Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Owing to a theoretical hydrogen storage capacity of 10.5 wt% H2, Ca(BH4)2+MgH2, the so-called calcium reactive hydride composite (Ca-RHC), has a great potential as a hydrogen storage material. However, its dehydrogenation temperature (∼623 K) is too high for any mobile applications. By addition of 10 mol% of NbF5 into Ca(BH4)2+MgH2, a decrease of the dehydrogenation onset temperature by ∼120 K is observed. In order to understand the reasons behind this desorption temperature decrement two sets of samples [Ca(BH4)2+MgH2 and Ca(BH4)2+MgH2+0.1NbF5] in different hydrogenation states, were prepared. The structural investigation of the above mentioned sets of samples by means of volumetric measurements, anomalous small-angle X-ray scattering (ASAXS) and X-ray absorption spectroscopy (XAS) is reported here. The XAS results show that after the milling procedure NbB2 is formed and remains stable upon further de/rehydrogenation cycling. The results of Nb ASAXS point to nanometric spherical NbB2 particles distributed in the hydride matrix, with a mean diameter of ∼10 nm. Results from Ca ASAXS indicate Ca-containing nanostructures in the Ca-RHC+0.1NbF5 samples to be ∼50% finer compared to those without additive. Thus, a higher reaction surface area and shorter diffusion paths for the constituents are concluded to be important contributions to the catalytic effect of an NbF5 additive on the hydrogen sorption kinetics of the Ca(BH4)2+MgH2 composite system.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds