Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105010206/av1236sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270105010206/av1236Isup2.hkl |
CCDC reference: 275496
Na2MoO4 (0.964 g, 4 mmol) was dissolved in H2O (5 ml) and dimethylsulfoxide (10 ml), and then CeCL3 (0.67 mmol) in H2O (2 ml) was added dropwise. The resulting solution was adjusted to about pH3 with 10% hydrochloric acid. After stirring for about 15 min, the mixture was filtered and the filtrate was kept in air at ambient temperature. Orange crystals of the title compound were separated from the mother liquor after one week (yield 45%, based on Ce).
The aqua H atoms were located in a difference Fourier map and were refined with restrained O—H distances approximately equal to 0.84 (1) Å and H···H distances approximately equal to 1.4 (1) Å. H atoms bonded to C atoms were positioned geometrically, with C—H distances of 0.96 Å, and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C). Please check added text.
Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.
[Ce(C2H6OS)6(H2O)2][NaMo8O26] | F(000) = 3540 |
Mr = 1851.43 | Dx = 2.584 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 6634 reflections |
a = 22.7811 (7) Å | θ = 3.0–27.5° |
b = 9.2121 (2) Å | µ = 3.34 mm−1 |
c = 22.8913 (6) Å | T = 130 K |
β = 97.829 (2)° | Prism, yellow |
V = 4759.2 (2) Å3 | 0.22 × 0.21 × 0.11 mm |
Z = 4 |
Rigaku Mercury CCD area-detector diffractometer | 5365 independent reflections |
Radiation source: fine-focus sealed tube | 5248 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
Detector resolution: 14.6306 pixels mm-1 | θmax = 27.5°, θmin = 3.5° |
ω scans | h = −29→27 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2002) | k = −11→8 |
Tmin = 0.524, Tmax = 0.693 | l = −28→29 |
16875 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.021 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.055 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0302P)2 + 15.179P] where P = (Fo2 + 2Fc2)/3 |
5365 reflections | (Δ/σ)max = 0.003 |
290 parameters | Δρmax = 1.59 e Å−3 |
3 restraints | Δρmin = −0.84 e Å−3 |
[Ce(C2H6OS)6(H2O)2][NaMo8O26] | V = 4759.2 (2) Å3 |
Mr = 1851.43 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 22.7811 (7) Å | µ = 3.34 mm−1 |
b = 9.2121 (2) Å | T = 130 K |
c = 22.8913 (6) Å | 0.22 × 0.21 × 0.11 mm |
β = 97.829 (2)° |
Rigaku Mercury CCD area-detector diffractometer | 5365 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2002) | 5248 reflections with I > 2σ(I) |
Tmin = 0.524, Tmax = 0.693 | Rint = 0.020 |
16875 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | 3 restraints |
wR(F2) = 0.055 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0302P)2 + 15.179P] where P = (Fo2 + 2Fc2)/3 |
5365 reflections | Δρmax = 1.59 e Å−3 |
290 parameters | Δρmin = −0.84 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ce1 | 0.5000 | 0.41600 (2) | 0.7500 | 0.01128 (6) | |
Na1 | 0.7500 | 0.2500 | 0.5000 | 0.0297 (4) | |
Mo1 | 0.802281 (9) | 0.54411 (2) | 0.631042 (9) | 0.00971 (6) | |
Mo2 | 0.671776 (9) | 0.57713 (2) | 0.557411 (9) | 0.00788 (6) | |
Mo3 | 0.730161 (9) | 0.63169 (2) | 0.439003 (9) | 0.00668 (5) | |
Mo4 | 0.861733 (9) | 0.60356 (2) | 0.511859 (9) | 0.00861 (6) | |
O1 | 0.79975 (9) | 0.3656 (2) | 0.61080 (9) | 0.0185 (4) | |
O2 | 0.67575 (8) | 0.3981 (2) | 0.53810 (8) | 0.0129 (4) | |
O3 | 0.73131 (8) | 0.44910 (19) | 0.42926 (8) | 0.0113 (3) | |
O4 | 0.85246 (9) | 0.4220 (2) | 0.49704 (8) | 0.0149 (4) | |
O5 | 0.82988 (9) | 0.5467 (2) | 0.70415 (8) | 0.0174 (4) | |
O6 | 0.71947 (8) | 0.57654 (19) | 0.63262 (8) | 0.0107 (3) | |
O7 | 0.60332 (8) | 0.6009 (2) | 0.57701 (8) | 0.0132 (4) | |
O8 | 0.65804 (7) | 0.65505 (19) | 0.47483 (7) | 0.0089 (3) | |
O9 | 0.70419 (8) | 0.70554 (19) | 0.37000 (8) | 0.0105 (3) | |
O10 | 0.81389 (7) | 0.67609 (19) | 0.43793 (7) | 0.0090 (3) | |
O11 | 0.93116 (8) | 0.6437 (2) | 0.49771 (9) | 0.0158 (4) | |
O12 | 0.87187 (8) | 0.60089 (19) | 0.59602 (8) | 0.0105 (3) | |
O13 | 0.76467 (7) | 0.62679 (19) | 0.53331 (8) | 0.0085 (3) | |
O14 | 0.51709 (10) | 0.5114 (3) | 0.85003 (10) | 0.0283 (5) | |
O15 | 0.58105 (9) | 0.5915 (2) | 0.75486 (10) | 0.0246 (5) | |
O16 | 0.42905 (9) | 0.2892 (2) | 0.80427 (9) | 0.0185 (4) | |
O17 | 0.43715 (11) | 0.2238 (3) | 0.69388 (10) | 0.0396 (7) | |
C1 | 0.63906 (15) | 0.7809 (3) | 0.69944 (14) | 0.0252 (6) | |
H1A | 0.6074 | 0.8030 | 0.6685 | 0.038* | |
H1B | 0.6764 | 0.7975 | 0.6856 | 0.038* | |
H1C | 0.6360 | 0.8421 | 0.7328 | 0.038* | |
C2 | 0.69680 (15) | 0.5893 (4) | 0.77620 (14) | 0.0308 (7) | |
H2A | 0.7006 | 0.4936 | 0.7929 | 0.046* | |
H2B | 0.6917 | 0.6583 | 0.8065 | 0.046* | |
H2C | 0.7319 | 0.6129 | 0.7592 | 0.046* | |
C3 | 0.54620 (14) | 0.6034 (5) | 0.95711 (14) | 0.0320 (8) | |
H3A | 0.5532 | 0.5093 | 0.9747 | 0.048* | |
H3B | 0.5050 | 0.6279 | 0.9555 | 0.048* | |
H3C | 0.5698 | 0.6743 | 0.9804 | 0.048* | |
C4 | 0.54779 (17) | 0.7841 (4) | 0.86603 (17) | 0.0347 (8) | |
H4A | 0.5559 | 0.8033 | 0.8267 | 0.052* | |
H4B | 0.5712 | 0.8475 | 0.8932 | 0.052* | |
H4C | 0.5065 | 0.8006 | 0.8682 | 0.052* | |
C5 | 0.34028 (12) | 0.1930 (3) | 0.85352 (13) | 0.0205 (6) | |
H5A | 0.3119 | 0.2639 | 0.8369 | 0.031* | |
H5B | 0.3295 | 0.1586 | 0.8902 | 0.031* | |
H5C | 0.3408 | 0.1131 | 0.8267 | 0.031* | |
C6 | 0.45280 (15) | 0.1197 (4) | 0.89636 (16) | 0.0344 (8) | |
H6A | 0.4939 | 0.1449 | 0.9059 | 0.052* | |
H6B | 0.4488 | 0.0423 | 0.8680 | 0.052* | |
H6C | 0.4376 | 0.0889 | 0.9314 | 0.052* | |
S1 | 0.41224 (3) | 0.27390 (8) | 0.86617 (3) | 0.01752 (14) | |
S2 | 0.56565 (3) | 0.60142 (8) | 0.88463 (3) | 0.02073 (15) | |
S3 | 0.63411 (3) | 0.59532 (7) | 0.72049 (3) | 0.01420 (13) | |
H17A | 0.4269 (17) | 0.201 (4) | 0.6587 (7) | 0.034 (11)* | |
H17B | 0.4137 (18) | 0.192 (6) | 0.7160 (18) | 0.070 (17)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ce1 | 0.00929 (10) | 0.01402 (10) | 0.01096 (10) | 0.000 | 0.00292 (7) | 0.000 |
Na1 | 0.0440 (11) | 0.0194 (8) | 0.0308 (10) | 0.0180 (8) | 0.0233 (8) | 0.0136 (7) |
Mo1 | 0.01051 (10) | 0.00983 (10) | 0.00847 (11) | −0.00013 (7) | 0.00012 (8) | 0.00232 (7) |
Mo2 | 0.00885 (10) | 0.00879 (10) | 0.00614 (10) | −0.00189 (7) | 0.00151 (7) | 0.00060 (7) |
Mo3 | 0.00884 (10) | 0.00667 (10) | 0.00448 (10) | −0.00073 (7) | 0.00075 (7) | −0.00099 (7) |
Mo4 | 0.00944 (10) | 0.00944 (10) | 0.00676 (10) | 0.00173 (7) | 0.00043 (7) | −0.00045 (7) |
O1 | 0.0174 (9) | 0.0126 (9) | 0.0258 (11) | −0.0005 (7) | 0.0038 (8) | 0.0019 (8) |
O2 | 0.0140 (9) | 0.0116 (9) | 0.0135 (9) | −0.0015 (7) | 0.0034 (7) | 0.0007 (7) |
O3 | 0.0141 (9) | 0.0095 (8) | 0.0105 (9) | −0.0016 (7) | 0.0021 (7) | −0.0013 (6) |
O4 | 0.0206 (10) | 0.0116 (9) | 0.0118 (9) | 0.0022 (7) | 0.0003 (7) | −0.0008 (7) |
O5 | 0.0179 (9) | 0.0231 (10) | 0.0105 (9) | −0.0009 (8) | −0.0011 (7) | 0.0047 (8) |
O6 | 0.0126 (8) | 0.0131 (8) | 0.0067 (8) | −0.0013 (7) | 0.0023 (7) | 0.0015 (6) |
O7 | 0.0123 (9) | 0.0160 (9) | 0.0114 (9) | −0.0019 (7) | 0.0023 (7) | 0.0016 (7) |
O8 | 0.0092 (8) | 0.0104 (8) | 0.0067 (8) | −0.0009 (6) | 0.0000 (6) | −0.0008 (6) |
O9 | 0.0131 (8) | 0.0108 (8) | 0.0075 (8) | −0.0003 (7) | 0.0008 (6) | −0.0006 (6) |
O10 | 0.0106 (8) | 0.0109 (8) | 0.0055 (8) | −0.0001 (6) | 0.0011 (6) | −0.0014 (6) |
O11 | 0.0119 (9) | 0.0207 (10) | 0.0148 (9) | 0.0023 (7) | 0.0021 (7) | 0.0021 (8) |
O12 | 0.0104 (8) | 0.0118 (8) | 0.0087 (8) | 0.0001 (7) | −0.0008 (6) | −0.0001 (6) |
O13 | 0.0087 (8) | 0.0091 (8) | 0.0078 (8) | −0.0005 (6) | 0.0008 (6) | 0.0001 (6) |
O14 | 0.0313 (12) | 0.0358 (13) | 0.0201 (11) | −0.0181 (10) | 0.0113 (9) | −0.0133 (10) |
O15 | 0.0221 (11) | 0.0291 (12) | 0.0262 (12) | −0.0120 (9) | 0.0165 (9) | −0.0121 (9) |
O16 | 0.0202 (10) | 0.0226 (10) | 0.0139 (10) | −0.0040 (8) | 0.0068 (8) | 0.0020 (8) |
O17 | 0.0379 (14) | 0.0703 (19) | 0.0121 (11) | −0.0380 (14) | 0.0086 (10) | −0.0133 (12) |
C1 | 0.0360 (17) | 0.0166 (14) | 0.0249 (16) | 0.0001 (12) | 0.0108 (13) | −0.0025 (12) |
C2 | 0.0243 (16) | 0.050 (2) | 0.0176 (15) | 0.0020 (14) | 0.0003 (12) | 0.0042 (14) |
C3 | 0.0201 (15) | 0.062 (2) | 0.0137 (15) | 0.0063 (15) | −0.0003 (11) | −0.0008 (15) |
C4 | 0.045 (2) | 0.0261 (17) | 0.0335 (19) | −0.0046 (15) | 0.0090 (15) | −0.0040 (14) |
C5 | 0.0149 (12) | 0.0288 (15) | 0.0182 (14) | −0.0051 (11) | 0.0040 (10) | −0.0007 (12) |
C6 | 0.0256 (16) | 0.046 (2) | 0.0312 (19) | 0.0027 (15) | 0.0015 (14) | 0.0205 (16) |
S1 | 0.0210 (3) | 0.0185 (3) | 0.0138 (3) | −0.0052 (3) | 0.0051 (2) | −0.0032 (2) |
S2 | 0.0155 (3) | 0.0277 (4) | 0.0195 (4) | −0.0009 (3) | 0.0042 (3) | −0.0068 (3) |
S3 | 0.0151 (3) | 0.0170 (3) | 0.0115 (3) | −0.0051 (2) | 0.0051 (2) | −0.0027 (2) |
Ce1—O14 | 2.434 (2) | Mo4—O8i | 2.2975 (17) |
Ce1—O15 | 2.445 (2) | Mo4—O13 | 2.3392 (17) |
Ce1—O16 | 2.4630 (19) | O14—S2 | 1.517 (2) |
Ce1—O17 | 2.517 (2) | O15—S3 | 1.530 (2) |
Na1—O2 | 2.4260 (19) | O16—S1 | 1.524 (2) |
Na1—O3 | 2.4453 (18) | O17—H17A | 0.835 (10) |
Na1—O4 | 2.830 (2) | O17—H17B | 0.837 (10) |
Na1—O1 | 2.841 (2) | C1—S3 | 1.784 (3) |
Mo1—O5 | 1.7060 (19) | C1—H1A | 0.9600 |
Mo1—O1 | 1.707 (2) | C1—H1B | 0.9600 |
Mo1—O6 | 1.9152 (18) | C1—H1C | 0.9600 |
Mo1—O12 | 1.9430 (18) | C2—S3 | 1.781 (3) |
Mo1—O9i | 2.3109 (18) | C2—H2A | 0.9600 |
Mo1—O13 | 2.4077 (17) | C2—H2B | 0.9600 |
Mo2—O7 | 1.6946 (19) | C2—H2C | 0.9600 |
Mo2—O2 | 1.7128 (18) | C3—S2 | 1.775 (3) |
Mo2—O6 | 1.9065 (18) | C3—H3A | 0.9600 |
Mo2—O8 | 2.0065 (17) | C3—H3B | 0.9600 |
Mo2—O10i | 2.2971 (17) | C3—H3C | 0.9600 |
Mo2—O13 | 2.3044 (17) | C4—S2 | 1.770 (4) |
Mo2—Mo3 | 3.2173 (3) | C4—H4A | 0.9600 |
Mo3—O3 | 1.6975 (18) | C4—H4B | 0.9600 |
Mo3—O9 | 1.7474 (17) | C4—H4C | 0.9600 |
Mo3—O8 | 1.9455 (17) | C5—S1 | 1.788 (3) |
Mo3—O10 | 1.9542 (17) | C5—H5A | 0.9600 |
Mo3—O13 | 2.1951 (17) | C5—H5B | 0.9600 |
Mo3—O13i | 2.3120 (17) | C5—H5C | 0.9600 |
Mo4—O11 | 1.6979 (19) | C6—S1 | 1.782 (3) |
Mo4—O4 | 1.7139 (19) | C6—H6A | 0.9600 |
Mo4—O12 | 1.9091 (18) | C6—H6B | 0.9600 |
Mo4—O10 | 1.9990 (17) | C6—H6C | 0.9600 |
O14ii—Ce1—O14 | 137.68 (12) | O11—Mo4—O4 | 105.53 (10) |
O14—Ce1—O15 | 72.27 (7) | O11—Mo4—O12 | 101.98 (9) |
O14—Ce1—O15ii | 80.05 (8) | O4—Mo4—O12 | 100.48 (8) |
O15—Ce1—O15ii | 97.21 (11) | O11—Mo4—O10 | 100.39 (8) |
O14ii—Ce1—O16 | 127.87 (7) | O4—Mo4—O10 | 96.91 (8) |
O14—Ce1—O16 | 74.25 (7) | O12—Mo4—O10 | 146.69 (7) |
O15—Ce1—O16 | 146.49 (7) | O11—Mo4—O8i | 91.09 (8) |
O15ii—Ce1—O16 | 78.07 (7) | O4—Mo4—O8i | 161.75 (8) |
O16—Ce1—O16ii | 123.40 (10) | O12—Mo4—O8i | 82.96 (7) |
O14ii—Ce1—O17 | 76.51 (9) | O10—Mo4—O8i | 72.22 (7) |
O14—Ce1—O17 | 137.83 (7) | O11—Mo4—O13 | 162.14 (8) |
O15—Ce1—O17 | 149.53 (7) | O4—Mo4—O13 | 92.08 (8) |
O15ii—Ce1—O17 | 93.92 (9) | O12—Mo4—O13 | 77.12 (7) |
O16—Ce1—O17 | 63.72 (7) | O10—Mo4—O13 | 74.05 (7) |
O16ii—Ce1—O17 | 77.04 (8) | O8i—Mo4—O13 | 71.07 (6) |
O17—Ce1—O17ii | 90.59 (15) | Mo1—O1—Na1 | 126.74 (10) |
O2iii—Na1—O2 | 180 | Mo2—O2—Na1 | 134.29 (10) |
O2iii—Na1—O3 | 104.53 (6) | Mo3—O3—Na1 | 131.35 (9) |
O2—Na1—O3 | 75.47 (6) | Mo4—O4—Na1 | 128.43 (10) |
O2—Na1—O3iii | 104.53 (6) | Mo2—O6—Mo1 | 115.16 (9) |
O3—Na1—O3iii | 180 | Mo3—O8—Mo2 | 108.99 (8) |
O2—Na1—O4iii | 71.85 (6) | Mo3—O8—Mo4i | 110.80 (8) |
O3—Na1—O4iii | 111.47 (6) | Mo2—O8—Mo4i | 103.27 (7) |
O2—Na1—O4 | 108.15 (6) | Mo3—O9—Mo1i | 114.27 (8) |
O3—Na1—O4 | 68.53 (6) | Mo3—O10—Mo4 | 109.87 (8) |
O4iii—Na1—O4 | 180 | Mo3—O10—Mo2i | 109.84 (8) |
O2—Na1—O1iii | 108.60 (6) | Mo4—O10—Mo2i | 103.52 (7) |
O3—Na1—O1iii | 71.20 (6) | Mo4—O12—Mo1 | 115.25 (9) |
O4iii—Na1—O1iii | 65.25 (6) | Mo3—O13—Mo2 | 91.26 (6) |
O4—Na1—O1iii | 114.75 (6) | Mo3—O13—Mo3i | 104.35 (7) |
O2—Na1—O1 | 71.40 (6) | Mo2—O13—Mo3i | 98.02 (6) |
O3—Na1—O1 | 108.80 (6) | Mo3—O13—Mo4 | 91.01 (6) |
O1iii—Na1—O1 | 180 | Mo2—O13—Mo4 | 163.19 (8) |
O5—Mo1—O1 | 105.91 (10) | Mo3i—O13—Mo4 | 97.55 (6) |
O5—Mo1—O6 | 102.22 (9) | Mo3—O13—Mo1 | 162.71 (9) |
O1—Mo1—O6 | 99.12 (9) | Mo2—O13—Mo1 | 86.38 (6) |
O5—Mo1—O12 | 100.87 (9) | Mo3i—O13—Mo1 | 92.94 (6) |
O1—Mo1—O12 | 98.43 (9) | Mo4—O13—Mo1 | 86.52 (6) |
O6—Mo1—O12 | 145.78 (7) | S2—O14—Ce1 | 134.47 (12) |
O5—Mo1—O9i | 90.60 (8) | S3—O15—Ce1 | 129.51 (12) |
O1—Mo1—O9i | 163.48 (8) | S1—O16—Ce1 | 141.10 (12) |
O6—Mo1—O9i | 77.46 (7) | Ce1—O17—H17A | 137 (3) |
O12—Mo1—O9i | 77.38 (7) | Ce1—O17—H17B | 108 (4) |
O5—Mo1—O13 | 160.74 (8) | H17A—O17—H17B | 112 (4) |
O1—Mo1—O13 | 93.32 (8) | S3—C1—H1A | 109.5 |
O6—Mo1—O13 | 75.01 (7) | S3—C1—H1B | 109.5 |
O12—Mo1—O13 | 74.84 (7) | H1A—C1—H1B | 109.5 |
O9i—Mo1—O13 | 70.16 (6) | S3—C1—H1C | 109.5 |
O7—Mo2—O2 | 105.99 (9) | H1A—C1—H1C | 109.5 |
O7—Mo2—O6 | 101.14 (8) | H1B—C1—H1C | 109.5 |
O2—Mo2—O6 | 100.76 (8) | S3—C2—H2A | 109.5 |
O7—Mo2—O8 | 99.92 (8) | S3—C2—H2B | 109.5 |
O2—Mo2—O8 | 96.21 (8) | H2A—C2—H2B | 109.5 |
O6—Mo2—O8 | 148.03 (7) | S3—C2—H2C | 109.5 |
O7—Mo2—O10i | 89.44 (8) | H2A—C2—H2C | 109.5 |
O2—Mo2—O10i | 162.29 (8) | H2B—C2—H2C | 109.5 |
O6—Mo2—O10i | 84.32 (7) | S2—C3—H3A | 109.5 |
O8—Mo2—O10i | 72.10 (7) | S2—C3—H3B | 109.5 |
O7—Mo2—O13 | 161.09 (8) | H3A—C3—H3B | 109.5 |
O2—Mo2—O13 | 92.68 (8) | S2—C3—H3C | 109.5 |
O6—Mo2—O13 | 77.75 (7) | H3A—C3—H3C | 109.5 |
O8—Mo2—O13 | 74.56 (7) | H3B—C3—H3C | 109.5 |
O10i—Mo2—O13 | 71.66 (6) | S2—C4—H4A | 109.5 |
O7—Mo2—Mo3 | 134.74 (6) | S2—C4—H4B | 109.5 |
O2—Mo2—Mo3 | 83.71 (6) | H4A—C4—H4B | 109.5 |
O6—Mo2—Mo3 | 120.73 (5) | S2—C4—H4C | 109.5 |
O8—Mo2—Mo3 | 34.88 (5) | H4A—C4—H4C | 109.5 |
O10i—Mo2—Mo3 | 79.17 (4) | H4B—C4—H4C | 109.5 |
O13—Mo2—Mo3 | 43.01 (4) | S1—C5—H5A | 109.5 |
O3—Mo3—O9 | 106.05 (9) | S1—C5—H5B | 109.5 |
O3—Mo3—O8 | 101.18 (8) | H5A—C5—H5B | 109.5 |
O9—Mo3—O8 | 97.85 (8) | S1—C5—H5C | 109.5 |
O3—Mo3—O10 | 99.97 (8) | H5A—C5—H5C | 109.5 |
O9—Mo3—O10 | 96.78 (8) | H5B—C5—H5C | 109.5 |
O8—Mo3—O10 | 149.76 (7) | S1—C6—H6A | 109.5 |
O3—Mo3—O13 | 95.68 (8) | S1—C6—H6B | 109.5 |
O9—Mo3—O13 | 158.26 (8) | H6A—C6—H6B | 109.5 |
O8—Mo3—O13 | 78.32 (7) | S1—C6—H6C | 109.5 |
O10—Mo3—O13 | 78.30 (7) | H6A—C6—H6C | 109.5 |
O3—Mo3—O13i | 171.30 (8) | H6B—C6—H6C | 109.5 |
O9—Mo3—O13i | 82.62 (7) | O16—S1—C6 | 104.58 (15) |
O8—Mo3—O13i | 78.02 (7) | O16—S1—C5 | 103.24 (13) |
O10—Mo3—O13i | 77.80 (7) | C6—S1—C5 | 98.41 (16) |
O13—Mo3—O13i | 75.65 (7) | O14—S2—C4 | 105.48 (17) |
O3—Mo3—Mo2 | 88.36 (6) | O14—S2—C3 | 103.69 (15) |
O9—Mo3—Mo2 | 133.98 (6) | C4—S2—C3 | 97.84 (18) |
O8—Mo3—Mo2 | 36.14 (5) | O15—S3—C2 | 104.10 (15) |
O10—Mo3—Mo2 | 124.02 (5) | O15—S3—C1 | 104.14 (14) |
O13—Mo3—Mo2 | 45.73 (4) | C2—S3—C1 | 98.57 (17) |
O13i—Mo3—Mo2 | 86.03 (4) |
Symmetry codes: (i) −x+3/2, −y+3/2, −z+1; (ii) −x+1, y, −z+3/2; (iii) −x+3/2, −y+1/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O17—H17B···O5iv | 0.84 (1) | 2.32 (4) | 2.974 (3) | 136 (5) |
O17—H17A···O12iv | 0.84 (1) | 2.00 (2) | 2.758 (3) | 151 (4) |
Symmetry code: (iv) x−1/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | [Ce(C2H6OS)6(H2O)2][NaMo8O26] |
Mr | 1851.43 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 130 |
a, b, c (Å) | 22.7811 (7), 9.2121 (2), 22.8913 (6) |
β (°) | 97.829 (2) |
V (Å3) | 4759.2 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.34 |
Crystal size (mm) | 0.22 × 0.21 × 0.11 |
Data collection | |
Diffractometer | Rigaku Mercury CCD area-detector diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2002) |
Tmin, Tmax | 0.524, 0.693 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16875, 5365, 5248 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.055, 1.05 |
No. of reflections | 5365 |
No. of parameters | 290 |
No. of restraints | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
w = 1/[σ2(Fo2) + (0.0302P)2 + 15.179P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 1.59, −0.84 |
Computer programs: CrystalClear (Rigaku, 2002), CrystalClear, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXL97.
Ce1—O14 | 2.434 (2) | Na1—O1 | 2.841 (2) |
Ce1—O15 | 2.445 (2) | Mo1—O5 | 1.7060 (19) |
Ce1—O16 | 2.4630 (19) | Mo1—O1 | 1.707 (2) |
Ce1—O17 | 2.517 (2) | Mo1—O6 | 1.9152 (18) |
Na1—O2 | 2.4260 (19) | Mo1—O12 | 1.9430 (18) |
Na1—O3 | 2.4453 (18) | Mo1—O9i | 2.3109 (18) |
Na1—O4 | 2.830 (2) | Mo1—O13 | 2.4077 (17) |
O14—Ce1—O15 | 72.27 (7) | O7—Mo2—O13 | 161.09 (8) |
O14—Ce1—O16 | 74.25 (7) | O2—Mo2—O13 | 92.68 (8) |
O15—Ce1—O16 | 146.49 (7) | O6—Mo2—O13 | 77.75 (7) |
O14—Ce1—O17 | 137.83 (7) | O8—Mo2—O13 | 74.56 (7) |
O15—Ce1—O17 | 149.53 (7) | O3—Mo3—O9 | 106.05 (9) |
O16—Ce1—O17 | 63.72 (7) | O3—Mo3—O8 | 101.18 (8) |
O2ii—Na1—O2 | 180 | O9—Mo3—O8 | 97.85 (8) |
O2—Na1—O3 | 75.47 (6) | O3—Mo3—O10 | 99.97 (8) |
O2—Na1—O4 | 108.15 (6) | O9—Mo3—O10 | 96.78 (8) |
O3—Na1—O4 | 68.53 (6) | O8—Mo3—O10 | 149.76 (7) |
O2—Na1—O1 | 71.40 (6) | O3—Mo3—O13 | 95.68 (8) |
O3—Na1—O1 | 108.80 (6) | O9—Mo3—O13 | 158.26 (8) |
O5—Mo1—O1 | 105.91 (10) | O8—Mo3—O13 | 78.32 (7) |
O5—Mo1—O6 | 102.22 (9) | O10—Mo3—O13 | 78.30 (7) |
O1—Mo1—O6 | 99.12 (9) | O11—Mo4—O4 | 105.53 (10) |
O5—Mo1—O12 | 100.87 (9) | O11—Mo4—O12 | 101.98 (9) |
O1—Mo1—O12 | 98.43 (9) | O4—Mo4—O12 | 100.48 (8) |
O6—Mo1—O12 | 145.78 (7) | O11—Mo4—O10 | 100.39 (8) |
O5—Mo1—O13 | 160.74 (8) | O4—Mo4—O10 | 96.91 (8) |
O1—Mo1—O13 | 93.32 (8) | O12—Mo4—O10 | 146.69 (7) |
O6—Mo1—O13 | 75.01 (7) | O11—Mo4—O13 | 162.14 (8) |
O12—Mo1—O13 | 74.84 (7) | O4—Mo4—O13 | 92.08 (8) |
O7—Mo2—O2 | 105.99 (9) | O12—Mo4—O13 | 77.12 (7) |
O7—Mo2—O6 | 101.14 (8) | O10—Mo4—O13 | 74.05 (7) |
O2—Mo2—O6 | 100.76 (8) | Mo1—O1—Na1 | 126.74 (10) |
O7—Mo2—O8 | 99.92 (8) | Mo2—O2—Na1 | 134.29 (10) |
O2—Mo2—O8 | 96.21 (8) | Mo3—O3—Na1 | 131.35 (9) |
O6—Mo2—O8 | 148.03 (7) | Mo4—O4—Na1 | 128.43 (10) |
Symmetry codes: (i) −x+3/2, −y+3/2, −z+1; (ii) −x+3/2, −y+1/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O17—H17B···O5iii | 0.837 (10) | 2.32 (4) | 2.974 (3) | 136 (5) |
O17—H17A···O12iii | 0.835 (10) | 2.00 (2) | 2.758 (3) | 151 (4) |
Symmetry code: (iii) x−1/2, y−1/2, z. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
Polyoxometalates are currently receiving increasing attention in the domain of solid-state material chemistry, owing to their intriguing structural and topological properties and their many potential applications in catalysis, biology, medicine, photochemistry and magnetism (Pope & Müller, 1991; Pope, 1983). In the past decade, chemists have made great efforts in the design and synthesis of new polyoxometalates. To find suitable subunits and then link them up into one-, two- or even three-dimensional extended networks in appropriate ways remains a great challenge. Recently, a series of octamolybdate-supported complexes with multi-dimensional frameworks have been synthesized by hydrothermal methods (Hagrman et al., 1997, 1998; Wu et al., 2002). To the best of our knowledge, only three octamolybdate-supported compounds with one- or two-dimensional extended structures have so far been reported to be synthesized in a direct route, using [Bu4N]4[Mo8O26] or [Bu4N]4[Mo6O19] as the starting materials (Qin et al., 2004; Chen et al., 2004a,b). We have succeeded in obtaining the title novel octamolybdate-supported compound with a two-dimensional framework, {[Ce(DMSO)6(H2O)2][NaMo8O26]}n (DMSO is dimethylsulfoxide), (I), which was also prepared in a direct route but using Na2MoO4 as the Mo source. This is the first reported such octamolybdate-based compound with an infinitely extended structure to be synthesized by applying this `one-step' method. It is also the first case of Mo–Na bimetallic oxide chains linked up into a two-dimensional network via hydrogen-bonding interactions between β-[Mo8O26]4− units and coordinated rare earth ions. Please check rephrasing.
Compound (I) consists of an infinite anion chain framework built up of [Mo8O26]4− entities linked via Na ions, and eight-coordinated (six DMSO and two water molecules) Ce atoms as charge compensating cations (Fig. 1). The Ce atom occupies a special position across a twofold axis, and the Na atom lies on an inversion centre at (3/4, 1/4, 1/2).
As shown in Fig. 2, the [Mo8O26]4− moiety is built up of eight edge-sharing MoO6 octahedra and displays the characteristic β-octamolybdate arrangement, which contains two µ5-O atoms, O13 and O13iii [symmetry code: (iii) −x + 3/2, −y + 3/2, −z + 1]. The Mo—O bond lengths and O—Mo—O and Mo—O—Mo bond angles among the octamolybdate units are similar to those in other β-[Mo8O26]4− complexes (Luo et al., 2003; Yang et al., 2002; Hagrman & Zubieta, 2000). All Mo sites possess octahedral coordination geometry with different degrees of distortion and exhibit a +VI oxidation state, according to extensive bond-valence sum calculation (Brown & Altermatt, 1984; Brese & O'Keeffe, 1991). Each [Mo8O26]4− unit forms covalent [with Na—O distances of 2.426 (2)–2.445 (2) Å] or weak [with Na—O distances of 2.820 (2)–2.841 (2) Å] interactions with Na+ through eight terminal O atoms in opposite directions, thus forming a sandwich-like structure.
The coordination environment around the Ce centre is shown in Fig. 1. Each Ce3+ ion is coordinated by eight O atoms, of which six are from DMSO ligands and two from aqua ligands.
It is noteworthy that strong hydrogen-bond interactions exist in the solid-state structure of (I), and these might play an important role in the crystallization of (I). Each coordinated water molecule on the Ce atom forms two O—H···O hydrogen bonds (Table 2) to a µ2-bridging and a terminal O atom from the adjacent (Mo8O26)n chain. Therefore, the structure of (I) is finally extended into a two-dimensional network by strong hydrogen bonds (Fig. 3).
The backbone framework of (I) is similar to that of [NaLa(β-[Mo8O26]4−)(DMF)7]n (II) (DMF is dimethylformamide; Chen et al., 2004 Which?), although in that compound, the [La(DMF)7]3+ moiety is covalently bound to the infinite one-dimensional chain.