Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, {[Ce(C2H6OS)6(H2O)2][NaMo8O26]}n, contains an infinite chain of β-octa­molybdate moieties linked by Na+ ions, and further linked into a two-dimensional network by [Ce(DMSO)6(H2O)2]3+ (DMSO is dimethyl sulfoxide) groups via hydrogen-bond inter­actions. The Ce and Na atoms are located on a twofold axis and an inversion centre, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105010206/av1236sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105010206/av1236Isup2.hkl
Contains datablock I

CCDC reference: 275496

Comment top

Polyoxometalates are currently receiving increasing attention in the domain of solid-state material chemistry, owing to their intriguing structural and topological properties and their many potential applications in catalysis, biology, medicine, photochemistry and magnetism (Pope & Müller, 1991; Pope, 1983). In the past decade, chemists have made great efforts in the design and synthesis of new polyoxometalates. To find suitable subunits and then link them up into one-, two- or even three-dimensional extended networks in appropriate ways remains a great challenge. Recently, a series of octamolybdate-supported complexes with multi-dimensional frameworks have been synthesized by hydrothermal methods (Hagrman et al., 1997, 1998; Wu et al., 2002). To the best of our knowledge, only three octamolybdate-supported compounds with one- or two-dimensional extended structures have so far been reported to be synthesized in a direct route, using [Bu4N]4[Mo8O26] or [Bu4N]4[Mo6O19] as the starting materials (Qin et al., 2004; Chen et al., 2004a,b). We have succeeded in obtaining the title novel octamolybdate-supported compound with a two-dimensional framework, {[Ce(DMSO)6(H2O)2][NaMo8O26]}n (DMSO is dimethylsulfoxide), (I), which was also prepared in a direct route but using Na2MoO4 as the Mo source. This is the first reported such octamolybdate-based compound with an infinitely extended structure to be synthesized by applying this `one-step' method. It is also the first case of Mo–Na bimetallic oxide chains linked up into a two-dimensional network via hydrogen-bonding interactions between β-[Mo8O26]4− units and coordinated rare earth ions. Please check rephrasing.

Compound (I) consists of an infinite anion chain framework built up of [Mo8O26]4− entities linked via Na ions, and eight-coordinated (six DMSO and two water molecules) Ce atoms as charge compensating cations (Fig. 1). The Ce atom occupies a special position across a twofold axis, and the Na atom lies on an inversion centre at (3/4, 1/4, 1/2).

As shown in Fig. 2, the [Mo8O26]4− moiety is built up of eight edge-sharing MoO6 octahedra and displays the characteristic β-octamolybdate arrangement, which contains two µ5-O atoms, O13 and O13iii [symmetry code: (iii) −x + 3/2, −y + 3/2, −z + 1]. The Mo—O bond lengths and O—Mo—O and Mo—O—Mo bond angles among the octamolybdate units are similar to those in other β-[Mo8O26]4− complexes (Luo et al., 2003; Yang et al., 2002; Hagrman & Zubieta, 2000). All Mo sites possess octahedral coordination geometry with different degrees of distortion and exhibit a +VI oxidation state, according to extensive bond-valence sum calculation (Brown & Altermatt, 1984; Brese & O'Keeffe, 1991). Each [Mo8O26]4− unit forms covalent [with Na—O distances of 2.426 (2)–2.445 (2) Å] or weak [with Na—O distances of 2.820 (2)–2.841 (2) Å] interactions with Na+ through eight terminal O atoms in opposite directions, thus forming a sandwich-like structure.

The coordination environment around the Ce centre is shown in Fig. 1. Each Ce3+ ion is coordinated by eight O atoms, of which six are from DMSO ligands and two from aqua ligands.

It is noteworthy that strong hydrogen-bond interactions exist in the solid-state structure of (I), and these might play an important role in the crystallization of (I). Each coordinated water molecule on the Ce atom forms two O—H···O hydrogen bonds (Table 2) to a µ2-bridging and a terminal O atom from the adjacent (Mo8O26)n chain. Therefore, the structure of (I) is finally extended into a two-dimensional network by strong hydrogen bonds (Fig. 3).

The backbone framework of (I) is similar to that of [NaLa(β-[Mo8O26]4−)(DMF)7]n (II) (DMF is dimethylformamide; Chen et al., 2004 Which?), although in that compound, the [La(DMF)7]3+ moiety is covalently bound to the infinite one-dimensional chain.

Experimental top

Na2MoO4 (0.964 g, 4 mmol) was dissolved in H2O (5 ml) and dimethylsulfoxide (10 ml), and then CeCL3 (0.67 mmol) in H2O (2 ml) was added dropwise. The resulting solution was adjusted to about pH3 with 10% hydrochloric acid. After stirring for about 15 min, the mixture was filtered and the filtrate was kept in air at ambient temperature. Orange crystals of the title compound were separated from the mother liquor after one week (yield 45%, based on Ce).

Refinement top

The aqua H atoms were located in a difference Fourier map and were refined with restrained O—H distances approximately equal to 0.84 (1) Å and H···H distances approximately equal to 1.4 (1) Å. H atoms bonded to C atoms were positioned geometrically, with C—H distances of 0.96 Å, and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C). Please check added text.

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A molecular drawing of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. All H atoms have been omitted for clarity. [Symmetry codes: (i) −x + 1, y, −z + 3/2; (ii) −x + 3/2, −y + 1/2, −z + 1; (iii) −x + 3/2, −y + 3/2, −z + 1; (iv) x, y + 1, z.]
[Figure 2] Fig. 2. A polyhedral representation of the infinite chain in (I). All C and H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A packing diagram for (I), viewed along the c axis. Broken lines indicate hydrogen bonds. Displacement ellipsoids are shown at the 30% probability level. All H atoms have been omitted for clarity, except those engaged in hydrogen bonding.
Poly[diaquahexakis(dimethyl sulfoxide-κO)cerium [(µ2-hexacosaoxooctamolybdate)sodium]] top
Crystal data top
[Ce(C2H6OS)6(H2O)2][NaMo8O26]F(000) = 3540
Mr = 1851.43Dx = 2.584 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6634 reflections
a = 22.7811 (7) Åθ = 3.0–27.5°
b = 9.2121 (2) ŵ = 3.34 mm1
c = 22.8913 (6) ÅT = 130 K
β = 97.829 (2)°Prism, yellow
V = 4759.2 (2) Å30.22 × 0.21 × 0.11 mm
Z = 4
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
5365 independent reflections
Radiation source: fine-focus sealed tube5248 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 3.5°
ω scansh = 2927
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
k = 118
Tmin = 0.524, Tmax = 0.693l = 2829
16875 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0302P)2 + 15.179P]
where P = (Fo2 + 2Fc2)/3
5365 reflections(Δ/σ)max = 0.003
290 parametersΔρmax = 1.59 e Å3
3 restraintsΔρmin = 0.84 e Å3
Crystal data top
[Ce(C2H6OS)6(H2O)2][NaMo8O26]V = 4759.2 (2) Å3
Mr = 1851.43Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.7811 (7) ŵ = 3.34 mm1
b = 9.2121 (2) ÅT = 130 K
c = 22.8913 (6) Å0.22 × 0.21 × 0.11 mm
β = 97.829 (2)°
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
5365 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
5248 reflections with I > 2σ(I)
Tmin = 0.524, Tmax = 0.693Rint = 0.020
16875 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0213 restraints
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0302P)2 + 15.179P]
where P = (Fo2 + 2Fc2)/3
5365 reflectionsΔρmax = 1.59 e Å3
290 parametersΔρmin = 0.84 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce10.50000.41600 (2)0.75000.01128 (6)
Na10.75000.25000.50000.0297 (4)
Mo10.802281 (9)0.54411 (2)0.631042 (9)0.00971 (6)
Mo20.671776 (9)0.57713 (2)0.557411 (9)0.00788 (6)
Mo30.730161 (9)0.63169 (2)0.439003 (9)0.00668 (5)
Mo40.861733 (9)0.60356 (2)0.511859 (9)0.00861 (6)
O10.79975 (9)0.3656 (2)0.61080 (9)0.0185 (4)
O20.67575 (8)0.3981 (2)0.53810 (8)0.0129 (4)
O30.73131 (8)0.44910 (19)0.42926 (8)0.0113 (3)
O40.85246 (9)0.4220 (2)0.49704 (8)0.0149 (4)
O50.82988 (9)0.5467 (2)0.70415 (8)0.0174 (4)
O60.71947 (8)0.57654 (19)0.63262 (8)0.0107 (3)
O70.60332 (8)0.6009 (2)0.57701 (8)0.0132 (4)
O80.65804 (7)0.65505 (19)0.47483 (7)0.0089 (3)
O90.70419 (8)0.70554 (19)0.37000 (8)0.0105 (3)
O100.81389 (7)0.67609 (19)0.43793 (7)0.0090 (3)
O110.93116 (8)0.6437 (2)0.49771 (9)0.0158 (4)
O120.87187 (8)0.60089 (19)0.59602 (8)0.0105 (3)
O130.76467 (7)0.62679 (19)0.53331 (8)0.0085 (3)
O140.51709 (10)0.5114 (3)0.85003 (10)0.0283 (5)
O150.58105 (9)0.5915 (2)0.75486 (10)0.0246 (5)
O160.42905 (9)0.2892 (2)0.80427 (9)0.0185 (4)
O170.43715 (11)0.2238 (3)0.69388 (10)0.0396 (7)
C10.63906 (15)0.7809 (3)0.69944 (14)0.0252 (6)
H1A0.60740.80300.66850.038*
H1B0.67640.79750.68560.038*
H1C0.63600.84210.73280.038*
C20.69680 (15)0.5893 (4)0.77620 (14)0.0308 (7)
H2A0.70060.49360.79290.046*
H2B0.69170.65830.80650.046*
H2C0.73190.61290.75920.046*
C30.54620 (14)0.6034 (5)0.95711 (14)0.0320 (8)
H3A0.55320.50930.97470.048*
H3B0.50500.62790.95550.048*
H3C0.56980.67430.98040.048*
C40.54779 (17)0.7841 (4)0.86603 (17)0.0347 (8)
H4A0.55590.80330.82670.052*
H4B0.57120.84750.89320.052*
H4C0.50650.80060.86820.052*
C50.34028 (12)0.1930 (3)0.85352 (13)0.0205 (6)
H5A0.31190.26390.83690.031*
H5B0.32950.15860.89020.031*
H5C0.34080.11310.82670.031*
C60.45280 (15)0.1197 (4)0.89636 (16)0.0344 (8)
H6A0.49390.14490.90590.052*
H6B0.44880.04230.86800.052*
H6C0.43760.08890.93140.052*
S10.41224 (3)0.27390 (8)0.86617 (3)0.01752 (14)
S20.56565 (3)0.60142 (8)0.88463 (3)0.02073 (15)
S30.63411 (3)0.59532 (7)0.72049 (3)0.01420 (13)
H17A0.4269 (17)0.201 (4)0.6587 (7)0.034 (11)*
H17B0.4137 (18)0.192 (6)0.7160 (18)0.070 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.00929 (10)0.01402 (10)0.01096 (10)0.0000.00292 (7)0.000
Na10.0440 (11)0.0194 (8)0.0308 (10)0.0180 (8)0.0233 (8)0.0136 (7)
Mo10.01051 (10)0.00983 (10)0.00847 (11)0.00013 (7)0.00012 (8)0.00232 (7)
Mo20.00885 (10)0.00879 (10)0.00614 (10)0.00189 (7)0.00151 (7)0.00060 (7)
Mo30.00884 (10)0.00667 (10)0.00448 (10)0.00073 (7)0.00075 (7)0.00099 (7)
Mo40.00944 (10)0.00944 (10)0.00676 (10)0.00173 (7)0.00043 (7)0.00045 (7)
O10.0174 (9)0.0126 (9)0.0258 (11)0.0005 (7)0.0038 (8)0.0019 (8)
O20.0140 (9)0.0116 (9)0.0135 (9)0.0015 (7)0.0034 (7)0.0007 (7)
O30.0141 (9)0.0095 (8)0.0105 (9)0.0016 (7)0.0021 (7)0.0013 (6)
O40.0206 (10)0.0116 (9)0.0118 (9)0.0022 (7)0.0003 (7)0.0008 (7)
O50.0179 (9)0.0231 (10)0.0105 (9)0.0009 (8)0.0011 (7)0.0047 (8)
O60.0126 (8)0.0131 (8)0.0067 (8)0.0013 (7)0.0023 (7)0.0015 (6)
O70.0123 (9)0.0160 (9)0.0114 (9)0.0019 (7)0.0023 (7)0.0016 (7)
O80.0092 (8)0.0104 (8)0.0067 (8)0.0009 (6)0.0000 (6)0.0008 (6)
O90.0131 (8)0.0108 (8)0.0075 (8)0.0003 (7)0.0008 (6)0.0006 (6)
O100.0106 (8)0.0109 (8)0.0055 (8)0.0001 (6)0.0011 (6)0.0014 (6)
O110.0119 (9)0.0207 (10)0.0148 (9)0.0023 (7)0.0021 (7)0.0021 (8)
O120.0104 (8)0.0118 (8)0.0087 (8)0.0001 (7)0.0008 (6)0.0001 (6)
O130.0087 (8)0.0091 (8)0.0078 (8)0.0005 (6)0.0008 (6)0.0001 (6)
O140.0313 (12)0.0358 (13)0.0201 (11)0.0181 (10)0.0113 (9)0.0133 (10)
O150.0221 (11)0.0291 (12)0.0262 (12)0.0120 (9)0.0165 (9)0.0121 (9)
O160.0202 (10)0.0226 (10)0.0139 (10)0.0040 (8)0.0068 (8)0.0020 (8)
O170.0379 (14)0.0703 (19)0.0121 (11)0.0380 (14)0.0086 (10)0.0133 (12)
C10.0360 (17)0.0166 (14)0.0249 (16)0.0001 (12)0.0108 (13)0.0025 (12)
C20.0243 (16)0.050 (2)0.0176 (15)0.0020 (14)0.0003 (12)0.0042 (14)
C30.0201 (15)0.062 (2)0.0137 (15)0.0063 (15)0.0003 (11)0.0008 (15)
C40.045 (2)0.0261 (17)0.0335 (19)0.0046 (15)0.0090 (15)0.0040 (14)
C50.0149 (12)0.0288 (15)0.0182 (14)0.0051 (11)0.0040 (10)0.0007 (12)
C60.0256 (16)0.046 (2)0.0312 (19)0.0027 (15)0.0015 (14)0.0205 (16)
S10.0210 (3)0.0185 (3)0.0138 (3)0.0052 (3)0.0051 (2)0.0032 (2)
S20.0155 (3)0.0277 (4)0.0195 (4)0.0009 (3)0.0042 (3)0.0068 (3)
S30.0151 (3)0.0170 (3)0.0115 (3)0.0051 (2)0.0051 (2)0.0027 (2)
Geometric parameters (Å, º) top
Ce1—O142.434 (2)Mo4—O8i2.2975 (17)
Ce1—O152.445 (2)Mo4—O132.3392 (17)
Ce1—O162.4630 (19)O14—S21.517 (2)
Ce1—O172.517 (2)O15—S31.530 (2)
Na1—O22.4260 (19)O16—S11.524 (2)
Na1—O32.4453 (18)O17—H17A0.835 (10)
Na1—O42.830 (2)O17—H17B0.837 (10)
Na1—O12.841 (2)C1—S31.784 (3)
Mo1—O51.7060 (19)C1—H1A0.9600
Mo1—O11.707 (2)C1—H1B0.9600
Mo1—O61.9152 (18)C1—H1C0.9600
Mo1—O121.9430 (18)C2—S31.781 (3)
Mo1—O9i2.3109 (18)C2—H2A0.9600
Mo1—O132.4077 (17)C2—H2B0.9600
Mo2—O71.6946 (19)C2—H2C0.9600
Mo2—O21.7128 (18)C3—S21.775 (3)
Mo2—O61.9065 (18)C3—H3A0.9600
Mo2—O82.0065 (17)C3—H3B0.9600
Mo2—O10i2.2971 (17)C3—H3C0.9600
Mo2—O132.3044 (17)C4—S21.770 (4)
Mo2—Mo33.2173 (3)C4—H4A0.9600
Mo3—O31.6975 (18)C4—H4B0.9600
Mo3—O91.7474 (17)C4—H4C0.9600
Mo3—O81.9455 (17)C5—S11.788 (3)
Mo3—O101.9542 (17)C5—H5A0.9600
Mo3—O132.1951 (17)C5—H5B0.9600
Mo3—O13i2.3120 (17)C5—H5C0.9600
Mo4—O111.6979 (19)C6—S11.782 (3)
Mo4—O41.7139 (19)C6—H6A0.9600
Mo4—O121.9091 (18)C6—H6B0.9600
Mo4—O101.9990 (17)C6—H6C0.9600
O14ii—Ce1—O14137.68 (12)O11—Mo4—O4105.53 (10)
O14—Ce1—O1572.27 (7)O11—Mo4—O12101.98 (9)
O14—Ce1—O15ii80.05 (8)O4—Mo4—O12100.48 (8)
O15—Ce1—O15ii97.21 (11)O11—Mo4—O10100.39 (8)
O14ii—Ce1—O16127.87 (7)O4—Mo4—O1096.91 (8)
O14—Ce1—O1674.25 (7)O12—Mo4—O10146.69 (7)
O15—Ce1—O16146.49 (7)O11—Mo4—O8i91.09 (8)
O15ii—Ce1—O1678.07 (7)O4—Mo4—O8i161.75 (8)
O16—Ce1—O16ii123.40 (10)O12—Mo4—O8i82.96 (7)
O14ii—Ce1—O1776.51 (9)O10—Mo4—O8i72.22 (7)
O14—Ce1—O17137.83 (7)O11—Mo4—O13162.14 (8)
O15—Ce1—O17149.53 (7)O4—Mo4—O1392.08 (8)
O15ii—Ce1—O1793.92 (9)O12—Mo4—O1377.12 (7)
O16—Ce1—O1763.72 (7)O10—Mo4—O1374.05 (7)
O16ii—Ce1—O1777.04 (8)O8i—Mo4—O1371.07 (6)
O17—Ce1—O17ii90.59 (15)Mo1—O1—Na1126.74 (10)
O2iii—Na1—O2180Mo2—O2—Na1134.29 (10)
O2iii—Na1—O3104.53 (6)Mo3—O3—Na1131.35 (9)
O2—Na1—O375.47 (6)Mo4—O4—Na1128.43 (10)
O2—Na1—O3iii104.53 (6)Mo2—O6—Mo1115.16 (9)
O3—Na1—O3iii180Mo3—O8—Mo2108.99 (8)
O2—Na1—O4iii71.85 (6)Mo3—O8—Mo4i110.80 (8)
O3—Na1—O4iii111.47 (6)Mo2—O8—Mo4i103.27 (7)
O2—Na1—O4108.15 (6)Mo3—O9—Mo1i114.27 (8)
O3—Na1—O468.53 (6)Mo3—O10—Mo4109.87 (8)
O4iii—Na1—O4180Mo3—O10—Mo2i109.84 (8)
O2—Na1—O1iii108.60 (6)Mo4—O10—Mo2i103.52 (7)
O3—Na1—O1iii71.20 (6)Mo4—O12—Mo1115.25 (9)
O4iii—Na1—O1iii65.25 (6)Mo3—O13—Mo291.26 (6)
O4—Na1—O1iii114.75 (6)Mo3—O13—Mo3i104.35 (7)
O2—Na1—O171.40 (6)Mo2—O13—Mo3i98.02 (6)
O3—Na1—O1108.80 (6)Mo3—O13—Mo491.01 (6)
O1iii—Na1—O1180Mo2—O13—Mo4163.19 (8)
O5—Mo1—O1105.91 (10)Mo3i—O13—Mo497.55 (6)
O5—Mo1—O6102.22 (9)Mo3—O13—Mo1162.71 (9)
O1—Mo1—O699.12 (9)Mo2—O13—Mo186.38 (6)
O5—Mo1—O12100.87 (9)Mo3i—O13—Mo192.94 (6)
O1—Mo1—O1298.43 (9)Mo4—O13—Mo186.52 (6)
O6—Mo1—O12145.78 (7)S2—O14—Ce1134.47 (12)
O5—Mo1—O9i90.60 (8)S3—O15—Ce1129.51 (12)
O1—Mo1—O9i163.48 (8)S1—O16—Ce1141.10 (12)
O6—Mo1—O9i77.46 (7)Ce1—O17—H17A137 (3)
O12—Mo1—O9i77.38 (7)Ce1—O17—H17B108 (4)
O5—Mo1—O13160.74 (8)H17A—O17—H17B112 (4)
O1—Mo1—O1393.32 (8)S3—C1—H1A109.5
O6—Mo1—O1375.01 (7)S3—C1—H1B109.5
O12—Mo1—O1374.84 (7)H1A—C1—H1B109.5
O9i—Mo1—O1370.16 (6)S3—C1—H1C109.5
O7—Mo2—O2105.99 (9)H1A—C1—H1C109.5
O7—Mo2—O6101.14 (8)H1B—C1—H1C109.5
O2—Mo2—O6100.76 (8)S3—C2—H2A109.5
O7—Mo2—O899.92 (8)S3—C2—H2B109.5
O2—Mo2—O896.21 (8)H2A—C2—H2B109.5
O6—Mo2—O8148.03 (7)S3—C2—H2C109.5
O7—Mo2—O10i89.44 (8)H2A—C2—H2C109.5
O2—Mo2—O10i162.29 (8)H2B—C2—H2C109.5
O6—Mo2—O10i84.32 (7)S2—C3—H3A109.5
O8—Mo2—O10i72.10 (7)S2—C3—H3B109.5
O7—Mo2—O13161.09 (8)H3A—C3—H3B109.5
O2—Mo2—O1392.68 (8)S2—C3—H3C109.5
O6—Mo2—O1377.75 (7)H3A—C3—H3C109.5
O8—Mo2—O1374.56 (7)H3B—C3—H3C109.5
O10i—Mo2—O1371.66 (6)S2—C4—H4A109.5
O7—Mo2—Mo3134.74 (6)S2—C4—H4B109.5
O2—Mo2—Mo383.71 (6)H4A—C4—H4B109.5
O6—Mo2—Mo3120.73 (5)S2—C4—H4C109.5
O8—Mo2—Mo334.88 (5)H4A—C4—H4C109.5
O10i—Mo2—Mo379.17 (4)H4B—C4—H4C109.5
O13—Mo2—Mo343.01 (4)S1—C5—H5A109.5
O3—Mo3—O9106.05 (9)S1—C5—H5B109.5
O3—Mo3—O8101.18 (8)H5A—C5—H5B109.5
O9—Mo3—O897.85 (8)S1—C5—H5C109.5
O3—Mo3—O1099.97 (8)H5A—C5—H5C109.5
O9—Mo3—O1096.78 (8)H5B—C5—H5C109.5
O8—Mo3—O10149.76 (7)S1—C6—H6A109.5
O3—Mo3—O1395.68 (8)S1—C6—H6B109.5
O9—Mo3—O13158.26 (8)H6A—C6—H6B109.5
O8—Mo3—O1378.32 (7)S1—C6—H6C109.5
O10—Mo3—O1378.30 (7)H6A—C6—H6C109.5
O3—Mo3—O13i171.30 (8)H6B—C6—H6C109.5
O9—Mo3—O13i82.62 (7)O16—S1—C6104.58 (15)
O8—Mo3—O13i78.02 (7)O16—S1—C5103.24 (13)
O10—Mo3—O13i77.80 (7)C6—S1—C598.41 (16)
O13—Mo3—O13i75.65 (7)O14—S2—C4105.48 (17)
O3—Mo3—Mo288.36 (6)O14—S2—C3103.69 (15)
O9—Mo3—Mo2133.98 (6)C4—S2—C397.84 (18)
O8—Mo3—Mo236.14 (5)O15—S3—C2104.10 (15)
O10—Mo3—Mo2124.02 (5)O15—S3—C1104.14 (14)
O13—Mo3—Mo245.73 (4)C2—S3—C198.57 (17)
O13i—Mo3—Mo286.03 (4)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+1, y, z+3/2; (iii) x+3/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17—H17B···O5iv0.84 (1)2.32 (4)2.974 (3)136 (5)
O17—H17A···O12iv0.84 (1)2.00 (2)2.758 (3)151 (4)
Symmetry code: (iv) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Ce(C2H6OS)6(H2O)2][NaMo8O26]
Mr1851.43
Crystal system, space groupMonoclinic, C2/c
Temperature (K)130
a, b, c (Å)22.7811 (7), 9.2121 (2), 22.8913 (6)
β (°) 97.829 (2)
V3)4759.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.34
Crystal size (mm)0.22 × 0.21 × 0.11
Data collection
DiffractometerRigaku Mercury CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2002)
Tmin, Tmax0.524, 0.693
No. of measured, independent and
observed [I > 2σ(I)] reflections
16875, 5365, 5248
Rint0.020
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.055, 1.05
No. of reflections5365
No. of parameters290
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0302P)2 + 15.179P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.59, 0.84

Computer programs: CrystalClear (Rigaku, 2002), CrystalClear, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Ce1—O142.434 (2)Na1—O12.841 (2)
Ce1—O152.445 (2)Mo1—O51.7060 (19)
Ce1—O162.4630 (19)Mo1—O11.707 (2)
Ce1—O172.517 (2)Mo1—O61.9152 (18)
Na1—O22.4260 (19)Mo1—O121.9430 (18)
Na1—O32.4453 (18)Mo1—O9i2.3109 (18)
Na1—O42.830 (2)Mo1—O132.4077 (17)
O14—Ce1—O1572.27 (7)O7—Mo2—O13161.09 (8)
O14—Ce1—O1674.25 (7)O2—Mo2—O1392.68 (8)
O15—Ce1—O16146.49 (7)O6—Mo2—O1377.75 (7)
O14—Ce1—O17137.83 (7)O8—Mo2—O1374.56 (7)
O15—Ce1—O17149.53 (7)O3—Mo3—O9106.05 (9)
O16—Ce1—O1763.72 (7)O3—Mo3—O8101.18 (8)
O2ii—Na1—O2180O9—Mo3—O897.85 (8)
O2—Na1—O375.47 (6)O3—Mo3—O1099.97 (8)
O2—Na1—O4108.15 (6)O9—Mo3—O1096.78 (8)
O3—Na1—O468.53 (6)O8—Mo3—O10149.76 (7)
O2—Na1—O171.40 (6)O3—Mo3—O1395.68 (8)
O3—Na1—O1108.80 (6)O9—Mo3—O13158.26 (8)
O5—Mo1—O1105.91 (10)O8—Mo3—O1378.32 (7)
O5—Mo1—O6102.22 (9)O10—Mo3—O1378.30 (7)
O1—Mo1—O699.12 (9)O11—Mo4—O4105.53 (10)
O5—Mo1—O12100.87 (9)O11—Mo4—O12101.98 (9)
O1—Mo1—O1298.43 (9)O4—Mo4—O12100.48 (8)
O6—Mo1—O12145.78 (7)O11—Mo4—O10100.39 (8)
O5—Mo1—O13160.74 (8)O4—Mo4—O1096.91 (8)
O1—Mo1—O1393.32 (8)O12—Mo4—O10146.69 (7)
O6—Mo1—O1375.01 (7)O11—Mo4—O13162.14 (8)
O12—Mo1—O1374.84 (7)O4—Mo4—O1392.08 (8)
O7—Mo2—O2105.99 (9)O12—Mo4—O1377.12 (7)
O7—Mo2—O6101.14 (8)O10—Mo4—O1374.05 (7)
O2—Mo2—O6100.76 (8)Mo1—O1—Na1126.74 (10)
O7—Mo2—O899.92 (8)Mo2—O2—Na1134.29 (10)
O2—Mo2—O896.21 (8)Mo3—O3—Na1131.35 (9)
O6—Mo2—O8148.03 (7)Mo4—O4—Na1128.43 (10)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+3/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17—H17B···O5iii0.837 (10)2.32 (4)2.974 (3)136 (5)
O17—H17A···O12iii0.835 (10)2.00 (2)2.758 (3)151 (4)
Symmetry code: (iii) x1/2, y1/2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds