Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complex, [MnHg(NCS)4(C2H5NO)2]n, consists of slightly distorted MnN4O2 octa­hedra and HgS4 tetra­hedra. Each MnII cation is bound to four N atoms of the NCS groups and two O atoms of the N-methyl­formamide (NMF) ligands in a cis configuration. Each HgII cation is coordinated to four S atoms of NCS groups. Each pair of MnII and HgII cations is connected by an –NCS– bridge, forming an infinite three-dimensional –Mn—NCS—Hg– network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105010814/av1235sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105010814/av1235Isup2.hkl
Contains datablock I

CCDC reference: 275498

Comment top

Versatile and efficient sources of blue–violet or UV light are of fundamental importance for many applications, such as high-density optical data storage, medical diagnosis, photolithography, underwater communications and laser displays. Second-order nonlinear optical (SONLO) materials capable of efficient frequency conversion of IR or visible laser radiation to visible or UV wavelengths are of considerable interest in these fields (Zhang et al., 2004). Materials with large second-order optical nonlinearities, transparency at all wavelengths involved and stable physicochemical performance (thermal and temporal stability) are needed in order to realise many of these applications. Manganese mercury thiocyanate (MMTC; Yan et al., 1999) and quite a few of its Lewis-base adducts (Wang, Yu, Xu, Lu & Yuan, 2000; Wang, Yu, Xu, Lu, Yuan & Lu, 2000; Wang, Yu, Xu, Lu, Yuan, Liu & Lu, 2000; Yu et al., 2001) have been found to crystallize in acentric structures. All of them exhibit good SONLO effects and a wide transparency wavelength region. To continue this work, a novel compound, the title complex, (I), the N-methylformamide (NMF) adduct of MMTC, has been prepared. The crystal structure of the NMF adduct of cobalt mercury thiocyante, bis(N-methylformamide)tetrakis(thiocyanato)cobalt(II)mercury(II), was reported nearly 20 years ago (Kinoshita & Ouchi, 1986). It crystallizes in a non-centrosymmetric space group, but unfortunately the low-energy dd transitions present in this compound because of the Co2+ ion are normally observed in the visible light region, which limits its SONLO usefulness. This compound is isostructural with (I). However, (I) has many better characteristics. It possesses a high SONLO effect and a wide optical transparency range. Furthermore, it is very easy to grow large single crystals of high optical quality.

According to the hard and soft acids and bases (HSAB) concept (Pearson, 1966; Balarew & Duhlew, 1984), harder metals show a pronounced affinity for coordination with harder ligands, while softer metals prefer coordination with softer ligands. In the structure of (I), each hard MnII cation is six-coordinated by four hard SCN ligands via their N atoms and two hard NMF ligands via their O atoms in a slightly distorted octahedral geometry; the HgII cation is four-coordinated by four soft SCN ligands via their S atoms in a slightly distorted tetrahedral geometry.

In (I), the two O atoms of the NMF ligands coordinate to the MnII cation in a cis conformation. However, in the similar structure of the DMSO adduct (Wang, Yu, Xu, Lu & Yuan, 2000), two O atoms of the DMSO ligands coordinate to the MnII cation in a trans conformation. This difference is due to the smaller size of NMF molecules compared with DMSO molecules. In (I), the Mn—N [2.199 (12)–2.240 (12) Å] and Mn—O [2.178 (9) and 2.176 (9) Å] bond lengths are all much larger than the sums of the ionic radii (2.13 and 2.02 Å, respectively; Shannon, 1976). The Hg—S bond lengths are in the range 2.526 (4)–2.563 (4) Å, with an average of 2.543 Å, a little larger than the sum of the single-bond covalent radii (2.52 Å; Pauling, 1960). The S—Hg—S bond angles [101.65 (14)–117.21 (16)°] deviate markedly from the typical tetrahedral angle.

The C—N—Mn angles [164.8 (12)–175.5 (12)°] are close to 180°, while the C—S—Hg angles [94.2 (4)–97.1 (5)°] are much smaller than 180° and exhibit significant bending. The C—N and C—S bond lengths are slightly smaller than the accepted triple-bond length of 1.16 Å and the normal single C—S bond length of 1.81 Å, respectively (Reference for standard values?). The SCN groups are quasi-linear [N—C—S angles 176.7 (13)–179.0 (13)°].

The striking feature of this type of complex is the –SCN– bridge, which connects the two metals to form infinite two- or three-dimensional networks; a three-dimensional network is formed in (I).

The macroscopic nonlinear susceptibility of the crystal of (I) may be related to the microscopic hyperpolarizabilities of the dipolar SCN ions, and to the octupolar distorted MnN4O2 octahedra and HgS4 tetrahedra (Zyss & Ledoux, 1994). The second-harmonic generation (SHG) effect of the crystals has been studied (Kurtz & Perry, 1968) and found to be nearly the same as that of urea. The optical transmission of a crystal of (I) was measured by a Hitachi U-3500 spectrophotometer; it was found that the transparency range is 365–2920 nm.

Experimental top

An NMF solution (5 ml) of MMTC (4.41 g, 9 mmol) was added slowly to water (25 ml) with stirring at room temperature. After a while, compound (I) was precipitated. The crystals used for the X-ray structure analysis were obtained from a mixed solvent of NMF and water (1:3, v/v) using a temperature-lowering method.

Refinement top

All H atoms were placed in calculated positions, with C—H distances of 0.93 or 0.96 Å and N—H distances of 0.86 Å [Please check added text], and refined using a riding model, with Uiso(H) values of 1.2Ueq(C,N), or 1.5Ueq(C) for CH3 groups.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: Please provide missing details.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. A packing diagram for (I), showing the three-dimensional network.
Poly[(µ-thiocyanato-1:2κ2S:N)bis(thiocyanato-2κN)bis(N-methylformamide- 2κO)manganese(II)mercury(II)] top
Crystal data top
[MnHg(C2H5NO)2(SCN)4]Dx = 2.121 Mg m3
Mr = 605.99Mo Kα radiation, λ = 0.71069 Å
Orthorhombic, Pna21Cell parameters from 43 reflections
a = 16.1203 (15) Åθ = 6.4–12.5°
b = 7.7373 (7) ŵ = 9.20 mm1
c = 15.2135 (18) ÅT = 293 K
V = 1897.5 (3) Å3Prism, colourless
Z = 40.23 × 0.18 × 0.13 mm
F(000) = 1140
Data collection top
Bruker P4
diffractometer
1656 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 27.5°, θmin = 2.5°
ω scansh = 120
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
k = 110
Tmin = 0.10, Tmax = 0.30l = 191
2951 measured reflections3 standard reflections every 97 reflections
2417 independent reflections intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0304P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max = 0.001
S = 0.98Δρmax = 0.68 e Å3
2417 reflectionsΔρmin = 0.56 e Å3
203 parametersExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00286 (17)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 162 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.12 (2)
Crystal data top
[MnHg(C2H5NO)2(SCN)4]V = 1897.5 (3) Å3
Mr = 605.99Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 16.1203 (15) ŵ = 9.20 mm1
b = 7.7373 (7) ÅT = 293 K
c = 15.2135 (18) Å0.23 × 0.18 × 0.13 mm
Data collection top
Bruker P4
diffractometer
1656 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
Rint = 0.030
Tmin = 0.10, Tmax = 0.303 standard reflections every 97 reflections
2951 measured reflections intensity decay: none
2417 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.077Δρmax = 0.68 e Å3
S = 0.98Δρmin = 0.56 e Å3
2417 reflectionsAbsolute structure: Flack (1983), 162 Friedel pairs
203 parametersAbsolute structure parameter: 0.12 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7531 (8)0.3591 (16)0.6134 (9)0.063 (4)
C20.9972 (7)0.1733 (16)0.4615 (9)0.053 (3)
C30.9924 (8)0.6752 (18)0.6124 (10)0.063 (4)
C40.9914 (7)0.6918 (18)0.2928 (8)0.054 (3)
C50.8091 (10)0.893 (2)0.4438 (12)0.073 (4)
H5A0.86430.91960.43250.088*
C60.6709 (13)0.989 (2)0.466 (2)0.142 (10)
H6A0.63741.07310.43630.214*
H6B0.66080.99650.52840.214*
H6C0.65680.87540.44580.214*
C70.7269 (10)0.457 (2)0.3243 (12)0.061 (4)
H70.70990.56570.34390.074*
C80.7017 (12)0.229 (3)0.2256 (15)0.161 (11)
H8A0.70240.24420.16300.242*
H8B0.66150.14260.24090.242*
H8C0.75560.19350.24530.242*
N10.7936 (7)0.3996 (14)0.5555 (8)0.065 (3)
N20.9499 (7)0.2800 (16)0.4477 (9)0.072 (3)
N30.9536 (7)0.6263 (16)0.5552 (9)0.074 (3)
N40.9507 (7)0.6468 (16)0.3485 (7)0.062 (3)
N50.7558 (11)1.0222 (17)0.4492 (16)0.101 (5)
H5B0.77271.12670.44220.121*
N60.6807 (7)0.3838 (18)0.2655 (9)0.082 (4)
H6D0.63510.43320.25050.098*
O10.7911 (5)0.7407 (12)0.4526 (8)0.071 (3)
O20.7906 (6)0.3990 (12)0.3568 (6)0.063 (3)
S10.6957 (2)0.2982 (6)0.6976 (3)0.0829 (12)
Mn10.87366 (12)0.5179 (2)0.45198 (15)0.0525 (5)
Hg10.56627 (3)0.45301 (6)0.64685 (5)0.06246 (18)
S21.0660 (3)0.0241 (5)0.4798 (3)0.0734 (11)
S31.0456 (3)0.7393 (6)0.6995 (3)0.0876 (13)
S41.0481 (2)0.7590 (5)0.2100 (3)0.0665 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.057 (7)0.050 (7)0.081 (11)0.003 (6)0.007 (7)0.019 (8)
C20.057 (7)0.050 (7)0.052 (7)0.002 (7)0.008 (7)0.007 (7)
C30.058 (7)0.059 (8)0.072 (11)0.005 (7)0.001 (7)0.012 (8)
C40.049 (7)0.072 (10)0.040 (7)0.014 (7)0.001 (6)0.004 (7)
C50.069 (10)0.065 (10)0.085 (12)0.005 (9)0.003 (10)0.016 (10)
C60.132 (19)0.075 (13)0.22 (3)0.030 (12)0.02 (2)0.019 (17)
C70.073 (10)0.050 (10)0.062 (9)0.002 (9)0.014 (8)0.020 (9)
C80.138 (17)0.16 (2)0.18 (2)0.053 (17)0.055 (16)0.124 (19)
N10.064 (6)0.074 (8)0.057 (6)0.003 (6)0.002 (6)0.006 (7)
N20.078 (8)0.061 (7)0.078 (8)0.015 (7)0.014 (8)0.002 (7)
N30.079 (8)0.072 (8)0.072 (8)0.024 (6)0.018 (7)0.001 (7)
N40.069 (7)0.072 (8)0.046 (6)0.005 (6)0.006 (6)0.005 (6)
N50.093 (11)0.048 (8)0.161 (15)0.015 (8)0.001 (12)0.003 (12)
N60.063 (7)0.110 (11)0.073 (8)0.004 (7)0.024 (7)0.025 (9)
O10.070 (6)0.051 (6)0.092 (7)0.003 (5)0.005 (6)0.002 (6)
O20.068 (6)0.056 (6)0.066 (6)0.003 (5)0.021 (5)0.008 (5)
S10.061 (2)0.107 (3)0.081 (2)0.017 (2)0.011 (2)0.040 (3)
Mn10.0554 (10)0.0506 (11)0.0514 (10)0.0027 (9)0.0033 (9)0.0002 (10)
Hg10.0621 (3)0.0680 (3)0.0573 (2)0.0089 (3)0.0029 (5)0.0093 (5)
S20.088 (2)0.077 (2)0.0551 (19)0.030 (2)0.003 (2)0.0005 (19)
S30.120 (3)0.070 (2)0.072 (2)0.017 (2)0.041 (3)0.009 (2)
S40.0521 (18)0.074 (2)0.073 (2)0.0007 (17)0.0102 (19)0.009 (2)
Geometric parameters (Å, º) top
C1—N11.140 (15)C8—H8A0.9600
C1—S11.649 (14)C8—H8B0.9600
C2—N21.144 (14)C8—H8C0.9600
C2—S21.625 (13)N1—Mn12.233 (12)
C3—N31.136 (16)N2—Mn12.214 (12)
C3—S31.655 (15)N3—Mn12.199 (12)
C4—N41.127 (15)N4—Mn12.240 (12)
C4—S41.641 (14)N5—H5B0.8600
C5—O11.218 (17)N6—H6D0.8600
C5—N51.32 (2)O1—Mn12.178 (9)
C5—H5A0.9300O2—Mn12.176 (9)
C6—N51.42 (2)S1—Hg12.526 (4)
C6—H6A0.9600Hg1—S3i2.534 (5)
C6—H6B0.9600Hg1—S2ii2.548 (4)
C6—H6C0.9600Hg1—S4iii2.563 (4)
C7—O21.226 (17)S2—Hg1iv2.548 (4)
C7—N61.30 (2)S3—Hg1v2.534 (5)
C7—H70.9300S4—Hg1vi2.563 (4)
C8—N61.38 (2)
N1—C1—S1179.0 (13)C7—N6—H6D118.6
N2—C2—S2178.8 (13)C8—N6—H6D118.6
N3—C3—S3176.7 (13)C5—O1—Mn1128.2 (10)
N4—C4—S4178.1 (12)C7—O2—Mn1128.9 (10)
O1—C5—N5124.7 (16)C1—S1—Hg195.2 (5)
O1—C5—H5A117.7O2—Mn1—O187.8 (4)
N5—C5—H5A117.7O2—Mn1—N3176.0 (4)
N5—C6—H6A109.5O1—Mn1—N393.0 (4)
N5—C6—H6B109.5O2—Mn1—N288.3 (4)
H6A—C6—H6B109.5O1—Mn1—N2175.8 (4)
N5—C6—H6C109.5N3—Mn1—N290.7 (5)
H6A—C6—H6C109.5O2—Mn1—N186.6 (4)
H6B—C6—H6C109.5O1—Mn1—N188.2 (4)
O2—C7—N6126.6 (16)N3—Mn1—N189.5 (5)
O2—C7—H7116.7N2—Mn1—N190.0 (4)
N6—C7—H7116.7O2—Mn1—N493.5 (4)
N6—C8—H8A109.5O1—Mn1—N489.3 (4)
N6—C8—H8B109.5N3—Mn1—N490.4 (4)
H8A—C8—H8B109.5N2—Mn1—N492.4 (4)
N6—C8—H8C109.5N1—Mn1—N4177.5 (4)
H8A—C8—H8C109.5S1—Hg1—S3i117.21 (16)
H8B—C8—H8C109.5S1—Hg1—S2ii109.83 (15)
C1—N1—Mn1171.3 (12)S3i—Hg1—S2ii104.46 (15)
C2—N2—Mn1164.8 (12)S1—Hg1—S4iii101.65 (14)
C3—N3—Mn1175.5 (12)S3i—Hg1—S4iii109.72 (16)
C4—N4—Mn1171.5 (13)S2ii—Hg1—S4iii114.40 (14)
C5—N5—C6120.2 (15)C2—S2—Hg1iv97.1 (5)
C5—N5—H5B119.9C3—S3—Hg1v95.5 (5)
C6—N5—H5B119.9C4—S4—Hg1vi94.2 (4)
C7—N6—C8122.9 (15)
S1—C1—N1—Mn1117 (83)C3—N3—Mn1—N4169 (16)
S2—C2—N2—Mn187 (72)C2—N2—Mn1—O2168 (4)
S3—C3—N3—Mn15 (40)C2—N2—Mn1—O1146 (6)
S4—C4—N4—Mn1104 (44)C2—N2—Mn1—N38 (4)
O1—C5—N5—C60 (4)C2—N2—Mn1—N181 (4)
O2—C7—N6—C85 (3)C2—N2—Mn1—N499 (4)
N5—C5—O1—Mn1176.5 (16)C1—N1—Mn1—O2134 (7)
N6—C7—O2—Mn1177.6 (12)C1—N1—Mn1—O146 (7)
N1—C1—S1—Hg1168 (86)C1—N1—Mn1—N347 (7)
C7—O2—Mn1—O10.8 (12)C1—N1—Mn1—N2138 (7)
C7—O2—Mn1—N3103 (6)C1—N1—Mn1—N441 (14)
C7—O2—Mn1—N2179.3 (13)C4—N4—Mn1—O261 (7)
C7—O2—Mn1—N189.2 (12)C4—N4—Mn1—O1149 (7)
C7—O2—Mn1—N488.4 (13)C4—N4—Mn1—N3118 (7)
C5—O1—Mn1—O2130.0 (15)C4—N4—Mn1—N228 (7)
C5—O1—Mn1—N353.9 (16)C4—N4—Mn1—N1153 (9)
C5—O1—Mn1—N2152 (6)C1—S1—Hg1—S3i90.6 (5)
C5—O1—Mn1—N1143.3 (15)C1—S1—Hg1—S2ii28.3 (5)
C5—O1—Mn1—N436.5 (15)C1—S1—Hg1—S4iii149.8 (5)
C3—N3—Mn1—O20 (21)N2—C2—S2—Hg1iv122 (71)
C3—N3—Mn1—O1102 (16)N3—C3—S3—Hg1v144 (25)
C3—N3—Mn1—N276 (16)N4—C4—S4—Hg1vi20 (45)
C3—N3—Mn1—N114 (16)
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x1/2, y+1/2, z; (iii) x+3/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z; (v) x+1/2, y+3/2, z; (vi) x+3/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5B···O2vii0.862.493.285 (19)154
Symmetry code: (vii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[MnHg(C2H5NO)2(SCN)4]
Mr605.99
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)16.1203 (15), 7.7373 (7), 15.2135 (18)
V3)1897.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)9.20
Crystal size (mm)0.23 × 0.18 × 0.13
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(XSCANS; Siemens, 1996)
Tmin, Tmax0.10, 0.30
No. of measured, independent and
observed [I > 2σ(I)] reflections
2951, 2417, 1656
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.077, 0.98
No. of reflections2417
No. of parameters203
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.56
Absolute structureFlack (1983), 162 Friedel pairs
Absolute structure parameter0.12 (2)

Computer programs: XSCANS (Siemens, 1996), XSCANS, SHELXTL (Bruker, 1997), SHELXTL, Please provide missing details.

Selected geometric parameters (Å, º) top
C1—N11.140 (15)N2—Mn12.214 (12)
C1—S11.649 (14)N3—Mn12.199 (12)
C2—N21.144 (14)N4—Mn12.240 (12)
C2—S21.625 (13)O1—Mn12.178 (9)
C3—N31.136 (16)O2—Mn12.176 (9)
C3—S31.655 (15)S1—Hg12.526 (4)
C4—N41.127 (15)S2—Hg1i2.548 (4)
C4—S41.641 (14)S3—Hg1ii2.534 (5)
N1—Mn12.233 (12)S4—Hg1iii2.563 (4)
N1—C1—S1179.0 (13)N3—Mn1—N189.5 (5)
N2—C2—S2178.8 (13)N2—Mn1—N190.0 (4)
N3—C3—S3176.7 (13)O2—Mn1—N493.5 (4)
N4—C4—S4178.1 (12)O1—Mn1—N489.3 (4)
C1—N1—Mn1171.3 (12)N3—Mn1—N490.4 (4)
C2—N2—Mn1164.8 (12)N2—Mn1—N492.4 (4)
C3—N3—Mn1175.5 (12)N1—Mn1—N4177.5 (4)
C4—N4—Mn1171.5 (13)S1—Hg1—S3iv117.21 (16)
C1—S1—Hg195.2 (5)S1—Hg1—S2v109.83 (15)
O2—Mn1—O187.8 (4)S3iv—Hg1—S2v104.46 (15)
O2—Mn1—N3176.0 (4)S1—Hg1—S4vi101.65 (14)
O1—Mn1—N393.0 (4)S3iv—Hg1—S4vi109.72 (16)
O2—Mn1—N288.3 (4)S2v—Hg1—S4vi114.40 (14)
O1—Mn1—N2175.8 (4)C2—S2—Hg1i97.1 (5)
N3—Mn1—N290.7 (5)C3—S3—Hg1ii95.5 (5)
O2—Mn1—N186.6 (4)C4—S4—Hg1iii94.2 (4)
O1—Mn1—N188.2 (4)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+3/2, z; (iii) x+3/2, y+1/2, z1/2; (iv) x1/2, y+3/2, z; (v) x1/2, y+1/2, z; (vi) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5B···O2vii0.862.493.285 (19)154
Symmetry code: (vii) x, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds