Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The fast Fourier transform algorithm commonly used for line profile analysis requires a list of values of the diffracted intensity with constant sinθ step; raw data are usually obtained at constant 2θ step; to interpolate between the measured values an analytic expression of the profile function is very useful. Statistical estimation is used to fit an analytic function to data; the only assumption made is the continuity of this function and no critical initialization is needed. Three different expressions are used: a Fourier sum for the peak and two polynomials of a suitable variable for the tails; the algorithm provides continuity for the function and its first derivative. Simulated examples using a Lorentzian and a Gaussian function are given and several criteria of goodness of fit are examined. The program runs on a PDP 11/03 Digital computer with only 45 kbytes available memory.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds