA—C8C—H8CC109.5
H3BA—C3B—H3BB108.1H8CB—C8C—H8CC109.5
C4B—C3B—H3BA109.5C7C—C9C—H9CA109.5
C4B—C3B—H3BB109.5C7C—C9C—H9CB109.5
C3B—C4B—H4BA108.5C7C—C9C—H9CC109.5
C3B—C4B—H4BB108.5H9CA—C9C—H9CB109.5
H4BA—C4B—H4BB107.5H9CA—C9C—H9CC109.5
C5B—C4B—C3B115.0 (11)H9CB—C9C—H9CC109.5
C5B—C4B—H4BA108.5C5C—C10C—H10G109.5
C5B—C4B—H4BB108.5C5C—C10C—H10H109.5
C4B—C5B—H5B105.4C5C—C10C—H10I109.5
C4B—C5B—C6B110.8 (18)H10G—C10C—H10H109.5
C4B—C5B—C10B117.3 (13)H10G—C10C—H10I109.5
C6B—C5B—H5B105.4H10H—C10C—H10I109.5
C10B—C5B—H5B105.4
O1—C1—C2—C3169 (2)C3B—C2B—C7B—C9B54 (2)
O1—C1—C2—C744 (4)C3B—C4B—C5B—C6B49 (4)
O1—C1—C6—C5172 (2)C3B—C4B—C5B—C10B179 (3)
C1—C2—C3—C463 (2)C4B—C5B—C6B—C1B46 (3)
C1—C2—C7—C8164 (3)C6B—C1B—C2B—C3B53 (4)
C1—C2—C7—C973 (3)C6B—C1B—C2B—C7B172 (3)
C2—C1—C6—C563 (3)C7B—C2B—C3B—C4B172 (2)
C2—C3—C4—C567 (3)C10B—C5B—C6B—C1B178 (2)
C3—C2—C7—C877 (4)O1C—C1C—C2C—C3C173.0 (14)
C3—C2—C7—C946 (2)O1C—C1C—C2C—C7C51 (3)
C3—C4—C5—C663 (3)O1C—C1C—C6C—C5C173 (2)
C3—C4—C5—C10177 (3)C1C—C2C—C3C—C4C55 (2)
C4—C5—C6—C160 (3)C1C—C2C—C7C—C8C175 (3)
C6—C1—C2—C363 (3)C1C—C2C—C7C—C9C66 (3)
C6—C1—C2—C7172 (3)C2C—C1C—C6C—C5C46 (4)
C7—C2—C3—C4172.4 (17)C2C—C3C—C4C—C5C67 (3)
C10—C5—C6—C1177.4 (16)C3C—C2C—C7C—C8C55 (3)
O1B—C1B—C2B—C3B174 (2)C3C—C2C—C7C—C9C63.6 (19)
O1B—C1B—C2B—C7B39 (4)C3C—C4C—C5C—C6C63 (3)
O1B—C1B—C6B—C5B172 (2)C3C—C4C—C5C—C10C165 (3)
C1B—C2B—C3B—C4B54 (3)C4C—C5C—C6C—C1C51 (3)
C1B—C2B—C7B—C8B158 (3)C6C—C1C—C2C—C3C45 (3)
C1B—C2B—C7B—C9B80 (3)C6C—C1C—C2C—C7C180 (3)
C2B—C1B—C6B—C5B49 (4)C7C—C2C—C3C—C4C172 (2)
C2B—C3B—C4B—C5B54 (4)C10C—C5C—C6C—C1C176 (2)
C3B—C2B—C7B—C8B69 (4)
beta-DL-2-Isopropyl-5-methylcyclohexanol (beta_DL_2.39GPa) top
Crystal data top
C10H20OF(000) = 1056
Mr = 156.26Dx = 1.183 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.3823 (16) ÅCell parameters from 1917 reflections
b = 20.381 (5) Åθ = 5.8–18.3°
c = 11.656 (3) ŵ = 0.07 mm1
β = 103.206 (18)°T = 296 K
V = 2632.4 (10) Å3Plate, colourless
Z = 120.45 × 0.45 × 0.05 mm
Data collection top
Xcalibur, Eos
diffractometer
681 reflections with I > 2σ(I)
Detector resolution: 16.2413 pixels mm-1Rint = 0.164
ω and π scansθmax = 25.7°, θmin = 5.6°
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1313
Tmin = 0.968, Tmax = 0.997k = 2020
10113 measured reflectionsl = 1010
1917 independent reflections
Refinement top
Refinement on F2208 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.092H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.317 w = 1/[σ2(Fo2) + (0.166P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
1917 reflectionsΔρmax = 0.12 e Å3
311 parametersΔρmin = 0.10 e Å3
Special details top

Experimental. Data were collected at room temperature and pressure of 1.28 (2) GPa (1280000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0227 (6)0.0643 (3)0.4943 (7)0.125 (3)
H1B0.0434940.0620480.4778640.188*0.5
H1A0.01 (2)0.0273 (13)0.538 (4)0.188*0.5
C10.0111 (8)0.0970 (6)0.6027 (12)0.114 (3)
H10.0802840.0842410.6346650.137*
C20.0153 (8)0.1713 (5)0.5887 (10)0.103 (3)
H20.0595490.1846490.5670640.155*
C30.0128 (7)0.2001 (4)0.7075 (10)0.107 (3)
H3A0.0815130.1845600.7360100.128*
H3B0.0170380.2475910.7023000.128*
C40.1042 (7)0.1793 (5)0.7919 (9)0.110 (3)
H4A0.1721350.1950610.7624350.132*
H4B0.1085420.1992330.8682700.132*
C50.1128 (8)0.1063 (5)0.8057 (10)0.104 (3)
H50.0462470.0912350.8395250.125*
C60.1004 (7)0.0754 (4)0.6893 (9)0.096 (3)
H6A0.0985160.0281450.6980490.115*
H6B0.1704610.0863190.6587090.115*
C70.1206 (7)0.1926 (5)0.4875 (9)0.100 (3)
H70.1215230.1646570.4187680.120*
C80.0993 (8)0.2606 (6)0.4573 (12)0.151 (5)
H8A0.1640200.2749430.3941350.227*
H8B0.0956660.2880430.5248920.227*
H8C0.0243970.2633480.4329290.227*
C90.2468 (7)0.1885 (4)0.5196 (10)0.123 (4)
H9A0.2594450.1447630.5450590.184*
H9B0.3089850.1992490.4515760.184*
H9C0.2492880.2188930.5818930.184*
C100.2288 (8)0.0872 (4)0.8868 (8)0.108 (3)
H10A0.2349130.1078730.9619680.162*
H10B0.2314120.0404330.8965910.162*
H10C0.2949640.1010530.8541710.162*
O1B0.1870 (5)0.0443 (4)0.4189 (7)0.122 (3)
H1BB0.1262260.0478490.4450040.184*0.5
H1CA0.341 (5)0.038 (5)0.529 (4)0.184*0.5
C1B0.1769 (8)0.0849 (5)0.3209 (10)0.104 (3)
H1BC0.2439180.0733520.2848620.125*
C2B0.1899 (8)0.1559 (5)0.3496 (10)0.102 (3)
H2B0.1172980.1662290.3778030.123*
C3B0.1782 (8)0.1962 (5)0.2451 (11)0.110 (3)
H3BA0.2464080.1885900.2098640.132*
H3BB0.1783620.2422070.2666940.132*
C4B0.0599 (8)0.1798 (5)0.1550 (9)0.120 (4)
H4BA0.0077720.1937310.1867160.144*
H4BB0.0572770.2046830.0834500.144*
C5B0.0457 (8)0.1071 (6)0.1241 (11)0.116 (4)
H5B0.1106800.0954080.0852910.139*
C6B0.0639 (7)0.0690 (5)0.2321 (9)0.101 (3)
H6BA0.0651860.0227830.2122540.121*
H6BB0.0042950.0760210.2675110.121*
C7B0.2939 (7)0.1725 (5)0.4555 (9)0.104 (3)
H7B0.2926470.1411230.5188640.125*
C8B0.2779 (7)0.2401 (5)0.4996 (10)0.137 (5)
H8BA0.3431410.2499020.5654930.206*
H8BB0.2773170.2713370.4378090.206*
H8BC0.2027690.2424380.5237110.206*
C9B0.4190 (7)0.1692 (4)0.4249 (10)0.124 (4)
H9BA0.4312040.1261780.3963330.186*
H9BB0.4226930.2011050.3651240.186*
H9BC0.4807720.1784220.4941320.186*
C10B0.0725 (7)0.0912 (5)0.0387 (9)0.126 (4)
H10D0.1380690.0985250.0763600.188*
H10E0.0722590.0460670.0151370.188*
H10F0.0820830.1188730.0294320.188*
O1C0.4044 (5)0.0168 (3)0.5442 (7)0.110 (2)
H1C0.4639660.0004730.5270890.165*0.5
H1BA0.255 (4)0.031 (6)0.433 (7)0.165*0.5
C1C0.4063 (8)0.0036 (5)0.6612 (11)0.104 (3)
H1CB0.3552810.0368950.6862560.124*
C2C0.5301 (7)0.0155 (5)0.7302 (10)0.107 (3)
H2C0.5785740.0155040.6962270.128*
C3C0.5465 (8)0.0091 (5)0.8601 (10)0.105 (3)
H3CA0.6317980.0091180.8980300.126*
H3CB0.5064040.0211900.9028660.126*
C4C0.4967 (8)0.0763 (5)0.8669 (9)0.120 (4)
H4CA0.5448880.1074910.8345490.144*
H4CB0.5030500.0875890.9488950.144*
C5C0.3751 (9)0.0817 (6)0.8052 (12)0.122 (4)
H5C0.3298590.0508770.8431750.147*
C6C0.3527 (7)0.0614 (5)0.6798 (10)0.108 (3)
H6CA0.2662340.0595750.6476960.162*
H6CB0.3855260.0945330.6361710.162*
C7C0.5875 (7)0.0818 (5)0.7155 (9)0.103 (3)
H7C0.5785440.0899080.6310200.124*
C8C0.7181 (7)0.0857 (5)0.7736 (11)0.140 (4)
H8CA0.7505270.1263750.7531250.210*
H8CB0.7600240.0497560.7475430.210*
H8CC0.7279590.0833420.8574860.210*
C9C0.5148 (9)0.1354 (5)0.7649 (12)0.145 (4)
H9CA0.5317930.1322630.8493130.218*
H9CB0.4300290.1288240.7333720.218*
H9CC0.5377080.1779930.7426310.218*
C10C0.3162 (8)0.1496 (5)0.8111 (10)0.131 (4)
H10G0.2340620.1484060.7668200.197*
H10H0.3599550.1822130.7784720.197*
H10I0.3181400.1602330.8917500.197*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.141 (5)0.123 (7)0.097 (8)0.008 (4)0.002 (4)0.009 (4)
C10.115 (6)0.114 (7)0.105 (9)0.003 (5)0.008 (6)0.004 (5)
C20.115 (5)0.095 (7)0.098 (9)0.006 (5)0.021 (5)0.021 (5)
C30.105 (5)0.107 (7)0.097 (8)0.000 (4)0.001 (5)0.004 (5)
C40.111 (5)0.111 (7)0.097 (8)0.000 (5)0.000 (5)0.012 (4)
C50.105 (5)0.105 (7)0.095 (8)0.005 (5)0.005 (5)0.002 (5)
C60.093 (5)0.090 (7)0.095 (8)0.008 (4)0.005 (5)0.001 (4)
C70.087 (5)0.099 (7)0.108 (8)0.022 (4)0.009 (5)0.024 (4)
C80.121 (6)0.145 (11)0.174 (13)0.012 (6)0.006 (7)0.055 (7)
C90.115 (6)0.103 (9)0.140 (11)0.005 (5)0.004 (6)0.007 (5)
C100.140 (6)0.109 (8)0.062 (8)0.021 (5)0.005 (5)0.007 (4)
O1B0.114 (4)0.133 (7)0.103 (8)0.004 (4)0.009 (4)0.027 (4)
C1B0.107 (5)0.101 (7)0.096 (8)0.011 (5)0.007 (5)0.006 (5)
C2B0.115 (5)0.108 (7)0.082 (8)0.005 (5)0.020 (5)0.006 (5)
C3B0.113 (5)0.100 (7)0.113 (8)0.027 (5)0.017 (6)0.015 (5)
C4B0.132 (6)0.127 (8)0.092 (8)0.006 (5)0.007 (6)0.009 (5)
C5B0.110 (6)0.124 (8)0.112 (9)0.009 (5)0.023 (6)0.016 (5)
C6B0.098 (5)0.108 (7)0.081 (8)0.005 (4)0.010 (5)0.006 (4)
C7B0.103 (5)0.104 (7)0.104 (8)0.011 (4)0.021 (5)0.019 (4)
C8B0.115 (6)0.124 (10)0.159 (12)0.001 (6)0.002 (6)0.055 (7)
C9B0.103 (6)0.125 (9)0.141 (11)0.005 (5)0.022 (6)0.005 (5)
C10B0.112 (6)0.142 (10)0.110 (11)0.013 (5)0.000 (6)0.017 (5)
O1C0.124 (4)0.119 (7)0.080 (8)0.006 (3)0.010 (4)0.011 (3)
C1C0.109 (6)0.099 (7)0.096 (8)0.006 (5)0.008 (6)0.009 (5)
C2C0.099 (5)0.103 (7)0.103 (8)0.001 (5)0.010 (5)0.002 (5)
C3C0.113 (5)0.100 (7)0.095 (8)0.005 (5)0.008 (5)0.000 (4)
C4C0.132 (6)0.109 (7)0.104 (8)0.006 (5)0.003 (6)0.015 (4)
C5C0.126 (6)0.121 (8)0.119 (9)0.005 (5)0.028 (6)0.023 (6)
C6C0.094 (5)0.100 (7)0.116 (9)0.004 (4)0.005 (5)0.008 (5)
C7C0.107 (5)0.095 (7)0.096 (8)0.009 (5)0.003 (5)0.001 (4)
C8C0.096 (6)0.150 (10)0.162 (12)0.006 (5)0.005 (6)0.020 (6)
C9C0.138 (7)0.111 (10)0.186 (13)0.037 (6)0.036 (8)0.016 (6)
C10C0.126 (6)0.114 (10)0.147 (12)0.008 (6)0.018 (7)0.027 (6)
Geometric parameters (Å, º) top
O1—H1B0.8200C5B—C6B1.454 (13)
O1—H1A0.90 (2)C5B—C10B1.515 (11)
O1—C11.408 (13)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.523 (12)C7B—H7B0.9800
C1—C61.496 (11)C7B—C8B1.495 (11)
C2—H20.9800C7B—C9B1.546 (11)
C2—C31.499 (14)C8B—H8BA0.9600
C2—C71.539 (11)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.524 (11)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.497 (11)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.473 (13)O1C—H1CA0.82 (2)
C5—C101.490 (10)O1C—H1C0.8200
C6—H6A0.9700O1C—C1C1.385 (11)
C6—H6B0.9700C1C—H1CB0.9800
C7—H70.9800C1C—C2C1.474 (10)
C7—C81.464 (10)C1C—C6C1.495 (10)
C7—C91.568 (12)C2C—H2C0.9800
C8—H8A0.9600C2C—C3C1.565 (13)
C8—H8B0.9600C2C—C7C1.528 (11)
C8—H8C0.9600C3C—H3CA0.9700
C9—H9A0.9600C3C—H3CB0.9700
C9—H9B0.9600C3C—C4C1.492 (10)
C9—H9C0.9600C4C—H4CA0.9700
C10—H10A0.9600C4C—H4CB0.9700
C10—H10B0.9600C4C—C5C1.411 (11)
C10—H10C0.9600C5C—H5C0.9800
O1B—H1BB0.8200C5C—C6C1.484 (14)
O1B—C1B1.393 (11)C5C—C10C1.545 (12)
O1B—H1BA0.81 (2)C6C—H6CA0.9700
C1B—H1BC0.9800C6C—H6CB0.9700
C1B—C2B1.485 (13)C7C—H7C0.9800
C1B—C6B1.490 (11)C7C—C8C1.488 (10)
C2B—H2B0.9800C7C—C9C1.558 (13)
C2B—C3B1.451 (14)C8C—H8CA0.9600
C2B—C7B1.540 (11)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.543 (11)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.525 (12)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1B—O1—H1A94.5C10B—C5B—H5B107.2
C1—O1—H1B109.5C1B—C6B—H6BA108.6
C1—O1—H1A85.1 (19)C1B—C6B—H6BB108.6
O1—C1—H1107.3C5B—C6B—C1B114.5 (8)
O1—C1—C2112.4 (11)C5B—C6B—H6BA108.6
O1—C1—C6110.9 (8)C5B—C6B—H6BB108.6
C2—C1—H1107.3H6BA—C6B—H6BB107.6
C6—C1—H1107.3C2B—C7B—H7B108.6
C6—C1—C2111.4 (7)C2B—C7B—C9B112.6 (8)
C1—C2—H2107.2C8B—C7B—C2B110.3 (7)
C1—C2—C7111.2 (8)C8B—C7B—H7B108.6
C3—C2—C1107.3 (8)C8B—C7B—C9B108.1 (8)
C3—C2—H2107.2C9B—C7B—H7B108.6
C3—C2—C7116.5 (8)C7B—C8B—H8BA109.5
C7—C2—H2107.2C7B—C8B—H8BB109.5
C2—C3—H3A110.0C7B—C8B—H8BC109.5
C2—C3—H3B110.0H8BA—C8B—H8BB109.5
C2—C3—C4108.4 (8)H8BA—C8B—H8BC109.5
H3A—C3—H3B108.4H8BB—C8B—H8BC109.5
C4—C3—H3A110.0C7B—C9B—H9BA109.5
C4—C3—H3B110.0C7B—C9B—H9BB109.5
C3—C4—H4A109.2C7B—C9B—H9BC109.5
C3—C4—H4B109.2H9BA—C9B—H9BB109.5
H4A—C4—H4B107.9H9BA—C9B—H9BC109.5
C5—C4—C3111.9 (7)H9BB—C9B—H9BC109.5
C5—C4—H4A109.2C5B—C10B—H10D109.5
C5—C4—H4B109.2C5B—C10B—H10E109.5
C4—C5—H5108.5C5B—C10B—H10F109.5
C6—C5—C4109.6 (9)H10D—C10B—H10E109.5
C6—C5—H5108.5H10D—C10B—H10F109.5
C6—C5—C10110.9 (8)H10E—C10B—H10F109.5
C10—C5—C4110.8 (7)H1CA—O1C—H1C152.8
C10—C5—H5108.5C1C—O1C—H1CA98 (2)
C1—C6—H6A109.1C1C—O1C—H1C109.5
C1—C6—H6B109.1O1C—C1C—H1CB106.3
C5—C6—C1112.5 (8)O1C—C1C—C2C107.6 (9)
C5—C6—H6A109.1O1C—C1C—C6C113.5 (8)
C5—C6—H6B109.1C2C—C1C—H1CB106.3
H6A—C6—H6B107.8C2C—C1C—C6C116.0 (7)
C2—C7—H7108.9C6C—C1C—H1CB106.3
C2—C7—C9113.4 (8)C1C—C2C—H2C103.3
C8—C7—C2107.9 (7)C1C—C2C—C3C111.3 (9)
C8—C7—H7108.9C1C—C2C—C7C117.7 (7)
C8—C7—C9108.6 (7)C3C—C2C—H2C103.3
C9—C7—H7108.9C7C—C2C—H2C103.3
C7—C8—H8A109.5C7C—C2C—C3C115.6 (7)
C7—C8—H8B109.5C2C—C3C—H3CA109.1
C7—C8—H8C109.5C2C—C3C—H3CB109.1
H8A—C8—H8B109.5H3CA—C3C—H3CB107.8
H8A—C8—H8C109.5C4C—C3C—C2C112.4 (7)
H8B—C8—H8C109.5C4C—C3C—H3CA109.1
C7—C9—H9A109.5C4C—C3C—H3CB109.1
C7—C9—H9B109.5C3C—C4C—H4CA109.1
C7—C9—H9C109.5C3C—C4C—H4CB109.1
H9A—C9—H9B109.5H4CA—C4C—H4CB107.8
H9A—C9—H9C109.5C5C—C4C—C3C112.7 (8)
H9B—C9—H9C109.5C5C—C4C—H4CA109.1
C5—C10—H10A109.5C5C—C4C—H4CB109.1
C5—C10—H10B109.5C4C—C5C—H5C106.0
C5—C10—H10C109.5C4C—C5C—C6C114.1 (9)
H10A—C10—H10B109.5C4C—C5C—C10C115.6 (8)
H10A—C10—H10C109.5C6C—C5C—H5C106.0
H10B—C10—H10C109.5C6C—C5C—C10C108.3 (9)
H1BB—O1B—H1BA144.3C10C—C5C—H5C106.0
C1B—O1B—H1BB109.5C1C—C6C—H6CA108.8
C1B—O1B—H1BA105 (5)C1C—C6C—H6CB108.8
O1B—C1B—H1BC106.4C5C—C6C—C1C113.9 (8)
O1B—C1B—C2B114.1 (11)C5C—C6C—H6CA108.8
O1B—C1B—C6B109.7 (8)C5C—C6C—H6CB108.8
C2B—C1B—H1BC106.4H6CA—C6C—H6CB107.7
C2B—C1B—C6B113.2 (7)C2C—C7C—H7C108.2
C6B—C1B—H1BC106.4C2C—C7C—C9C107.5 (9)
C1B—C2B—H2B103.7C8C—C7C—C2C113.8 (8)
C1B—C2B—C7B114.5 (7)C8C—C7C—H7C108.2
C3B—C2B—C1B112.2 (10)C8C—C7C—C9C110.8 (8)
C3B—C2B—H2B103.7C9C—C7C—H7C108.2
C3B—C2B—C7B117.0 (9)C7C—C8C—H8CA109.5
C7B—C2B—H2B103.7C7C—C8C—H8CB109.5
C2B—C3B—H3BA109.6C7C—C8C—H8CC109.5
C2B—C3B—H3BB109.6H8CA—C8C—H8CB109.5
C2B—C3B—C4B110.3 (8)H8CA—C8C—H8CC109.5
H3BA—C3B—H3BB108.1H8CB—C8C—H8CC109.5
C4B—C3B—H3BA109.6C7C—C9C—H9CA109.5
C4B—C3B—H3BB109.6C7C—C9C—H9CB109.5
C3B—C4B—H4BA108.8C7C—C9C—H9CC109.5
C3B—C4B—H4BB108.8H9CA—C9C—H9CB109.5
H4BA—C4B—H4BB107.7H9CA—C9C—H9CC109.5
C5B—C4B—C3B113.6 (7)H9CB—C9C—H9CC109.5
C5B—C4B—H4BA108.8C5C—C10C—H10G109.5
C5B—C4B—H4BB108.8C5C—C10C—H10H109.5
C4B—C5B—H5B107.2C5C—C10C—H10I109.5
C6B—C5B—C4B109.2 (11)H10G—C10C—H10H109.5
C6B—C5B—H5B107.2H10G—C10C—H10I109.5
C6B—C5B—C10B112.5 (8)H10H—C10C—H10I109.5
C10B—C5B—C4B113.2 (7)
O1—C1—C2—C3175.3 (8)C3B—C2B—C7B—C9B58.4 (13)
O1—C1—C2—C746.9 (11)C3B—C4B—C5B—C6B51.8 (11)
O1—C1—C6—C5177.3 (10)C3B—C4B—C5B—C10B178.1 (9)
C1—C2—C3—C460.9 (10)C4B—C5B—C6B—C1B51.1 (13)
C1—C2—C7—C8164.2 (9)C6B—C1B—C2B—C3B53.3 (12)
C1—C2—C7—C975.5 (11)C6B—C1B—C2B—C7B170.2 (9)
C2—C1—C6—C556.7 (13)C7B—C2B—C3B—C4B171.7 (7)
C2—C3—C4—C561.5 (11)C10B—C5B—C6B—C1B177.7 (8)
C3—C2—C7—C872.6 (12)O1C—C1C—C2C—C3C170.7 (8)
C3—C2—C7—C947.7 (12)O1C—C1C—C2C—C7C52.7 (12)
C3—C4—C5—C656.3 (10)O1C—C1C—C6C—C5C168.9 (9)
C3—C4—C5—C10179.0 (10)C1C—C2C—C3C—C4C46.9 (11)
C4—C5—C6—C153.5 (11)C1C—C2C—C7C—C8C171.0 (10)
C6—C1—C2—C359.5 (11)C1C—C2C—C7C—C9C65.9 (12)
C6—C1—C2—C7172.1 (10)C2C—C1C—C6C—C5C43.4 (14)
C7—C2—C3—C4173.9 (7)C2C—C3C—C4C—C5C54.0 (12)
C10—C5—C6—C1176.1 (8)C3C—C2C—C7C—C8C54.1 (12)
O1B—C1B—C2B—C3B179.7 (8)C3C—C2C—C7C—C9C69.0 (10)
O1B—C1B—C2B—C7B43.8 (11)C3C—C4C—C5C—C6C55.0 (13)
O1B—C1B—C6B—C5B178.2 (11)C3C—C4C—C5C—C10C178.4 (9)
C1B—C2B—C3B—C4B53.0 (12)C4C—C5C—C6C—C1C49.1 (13)
C1B—C2B—C7B—C8B163.2 (10)C6C—C1C—C2C—C3C42.3 (14)
C1B—C2B—C7B—C9B76.0 (11)C6C—C1C—C2C—C7C178.9 (10)
C2B—C1B—C6B—C5B53.0 (14)C7C—C2C—C3C—C4C175.4 (7)
C2B—C3B—C4B—C5B53.8 (13)C10C—C5C—C6C—C1C179.4 (8)
C3B—C2B—C7B—C8B62.5 (14)
beta-DL-2-Isopropyl-5-methylcyclohexanol (beta_DL_2.90GPa) top
Crystal data top
C10H20OF(000) = 1056
Mr = 156.26Dx = 1.204 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.171 (3) ÅCell parameters from 1145 reflections
b = 20.436 (8) Åθ = 4.8–26.7°
c = 11.620 (4) ŵ = 0.07 mm1
β = 102.80 (3)°T = 296 K
V = 2586.7 (15) Å3Plate, colourless
Z = 120.45 × 0.45 × 0.02 mm
Data collection top
Xcalibur, Eos
diffractometer
402 reflections with I > 2σ(I)
Detector resolution: 16.1544 pixels mm-1Rint = 0.227
ω and φ scansθmax = 26.7°, θmin = 4.8°
Absorption correction: multi-scan
CrysAlisPro 1.171.40.67a (Rigaku Oxford Diffraction, 2019) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 99
Tmin = 0.967, Tmax = 0.999k = 2525
8700 measured reflectionsl = 1010
1145 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.099 w = 1/[σ2(Fo2) + (0.0593P)2 + 6.7529P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.285(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.10 e Å3
1145 reflectionsΔρmin = 0.12 e Å3
312 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
208 restraintsExtinction coefficient: 0.012 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.032 (2)0.0645 (5)0.4973 (19)0.097 (12)
H1B0.0361320.0625250.4828490.146*0.5
H1A0.01 (5)0.027 (6)0.518 (5)0.146*0.5
C10.023 (3)0.0947 (7)0.614 (3)0.082 (8)
H10.0938190.0848000.6487660.099*
C20.014 (3)0.1710 (6)0.581 (3)0.075 (8)
H20.0653650.1804300.5623880.112*
C30.020 (3)0.2007 (6)0.709 (3)0.071 (8)
H3A0.0268010.2479840.7049990.086*
H3B0.0911280.1835100.7344170.086*
C40.097 (3)0.1808 (6)0.796 (2)0.078 (8)
H4A0.0959540.1984510.8727640.094*
H4B0.1667220.1995090.7703660.094*
C50.113 (3)0.1055 (6)0.805 (3)0.075 (8)
H50.0462030.0891460.8398500.090*
C60.097 (3)0.0758 (6)0.691 (3)0.072 (8)
H6A0.1002600.0285820.7000500.086*
H6B0.1625640.0892970.6547350.086*
C70.117 (4)0.1938 (8)0.483 (4)0.079 (9)
H70.1166810.1662230.4142140.095*
C80.096 (3)0.2620 (8)0.450 (3)0.116 (14)
H8A0.1626100.2756860.3875420.175*
H8B0.0919420.2899680.5174020.175*
H8C0.0203550.2647040.4243860.175*
C90.241 (4)0.1877 (9)0.513 (4)0.106 (14)
H9A0.2515760.1441610.5400740.159*
H9B0.3042660.1965310.4435400.159*
H9C0.2477480.2185790.5734320.159*
C100.231 (3)0.0894 (7)0.892 (3)0.095 (13)
H10A0.2327760.1116550.9652980.143*
H10B0.2358130.0430470.9056630.143*
H10C0.2994070.1033210.8608220.143*
O1B0.1874 (19)0.0405 (5)0.4095 (17)0.098 (12)
H1BB0.1271760.0423080.4389820.147*0.5
H1CA0.324 (5)0.009 (7)0.525 (7)0.147*0.5
C1B0.175 (4)0.0844 (8)0.321 (3)0.089 (8)
H1BC0.2395910.0718680.2800470.107*
C2B0.193 (3)0.1518 (6)0.338 (2)0.075 (8)
H2B0.1184010.1623940.3661340.090*
C3B0.174 (3)0.1929 (7)0.236 (3)0.094 (8)
H3BA0.2422720.1875420.1982550.113*
H3BB0.1727360.2381740.2609100.113*
C4B0.057 (3)0.1785 (7)0.148 (2)0.084 (8)
H4BA0.0112290.1958920.1777170.101*
H4BB0.0586840.2009710.0751670.101*
C5B0.036 (3)0.1089 (8)0.124 (3)0.099 (9)
H5B0.1022140.0961880.0849090.119*
C6B0.055 (3)0.0663 (6)0.231 (3)0.081 (8)
H6BA0.0593970.0209350.2073220.098*
H6BB0.0138800.0709660.2677110.098*
C7B0.294 (4)0.1713 (8)0.453 (4)0.085 (9)
H7B0.2945240.1410860.5189800.102*
C8B0.273 (3)0.2425 (7)0.487 (3)0.103 (13)
H8BA0.3337560.2544690.5558450.155*
H8BB0.2797120.2708740.4226740.155*
H8BC0.1927330.2465880.5027690.155*
C9B0.430 (4)0.1663 (9)0.402 (4)0.103 (14)
H9BA0.4427300.1218120.3813490.155*
H9BB0.4231070.1937520.3340970.155*
H9BC0.4974450.1805180.4630780.155*
C10B0.080 (4)0.0889 (8)0.037 (3)0.096 (14)
H10D0.1498300.1064340.0622310.144*
H10E0.0856190.0420320.0340950.144*
H10F0.0785160.1055490.0397410.144*
O1C0.396 (2)0.0195 (5)0.550 (2)0.093 (12)
H1C0.4556800.0034390.5299280.140*0.5
H1BA0.253 (5)0.022 (5)0.423 (7)0.140*0.5
C1C0.402 (3)0.0055 (7)0.669 (3)0.077 (8)
H1CB0.3503280.0376140.6980520.092*
C2C0.530 (3)0.0163 (6)0.733 (3)0.077 (8)
H2C0.5783230.0139430.6959260.093*
C3C0.546 (3)0.0095 (6)0.858 (3)0.074 (8)
H3CA0.6327120.0106370.8942890.089*
H3CB0.5069080.0206770.9022800.089*
C4C0.493 (3)0.0769 (6)0.865 (3)0.075 (8)
H4CA0.5435550.1083390.8354040.090*
H4CB0.4978550.0870360.9476280.090*
C5C0.367 (4)0.0856 (9)0.802 (3)0.106 (9)
H5C0.3226380.0536690.8394180.127*
C6C0.349 (3)0.0599 (7)0.679 (3)0.079 (8)
H6CA0.3850170.0904830.6325690.119*
H6CB0.2614510.0580650.6444870.119*
C7C0.584 (3)0.0817 (6)0.720 (3)0.074 (8)
H7C0.5852080.0848890.6360690.089*
C8C0.717 (4)0.0902 (9)0.784 (3)0.114 (14)
H8CA0.7673690.0610500.7502190.171*
H8CB0.7252400.0802670.8657320.171*
H8CC0.7416780.1345260.7751230.171*
C9C0.508 (3)0.1397 (8)0.743 (3)0.112 (14)
H9CA0.4332840.1412620.6842430.168*
H9CB0.5537670.1793630.7407830.168*
H9CC0.4899960.1351670.8198490.168*
C10C0.303 (4)0.1513 (7)0.820 (3)0.115 (14)
H10G0.2205320.1512700.7738550.173*
H10H0.3476940.1870920.7964450.173*
H10I0.3017350.1560100.9022190.173*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.10 (2)0.093 (7)0.101 (18)0.007 (11)0.025 (16)0.014 (10)
C10.082 (13)0.087 (8)0.077 (12)0.012 (9)0.014 (9)0.008 (9)
C20.065 (12)0.078 (7)0.080 (12)0.003 (8)0.014 (9)0.001 (8)
C30.067 (12)0.068 (7)0.080 (12)0.006 (8)0.019 (9)0.007 (8)
C40.079 (12)0.081 (7)0.075 (12)0.010 (9)0.016 (9)0.001 (8)
C50.077 (12)0.081 (7)0.067 (11)0.001 (9)0.013 (9)0.003 (8)
C60.074 (12)0.074 (7)0.066 (12)0.012 (8)0.013 (9)0.003 (8)
C70.079 (13)0.078 (8)0.082 (13)0.001 (9)0.020 (10)0.003 (9)
C80.13 (2)0.115 (11)0.11 (2)0.003 (14)0.020 (17)0.043 (13)
C90.11 (2)0.110 (11)0.09 (2)0.010 (15)0.018 (17)0.034 (13)
C100.08 (2)0.093 (9)0.11 (2)0.028 (13)0.013 (17)0.016 (12)
O1B0.094 (19)0.094 (7)0.102 (18)0.008 (9)0.012 (16)0.020 (10)
C1B0.088 (13)0.092 (8)0.086 (12)0.006 (9)0.018 (9)0.000 (9)
C2B0.079 (12)0.068 (7)0.080 (12)0.005 (8)0.022 (9)0.016 (8)
C3B0.090 (13)0.101 (8)0.090 (12)0.002 (9)0.015 (9)0.016 (9)
C4B0.077 (12)0.096 (8)0.076 (12)0.004 (9)0.007 (9)0.000 (8)
C5B0.093 (13)0.112 (9)0.090 (12)0.000 (9)0.014 (9)0.011 (9)
C6B0.081 (13)0.083 (7)0.080 (12)0.006 (8)0.018 (9)0.001 (8)
C7B0.091 (13)0.072 (8)0.097 (13)0.004 (10)0.029 (10)0.010 (9)
C8B0.11 (2)0.098 (10)0.11 (2)0.010 (13)0.031 (17)0.015 (12)
C9B0.09 (2)0.102 (11)0.11 (2)0.002 (15)0.011 (17)0.005 (14)
C10B0.07 (2)0.142 (11)0.07 (2)0.001 (14)0.008 (17)0.014 (13)
O1C0.094 (19)0.097 (7)0.084 (16)0.001 (9)0.010 (16)0.003 (9)
C1C0.074 (13)0.081 (8)0.074 (12)0.007 (9)0.014 (9)0.002 (9)
C2C0.077 (12)0.079 (7)0.071 (12)0.007 (8)0.008 (9)0.001 (8)
C3C0.072 (12)0.074 (7)0.077 (12)0.007 (8)0.016 (9)0.003 (8)
C4C0.081 (12)0.070 (7)0.075 (12)0.006 (8)0.021 (9)0.007 (8)
C5C0.106 (13)0.108 (9)0.102 (13)0.005 (9)0.020 (10)0.003 (9)
C6C0.078 (12)0.076 (7)0.082 (12)0.001 (8)0.018 (9)0.012 (8)
C7C0.074 (12)0.070 (7)0.082 (12)0.003 (8)0.024 (9)0.004 (8)
C8C0.10 (2)0.130 (12)0.11 (2)0.011 (14)0.017 (17)0.028 (13)
C9C0.11 (2)0.100 (10)0.12 (2)0.018 (13)0.016 (17)0.027 (13)
C10C0.13 (2)0.087 (9)0.14 (2)0.014 (14)0.044 (17)0.029 (13)
Geometric parameters (Å, º) top
O1—H1B0.8200C5B—C6B1.49 (4)
O1—H1A0.82 (2)C5B—C10B1.51 (2)
O1—C11.47 (4)C6B—H6BA0.9700
C1—H10.9800C6B—H6BB0.9700
C1—C21.62 (2)C7B—H7B0.9800
C1—C61.49 (2)C7B—C8B1.54 (3)
C2—H20.9800C7B—C9B1.75 (9)
C2—C31.62 (4)C8B—H8BA0.9600
C2—C71.49 (2)C8B—H8BB0.9600
C3—H3A0.9700C8B—H8BC0.9600
C3—H3B0.9700C9B—H9BA0.9600
C3—C41.518 (19)C9B—H9BB0.9600
C4—H4A0.9700C9B—H9BC0.9600
C4—H4B0.9700C10B—H10D0.9600
C4—C51.550 (17)C10B—H10E0.9600
C5—H50.9800C10B—H10F0.9600
C5—C61.43 (4)O1C—H1CA0.82 (2)
C5—C101.51 (2)O1C—H1C0.8200
C6—H6A0.9700O1C—C1C1.40 (5)
C6—H6B0.9700C1C—H1CB0.9800
C7—H70.9800C1C—C2C1.48 (3)
C7—C81.48 (3)C1C—C6C1.48 (3)
C7—C91.51 (9)C2C—H2C0.9800
C8—H8A0.9600C2C—C3C1.51 (4)
C8—H8B0.9600C2C—C7C1.49 (3)
C8—H8C0.9600C3C—H3CA0.9700
C9—H9A0.9600C3C—H3CB0.9700
C9—H9B0.9600C3C—C4C1.51 (3)
C9—H9C0.9600C4C—H4CA0.9700
C10—H10A0.9600C4C—H4CB0.9700
C10—H10B0.9600C4C—C5C1.45 (3)
C10—H10C0.9600C5C—H5C0.9800
O1B—H1BB0.8200C5C—C6C1.49 (4)
O1B—C1B1.35 (3)C5C—C10C1.56 (4)
O1B—H1BA0.80 (2)C6C—H6CA0.9700
C1B—H1BC0.9800C6C—H6CB0.9700
C1B—C2B1.400 (17)C7C—H7C0.9800
C1B—C6B1.55 (2)C7C—C8C1.51 (3)
C2B—H2B0.9800C7C—C9C1.52 (4)
C2B—C3B1.43 (3)C8C—H8CA0.9600
C2B—C7B1.60 (2)C8C—H8CB0.9600
C3B—H3BA0.9700C8C—H8CC0.9600
C3B—H3BB0.9700C9C—H9CA0.9600
C3B—C4B1.50 (2)C9C—H9CB0.9600
C4B—H4BA0.9700C9C—H9CC0.9600
C4B—H4BB0.9700C10C—H10G0.9600
C4B—C5B1.459 (18)C10C—H10H0.9600
C5B—H5B0.9800C10C—H10I0.9600
H1B—O1—H1A80.4C10B—C5B—H5B104.2
C1—O1—H1B109.5C1B—C6B—H6BA109.3
C1—O1—H1A99 (4)C1B—C6B—H6BB109.3
O1—C1—H1113.3C5B—C6B—C1B111 (2)
O1—C1—C2100 (2)C5B—C6B—H6BA109.3
O1—C1—C6108 (3)C5B—C6B—H6BB109.3
C2—C1—H1113.3H6BA—C6B—H6BB108.0
C6—C1—H1113.3C2B—C7B—H7B111.9
C6—C1—C2107.3 (17)C2B—C7B—C9B102 (4)
C1—C2—H2110.5C8B—C7B—C2B109.1 (16)
C1—C2—C397 (2)C8B—C7B—H7B111.9
C3—C2—H2110.5C8B—C7B—C9B109 (3)
C7—C2—C1113.9 (15)C9B—C7B—H7B111.9
C7—C2—H2110.5C7B—C8B—H8BA109.5
C7—C2—C3114 (3)C7B—C8B—H8BB109.5
C2—C3—H3A110.2C7B—C8B—H8BC109.5
C2—C3—H3B110.2H8BA—C8B—H8BB109.5
H3A—C3—H3B108.5H8BA—C8B—H8BC109.5
C4—C3—C2108 (2)H8BB—C8B—H8BC109.5
C4—C3—H3A110.2C7B—C9B—H9BA109.5
C4—C3—H3B110.2C7B—C9B—H9BB109.5
C3—C4—H4A109.1C7B—C9B—H9BC109.5
C3—C4—H4B109.1H9BA—C9B—H9BB109.5
C3—C4—C5112.5 (12)H9BA—C9B—H9BC109.5
H4A—C4—H4B107.8H9BB—C9B—H9BC109.5
C5—C4—H4A109.1C5B—C10B—H10D109.5
C5—C4—H4B109.1C5B—C10B—H10E109.5
C4—C5—H5106.4C5B—C10B—H10F109.5
C6—C5—C4111 (2)H10D—C10B—H10E109.5
C6—C5—H5106.4H10D—C10B—H10F109.5
C6—C5—C10116 (3)H10E—C10B—H10F109.5
C10—C5—C4109.5 (12)H1CA—O1C—H1C126.3
C10—C5—H5106.4C1C—O1C—H1CA97 (6)
C1—C6—H6A109.4C1C—O1C—H1C109.5
C1—C6—H6B109.4O1C—C1C—H1CB107.7
C5—C6—C1111 (3)O1C—C1C—C2C107 (4)
C5—C6—H6A109.4O1C—C1C—C6C109.3 (18)
C5—C6—H6B109.4C2C—C1C—H1CB107.7
H6A—C6—H6B108.0C6C—C1C—H1CB107.7
C2—C7—H7107.7C6C—C1C—C2C117.1 (14)
C2—C7—C9113 (5)C1C—C2C—H2C104.3
C8—C7—C2110.8 (18)C1C—C2C—C3C109 (3)
C8—C7—H7107.7C1C—C2C—C7C116.8 (13)
C8—C7—C9110 (3)C3C—C2C—H2C104.3
C9—C7—H7107.7C7C—C2C—H2C104.3
C7—C8—H8A109.5C7C—C2C—C3C116.7 (16)
C7—C8—H8B109.5C2C—C3C—H3CA108.7
C7—C8—H8C109.5C2C—C3C—H3CB108.7
H8A—C8—H8B109.5H3CA—C3C—H3CB107.6
H8A—C8—H8C109.5C4C—C3C—C2C114.3 (16)
H8B—C8—H8C109.5C4C—C3C—H3CA108.7
C7—C9—H9A109.5C4C—C3C—H3CB108.7
C7—C9—H9B109.5C3C—C4C—H4CA108.4
C7—C9—H9C109.5C3C—C4C—H4CB108.4
H9A—C9—H9B109.5H4CA—C4C—H4CB107.4
H9A—C9—H9C109.5C5C—C4C—C3C115.6 (13)
H9B—C9—H9C109.5C5C—C4C—H4CA108.4
C5—C10—H10A109.5C5C—C4C—H4CB108.4
C5—C10—H10B109.5C4C—C5C—H5C102.7
C5—C10—H10C109.5C4C—C5C—C6C111 (3)
H10A—C10—H10B109.5C4C—C5C—C10C117.2 (15)
H10A—C10—H10C109.5C6C—C5C—H5C102.7
H10B—C10—H10C109.5C6C—C5C—C10C117.9 (17)
H1BB—O1B—H1BA136.9C10C—C5C—H5C102.7
C1B—O1B—H1BB109.5C1C—C6C—C5C115.0 (18)
C1B—O1B—H1BA113 (7)C1C—C6C—H6CA108.5
O1B—C1B—H1BC103.4C1C—C6C—H6CB108.5
O1B—C1B—C2B124 (2)C5C—C6C—H6CA108.5
O1B—C1B—C6B107 (2)C5C—C6C—H6CB108.5
C2B—C1B—H1BC103.4H6CA—C6C—H6CB107.5
C2B—C1B—C6B114.1 (14)C2C—C7C—H7C104.8
C6B—C1B—H1BC103.4C2C—C7C—C8C115.3 (14)
C1B—C2B—H2B99.4C2C—C7C—C9C115 (3)
C1B—C2B—C3B118 (2)C8C—C7C—H7C104.8
C1B—C2B—C7B114.8 (12)C8C—C7C—C9C110.5 (17)
C3B—C2B—H2B99.4C9C—C7C—H7C104.8
C3B—C2B—C7B120 (2)C7C—C8C—H8CA109.5
C7B—C2B—H2B99.4C7C—C8C—H8CB109.5
C2B—C3B—H3BA108.9C7C—C8C—H8CC109.5
C2B—C3B—H3BB108.9H8CA—C8C—H8CB109.5
C2B—C3B—C4B113 (2)H8CA—C8C—H8CC109.5
H3BA—C3B—H3BB107.7H8CB—C8C—H8CC109.5
C4B—C3B—H3BA108.9C7C—C9C—H9CA109.5
C4B—C3B—H3BB108.9C7C—C9C—H9CB109.5
C3B—C4B—H4BA108.8C7C—C9C—H9CC109.5
C3B—C4B—H4BB108.8H9CA—C9C—H9CB109.5
H4BA—C4B—H4BB107.7H9CA—C9C—H9CC109.5
C5B—C4B—C3B113.7 (14)H9CB—C9C—H9CC109.5
C5B—C4B—H4BA108.8C5C—C10C—H10G109.5
C5B—C4B—H4BB108.8C5C—C10C—H10H109.5
C4B—C5B—H5B104.2C5C—C10C—H10I109.5
C4B—C5B—C6B115 (2)H10G—C10C—H10H109.5
C4B—C5B—C10B118.0 (16)H10G—C10C—H10I109.5
C6B—C5B—H5B104.2H10H—C10C—H10I109.5
C6B—C5B—C10B110 (3)
O1—C1—C2—C3174 (2)C3B—C2B—C7B—C9B64 (3)
O1—C1—C2—C754 (4)C3B—C4B—C5B—C6B47 (5)
O1—C1—C6—C5178 (2)C3B—C4B—C5B—C10B179 (4)
C1—C2—C3—C467 (2)C4B—C5B—C6B—C1B45 (4)
C1—C2—C7—C8175 (4)C6B—C1B—C2B—C3B46 (6)
C1—C2—C7—C962 (4)C6B—C1B—C2B—C7B164 (4)
C2—C1—C6—C570 (4)C7B—C2B—C3B—C4B165 (3)
C2—C3—C4—C559 (4)C10B—C5B—C6B—C1B179 (4)
C3—C2—C7—C875 (5)O1C—C1C—C2C—C3C170.1 (18)
C3—C2—C7—C948 (3)O1C—C1C—C2C—C7C55 (4)
C3—C4—C5—C650 (4)O1C—C1C—C6C—C5C171 (3)
C3—C4—C5—C10180 (4)C1C—C2C—C3C—C4C47 (3)
C4—C5—C6—C154 (4)C1C—C2C—C7C—C8C178 (4)
C6—C1—C2—C373 (3)C1C—C2C—C7C—C9C51 (4)
C6—C1—C2—C7167 (4)C2C—C1C—C6C—C5C49 (5)
C7—C2—C3—C4173 (2)C2C—C3C—C4C—C5C51 (5)
C10—C5—C6—C1179 (3)C3C—C2C—C7C—C8C51 (5)
O1B—C1B—C2B—C3B179 (4)C3C—C2C—C7C—C9C80 (3)
O1B—C1B—C2B—C7B32 (6)C3C—C4C—C5C—C6C48 (4)
O1B—C1B—C6B—C5B176 (3)C3C—C4C—C5C—C10C172 (4)
C1B—C2B—C3B—C4B47 (5)C4C—C5C—C6C—C1C47 (4)
C1B—C2B—C7B—C8B160 (4)C6C—C1C—C2C—C3C47 (4)
C1B—C2B—C7B—C9B84 (4)C6C—C1C—C2C—C7C178 (4)
C2B—C1B—C6B—C5B44 (5)C7C—C2C—C3C—C4C178 (3)
C2B—C3B—C4B—C5B46 (5)C10C—C5C—C6C—C1C174 (4)
C3B—C2B—C7B—C8B52 (5)
 

References

First citationAdhikari, K., Flurchick, K. M. & Valenzano, L. (2015). Comput. Theor. Chem. 1062, 90–98.  CrossRef CAS Google Scholar
First citationAllan, D. R. & Clark, S. J. (1999). Phys. Rev. B, 60, 6328–6334.  Web of Science CrossRef CAS Google Scholar
First citationAllan, D. R., Clark, S. J., Brugmans, M. J. P., Ackland, G. J. & Vos, W. L. (1998). Phys. Rev. B, 58, R11809–R11812.  Web of Science CrossRef CAS Google Scholar
First citationAndrzejewski, M., Casati, N. & Katrusiak, A. (2017). Dalton Trans. 46, 14795–14803.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAndrzejewski, M. & Katrusiak, A. (2017). J. Phys. Chem. Lett. 8, 929–935.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAnioła, M. & Katrusiak, A. (2015). Cryst. Growth Des. 15, 764–770.  Google Scholar
First citationBaughman, R. H., Stafström, S., Cui, C. & Dantas, S. O. (1998). Science, 279, 1522–1524.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBentley, R. (2006). Chem. Rev. 106, 4099–4112.  CrossRef PubMed CAS Google Scholar
First citationBhardwaj, R. M., McMahon, J. A., Nyman, J., Price, L. S., Konar, S., Oswald, I. D. H., Pulham, C. R., Price, S. L. & Reutzel-Edens, S. M. (2019). J. Am. Chem. Soc. 141, 13887–13897.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBhatia, S. P., McGinty, D., Letizia, C. S. & Api, A. M. (2008). Food Chem. Toxicol. 46, S215–S217.  CrossRef PubMed CAS Google Scholar
First citationBoldyreva, E. V., Shakhtshneider, T. P., Ahsbahs, H., Sowa, H. & Uchtmann, H. (2002). J. Therm. Anal. Calorim. 68, 437–452.  CrossRef CAS Google Scholar
First citationBombicz, P., Buschmann, J., Luger, P., Dung, N. X. & Nam, C. B. (1999). Z. Kristallogr. 214, 420–423.  Web of Science CSD CrossRef CAS Google Scholar
First citationBridgman, P. W. (1949). The Physics of High Pressure, pp. 208–210. London: Bell and Sons.  Google Scholar
First citationBridgman, P. W. (1964). Collected Experimental Papers. Cambridge, MA: Harvard University Press.  Google Scholar
First citationBrock, C. P. & Duncan, L. L. (1994). Chem. Mater. 6, 1307–1312.  CrossRef CAS Web of Science Google Scholar
First citationBudzianowski, A. & Katrusiak, A. (2004). In High-Pressure Crystallography, edited by A. Katrusiak and P. McMillan. NATO Science Series (Series II: Mathematics, Physics and Chemistry), Vol. 140, pp 101–112. Dordrecht: Springer.  Google Scholar
First citationBujak, M., Podsiadło, M. & Katrusiak, A. (2008). J. Phys. Chem. B, 112, 1184–1188.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBujak, M., Podsiadło, M. & Katrusiak, A. (2018). CrystEngComm, 20, 328–333.  Web of Science CSD CrossRef CAS Google Scholar
First citationCai, W., Marciniak, J., Andrzejewski, M. & Katrusiak, A. (2013). J. Phys. Chem. C, 117, 7279–7285.  Web of Science CSD CrossRef CAS Google Scholar
First citationCliffe, M. J. & Goodwin, A. L. (2012). J. Appl. Cryst. 45, 1321–1329.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationColeman, W. M., Perfetti, T. A. & Suber, R. L. (1998). J. Chromatogr. Sci. 36, 318–321.  CrossRef CAS Google Scholar
First citationCorvis, Y., Négrier, P., Massip, S., Leger, J. M. & Espeau, P. (2012). CrystEngComm, 14, 7055–7064.  CSD CrossRef CAS Google Scholar
First citationCorvis, Y., Wurm, A., Schick, C. & Espeau, P. (2015). CrystEngComm, 17, 5357–5359.  CrossRef CAS Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlisPro. Rigaku Corporation, The Woodlands, TX, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFedorov, A. Y., Rychkov, D. A., Losev, E. A., Zakharov, B. A., Stare, J. & Boldyreva, E. V. (2017). CrystEngComm, 19, 2243–2252.  Web of Science CSD CrossRef CAS Google Scholar
First citationFeynman, R. P. (1972). Statistical Machanics. A Set of Lectures. New York: W. A. Benjamin Inc.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHazen, R. M. & Finger, L. (1982). Comparative Crystal Chemistry. New York: John Wiley.  Google Scholar
First citationHopp, R. & Lawrence, B. M. (2006). Mint: the Genus Mentha, edited by B. Lawrence, pp. 371–399. Boca Raton: CRC Press.  Google Scholar
First citationJacques, J., Collet, A. & Wilen, S. H. (1981). Enantiomers, Racemates and Resolution. New York: Wiley.  Google Scholar
First citationKatrusiak, A. (2008). Acta Cryst. A64, 135–148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKatrusiak, A., Szafrański, M. & Podsiadło, M. (2011). Chem. Commun. 47, 2107–2109.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaźmierczak, M. & Katrusiak, A. (2013). J. Phys. Chem. C, 117, 1441–1446.  Google Scholar
First citationKitaigorodsky, A. I. (1973). Molecular Crystals and Molecules. New York, London: Academic Press.  Google Scholar
First citationKofoed, P. M., Hoser, A. A., Diness, F., Capelli, S. C. & Madsen, A. Ø. (2019). IUCrJ, 6, 558–571.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationKrawczyk, S. & Gdaniec, M. (2005). Acta Cryst. E61, o4116–o4118.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKuhnert-Brandstätter, M., Ulmer, R. & Langhammer, L. (1974). Arch. Pharm. Pharm. Med. Chem. 307, 497–503.  Google Scholar
First citationLangreiter, T. & Kahlenberg, V. (2015). Crystals, 5, 143–153.  Web of Science CrossRef Google Scholar
First citationLee, Y., Vogt, T., Hriljac, J. A., Parise, J. B. & Artioli, G. (2002). J. Am. Chem. Soc. 124, 5466–5475.  Web of Science CrossRef ICSD PubMed CAS Google Scholar
First citationLi, Q., Li, S., Wang, K., Liu, J., Yang, K., Liu, B., Zou, G. & Zou, B. (2014). J. Phys. Chem. C, 118, 5848–5853.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMadsen, A. Ø. & Larsen, S. (2007). Angew. Chem. Int. Ed. 46, 8609–8613.  Web of Science CSD CrossRef CAS Google Scholar
First citationMao, H. K., Xu, J. & Bell, P. M. (1986). J. Geophys. Res. 91, 4673–4676.  CrossRef CAS Web of Science Google Scholar
First citationMarciniak, J., Andrzejewski, M., Cai, W. & Katrusiak, A. (2014). J. Phys. Chem. C, 118, 4309–4313.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKemy, D. D., Neuhausser, W. M. & Julius, D. (2002). Nature, 416, 52–58.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMerrill, L. & Bassett, W. A. (1974). Rev. Sci. Instrum. 45, 290–294.  CrossRef Web of Science Google Scholar
First citationNelyubina, Y. V., Glukhov, I. V., Antipin, M. Y. & Lyssenko, K. A. (2010). Chem. Commun. 46, 3469–3471.  Web of Science CSD CrossRef CAS Google Scholar
First citationNewnham, R. E. (2005). Properties of Materials: Anisotropy, Symmetry, Structure, p. 7. Oxford University Press.  Google Scholar
First citationNicolaou, Z. & Motter, A. (2012). Nat. Mater. 11, 608–613.  CrossRef CAS PubMed Google Scholar
First citationNye, J. F. (1984). Physical Properties of Crystals: Their Representation by Tensors and Matrices, pp. 145–146. Oxford: Clarendon Press.  Google Scholar
First citationOlejniczak, A., Katrusiak, A., Podsiadło, M. & Katrusiak, A. (2022a). IUCrJ, 9, 49–54.  CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationOlejniczak, A., Katrusiak, A., Podsiadło, M. & Katrusiak, A. (2022b). Cryst. Growth Des. 22, 5996–6003.  CSD CrossRef CAS Google Scholar
First citationO'Neil, M. J. (2013). The Merck Index – an Encyclopedia of Chemicals, Drugs, and Biologicals Cambridge: Royal Society of Chemistry.  Google Scholar
First citationPaliwoda, D., Dziubek, K. F. & Katrusiak, A. (2012). Cryst. Growth Des. 12, 4302–4305.  Web of Science CSD CrossRef CAS Google Scholar
First citationPiermarini, G. J., Block, S., Barnett, J. D. & Forman, R. A. (1975). J. Appl. Phys. 46, 2774–2780.  CrossRef CAS Web of Science Google Scholar
First citationPrice, L. S. & Price, S. L. (2022). Cryst. Growth Des. 22, 1801–1816.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRamsay, I. W. & Rogers, D. (1952). Acta Cryst. 5, 268–271.  CSD CrossRef IUCr Journals Google Scholar
First citationReichl, L. E. (1998). A Modern Course in Statistical Physics. New York: John Wiley.  Google Scholar
First citationRoszak, K. & Katrusiak, A. (2021). Acta Cryst. B77, 449–455.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRoszak, K., Katrusiak, A. & Katrusiak, A. (2016). Cryst. Growth Des. 16, 3947–3953.  Web of Science CSD CrossRef CAS Google Scholar
First citationSafari, F. & Katrusiak, A. (2021). J. Phys. Chem. C, 125, 23501–23509.  CSD CrossRef CAS Google Scholar
First citationSell, C. (1999). The Chemistry of Fragrances: From Perfumer to Consumer, pp. 51–124. Cambridge: The Royal Society of Chemistry.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkumiel, J. (2010). MSc thesis. Adam Mickiewicz University, Poland.  Google Scholar
First citationSobczak, S. & Katrusiak, A. (2017). J. Phys. Chem. C, 121, 2539–2545.  Web of Science CSD CrossRef CAS Google Scholar
First citationSobczak, S., Ratajczyk, P. & Katrusiak, A. (2021). Chem. Eur. J. 27, 10769–10779.  Google Scholar
First citationTchoń, D., Bowskill, D., Sugden, I., Piotrowski, P. & Makal, A. (2021). J. Mater. Chem. C. 9, 2491–2503.  Google Scholar
First citationWeineerg, B. (1908). Nature, 78, 390.  CrossRef Google Scholar
First citationWright, F. E. (1917). J. Am. Chem. Soc. 39, 1515–1524.  CrossRef CAS Google Scholar
First citationYalkowsky, S. H., He, Y. & Jain, P. (2010). Handbook of Aqueous Solubility Data. Boca Raton: CRC Press.  Google Scholar
First citationZhang, Y., Yao, M., Du, M., Yao, Z., Wang, Y., Dong, J., Yang, Z., Sundqvist, B., Kováts, É., Pekker, S. & Liu, B. (2020). J. Am. Chem. Soc. 142, 7584–7590.  CrossRef CAS PubMed Google Scholar
First citationZieliński, W. & Katrusiak, A. (2013). Cryst. Growth Des. 13, 696–700.  Google Scholar
First citationZieliński, W. & Katrusiak, A. (2015). CrystEngComm, 17, 5468–5473.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

IUCrJ
Volume 10| Part 3| May 2023| Pages 341-351
ISSN: 2052-2525