Buy article online - an online subscription or single-article purchase is required to access this article.
research papers
Absorption effects usually present the most serious source of systematic error in the determination of structure factors from single-crystal X-ray diffraction measurements if the crystal is not ground to a sphere or cylinder. A novel method is proposed for the correction of these effects for data collected on a diffractometer. The method works from the premise that the manifestation of systematic errors due to absorption, unlike most other sources of systematic error, will not be evenly distributed through reciprocal space, but will be localized. A Fourier series in the polar angles of the incident and diffracted beam paths is used to model an absorption surface for the difference between the observed and calculated structure factors. Knowledge of crystal dimensions or linear absorption coefficient is not required, and the method does not necessitate the measurement of azimuthal scans or any extra data beyond the unique set. Moreover, application of the correction is not dependent upon the Laue symmetry of the crystal or the geometry of the diffractometer. The method is compared with other commonly used corrections and results are presented which demonstrate its potential.