Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the crystal structure of the title compound, [Cu3Cl6(C4H6N4)4]n, there are three Cu atoms, six Cl atoms and four 2-allyl­tetrazole ligands in the asymmetric unit. The polyhedron of one Cu atom adopts a flattened octahedral geometry, with two 2-allyl­tetrazole ligands in the axial positions [Cu—N4 = 1.990 (2) and 1.991 (2) Å] and four Cl atoms in the equatorial positions [Cu—Cl = 2.4331 (9)–2.5426 (9) Å]. The polyhedra of the other two Cu atoms have a square-pyramidal geometry, with three basal sites occupied by Cl atoms [Cu—Cl = 2.2487 (9)–2.3163 (8) and 2.2569 (9)–2.3034 (9) Å] and one basal site occupied by a 2-allyl­tetrazole ligand [Cu—N4 = 2.028 (2) and 2.013 (2) Å]. A Cl atom lies in the apical position of either pyramid [Cu—Cl = 2.8360 (10) and 2.8046 (9) Å]. The possibility of including the tetrazole N3 atoms in the coordination sphere of the two Cu atoms is discussed. Neighbouring copper polyhedra share their edges with Cl atoms to form one-dimensional polymeric chains running along the a axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103002968/av1129sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103002968/av1129Isup2.hkl
Contains datablock I

CCDC reference: 207996

Comment top

Isomeric 1- and 2-monosubstituted tetrazoles are different in their physico-chemical properties (boiling and melting points, dipole moments, electron density distribution in the tetrazole ring etc.) and also in their ability to form complexes with transition metal salts (Butler, 1996; Gaponik, 1998). Therefore, 1-monosubstituted tetrazoles easily form complexes with copper(II) chloride, with CuCl2L2 complexes usually being produced. In contrast, special conditions are needed to obtain crystalline complexes with 2-monosubstituted tetrazoles (Gaponik, 2000), and hence their structures and properties have barely been investigated. Only one complex of copper(II) chloride with 2-substituted tetrazole has been structurally characterized, namely CuCl2L2, where L is 2-tertbuthyltetrazole (Lyakhov et al., 2003). Moreover, an inspection of the Cambridge Structural Database (Version 5.23, September 2002 release; Allen, 2002) with respect to 2-substituted tetrazole complexes revealed only one complex [NiL6](BF4)2, where L is 2-methyltetrazole (van den Heuvel et al., 1983).

A new complex of copper(II) chloride, (I), with the unusual composition Cu3Cl6L4, where L is 2-allyltetrazole (see Fig.1), has been synthesized, and this complex is investigated in the present work. There are four 2-allyltetrazole ligands in the asymmetric unit of (I), and these are denoted A, B, C and D.

Geometrical parameters of the tetrazole rings of the four 2-allyltetrazole molecules are very similar. The tetrazole rings are planar to within 0.002 (3) Å, 0.003 (3) Å, 0.003 (7) Å and 0.003 (3) Å for ligands A, B, C and D, respectively. The lengths of the corresponding bonds in the tetrazole rings of (I) lie in the following ranges (Å): N1—N2 [1.314 (4) − 1.322 (4)], N2—N3 [1.287 (3) − 1.308 (4)], N3—N4 [1.319 (3) − 1.327 (3)], N4—C5 [1.313 (4) − 1.338 (4)], N1—C5 [1.314 (4) − 1.326 (5)]. As can be seen, there is a reasonable agreement (within the 3.2σ range) between the corresponding bond distances of the rings.

There are three Cu atoms, Cu1, Cu2 and Cu3, in the asymmetric unit of (I). Atom Cu3 adopts a distorted flattened octahedral geometry (Table 1, Fig. 2), with two 2-allyltetrazole ligands in the axial positions [Cu3—N4A = 1.990 (2) and Cu3—N4B = 1.991 (2) Å]. Four Cl atoms occupy the equatorial positions, with Cu3—Cl distances in the range 2.4431 (9)–2.5426 (9) Å (Table 1).

The Cu1 and Cu2 atoms may be considered to be five-coordinated, with square pyramidal geometry (Table 1). For either atom, three basal sites are occupied by Cl atoms [Cu1—Cl = 2.2487 (9)–2.3163 (8) and Cu2—Cl = 2.2569 (9)–2.3034 (9) Å] and one basal site is occupied by a 2-allyltetrazole ligand [Cu1—N4D = 2.028 (2) and Cu2—N4C = 2.013 (2) Å]. Cl atoms lie in the apical positions of the pyramids [Cu1—Cl6i = 2.8360 (10) Å (symmetry code: (i) 1 + x, y, z) and Cu2—Cl3ii = 2.8046 (9) Å (symmetry code: (ii) x − 1, y, z)].

Note that within a range of 3.0 Å the Cu1 and Cu2 atoms adopt octahedral geometry, with additional N3 atoms in axial positions [Cu1—N3A = 2.898 (3) and Cu2—N3B = 2.926 (3) Å] (these long contacts are shown by dashed lines in the Scheme and in Fig. 1–3). However, according to the accepted point of view, the nucleophilic reactivity of 2-substituted terazoles is due to only the N4 atom, and hence the N3 atoms should not be included in the Cu-atom coordination sphere. Nevertheless, since the Cu1 and Cu2 atoms are surrounded symmetrically in the structure of (I), and because of the favourable orientation of the A and B tetrazole rings with reference to the Cu1 and Cu2 atoms, respectively, we can assume that atoms N3A and N3B might be included in the Cu1 and Cu2 octahedra. Note that all our attempts to synthesize CuCl2L2 and CuCl2L complexes of copper(II) with 2-allyltetrazole failed because only (I) was crystallized. Additional Cu1—N3A and Cu2—N3B bonds may be responsible for the favourable formation of (I).

To investigate the Cu1—N3 and Cu2—N3 bonds in (I), DFT (Density Functional Theory) calculations of the crystal structure of (I), including the neighbouring Cu1 and Cu3 atoms with all their ligands, have been carried out within the B3LYP model (Becke, 1993) using NWChem package (Harrison et al., 2002). Because the Cu1 and Cu2 surroundings are similar, analogous calculations for the Cu2 atom were not performed. The Cu1 and Cu3 atoms were described by the standard LANL2DZ double-ξ basis set with the effective core potential given by Hay & Wadt (1985). The standard STO-3 G basis set (Hehre et al., 1969) was used for the remaining atoms. Both singlet and triplet multiplicities have been considered for the fragment. The calculations showed that the triplet state energy was 31.5 kcal/mol lower than that of the singlet. For the triplet state, the overlap population for the Cu1—N4D bond (0.237) is almost two times greater than that for the Cu1—N3A bond (0.132). Therefore, the Cu1—N3A interaction is considerably weaker than the Cu1—N4D interaction. However, the overlap population value of 0.132 is neither high enough to be meaningful nor too low to be negligible in the resolution of the problem of the coordination bond Cu1—N3A (and of Cu2—N3B). In view of this ambiguity, the calculation results may be considered to be only preliminary. More detailed calculations will be the topic of future investigation.

As can be seen from Fig. 2, adjacent copper polyhedra share their edges with Cl atoms to form one-dimensional polymeric chains running along the a axis. The separations between the neighbouring Cu atoms in such a chain are listed in Table 1. Only van der Waals interactions exist between the chains. The packing structure of (I) is shown in Fig. 3. There are no hydrogen bonds in the structure of (I).

Experimental top

The complex of composition CuCl2L2, where L is 2-allyltetrazole, was prepared by the method described by Degtyarik et al. (1985) and was used as the starting compound for the synthesis of (I). Dark-green single crystals of (I) were grown by the slow evaporation in air of a 2-propanol-butanol-ethyl orthoformate (%v/v 2:2:1) solution of the starting complex at 288–291 K for 3 d.

Refinement top

The H atoms were included in geometrically calculated positions, with C—H distances of 0.93–0.97 Å, and refined using a riding model, with Uiso(H) equal to 1.2Ueq of the corresponding C atom. The short CC distances in the allyl groups [1.172 (5)–1.260 (5) Å] are the result of libration.

Computing details top

Data collection: R3m Software (Nicolet, 1980); cell refinement: R3m Software; data reduction: R3m Software; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP 3 for Windows (Farrugia, 1997), PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) plot of the asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level, and H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. A fragment of the crystal structure of (I), showing a one-dimensional polimeric chain running along the a axis.
[Figure 3] Fig. 3. The crystal packing of (I), viewed along the a axis.
(I) top
Crystal data top
[Cu3Cl6(C4H6N4)4]F(000) = 1684
Mr = 843.83Dx = 1.771 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 9.7204 (14) Åθ = 20.0–22.4°
b = 23.495 (2) ŵ = 2.54 mm1
c = 14.541 (3) ÅT = 293 K
β = 107.578 (14)°Prism, green
V = 3165.8 (9) Å30.48 × 0.42 × 0.36 mm
Z = 4
Data collection top
Nicolet R3m four-circle
diffractometer
5828 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 27.6°, θmin = 1.7°
ω/2θ scansh = 012
Absorption correction: ψ scan
(North et al., 1968)
k = 030
Tmin = 0.326, Tmax = 0.401l = 1818
7987 measured reflections3 standard reflections every 100 reflections
7316 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0429P)2 + 3.0438P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
7316 reflectionsΔρmax = 0.73 e Å3
371 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00246 (15)
Crystal data top
[Cu3Cl6(C4H6N4)4]V = 3165.8 (9) Å3
Mr = 843.83Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7204 (14) ŵ = 2.54 mm1
b = 23.495 (2) ÅT = 293 K
c = 14.541 (3) Å0.48 × 0.42 × 0.36 mm
β = 107.578 (14)°
Data collection top
Nicolet R3m four-circle
diffractometer
5828 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.017
Tmin = 0.326, Tmax = 0.4013 standard reflections every 100 reflections
7987 measured reflections intensity decay: none
7316 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.00Δρmax = 0.73 e Å3
7316 reflectionsΔρmin = 0.39 e Å3
371 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.59362 (4)0.089029 (15)0.74915 (3)0.03870 (10)
Cu20.08675 (4)0.169619 (15)0.72721 (3)0.03904 (10)
Cu30.25229 (3)0.130488 (14)0.73356 (3)0.03531 (10)
Cl10.47668 (8)0.09672 (3)0.86343 (5)0.04314 (17)
Cl20.43069 (8)0.15234 (3)0.65199 (6)0.04847 (19)
Cl30.71926 (9)0.08241 (4)0.64265 (5)0.04803 (18)
Cl40.02576 (8)0.16361 (3)0.60900 (6)0.04560 (18)
Cl50.07723 (7)0.10545 (3)0.81877 (6)0.04573 (18)
Cl60.20640 (9)0.17535 (3)0.83792 (6)0.04842 (18)
N1A0.1344 (3)0.02557 (13)0.5992 (3)0.0693 (9)
N2A0.2767 (3)0.02529 (11)0.62630 (19)0.0485 (6)
N3A0.3355 (3)0.02146 (11)0.66951 (19)0.0434 (6)
N4A0.2252 (2)0.05413 (10)0.67148 (18)0.0391 (5)
C5A0.1058 (4)0.02475 (15)0.6285 (3)0.0586 (9)
H5A0.01290.03830.62010.070*
C6A0.3639 (5)0.07421 (16)0.6128 (3)0.0623 (10)
H61A0.33960.08310.54470.075*
H62A0.46540.06420.63560.075*
C7A0.3386 (6)0.1241 (2)0.6650 (4)0.0890 (15)
H7A0.36440.11980.73170.107*
C8A0.2895 (7)0.1701 (2)0.6355 (6)0.127 (2)
H81A0.26110.17770.56970.152*
H82A0.28000.19800.67870.152*
N1B0.3796 (3)0.28023 (13)0.8868 (2)0.0619 (8)
N2B0.2374 (3)0.27955 (11)0.8650 (2)0.0482 (6)
N3B0.1753 (3)0.23598 (11)0.81332 (19)0.0427 (6)
N4B0.2818 (2)0.20564 (10)0.79990 (18)0.0401 (5)
C5B0.4041 (3)0.23329 (14)0.8444 (3)0.0537 (8)
H5B0.49540.22090.84540.064*
C6B0.1559 (4)0.32428 (16)0.8964 (3)0.0652 (10)
H61B0.19130.32790.96610.078*
H62B0.05480.31370.87880.078*
C7B0.1707 (6)0.38009 (19)0.8510 (4)0.0866 (14)
H7B0.13590.38220.78410.104*
C8B0.2249 (8)0.4237 (2)0.8945 (5)0.132 (3)
H81B0.26100.42350.96140.158*
H82B0.22960.45670.86020.158*
N1C0.3417 (3)0.30261 (15)0.5769 (3)0.0819 (12)
N2C0.2080 (3)0.32113 (10)0.59997 (19)0.0426 (6)
N3C0.1137 (3)0.28579 (11)0.6500 (2)0.0454 (6)
N4C0.1865 (3)0.24002 (11)0.66037 (19)0.0425 (6)
C5C0.3228 (4)0.25111 (17)0.6159 (3)0.0773 (13)
H5C0.39770.22570.61220.093*
C6C0.1711 (4)0.37777 (12)0.5699 (2)0.0469 (7)
H61C0.07010.37810.57280.056*
H62C0.22790.38460.50350.056*
C7C0.1980 (5)0.42393 (16)0.6313 (3)0.0653 (10)
H7C0.14820.42240.69690.078*
C8C0.2827 (5)0.46523 (16)0.6023 (3)0.0754 (12)
H81C0.33450.46840.53730.090*
H82C0.29340.49260.64580.090*
N1D0.8491 (3)0.04190 (13)0.9089 (3)0.0688 (10)
N2D0.7145 (3)0.05841 (10)0.89316 (18)0.0399 (5)
N3D0.6188 (3)0.02350 (11)0.84140 (19)0.0436 (6)
N4D0.6934 (3)0.01907 (11)0.82051 (19)0.0420 (6)
C5D0.8311 (4)0.00703 (15)0.8615 (3)0.0642 (11)
H5D0.90660.03020.85750.077*
C6D0.6749 (4)0.11080 (13)0.9350 (2)0.0475 (7)
H61D0.57110.11170.92270.057*
H62D0.71960.11031.00440.057*
C7D0.7208 (6)0.16282 (17)0.8945 (4)0.0889 (16)
H7D0.67650.16760.82870.107*
C8D0.8027 (7)0.1990 (2)0.9301 (5)0.111 (2)
H81D0.85210.19760.99570.133*
H82D0.81830.22900.89270.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03434 (18)0.03714 (19)0.0475 (2)0.00557 (14)0.01673 (15)0.00736 (15)
Cu20.03461 (18)0.03530 (19)0.0503 (2)0.00570 (14)0.01739 (16)0.00936 (15)
Cu30.02696 (16)0.03153 (17)0.0469 (2)0.00110 (13)0.01030 (14)0.00147 (14)
Cl10.0404 (4)0.0426 (4)0.0521 (4)0.0009 (3)0.0224 (3)0.0027 (3)
Cl20.0359 (4)0.0468 (4)0.0593 (5)0.0021 (3)0.0092 (3)0.0167 (3)
Cl30.0493 (4)0.0544 (4)0.0441 (4)0.0002 (3)0.0198 (3)0.0015 (3)
Cl40.0460 (4)0.0430 (4)0.0546 (4)0.0027 (3)0.0253 (3)0.0072 (3)
Cl50.0323 (3)0.0431 (4)0.0566 (4)0.0018 (3)0.0058 (3)0.0135 (3)
Cl60.0532 (4)0.0494 (4)0.0479 (4)0.0030 (3)0.0232 (3)0.0037 (3)
N1A0.0582 (19)0.0485 (17)0.084 (2)0.0000 (14)0.0047 (17)0.0187 (16)
N2A0.0535 (16)0.0417 (14)0.0458 (15)0.0045 (12)0.0084 (12)0.0033 (11)
N3A0.0438 (14)0.0386 (13)0.0488 (14)0.0023 (11)0.0157 (12)0.0006 (11)
N4A0.0334 (12)0.0355 (12)0.0462 (14)0.0014 (10)0.0086 (10)0.0024 (10)
C5A0.0425 (18)0.0442 (18)0.076 (2)0.0012 (15)0.0015 (17)0.0089 (17)
C6A0.078 (3)0.053 (2)0.060 (2)0.0146 (19)0.0263 (19)0.0086 (17)
C7A0.109 (4)0.061 (3)0.113 (4)0.030 (3)0.058 (3)0.014 (3)
C8A0.128 (5)0.058 (3)0.205 (8)0.005 (3)0.066 (5)0.010 (4)
N1B0.0441 (16)0.0520 (17)0.085 (2)0.0048 (13)0.0124 (15)0.0198 (16)
N2B0.0516 (16)0.0407 (14)0.0548 (16)0.0013 (12)0.0196 (13)0.0047 (12)
N3B0.0387 (13)0.0384 (13)0.0525 (15)0.0016 (10)0.0161 (11)0.0010 (11)
N4B0.0308 (12)0.0360 (12)0.0530 (14)0.0002 (10)0.0122 (10)0.0014 (11)
C5B0.0349 (16)0.0431 (17)0.079 (2)0.0049 (13)0.0110 (15)0.0126 (16)
C6B0.068 (2)0.055 (2)0.080 (3)0.0065 (18)0.035 (2)0.0155 (19)
C7B0.101 (4)0.060 (3)0.101 (4)0.027 (3)0.033 (3)0.001 (2)
C8B0.197 (7)0.059 (3)0.164 (6)0.002 (4)0.092 (6)0.002 (4)
N1C0.0377 (15)0.064 (2)0.131 (3)0.0027 (14)0.0049 (18)0.047 (2)
N2C0.0406 (13)0.0354 (13)0.0536 (15)0.0027 (10)0.0170 (12)0.0092 (11)
N3C0.0360 (13)0.0366 (13)0.0634 (17)0.0039 (10)0.0145 (12)0.0073 (12)
N4C0.0383 (13)0.0403 (13)0.0519 (14)0.0054 (11)0.0180 (11)0.0097 (11)
C5C0.0414 (19)0.060 (2)0.121 (4)0.0060 (17)0.010 (2)0.042 (2)
C6C0.0562 (19)0.0340 (15)0.0569 (19)0.0008 (13)0.0267 (16)0.0056 (13)
C7C0.083 (3)0.051 (2)0.068 (2)0.004 (2)0.030 (2)0.0027 (18)
C8C0.100 (3)0.047 (2)0.087 (3)0.012 (2)0.041 (3)0.003 (2)
N1D0.0339 (14)0.0584 (19)0.112 (3)0.0047 (13)0.0183 (16)0.0330 (18)
N2D0.0375 (12)0.0358 (13)0.0478 (14)0.0047 (10)0.0152 (11)0.0064 (11)
N3D0.0383 (13)0.0400 (13)0.0523 (15)0.0028 (11)0.0135 (11)0.0081 (11)
N4D0.0395 (13)0.0391 (13)0.0525 (15)0.0040 (11)0.0215 (12)0.0085 (11)
C5D0.0385 (17)0.051 (2)0.107 (3)0.0027 (15)0.0267 (19)0.028 (2)
C6D0.0528 (18)0.0378 (16)0.0573 (19)0.0012 (14)0.0249 (15)0.0096 (14)
C7D0.133 (4)0.046 (2)0.116 (4)0.007 (3)0.080 (4)0.006 (2)
C8D0.167 (6)0.056 (3)0.148 (5)0.043 (3)0.103 (5)0.030 (3)
Geometric parameters (Å, º) top
Cu1—N4D2.028 (2)N3B—N4B1.319 (3)
Cu1—Cl32.2487 (9)N4B—C5B1.338 (4)
Cu1—Cl12.2863 (9)C5B—H5B0.9300
Cu1—Cl22.3163 (8)C6B—C7B1.494 (6)
Cu1—Cl6i2.8360 (10)C6B—H61B0.9700
Cu1—N3A2.898 (3)C6B—H62B0.9700
Cu1—Cu33.3992 (6)C7B—C8B1.234 (7)
Cu1—Cu2i3.7334 (6)C7B—H7B0.9300
Cu2—N4C2.013 (2)C8B—H81B0.9300
Cu2—Cl62.2569 (9)C8B—H82B0.9300
Cu2—Cl52.3031 (8)N1C—N2C1.314 (4)
Cu2—Cl42.3034 (9)N1C—C5C1.326 (5)
Cu2—Cl3ii2.8046 (9)N2C—N3C1.287 (3)
Cu2—N3B2.926 (3)N2C—C6C1.478 (4)
Cu2—Cu33.3957 (6)N3C—N4C1.321 (3)
Cu3—N4A1.990 (2)N4C—C5C1.313 (4)
Cu3—N4B1.991 (2)C5C—H5C0.9300
Cu3—Cl22.4331 (9)C6C—C7C1.478 (5)
Cu3—Cl52.4597 (9)C6C—H61C0.9700
Cu3—Cl42.5151 (10)C6C—H62C0.9700
Cu3—Cl12.5426 (9)C7C—C8C1.260 (5)
N1A—C5A1.314 (4)C7C—H7C0.9300
N1A—N2A1.319 (4)C8C—H81C0.9300
N2A—N3A1.308 (4)C8C—H82C0.9300
N2A—C6A1.476 (4)N1D—N2D1.317 (4)
N3A—N4A1.327 (3)N1D—C5D1.325 (4)
N4A—C5A1.333 (4)N2D—N3D1.297 (3)
C5A—H5A0.9300N2D—C6D1.475 (4)
C6A—C7A1.456 (6)N3D—N4D1.323 (3)
C6A—H61A0.9700N4D—C5D1.320 (4)
C6A—H62A0.9700C5D—H5D0.9300
C7A—C8A1.208 (7)C6D—C7D1.483 (5)
C7A—H7A0.9300C6D—H61D0.9700
C8A—H81A0.9300C6D—H62D0.9700
C8A—H82A0.9300C7D—C8D1.172 (7)
N1B—C5B1.320 (4)C7D—H7D0.9300
N1B—N2B1.322 (4)C8D—H81D0.9300
N2B—N3B1.305 (4)C8D—H82D0.9300
N2B—C6B1.470 (4)
N4D—Cu1—Cl391.20 (7)N3A—N4A—Cu3122.29 (19)
N4D—Cu1—Cl187.61 (7)C5A—N4A—Cu3131.1 (2)
Cl3—Cu1—Cl1177.08 (3)N1A—C5A—N4A112.2 (3)
N4D—Cu1—Cl2165.02 (8)N1A—C5A—H5A123.9
Cl3—Cu1—Cl292.17 (3)N4A—C5A—H5A123.9
Cl1—Cu1—Cl289.66 (3)C7A—C6A—N2A111.3 (3)
N4D—Cu1—Cl6i100.99 (8)C7A—C6A—H61A109.4
Cl3—Cu1—Cl6i85.57 (3)N2A—C6A—H61A109.4
Cl1—Cu1—Cl6i92.04 (3)C7A—C6A—H62A109.4
Cl2—Cu1—Cl6i93.83 (3)N2A—C6A—H62A109.4
N4D—Cu1—N3A89.03 (9)H61A—C6A—H62A108.0
Cl3—Cu1—N3A105.75 (6)C8A—C7A—C6A130.3 (6)
Cl1—Cu1—N3A76.90 (6)C8A—C7A—H7A114.9
Cl2—Cu1—N3A76.00 (6)C6A—C7A—H7A114.9
Cl6i—Cu1—N3A164.84 (5)C7A—C8A—H81A120.0
N4D—Cu1—Cu3124.96 (7)C7A—C8A—H82A120.0
Cl3—Cu1—Cu3134.11 (3)H81A—C8A—H82A120.0
Cl1—Cu1—Cu348.41 (2)C5B—N1B—N2B101.6 (3)
Cl2—Cu1—Cu345.69 (2)N3B—N2B—N1B114.6 (3)
Cl6i—Cu1—Cu3110.27 (2)N3B—N2B—C6B122.7 (3)
N3A—Cu1—Cu354.60 (5)N1B—N2B—C6B122.7 (3)
N4D—Cu1—Cu2i99.96 (7)N2B—N3B—N4B105.2 (2)
Cl3—Cu1—Cu2i48.48 (2)N2B—N3B—Cu2148.86 (19)
Cl1—Cu1—Cu2i129.14 (3)N4B—N3B—Cu2105.64 (17)
Cl2—Cu1—Cu2i93.18 (2)N3B—N4B—C5B106.8 (3)
Cl6i—Cu1—Cu2i37.107 (18)N3B—N4B—Cu3123.11 (19)
N3A—Cu1—Cu2i152.36 (5)C5B—N4B—Cu3129.9 (2)
Cu3—Cu1—Cu2i132.042 (14)N1B—C5B—N4B111.9 (3)
N4C—Cu2—Cl691.06 (7)N1B—C5B—H5B124.1
N4C—Cu2—Cl5164.89 (8)N4B—C5B—H5B124.1
Cl6—Cu2—Cl592.44 (3)N2B—C6B—C7B111.0 (3)
N4C—Cu2—Cl487.60 (7)N2B—C6B—H61B109.4
Cl6—Cu2—Cl4177.49 (3)C7B—C6B—H61B109.4
Cl5—Cu2—Cl489.40 (3)N2B—C6B—H62B109.4
N4C—Cu2—Cl3ii103.10 (8)C7B—C6B—H62B109.4
Cl6—Cu2—Cl3ii86.18 (3)H61B—C6B—H62B108.0
Cl5—Cu2—Cl3ii91.80 (3)C8B—C7B—C6B125.8 (6)
Cl4—Cu2—Cl3ii92.06 (3)C8B—C7B—H7B117.1
N4C—Cu2—N3B89.94 (9)C6B—C7B—H7B117.1
Cl6—Cu2—N3B103.45 (6)C7B—C8B—H81B120.0
Cl5—Cu2—N3B74.95 (5)C7B—C8B—H82B120.0
Cl4—Cu2—N3B78.68 (6)H81B—C8B—H82B120.0
Cl3ii—Cu2—N3B163.76 (5)N2C—N1C—C5C101.2 (3)
N4C—Cu2—Cu3123.89 (7)N3C—N2C—N1C114.3 (3)
Cl6—Cu2—Cu3134.57 (3)N3C—N2C—C6C123.6 (3)
Cl5—Cu2—Cu346.41 (2)N1C—N2C—C6C122.2 (3)
Cl4—Cu2—Cu347.79 (2)N2C—N3C—N4C105.9 (2)
Cl3ii—Cu2—Cu3109.43 (2)C5C—N4C—N3C106.2 (3)
N3B—Cu2—Cu354.57 (5)C5C—N4C—Cu2131.9 (2)
N4A—Cu3—N4B178.12 (10)N3C—N4C—Cu2121.82 (19)
N4A—Cu3—Cl289.16 (7)N4C—C5C—N1C112.3 (3)
N4B—Cu3—Cl291.68 (7)N4C—C5C—H5C123.8
N4A—Cu3—Cl589.76 (7)N1C—C5C—H5C123.8
N4B—Cu3—Cl589.34 (7)C7C—C6C—N2C112.3 (3)
Cl2—Cu3—Cl5177.94 (3)C7C—C6C—H61C109.2
N4A—Cu3—Cl489.14 (7)N2C—C6C—H61C109.2
N4B—Cu3—Cl492.36 (7)C7C—C6C—H62C109.2
Cl2—Cu3—Cl4100.46 (3)N2C—C6C—H62C109.2
Cl5—Cu3—Cl481.28 (3)H61C—C6C—H62C107.9
N4A—Cu3—Cl191.27 (7)C8C—C7C—C6C125.4 (4)
N4B—Cu3—Cl187.20 (7)C8C—C7C—H7C117.3
Cl2—Cu3—Cl181.38 (3)C6C—C7C—H7C117.3
Cl5—Cu3—Cl196.90 (3)C7C—C8C—H81C120.0
Cl4—Cu3—Cl1178.13 (3)C7C—C8C—H82C120.0
N4A—Cu3—Cu2103.72 (7)H81C—C8C—H82C120.0
N4B—Cu3—Cu276.69 (7)N2D—N1D—C5D101.3 (3)
Cl2—Cu3—Cu2139.32 (2)N3D—N2D—N1D114.6 (2)
Cl5—Cu3—Cu242.701 (19)N3D—N2D—C6D122.4 (2)
Cl4—Cu3—Cu242.71 (2)N1D—N2D—C6D122.9 (3)
Cl1—Cu3—Cu2135.44 (2)N2D—N3D—N4D105.3 (2)
N4A—Cu3—Cu176.40 (7)C5D—N4D—N3D106.6 (3)
N4B—Cu3—Cu1103.11 (7)C5D—N4D—Cu1131.9 (2)
Cl2—Cu3—Cu142.94 (2)N3D—N4D—Cu1121.30 (19)
Cl5—Cu3—Cu1135.05 (2)N4D—C5D—N1D112.2 (3)
Cl4—Cu3—Cu1139.58 (2)N4D—C5D—H5D123.9
Cl1—Cu3—Cu142.26 (2)N1D—C5D—H5D123.9
Cu2—Cu3—Cu1177.633 (14)N2D—C6D—C7D112.1 (3)
Cu1—Cl1—Cu389.32 (3)N2D—C6D—H61D109.2
Cu1—Cl2—Cu391.37 (3)C7D—C6D—H61D109.2
Cu2—Cl4—Cu389.50 (3)N2D—C6D—H62D109.2
Cu2—Cl5—Cu390.89 (3)C7D—C6D—H62D109.2
C5A—N1A—N2A101.8 (3)H61D—C6D—H62D107.9
N3A—N2A—N1A114.5 (3)C8D—C7D—C6D131.9 (6)
N3A—N2A—C6A122.2 (3)C8D—C7D—H7D114.1
N1A—N2A—C6A123.3 (3)C6D—C7D—H7D114.1
N2A—N3A—N4A104.9 (2)C7D—C8D—H81D120.0
N2A—N3A—Cu1148.4 (2)C7D—C8D—H82D120.0
N4A—N3A—Cu1106.42 (17)H81D—C8D—H82D120.0
N3A—N4A—C5A106.6 (3)
N4C—Cu2—Cu3—N4A120.65 (12)Cl2—Cu1—N3A—N2A131.0 (4)
Cl6—Cu2—Cu3—N4A105.48 (8)Cl6i—Cu1—N3A—N2A179.9 (3)
Cl5—Cu2—Cu3—N4A74.28 (8)Cu3—Cu1—N3A—N2A176.0 (4)
Cl4—Cu2—Cu3—N4A73.31 (8)Cu2i—Cu1—N3A—N2A61.6 (4)
Cl3ii—Cu2—Cu3—N4A1.12 (8)N4D—Cu1—N3A—N4A139.37 (19)
N3B—Cu2—Cu3—N4A178.01 (10)Cl3—Cu1—N3A—N4A129.66 (17)
N4C—Cu2—Cu3—N4B61.24 (12)Cl1—Cu1—N3A—N4A51.60 (17)
Cl6—Cu2—Cu3—N4B72.62 (8)Cl2—Cu1—N3A—N4A41.37 (17)
Cl5—Cu2—Cu3—N4B103.83 (8)Cl6i—Cu1—N3A—N4A7.6 (3)
Cl4—Cu2—Cu3—N4B108.59 (8)Cu3—Cu1—N3A—N4A3.72 (15)
Cl3ii—Cu2—Cu3—N4B176.99 (8)Cu2i—Cu1—N3A—N4A110.72 (17)
N3B—Cu2—Cu3—N4B0.10 (10)N2A—N3A—N4A—C5A0.3 (3)
N4C—Cu2—Cu3—Cl215.52 (10)Cu1—N3A—N4A—C5A175.5 (2)
Cl6—Cu2—Cu3—Cl2149.39 (5)N2A—N3A—N4A—Cu3178.02 (19)
Cl5—Cu2—Cu3—Cl2179.41 (5)Cu1—N3A—N4A—Cu36.1 (2)
Cl4—Cu2—Cu3—Cl231.82 (5)Cl2—Cu3—N4A—N3A46.6 (2)
Cl3ii—Cu2—Cu3—Cl2106.25 (4)Cl5—Cu3—N4A—N3A131.7 (2)
N3B—Cu2—Cu3—Cl276.86 (7)Cl4—Cu3—N4A—N3A147.1 (2)
N4C—Cu2—Cu3—Cl5165.07 (10)Cl1—Cu3—N4A—N3A34.8 (2)
Cl6—Cu2—Cu3—Cl531.20 (4)Cu2—Cu3—N4A—N3A172.4 (2)
Cl4—Cu2—Cu3—Cl5147.59 (4)Cu1—Cu3—N4A—N3A5.2 (2)
Cl3ii—Cu2—Cu3—Cl573.16 (4)Cl2—Cu3—N4A—C5A135.5 (3)
N3B—Cu2—Cu3—Cl5103.73 (7)Cl5—Cu3—N4A—C5A46.2 (3)
N4C—Cu2—Cu3—Cl447.34 (10)Cl4—Cu3—N4A—C5A35.1 (3)
Cl6—Cu2—Cu3—Cl4178.79 (4)Cl1—Cu3—N4A—C5A143.1 (3)
Cl5—Cu2—Cu3—Cl4147.59 (4)Cu2—Cu3—N4A—C5A5.5 (3)
Cl3ii—Cu2—Cu3—Cl474.43 (3)Cu1—Cu3—N4A—C5A177.0 (3)
N3B—Cu2—Cu3—Cl4108.68 (7)N2A—N1A—C5A—N4A0.2 (4)
N4C—Cu2—Cu3—Cl1133.07 (10)N3A—N4A—C5A—N1A0.3 (4)
Cl6—Cu2—Cu3—Cl10.80 (5)Cu3—N4A—C5A—N1A177.8 (3)
Cl5—Cu2—Cu3—Cl132.00 (4)N3A—N2A—C6A—C7A116.3 (4)
Cl4—Cu2—Cu3—Cl1179.59 (4)N1A—N2A—C6A—C7A61.2 (5)
Cl3ii—Cu2—Cu3—Cl1105.16 (4)N2A—C6A—C7A—C8A117.5 (6)
N3B—Cu2—Cu3—Cl171.73 (7)C5B—N1B—N2B—N3B0.1 (4)
N4D—Cu1—Cu3—N4A60.97 (12)C5B—N1B—N2B—C6B179.8 (3)
Cl3—Cu1—Cu3—N4A74.54 (8)N1B—N2B—N3B—N4B0.2 (4)
Cl1—Cu1—Cu3—N4A107.46 (8)C6B—N2B—N3B—N4B179.9 (3)
Cl2—Cu1—Cu3—N4A103.76 (8)N1B—N2B—N3B—Cu2171.8 (3)
Cl6i—Cu1—Cu3—N4A178.63 (7)C6B—N2B—N3B—Cu28.3 (6)
N3A—Cu1—Cu3—N4A2.45 (10)N4C—Cu2—N3B—N2B55.4 (4)
Cu2i—Cu1—Cu3—N4A142.89 (7)Cl6—Cu2—N3B—N2B35.7 (4)
N4D—Cu1—Cu3—N4B117.16 (12)Cl5—Cu2—N3B—N2B124.6 (4)
Cl3—Cu1—Cu3—N4B107.33 (8)Cl4—Cu2—N3B—N2B142.9 (4)
Cl1—Cu1—Cu3—N4B70.67 (8)Cl3ii—Cu2—N3B—N2B160.9 (3)
Cl2—Cu1—Cu3—N4B78.11 (8)Cu3—Cu2—N3B—N2B171.4 (4)
Cl6i—Cu1—Cu3—N4B3.24 (8)N4C—Cu2—N3B—N4B133.10 (19)
N3A—Cu1—Cu3—N4B175.68 (10)Cl6—Cu2—N3B—N4B135.82 (17)
Cu2i—Cu1—Cu3—N4B38.98 (8)Cl5—Cu2—N3B—N4B46.91 (17)
N4D—Cu1—Cu3—Cl2164.73 (10)Cl4—Cu2—N3B—N4B45.54 (17)
Cl3—Cu1—Cu3—Cl229.22 (5)Cl3ii—Cu2—N3B—N4B10.7 (3)
Cl1—Cu1—Cu3—Cl2148.78 (4)Cu3—Cu2—N3B—N4B0.15 (15)
Cl6i—Cu1—Cu3—Cl274.87 (4)N2B—N3B—N4B—C5B0.4 (3)
N3A—Cu1—Cu3—Cl2106.21 (7)Cu2—N3B—N4B—C5B175.9 (2)
Cu2i—Cu1—Cu3—Cl239.13 (3)N2B—N3B—N4B—Cu3175.23 (19)
N4D—Cu1—Cu3—Cl514.65 (10)Cu2—N3B—N4B—Cu30.2 (2)
Cl3—Cu1—Cu3—Cl5150.16 (4)Cl2—Cu3—N4B—N3B140.8 (2)
Cl1—Cu1—Cu3—Cl531.84 (4)Cl5—Cu3—N4B—N3B41.0 (2)
Cl2—Cu1—Cu3—Cl5179.38 (4)Cl4—Cu3—N4B—N3B40.3 (2)
Cl6i—Cu1—Cu3—Cl5105.75 (4)Cl1—Cu3—N4B—N3B137.9 (2)
N3A—Cu1—Cu3—Cl573.17 (7)Cu2—Cu3—N4B—N3B0.2 (2)
Cu2i—Cu1—Cu3—Cl5141.49 (3)Cu1—Cu3—N4B—N3B177.4 (2)
N4D—Cu1—Cu3—Cl4133.03 (10)Cl2—Cu3—N4B—C5B44.6 (3)
Cl3—Cu1—Cu3—Cl42.47 (5)Cl5—Cu3—N4B—C5B133.6 (3)
Cl1—Cu1—Cu3—Cl4179.53 (4)Cl4—Cu3—N4B—C5B145.2 (3)
Cl2—Cu1—Cu3—Cl431.69 (5)Cl1—Cu3—N4B—C5B36.7 (3)
Cl6i—Cu1—Cu3—Cl4106.56 (4)Cu2—Cu3—N4B—C5B174.8 (3)
N3A—Cu1—Cu3—Cl474.52 (7)Cu1—Cu3—N4B—C5B2.8 (3)
Cu2i—Cu1—Cu3—Cl470.82 (4)N2B—N1B—C5B—N4B0.4 (4)
N4D—Cu1—Cu3—Cl146.49 (10)N3B—N4B—C5B—N1B0.5 (4)
Cl3—Cu1—Cu3—Cl1178.00 (4)Cu3—N4B—C5B—N1B174.7 (2)
Cl2—Cu1—Cu3—Cl1148.78 (4)N3B—N2B—C6B—C7B114.8 (4)
Cl6i—Cu1—Cu3—Cl173.91 (3)N1B—N2B—C6B—C7B65.1 (5)
N3A—Cu1—Cu3—Cl1105.01 (7)N2B—C6B—C7B—C8B118.0 (6)
Cu2i—Cu1—Cu3—Cl1109.65 (3)C5C—N1C—N2C—N3C1.1 (5)
N4D—Cu1—Cl1—Cu3143.49 (8)C5C—N1C—N2C—C6C178.5 (3)
Cl2—Cu1—Cl1—Cu321.77 (3)N1C—N2C—N3C—N4C1.2 (4)
Cl6i—Cu1—Cl1—Cu3115.59 (3)C6C—N2C—N3C—N4C178.5 (3)
N3A—Cu1—Cl1—Cu353.93 (5)N2C—N3C—N4C—C5C0.6 (4)
Cu2i—Cu1—Cl1—Cu3115.60 (3)N2C—N3C—N4C—Cu2176.3 (2)
N4A—Cu3—Cl1—Cu168.03 (7)Cl6—Cu2—N4C—C5C63.3 (4)
N4B—Cu3—Cl1—Cu1113.06 (7)Cl5—Cu2—N4C—C5C166.7 (3)
Cl2—Cu3—Cl1—Cu120.93 (3)Cl4—Cu2—N4C—C5C114.5 (4)
Cl5—Cu3—Cl1—Cu1157.95 (3)Cl3ii—Cu2—N4C—C5C23.0 (4)
Cu2—Cu3—Cl1—Cu1179.17 (2)N3B—Cu2—N4C—C5C166.8 (4)
N4D—Cu1—Cl2—Cu356.6 (3)Cu3—Cu2—N4C—C5C147.6 (4)
Cl3—Cu1—Cl2—Cu3159.47 (3)Cl6—Cu2—N4C—N3C120.6 (2)
Cl1—Cu1—Cl2—Cu322.81 (3)Cl5—Cu2—N4C—N3C17.2 (5)
Cl6i—Cu1—Cl2—Cu3114.83 (3)Cl4—Cu2—N4C—N3C61.5 (2)
N3A—Cu1—Cl2—Cu353.77 (6)Cl3ii—Cu2—N4C—N3C153.1 (2)
Cu2i—Cu1—Cl2—Cu3152.00 (2)N3B—Cu2—N4C—N3C17.1 (2)
N4A—Cu3—Cl2—Cu170.76 (7)Cu3—Cu2—N4C—N3C28.5 (3)
N4B—Cu3—Cl2—Cu1107.55 (8)N3C—N4C—C5C—N1C0.0 (5)
Cl4—Cu3—Cl2—Cu1159.73 (3)Cu2—N4C—C5C—N1C176.6 (3)
Cl1—Cu3—Cl2—Cu120.65 (3)N2C—N1C—C5C—N4C0.7 (6)
Cu2—Cu3—Cl2—Cu1178.94 (2)N3C—N2C—C6C—C7C101.1 (4)
N4C—Cu2—Cl4—Cu3142.34 (8)N1C—N2C—C6C—C7C79.3 (5)
Cl5—Cu2—Cl4—Cu322.84 (3)N2C—C6C—C7C—C8C120.3 (4)
Cl3ii—Cu2—Cl4—Cu3114.63 (3)C5D—N1D—N2D—N3D0.5 (4)
N3B—Cu2—Cl4—Cu351.92 (5)C5D—N1D—N2D—C6D177.4 (3)
N4A—Cu3—Cl4—Cu2111.47 (7)N1D—N2D—N3D—N4D0.3 (4)
N4B—Cu3—Cl4—Cu267.39 (7)C6D—N2D—N3D—N4D177.3 (3)
Cl2—Cu3—Cl4—Cu2159.54 (3)N2D—N3D—N4D—C5D0.0 (4)
Cl5—Cu3—Cl4—Cu221.58 (3)N2D—N3D—N4D—Cu1174.89 (19)
Cu1—Cu3—Cl4—Cu2179.11 (2)Cl3—Cu1—N4D—C5D57.0 (3)
N4C—Cu2—Cl5—Cu355.1 (3)Cl1—Cu1—N4D—C5D120.3 (3)
Cl6—Cu2—Cl5—Cu3158.32 (3)Cl2—Cu1—N4D—C5D160.0 (3)
Cl4—Cu2—Cl5—Cu323.39 (3)Cl6i—Cu1—N4D—C5D28.7 (4)
Cl3ii—Cu2—Cl5—Cu3115.43 (3)N3A—Cu1—N4D—C5D162.8 (3)
N3B—Cu2—Cl5—Cu355.05 (5)Cu3—Cu1—N4D—C5D153.2 (3)
N4A—Cu3—Cl5—Cu2110.75 (7)Cu2i—Cu1—N4D—C5D9.1 (4)
N4B—Cu3—Cl5—Cu270.91 (7)Cl3—Cu1—N4D—N3D129.6 (2)
Cl4—Cu3—Cl5—Cu221.58 (3)Cl1—Cu1—N4D—N3D53.1 (2)
Cl1—Cu3—Cl5—Cu2158.00 (3)Cl2—Cu1—N4D—N3D26.6 (5)
Cu1—Cu3—Cl5—Cu2178.95 (2)Cl6i—Cu1—N4D—N3D144.7 (2)
C5A—N1A—N2A—N3A0.0 (4)N3A—Cu1—N4D—N3D23.8 (2)
C5A—N1A—N2A—C6A177.7 (3)Cu3—Cu1—N4D—N3D20.2 (3)
N1A—N2A—N3A—N4A0.2 (4)Cu2i—Cu1—N4D—N3D177.5 (2)
C6A—N2A—N3A—N4A177.5 (3)N3D—N4D—C5D—N1D0.3 (5)
N1A—N2A—N3A—Cu1172.2 (3)Cu1—N4D—C5D—N1D173.8 (3)
C6A—N2A—N3A—Cu110.1 (6)N2D—N1D—C5D—N4D0.5 (5)
N4D—Cu1—N3A—N2A48.3 (4)N3D—N2D—C6D—C7D115.6 (4)
Cl3—Cu1—N3A—N2A42.7 (4)N1D—N2D—C6D—C7D67.7 (5)
Cl1—Cu1—N3A—N2A136.1 (4)N2D—C6D—C7D—C8D116.6 (6)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu3Cl6(C4H6N4)4]
Mr843.83
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.7204 (14), 23.495 (2), 14.541 (3)
β (°) 107.578 (14)
V3)3165.8 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.54
Crystal size (mm)0.48 × 0.42 × 0.36
Data collection
DiffractometerNicolet R3m four-circle
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.326, 0.401
No. of measured, independent and
observed [I > 2σ(I)] reflections
7987, 7316, 5828
Rint0.017
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.093, 1.00
No. of reflections7316
No. of parameters371
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.39

Computer programs: R3m Software (Nicolet, 1980), R3m Software, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP 3 for Windows (Farrugia, 1997), PLATON (Spek, 2003).

Selected bond lengths (Å) top
Cu1—N4D2.028 (2)Cu2—Cl42.3034 (9)
Cu1—Cl32.2487 (9)Cu2—Cl3ii2.8046 (9)
Cu1—Cl12.2863 (9)Cu2—N3B2.926 (3)
Cu1—Cl22.3163 (8)Cu2—Cu33.3957 (6)
Cu1—Cl6i2.8360 (10)Cu3—N4A1.990 (2)
Cu1—N3A2.898 (3)Cu3—N4B1.991 (2)
Cu1—Cu33.3992 (6)Cu3—Cl22.4331 (9)
Cu1—Cu2i3.7334 (6)Cu3—Cl52.4597 (9)
Cu2—N4C2.013 (2)Cu3—Cl42.5151 (10)
Cu2—Cl62.2569 (9)Cu3—Cl12.5426 (9)
Cu2—Cl52.3031 (8)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds