Download citation
Download citation
link to html
In a recent analysis of a new pyrochlore-like mesoporous phase Rb3Ta5O14 (trirubidium pentatantalum tetradecaoxide) [du Boulay et al. (2002). Acta Cryst. C58, i40–i44], the authors observed in the literature some rather large uncertainties in the vibrational motion and thereby atomic positions reported for the archetypal analogue structure Cs3Ta5O14. New X-ray diffraction data for that compound were collected on an image plate diffractometer with an Mo Kα source. The current study confirms the original structural model and modestly improves on its precision.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803010122/bt6274sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803010122/bt6274Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](Ta-O) = 0.007 Å
  • R factor = 0.044
  • wR factor = 0.032
  • Data-to-parameter ratio = 19.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_213 Alert C Atom O3 has ADP max/min Ratio ........... 3.20 oblate PLAT_213 Alert C Atom O9 has ADP max/min Ratio ........... 3.50 oblate General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: Cs3 O14 Ta5 Atom count from _chemical_formula_moiety:O14 Rb3 Ta5
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

In the course of investigation of four layered Rb2Ca2Ta4O13 perovskites a new mesoporous pyrochlore like structural phase, Rb3Ta5O14, was encountered by du Boulay et al. (2002). That phase turned out to be a variant of a Cs3Ta5O14 archetype structure reported previously by Serafin & Hoppe (1982). In reviewing the two structures, the more recent authors were led to suspect some irregularities in the original Cs3Ta5O14 structural model because, with the exception of three independent Cs sites, all atoms were refined with isotropic displacement parameters and of the Cs sites, two exhibited unusually large Uij values. The isotropic displacement parameters of the O atoms also varied considerably over the range 0.001–0.023 Å2. The largest displacement parameter occurred for one atom, Cs3, located on one of two independent Pbam mirror planes which exhibited very large displacements normal to that plane. Consequently du Boulay et al. (2002) speculated that the mirror symmetry could be broken, by analogy with two of the Rb atoms in the Rb3Ta5O14 analogue. This could have led to doubling of the Pbam c axis and a Cs-atom sublattice in closer agreement with the Rb sublattice observed for the latter compound.

To remove any uncertainties the current authors crystalized and reanalysed Cs3Ta5O14 via single-crystal X-ray diffraction. Here we confirm that the structure reported by Serafin & Hoppe (1982) was correct and, in addition, we report marginally more precise structural parameters accompanied by anisotropic displacement parameters determined for all atoms.

X-Ray fluorescence image plate data for Cs3Ta5O14 were measured on a Rigaku R-AXIS RAPID three-circle diffractometer. An Mo Kα X-ray source and a semi-cylindrical fluorescence plate were used to measure the room temperature single-crystal diffraction data. The initial orientation matrix and associated lattice parameters were determined from eight oscillation photos measured at 120 s per ° with Δω = 2°. A single 90 min duration X-ray image was taken while rotating the crystal 30° about its c axis at 180 s per °. That frame failed to reveal superlattice reflections of any kind along the Pbam c axis. The implications being that the originally reported lattice was quite correct, though not necessarily the symmetry.

The data measurement involved 275 image plate frames measured with rotations of Δω = 2° at 500 s per ° from which 20976 reflections were identified out to 2θ 60.1°. Lattice parameters were refined with other apparatus parameters using all 275 frames and agree with those of Serafin & Hoppe (1982) to about 0.05 Å. The measured intensities were in good accord with the b-glide along a and a-glide along b reported by the previous authors. The uncertainties remaining therefore primarily concern the degree of perfection of the Pbam mirror planes.

Structurally Cs3Ta5O14 consists of four distinct TaO polyhedra, of which three are corner-sharing TaO6 octahedra and one is an edge-sharing TaO5 bicapped trigonal prism, as depicted in Fig. 1. Those TaO polyhedra form the backbone of a network of two symmetry distinct, Cs filled structural cavities, the larger containing four Cs atoms with the smaller cavity containing two. The underlying atomic coordination geometries were well examined by Serafin & Hoppe (1982), and the relationship of Cs3Ta5O14 to the three independent cavity network of mesoporous Rb3Ta5O14 was previously discussed by du Boulay et al. (2002).

Experimental top

Reagent grade CsCl and Ta2O5 chemicals 4.245 g in total, were combined to form 0.1 mol% Cs3Ta5O14 in a 99.9 mol% CsCl flux. In a Pt crucible, the mixture was heated quickly to 1073 K, which was sustained for 2 h and followed by slow cooling at 2.8 K h−1 to 723 K. After rinsing in hot water, the residue contained transparent and colourless crystals of Cs3Ta5O14 with rectangular shapes as well as unidentified crystals with thin hexagonal shapes.

Refinement top

Although minor difficulties were encountered refining the structure because of a tendency toward non-positive definite displacement parameters for two O atoms, the problems were supressed after including all data satisfying F2 0 in a refinement on F, in conjunction with a modified weighting scheme. This led to a larger but acceptible R factor wR(F) = 0.032. The refined atomic positions agree with those of Serafin & Hoppe (1982) typically within two of their reported s.u.'s, although the s.u.'s reported here are typically smaller by a factor of about 5. The mean atomic displacement parameters are also comparable in magnitude between the two studies, though herein Ueq for the Ta atoms are about double that reported in the earlier work. In addition, Ueq values for the O atoms reported here have a considerably smaller dynamic range. The anisotropic vibration tensor elements for the Cs atoms are broadly comparable between the experiments, though disparities of up to a factor of 2 on some components are to be found. Ueq values reported here for the Cs atoms are typically half the magnitude of equivalent parameters determined for the four Rb atoms in Rb3Ta5O14 by du Boulay et al. (2002). In particular, the largest vibration tensor component observed herein (U33 = 0.0472 Å2 for Cs3) is less than half that of the largest tensor element reported in the latter [U22 = 0.1057 (11) Å2 for Rb4]. The large Cs atom vibrations are in good accord with the structural geometry because they occupy large structural cavities with asymmetric bonding environments. This is particularly true of Cs3 which has one short Cs3—O6 bond within the plane that appears to act like a hinge on which the Cs3 atom can swing with greater freedom into two adjoining structural cavities.

A relatively large residual Δρ range was observed [−4(1) to 4(1) e Å−3]. The two largest peaks occur 0.7 Å away from Cs1 and 0.8 Å from O4 and both maxima occur on the z=0 mirror plane. The two largest holes were also located on the mirror planes, 1.7 Å from Cs1 and 1.5 Å from Cs2. The positions and magnitudes of the extrema suggest a stochastic measurement noise origin, rather than a deficiency of the harmonic vibration model of the atoms. The experimental electron density does then seem to be in good accord with the Pbam space group symmetry.

As a further check, the data were refined against a lower symmetry Pba2 structural model yielding wR(F) = 0.029 from 199 parameters and 2269 reflections, with 14 of the 23 independent atoms exhibiting non-positive definite atomic displacement parameters and only minor changes in the atomic displacement parameters of the Cs atoms. Comparable results were obtained using P21212 with wR(F) = 0.032 from 200 parameters and 12 atoms non-positive-definite. Although Pba2 symmetry superficially reduces the R factor, it introduces around 25% more atoms and 70% more parameters which do not really improve the structural model. Especially, there was no significant damping effects on the mean squared displacement parameters of the Cs atoms.

We conclude therefore that the adoption of a symmetry lower than Pbam gives no significant improvement over the structural model originally proposed by Seraffin & Hoppe (1982), though the current confirmatory study has modestly improved upon the accuracy of the original and full anisotropic displacement parameters are reported here for all atoms.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1999); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: Serafin & Hoppe (1982); program(s) used to refine structure: CRYLSQ in Xtal3.7 (Hall et al., 2000); molecular graphics: ATOMS (Dowty, 1999) and ORTEP in Xtal3.7; software used to prepare material for publication: Xtal BONDLA CIFIO in Xtal3.7.

Figures top
[Figure 1] Fig. 1. ATOMS (Dowty, 1999) polyhedral view of the Pbam Cs3Ta5O14 lattice as projected along (a) the b axis and (b) the c axis. Ellipsoids are rendered at the 90° probability level. Fivefold polyhedra are coloured brown.
[Figure 2] Fig. 2. ORTEP (Xtal3.7; Hall et al., 2001) view of an extended asymmetric subunit, with ellipsoids rendered at the 99° probability level. [Symmetry codes: (i) −x, −y, z; (ii) 1/2 + x, 1/2 − y, −z; (iii) 1/2 − x, 1/2 + y, −z; (iv) x, y, −z; (v) 1/2 − x, 1/2 + y, z; (vi) −1/2 + x, 1/2 − y, z; (vii) −x, 1 − y, z; (viii) 1/2 − x, −1/2 + y, −z; (ix) 1/2 − x, −1/2 + y, z; (x) x, y, 1 + z; (xi) x, y, 1 − z; (xii) 1/2 − x, −1/2 + y, 1 − z.]
(I) top
Crystal data top
Cs3Ta5O14F(000) = 2568
Mr = 1527.48Dx = 7.048 Mg m3
Orthorhombic, PbamMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2 2abCell parameters from 20976 reflections
a = 26.219 (6) Åθ = 1.6–30.0°
b = 7.4283 (10) ŵ = 45.17 mm1
c = 7.3914 (10) ÅT = 295 K
V = 1439.6 (4) Å3Rectangular block, colourless
Z = 40.06 × 0.06 × 0.04 mm
Data collection top
Rigaku Rapid image plate
diffractometer
2269 independent reflections
Radiation source: Mo Kα tube2269 reflections with F > 0
Graphite monochromatorRint = 0.060
ω scansθmax = 30.0°, θmin = 1.6°
Absorption correction: numerical
Gaussian integration on 8× 8× 8 grid
h = 036
Tmin = 0.113, Tmax = 0.349k = 100
2269 measured reflectionsl = 010
Refinement top
Refinement on F0 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ(F)2 + 0.2 + 10-4F2]
wR(F2) = 0.032(Δ/σ)max = 0.001
S = 0.91Δρmax = 3.69 e Å3
2269 reflectionsΔρmin = 4.25 e Å3
117 parameters
Crystal data top
Cs3Ta5O14V = 1439.6 (4) Å3
Mr = 1527.48Z = 4
Orthorhombic, PbamMo Kα radiation
a = 26.219 (6) ŵ = 45.17 mm1
b = 7.4283 (10) ÅT = 295 K
c = 7.3914 (10) Å0.06 × 0.06 × 0.04 mm
Data collection top
Rigaku Rapid image plate
diffractometer
2269 independent reflections
Absorption correction: numerical
Gaussian integration on 8× 8× 8 grid
2269 reflections with F > 0
Tmin = 0.113, Tmax = 0.349Rint = 0.060
2269 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044117 parameters
wR(F2) = 0.0320 restraints
S = 0.91Δρmax = 3.69 e Å3
2269 reflectionsΔρmin = 4.25 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.29149 (4)0.15909 (17)0.000000.0270 (5)
Cs20.02229 (3)0.24078 (16)0.500000.0241 (5)
Cs30.38046 (3)0.15651 (15)0.500000.0279 (5)
Ta10.054631 (18)0.42585 (7)0.000000.0071 (2)
Ta20.442909 (18)0.41007 (7)0.000000.0062 (2)
Ta30.25378 (2)0.40034 (7)0.500000.0066 (2)
Ta40.151840 (12)0.16072 (5)0.25490 (4)0.00671 (15)
O10.000000.500000.1740 (11)0.012 (4)
O20.0162 (3)0.1597 (14)0.000000.012 (4)
O30.1671 (3)0.1326 (14)0.000000.012 (4)
O40.4189 (3)0.1719 (15)0.000000.017 (5)
O50.1250 (3)0.1554 (14)0.500000.012 (4)
O60.2718 (3)0.1448 (14)0.500000.012 (4)
O70.2009 (2)0.3374 (9)0.3059 (8)0.009 (3)
O80.3039 (2)0.4561 (9)0.6882 (8)0.009 (3)
O90.0979 (2)0.3408 (9)0.1915 (8)0.010 (3)
O100.4110 (2)0.4733 (9)0.2075 (8)0.013 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0265 (4)0.0288 (6)0.0256 (4)0.0013 (5)0.000000.00000
Cs20.0168 (4)0.0293 (6)0.0262 (4)0.0030 (4)0.000000.00000
Cs30.0132 (4)0.0233 (5)0.0472 (6)0.0018 (4)0.000000.00000
Ta10.0067 (2)0.0065 (3)0.0080 (2)0.0008 (2)0.000000.00000
Ta20.0062 (2)0.0061 (2)0.0063 (2)0.00050 (19)0.000000.00000
Ta30.0079 (2)0.0049 (2)0.00709 (18)0.00035 (19)0.000000.00000
Ta40.00809 (14)0.00738 (18)0.00465 (14)0.00007 (13)0.00051 (11)0.00051 (15)
O10.014 (4)0.014 (5)0.008 (3)0.002 (4)0.000000.00000
O20.009 (3)0.009 (5)0.017 (4)0.001 (4)0.000000.00000
O30.017 (4)0.016 (5)0.002 (3)0.004 (4)0.000000.00000
O40.012 (4)0.017 (5)0.021 (4)0.009 (4)0.000000.00000
O50.008 (4)0.013 (5)0.015 (4)0.001 (4)0.000000.00000
O60.009 (4)0.009 (5)0.017 (4)0.006 (4)0.000000.00000
O70.009 (2)0.010 (3)0.008 (2)0.001 (2)0.002 (2)0.002 (3)
O80.010 (2)0.007 (3)0.009 (3)0.001 (2)0.003 (2)0.002 (3)
O90.008 (2)0.014 (3)0.009 (3)0.002 (2)0.007 (2)0.002 (3)
O100.011 (2)0.012 (3)0.017 (3)0.003 (3)0.005 (2)0.006 (3)
Geometric parameters (Å, º) top
Cs1—O83.207 (6)Cs3—O93.320 (6)
Cs1—O83.207 (6)Cs3—O93.320 (6)
Cs1—O33.268 (9)Ta1—O9iii1.920 (6)
Cs1—O73.296 (6)Ta1—O91.920 (6)
Cs1—O73.296 (6)Ta1—O4i1.955 (11)
Cs1—O43.342 (9)Ta1—O12.002 (5)
Cs1—Cs1i4.3046 (17)Ta1—O12.002 (5)
Cs1—Cs14.3046 (17)Ta1—O22.219 (10)
Cs1—Cs34.3704 (9)Ta2—O10iii1.808 (6)
Cs1—Cs34.3704 (9)Ta2—O101.808 (6)
Cs2—O52.767 (8)Ta2—O41.878 (11)
Cs2—O93.111 (6)Ta2—O2iv1.991 (8)
Cs2—O93.111 (6)Ta2—O2i2.141 (10)
Cs2—O13.140 (6)Ta3—O61.936 (10)
Cs2—O13.140 (6)Ta3—O61.956 (10)
Cs2—O103.417 (6)Ta3—O81.959 (6)
Cs2—O103.417 (6)Ta3—O81.959 (6)
Cs2—Cs2ii3.7634 (18)Ta3—O72.050 (6)
Cs2—Cs33.7961 (15)Ta3—O72.050 (6)
Cs2—Cs34.0047 (16)Ta4—O71.876 (6)
Cs2—Cs24.0247 (18)Ta4—O31.937 (2)
Cs3—O62.851 (8)Ta4—O51.944 (3)
Cs3—O103.294 (7)Ta4—O81.957 (6)
Cs3—O103.294 (7)Ta4—O92.003 (6)
Cs3—O83.304 (6)Ta4—O102.186 (6)
Cs3—O83.304 (6)
O8—Cs1—O891.87 (16)O10—Cs3—Cs164.65 (11)
O8—Cs1—O398.22 (16)O8—Cs3—O849.82 (14)
O8—Cs1—O789.98 (15)O8—Cs3—O9106.89 (15)
O8—Cs1—O7170.26 (14)O8—Cs3—O9150.35 (14)
O8—Cs1—O483.03 (16)O8—Cs3—Cs2117.36 (11)
O8—Cs1—Cs1i57.17 (11)O8—Cs3—Cs2154.98 (10)
O8—Cs1—Cs1130.17 (11)O8—Cs3—Cs191.66 (10)
O8—Cs1—Cs3123.80 (11)O8—Cs3—Cs146.90 (10)
O8—Cs1—Cs348.78 (11)O8—Cs3—O9150.35 (14)
O8—Cs1—O398.22 (16)O8—Cs3—O9106.89 (14)
O8—Cs1—O7170.26 (14)O8—Cs3—Cs2117.36 (11)
O8—Cs1—O789.98 (15)O8—Cs3—Cs2154.98 (10)
O8—Cs1—O483.03 (16)O8—Cs3—Cs146.90 (10)
O8—Cs1—Cs1i57.17 (11)O8—Cs3—Cs191.66 (10)
O8—Cs1—Cs1130.17 (10)O9—Cs3—O986.77 (16)
O8—Cs1—Cs348.78 (11)O9—Cs3—Cs288.53 (10)
O8—Cs1—Cs3123.80 (11)O9—Cs3—Cs249.18 (10)
O3—Cs1—O790.97 (16)O9—Cs3—Cs1132.48 (11)
O3—Cs1—O790.97 (16)O9—Cs3—Cs160.90 (10)
O3—Cs1—O4178.2 (3)O9—Cs3—Cs288.53 (10)
O3—Cs1—Cs1i63.09 (19)O9—Cs3—Cs249.18 (10)
O3—Cs1—Cs156.18 (19)O9—Cs3—Cs160.90 (10)
O3—Cs1—Cs3122.177 (18)O9—Cs3—Cs1132.48 (11)
O3—Cs1—Cs3122.177 (18)Cs2—Cs3—Cs262.05 (3)
O7—Cs1—O786.64 (15)Cs2—Cs3—Cs1121.466 (18)
O7—Cs1—O487.70 (16)Cs2—Cs3—Cs1121.466 (18)
O7—Cs1—Cs1i131.01 (10)Cs2—Cs3—Cs1110.07 (2)
O7—Cs1—Cs153.50 (10)Cs2—Cs3—Cs1110.07 (2)
O7—Cs1—Cs3123.00 (11)Cs1—Cs3—Cs1115.48 (3)
O7—Cs1—Cs351.99 (10)O9iii—Ta1—O995.0 (2)
O7—Cs1—O487.70 (16)O9iii—Ta1—O4i95.6 (3)
O7—Cs1—Cs1i131.01 (10)O9iii—Ta1—O192.3 (2)
O7—Cs1—Cs153.50 (10)O9iii—Ta1—O1170.5 (2)
O7—Cs1—Cs351.99 (10)O9iii—Ta1—O288.5 (2)
O7—Cs1—Cs3123.00 (11)O9—Ta1—O4i95.6 (3)
O4—Cs1—Cs1i118.73 (19)O9—Ta1—O1170.5 (2)
O4—Cs1—Cs1121.99 (19)O9—Ta1—O192.3 (2)
O4—Cs1—Cs357.763 (17)O9—Ta1—O288.5 (2)
O4—Cs1—Cs357.763 (17)O4i—Ta1—O189.8 (2)
Cs1i—Cs1—Cs1119.27 (3)O4i—Ta1—O189.8 (2)
Cs1i—Cs1—Cs3105.88 (2)O4i—Ta1—O2173.8 (4)
Cs1i—Cs1—Cs3105.88 (2)O1—Ta1—O179.9 (3)
Cs1—Cs1—Cs3105.43 (3)O1—Ta1—O285.45 (17)
Cs1—Cs1—Cs3105.43 (3)O1—Ta1—O285.45 (17)
Cs3—Cs1—Cs3115.48 (3)O10iii—Ta2—O10116.0 (3)
O5—Cs2—O955.59 (14)O10iii—Ta2—O495.1 (3)
O5—Cs2—O955.59 (14)O10iii—Ta2—O2iv120.9 (2)
O5—Cs2—O1108.77 (13)O10iii—Ta2—O2i90.4 (2)
O5—Cs2—O1108.77 (13)O10—Ta2—O495.1 (3)
O5—Cs2—O1050.87 (16)O10—Ta2—O2iv120.9 (2)
O5—Cs2—O1050.87 (16)O10—Ta2—O2i90.4 (2)
O5—Cs2—Cs2ii94.8 (2)O4—Ta2—O2iv94.5 (4)
O5—Cs2—Cs3178.3 (2)O4—Ta2—O2i169.6 (4)
O5—Cs2—Cs363.7 (2)O2iv—Ta2—O2i75.1 (4)
O5—Cs2—Cs2120.1 (2)O6—Ta3—O6173.7 (4)
O9—Cs2—O994.29 (15)O6—Ta3—O891.9 (3)
O9—Cs2—O153.80 (12)O6—Ta3—O891.9 (3)
O9—Cs2—O1122.33 (14)O6—Ta3—O788.8 (3)
O9—Cs2—O10106.08 (15)O6—Ta3—O788.8 (3)
O9—Cs2—O1049.41 (17)O6—Ta3—O892.5 (3)
O9—Cs2—Cs2ii115.14 (13)O6—Ta3—O892.5 (3)
O9—Cs2—Cs3125.16 (11)O6—Ta3—O786.7 (3)
O9—Cs2—Cs353.87 (12)O6—Ta3—O786.7 (3)
O9—Cs2—Cs287.50 (12)O8—Ta3—O890.5 (2)
O9—Cs2—O1122.33 (14)O8—Ta3—O7178.8 (3)
O9—Cs2—O153.80 (12)O8—Ta3—O790.3 (2)
O9—Cs2—O1049.41 (17)O8—Ta3—O790.3 (2)
O9—Cs2—O10106.08 (15)O8—Ta3—O7178.8 (3)
O9—Cs2—Cs2ii115.14 (12)O7—Ta3—O788.8 (2)
O9—Cs2—Cs3125.16 (11)O7—Ta4—O397.4 (3)
O9—Cs2—Cs353.87 (12)O7—Ta4—O594.3 (3)
O9—Cs2—Cs287.50 (12)O7—Ta4—O895.4 (3)
O1—Cs2—O1100.27 (14)O7—Ta4—O993.7 (3)
O1—Cs2—O10159.63 (11)O7—Ta4—O10174.2 (2)
O1—Cs2—O1088.07 (14)O3—Ta4—O5168.2 (4)
O1—Cs2—Cs2ii121.68 (7)O3—Ta4—O890.2 (3)
O1—Cs2—Cs372.20 (4)O3—Ta4—O989.4 (3)
O1—Cs2—Cs369.24 (5)O3—Ta4—O1086.0 (3)
O1—Cs2—Cs250.14 (10)O5—Ta4—O889.9 (3)
O1—Cs2—O1088.07 (14)O5—Ta4—O988.6 (3)
O1—Cs2—O10159.63 (11)O5—Ta4—O1082.2 (3)
O1—Cs2—Cs2ii121.68 (7)O8—Ta4—O9170.9 (2)
O1—Cs2—Cs372.20 (4)O8—Ta4—O1089.2 (2)
O1—Cs2—Cs369.24 (5)O9—Ta4—O1081.7 (2)
O1—Cs2—Cs250.14 (10)Ta1—O1—Ta1100.1 (4)
O10—Cs2—O1078.49 (15)Ta1—O1—Cs2142.64 (9)
O10—Cs2—Cs2ii66.80 (11)Ta1—O1—Cs2101.01 (8)
O10—Cs2—Cs3128.16 (10)Ta1—O1—Cs2101.01 (8)
O10—Cs2—Cs397.05 (11)Ta1—O1—Cs2142.64 (10)
O10—Cs2—Cs2134.83 (11)Cs2—O1—Cs279.7 (2)
O10—Cs2—Cs2ii66.80 (11)Ta2—O2—Ta2104.9 (4)
O10—Cs2—Cs3128.16 (10)Ta2—O2—Ta1132.1 (5)
O10—Cs2—Cs397.05 (11)Ta2—O2—Ta1123.0 (4)
O10—Cs2—Cs2134.83 (11)Ta4iii—O3—Ta4153.1 (5)
Cs2ii—Cs2—Cs383.50 (3)Ta4iii—O3—Cs1101.5 (3)
Cs2ii—Cs2—Cs3158.56 (3)Ta4—O3—Cs1101.5 (3)
Cs2ii—Cs2—Cs2145.02 (3)Ta2—O4—Ta1139.6 (5)
Cs3—Cs2—Cs3117.95 (4)Ta2—O4—Cs1111.2 (4)
Cs3—Cs2—Cs261.52 (3)Ta1—O4—Cs1109.1 (4)
Cs3—Cs2—Cs256.43 (3)Ta4—O5—Ta4137.5 (4)
O6—Cs3—O10105.37 (18)Ta4—O5—Cs2110.3 (2)
O6—Cs3—O10105.37 (18)Ta4—O5—Cs2110.3 (2)
O6—Cs3—O854.1 (2)Ta3—O6—Ta3145.8 (5)
O6—Cs3—O854.1 (2)Ta3—O6—Cs3112.0 (4)
O6—Cs3—O998.60 (17)Ta3—O6—Cs3102.2 (4)
O6—Cs3—O998.60 (17)Ta4—O7—Ta3139.8 (3)
O6—Cs3—Cs2170.2 (2)Ta4—O7—Cs1i114.3 (2)
O6—Cs3—Cs2127.8 (2)Ta3—O7—Cs1i105.9 (2)
O6—Cs3—Cs157.766 (17)Ta4—O8—Ta3135.6 (3)
O6—Cs3—Cs157.766 (17)Ta4—O8—Cs1116.1 (2)
O10—Cs3—O1082.03 (16)Ta4—O8—Cs3104.7 (2)
O10—Cs3—O886.74 (15)Ta3—O8—Cs1107.3 (2)
O10—Cs3—O852.43 (14)Ta3—O8—Cs388.1 (2)
O10—Cs3—O9156.01 (14)Cs1—O8—Cs384.32 (15)
O10—Cs3—O990.69 (16)Ta1—O9—Ta4144.0 (3)
O10—Cs3—Cs267.55 (10)Ta1—O9—Cs2104.1 (2)
O10—Cs3—Cs2113.32 (11)Ta1—O9—Cs3112.0 (3)
O10—Cs3—Cs164.65 (11)Ta4—O9—Cs296.8 (2)
O10—Cs3—Cs1132.98 (12)Ta4—O9—Cs3101.0 (2)
O10—Cs3—O852.43 (14)Cs2—O9—Cs376.95 (14)
O10—Cs3—O886.74 (15)Ta2—O10—Ta4v130.5 (3)
O10—Cs3—O990.69 (16)Ta2—O10—Cs3118.9 (3)
O10—Cs3—O9156.01 (14)Ta2—O10—Cs2116.8 (3)
O10—Cs3—Cs267.55 (10)Ta4v—O10—Cs399.6 (2)
O10—Cs3—Cs2113.32 (11)Ta4v—O10—Cs285.1 (2)
O10—Cs3—Cs1132.98 (12)Cs3—O10—Cs297.16 (16)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z; (iii) x, y, z; (iv) x+1/2, y+1/2, z; (v) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaCs3Ta5O14
Mr1527.48
Crystal system, space groupOrthorhombic, Pbam
Temperature (K)295
a, b, c (Å)26.219 (6), 7.4283 (10), 7.3914 (10)
V3)1439.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)45.17
Crystal size (mm)0.06 × 0.06 × 0.04
Data collection
DiffractometerRigaku Rapid image plate
diffractometer
Absorption correctionNumerical
Gaussian integration on 8× 8× 8 grid
Tmin, Tmax0.113, 0.349
No. of measured, independent and
observed (F > 0) reflections
2269, 2269, 2269
Rint0.060
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.032, 0.91
No. of reflections2269
No. of parameters117
Δρmax, Δρmin (e Å3)3.69, 4.25

Computer programs: RAPID-AUTO (Rigaku, 1999), RAPID-AUTO, Serafin & Hoppe (1982), CRYLSQ in Xtal3.7 (Hall et al., 2000), ATOMS (Dowty, 1999) and ORTEP in Xtal3.7, Xtal BONDLA CIFIO in Xtal3.7.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds