Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of the title compound, [Al(C5H7O2)3], has been investigated by a multi-temperature measurement to provide information on thermal vibrations and disorder in the structure. At 110 K, the structure of a new δ polymorph could be determined. A disorder–order phase transition takes place between 150 and 110 K and is klassengleich. The unit-cell volume increases by a factor of three and the diffraction pattern shows weak supercell reflections.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107005707/av3070sup1.cif
Contains datablocks Ia, Ib, Ic, Id, Ie, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107005707/av3070Iasup2.hkl
Contains datablock Ia

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107005707/av3070Ibsup3.hkl
Contains datablock Ib

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107005707/av3070Icsup4.hkl
Contains datablock Ic

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107005707/av3070Idsup5.hkl
Contains datablock Id

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107005707/av3070Iesup6.hkl
Contains datablock Ie

CCDC references: 641792; 641793; 641794; 641795; 641796

Comment top

The crystal structures of trivalent metal acetylacetonate complexes can be grouped into several isomorphous series [an overview is given by Sabolović et al. (2004)]. According to an old nomenclature by Astbury & Gilbert (1926), the α polymorph crystallizes in the monoclinic crystal system with space group P21/c. The β and γ polymorphs crystallize in the orthorhombic crystal system with space groups Pbca and Pna21, respectively. Two different polymorphs of Al(acac)3 (acac is acetylacetonate or 2,4-pentanedionate) have been previously investigated, namely the α and γ polymorphs. Both polymorphs can occur in the same crystallization batch. All previous crystallographic studies of the α polymorph were carried out at room temperature, according to a search of the Cambridge Structural Database (Version 5.28 of November 2006; Allen, 2002). Recently, we redetermined the crystal structure of the γ polymorph at 110 K, which contains four independent molecules (von Chrzanowski et al., 2006). In the course of our studies on Al(acac)3, we have now redetermined the crystal structure of α-Al(acac)3 by a multi-temperature measurement at 240, (Ia), 210, (Ib), 180, (Ic), 150, (Id), and 110 K, (Ie), in order to investigate the behaviour of atoms C11 and C15, which showed anomalous displacement parameters/disorder in the known studies of α polymorphs (Morosin, 1965; Diaz-Acosta et al., 2001; Fackler & Avdeef, 1974). At a temperature of 110 K, we found a new δ polymorph, (Ie), which is a superstructure of the α polymorph. The phase transition occurs between 150 and 110 K.

The transformation matrix from the high-temperature α polymorph to the low-temperature δ polymorph is (101/010/201). The determinant of this matrix is 3 and thus the volume is increased by a factor of three. The space group remains P21/c and the phase transition is therefore klassengleich. In the asymmetric unit of the δ polymorph there are three independent molecules (Fig. 1). All molecules have an approximate non crystallographic D3 symmetry with r.m.s. deviations between 0.127 and 0.176 Å from ideal symmetry (Pilati & Forni, 1998). The molecules occupy pseudo-special positions with centers of gravity at (0.27, 0.23, 0.26), (0.40, 0.78, 0.07) and (0.06, 3/4, 0.40). All three molecules have essentially the same geometry as can be seen in a quaternion fit (Fig. 2a). This quaternion fit (Mackay, 1984) considers only the molecular structures, but does not take the crystal packing into account. The packing effects can be seen by the application of the transformation matrix to the α polymorph on the atomic coordinates of the δ polymorph. The result of this operation can be seen in Fig. 2(b). Two of the acac ligands have only very small deviations after this averaging, while the third ligand (C11x–C15x) is severely affected by the packing. The latter ligand corresponds to the ligand with large displacement parameters in the α polymorph. We therefore consider this phase transition as a disorder–order phase transition.

The ADDSYM routine of the program PLATON (Spek, 2003) indicates pseudo-translational symmetry for the δ polymorph. This pseudo-translational symmetry can also be seen in the X-ray intensities. Reflections with h + 2l = 3n correspond to the subcell and are much stronger than the other reflections. Nevertheless, the weak supercell reflections are clearly present and prevent a transformation to the subcell (Fig. 3). The strongest superstructure reflection is (220) with I/σ(I) of 157.29. The average I/σ(I) of the subcell reflections is 44.43, while the supercell reflections have an average I/σ(I) of 13.60. A test on pseudo-translational symmetry based on normalized structure factors from measured data (Cascarano et al., 1985) as implemented in the program SIR97 (Altomare et al., 1999) results in a value of 70% for the mean fractional scattering power of the electron density for reflections with h ± 1l = 3n and with h + 2l = 3n. The corresponding <E**2> value for these reflections is 2.409.

Despite the pseudo-translational symmetry, a full-matrix least-squares refinement with SHELXL97 (Sheldrick, 1997) can be performed with default refinement parameters and without restraints or constraints. No correlation matrix elements were larger than 0.5. The weighting scheme for the refinement was optimized by SHELXL97 based on all 11 232 unique reflections and results in a goodness-of-fit of 1.046. The corresponding goodness-of-fit for the 3741 strong subcell reflections without re-refinement and with the same weighting scheme is 1.418, and for the 7491 weak supercell reflections 0.881. Obviously, the weighted sigmas of the subcell reflections are underestimated and those of the supercell reflections overestimated in the refinement. A manual correction of the sigmas based on normal probability plots for subcell and supercell reflections did not change the outcome of the refinement.

The phase transition from the high-temperature α phase to the low-temperature δ phase breaks the translational symmetry for the C11–C15 acac ligand (see above). Nevertheless, the anisotropicity of some methyl groups is still rather large, but this now concerns also methyl groups of other acac ligands. Indeed, rigid-body analyses (Schomaker & Trueblood, 1998) for the three molecules result in relatively high agreement factors of R = 0.156–0.187 (R = {Σ[(Uobs - Ucalc)2]/Σ(Uobs2)}1/2). Difference plots (Hummel et al., 1990) between the observed displacement parameters and the rigid-body models (Fig. 4) make the large internal motions of the methyl groups visible. These internal motions are also reflected in a relatively large variation of the bond lengths. For example, the Al—O distances vary between 1.8704 (9) and 1.8924 (9) Å. The corresponding Al—O distances in the γ-polymorph (von Chrzanowski et al., 2006) are 1.8728 (13)–1.8947 (12) Å and show a similar variation. Because AlIII does not express Jahn–Teller distortions, this variation can only be explained by internal thermal motion. The thermal motion also explains why the Al—O distances of the crystal structure determinations are shorter than the 1.9159 Å obtained from quantum chemical calculations (Diaz-Acosta et al., 2001).

As expected, a temperature-dependent measurement of the α polymorph shows a decreasing thermal motion with decreasing temperature (Fig. 5). The eigenvalues of translation Ti and libration Li tensors obtained from rigid-body analyses (PLATON; Spek, 2003) show that this decrease is linear (Fig. 6). In the whole temperature range, the agreement factors are rather high (R = 0.155–0.167). The corresponding internal motion is visualized by difference plots (Hummel et al., 1990) between the observed displacement parameters and the rigid-body models for (Ia)–(Id) (Fig. 7). The non-rigid behaviour is mainly expressed by only one acac ligand (C11–C15). This is the same ligand that breaks the translational symmetry in the δ phase. Quantum chemical calculations have proven the presence of out-of-plane deformations in isolated Al(acac)3 molecules (Diaz-Acosta et al., 2001). However, from the observed phase transition we assume the anisotropicity of C11–C15 is a property of the crystal packing.

Related literature top

For related literature, see: Allen (2002); Altomare et al. (1999); Astbury & Gilbert (1926); Cascarano et al. (1985); Chrzanowski et al. (2006); Diaz-Acosta, Baker, Cordes & Pulay (2001); Fackler & Avdeef (1974); Hummel et al. (1990); Mackay (1984); Morosin (1965); Pilati & Forni (1998); Sabolović et al. (2004); Schomaker & Trueblood (1998); Sheldrick (1997); Spek (2003).

Experimental top

Crystals were obtained by slow evaporation of a solution of the commercially available material (Aldrich) in ethyl acetate at room temperature. In the batch, plate- and needle-shaped crystals were present. For data collection, a plate-shaped crystal was selected.

Refinement top

The X-ray intensities of (Ia)–(Ie) were obtained with two different exposure times and rotation angles of 1. 364 ϕ and 252 ω scans were measured with an exposure time of 45 s per frame, and 167 ϕ scans with an exposure time of 9 s per frame. All H atoms were introduced in geometrically idealized positions, refined with a riding model and subsequently confirmed in a difference Fourier map. Their isotropic displacement parameters were constrained, with Uiso(H) values of 1.2Ueq(C) for H atoms of the central CH groups and 1.5Ueq(C) for methyl H atoms.

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1999); cell refinement: PEAKREF (Schreurs, 2005). Data reduction: EVAL14 (Duisenberg et al., 2003) for (Ia), (Ib), (Ic), (Id); EVAL15 (Xian et al., 2006) for (Ie). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) for (Ia), (Ie); coordinates were taken from (Ia) for (Ib), (Ic), (Id). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: manual editing of SHELXL97 output.

Figures top
[Figure 1] Fig. 1. : Displacement ellipsoid plot and atomic numbering scheme of the three independent molecules in the asymmetric unit of (Ie). Ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. : (a) Quaternion fit of the three independent molecules of (Ie). (b) Transformation of the three independent molecules of (Ie) into an average structure using the transformation matrix between the δ and the α polymorph. [In the online version of the journal, yellow atoms represent molecule 1 (x = 1), red atoms molecule 2 (x = 2) and orange atoms molecule 3 (x = 3).]
[Figure 3] Fig. 3. : Simulated precession photograph of (Ie) using the reflection file of the refinement (Barbour, 1999) showing the h0l plane. Intensities are drawn on a logarithmic scale. [in the online version of the journal, red dots represent strong reflections of the subcell; gray dots represent weak reflections of the supercell. The base vectors of the reciprocal subcell are drawn with red and of the supercell with gray lines.] The transformation matrix used to generate the subcell is (1/3 0 1/3 / 0 1 0 / 2/3 0 1/3).
[Figure 4] Fig. 4. : Peanut plot (Hummel et al., 1990) of (Ie) showing the difference between the measured displacement parameters and the parameters obtained by three independent rigid-body analyses using the program THMA11 (Schomaker & Trueblood, 1998). A scale factor of 3.08 was used for the r.m.s. surfaces. [In the online version of the journal, blue lines indicate positive differences and red lines negative ones.] All molecules are drawn independently in the same orientation and do not represent the crystal packing.
[Figure 5] Fig. 5. : Displacement ellipsoid plots and atomic numbering scheme of (Ia)–(Id). Ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. All plots are drawn in the same orientation and have the same labelling scheme.
[Figure 6] Fig. 6. : Eigenvalues of translation Ti (top) and liberation Li (bottom) tensors from rigid-body analyses (PLATON; Spek, 2003) as a function of temperature.
[Figure 7] Fig. 7. : Peanut plots of (Ia)–(Id) showing the difference between the measured displacement parameters and the parameters obtained by rigid-body analyses using the program THMA11 (Schomaker & Trueblood, 1998). A scale factor of 3.08 was used for the r.m.s. surfaces. [In the online version of the journal, blue lines indicate positive differences and red lines negative ones.]
(Ia) Tris(pentane-2,4-dionato-κ2O,O')aluminium(III) top
Crystal data top
[Al(C5H7O2)3]F(000) = 688
Mr = 324.30Dx = 1.285 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 12689 reflections
a = 13.9140 (7) Åθ = 2.7–27.5°
b = 7.50076 (17) ŵ = 0.15 mm1
c = 16.2547 (6) ÅT = 240 K
β = 98.806 (2)°Hexagonal prism, colourless
V = 1676.44 (11) Å30.42 × 0.39 × 0.18 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3870 independent reflections
Radiation source: rotating anode3065 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1818
Tmin = 0.67, Tmax = 0.97k = 99
29848 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difference Fourier map
wR(F2) = 0.124H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0624P)2 + 0.4307P]
where P = (Fo2 + 2Fc2)/3
3870 reflections(Δ/σ)max = 0.001
205 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
[Al(C5H7O2)3]V = 1676.44 (11) Å3
Mr = 324.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.9140 (7) ŵ = 0.15 mm1
b = 7.50076 (17) ÅT = 240 K
c = 16.2547 (6) Å0.42 × 0.39 × 0.18 mm
β = 98.806 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3870 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3065 reflections with I > 2σ(I)
Tmin = 0.67, Tmax = 0.97Rint = 0.026
29848 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.08Δρmax = 0.20 e Å3
3870 reflectionsΔρmin = 0.23 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.24092 (4)0.26883 (6)0.46909 (3)0.03907 (14)
O10.25837 (8)0.49812 (15)0.51624 (7)0.0459 (3)
O20.36430 (8)0.19692 (15)0.52316 (7)0.0449 (3)
O30.29757 (9)0.34582 (15)0.37698 (7)0.0476 (3)
O40.22156 (9)0.03783 (15)0.42402 (7)0.0467 (3)
O50.12031 (9)0.34222 (17)0.41210 (7)0.0517 (3)
O60.18450 (8)0.19100 (16)0.56059 (7)0.0456 (3)
C10.32393 (18)0.7527 (3)0.58860 (13)0.0631 (5)
H1A0.29580.82650.54210.095*
H1B0.38760.79840.61150.095*
H1C0.28210.75460.63120.095*
C20.33365 (13)0.5644 (2)0.55920 (9)0.0436 (4)
C30.42009 (14)0.4713 (3)0.58034 (12)0.0549 (4)
H30.47410.53270.60880.066*
C40.43123 (12)0.2926 (2)0.56178 (10)0.0450 (4)
C50.52624 (14)0.2009 (3)0.59030 (15)0.0675 (6)
H5A0.51820.11540.63350.101*
H5B0.57470.28850.61220.101*
H5C0.54720.13940.54370.101*
C60.34988 (15)0.3609 (3)0.24651 (11)0.0595 (5)
H6A0.34880.48770.25810.089*
H6B0.31380.33760.19160.089*
H6C0.41660.32180.24840.089*
C70.30408 (11)0.2612 (2)0.31064 (9)0.0415 (4)
C80.27354 (13)0.0859 (2)0.29557 (10)0.0489 (4)
H80.27900.03560.24350.059*
C90.23562 (11)0.0183 (2)0.35305 (9)0.0397 (3)
C100.20886 (14)0.2097 (2)0.33432 (12)0.0523 (4)
H10A0.24230.28520.37800.078*
H10B0.22780.24310.28140.078*
H10C0.13920.22440.33140.078*
C110.04668 (18)0.3823 (4)0.36881 (15)0.0927 (9)
H11A0.02940.49300.34390.139*
H11B0.10320.40140.39600.139*
H11C0.06150.29240.32580.139*
C120.03733 (14)0.3201 (3)0.43199 (12)0.0598 (5)
C130.02115 (15)0.2413 (4)0.50601 (14)0.0796 (8)
H130.04350.22610.51510.096*
C140.09533 (14)0.1837 (3)0.56725 (11)0.0558 (5)
C150.07407 (18)0.1090 (4)0.64809 (14)0.0859 (8)
H15A0.11600.00750.66380.129*
H15B0.00660.07150.64180.129*
H15C0.08580.19980.69100.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0471 (3)0.0398 (3)0.0304 (2)0.0051 (2)0.00612 (19)0.00091 (18)
O10.0565 (7)0.0417 (6)0.0388 (6)0.0090 (5)0.0053 (5)0.0042 (5)
O20.0451 (6)0.0453 (6)0.0445 (6)0.0088 (5)0.0080 (5)0.0023 (5)
O30.0657 (8)0.0435 (6)0.0354 (6)0.0025 (5)0.0139 (5)0.0034 (5)
O40.0609 (7)0.0412 (6)0.0382 (6)0.0009 (5)0.0082 (5)0.0020 (5)
O50.0550 (7)0.0580 (8)0.0390 (6)0.0097 (6)0.0025 (5)0.0016 (5)
O60.0464 (6)0.0559 (7)0.0352 (6)0.0059 (5)0.0082 (5)0.0031 (5)
C10.0938 (16)0.0434 (10)0.0534 (11)0.0048 (10)0.0150 (11)0.0063 (8)
C20.0600 (10)0.0414 (8)0.0308 (7)0.0043 (7)0.0113 (7)0.0016 (6)
C30.0520 (10)0.0542 (11)0.0570 (11)0.0085 (8)0.0039 (8)0.0028 (9)
C40.0406 (8)0.0582 (10)0.0384 (8)0.0017 (8)0.0127 (7)0.0055 (7)
C50.0440 (10)0.0844 (15)0.0740 (14)0.0123 (10)0.0086 (9)0.0034 (12)
C60.0711 (13)0.0705 (13)0.0392 (9)0.0070 (10)0.0163 (8)0.0008 (9)
C70.0423 (8)0.0513 (9)0.0299 (7)0.0076 (7)0.0023 (6)0.0009 (6)
C80.0601 (10)0.0514 (10)0.0352 (8)0.0036 (8)0.0071 (7)0.0087 (7)
C90.0361 (7)0.0432 (8)0.0363 (8)0.0083 (6)0.0058 (6)0.0051 (6)
C100.0539 (10)0.0456 (9)0.0530 (10)0.0021 (8)0.0058 (8)0.0091 (8)
C110.0691 (15)0.132 (2)0.0666 (14)0.0285 (15)0.0228 (12)0.0108 (15)
C120.0506 (11)0.0767 (13)0.0476 (10)0.0104 (10)0.0072 (8)0.0119 (9)
C130.0411 (11)0.142 (2)0.0548 (12)0.0019 (12)0.0048 (9)0.0001 (13)
C140.0500 (10)0.0754 (13)0.0429 (9)0.0076 (9)0.0100 (8)0.0044 (9)
C150.0711 (14)0.133 (2)0.0571 (13)0.0221 (15)0.0198 (11)0.0116 (14)
Geometric parameters (Å, º) top
Al1—O51.8712 (13)C6—C71.502 (2)
Al1—O61.8779 (12)C6—H6A0.9700
Al1—O11.8834 (12)C6—H6B0.9700
Al1—O21.8838 (12)C6—H6C0.9700
Al1—O41.8844 (12)C7—C81.392 (2)
Al1—O31.8862 (12)C8—C91.383 (2)
O1—C21.268 (2)C8—H80.9400
O2—C41.264 (2)C9—C101.502 (2)
O3—C71.2667 (19)C10—H10A0.9700
O4—C91.2710 (18)C10—H10B0.9700
O5—C121.257 (2)C10—H10C0.9700
O6—C141.263 (2)C11—C121.507 (3)
C1—C21.504 (2)C11—H11A0.9700
C1—H1A0.9700C11—H11B0.9700
C1—H1B0.9700C11—H11C0.9700
C1—H1C0.9700C12—C131.389 (3)
C2—C31.387 (3)C13—C141.389 (3)
C3—C41.388 (3)C13—H130.9400
C3—H30.9400C14—C151.499 (3)
C4—C51.500 (2)C15—H15A0.9700
C5—H5A0.9700C15—H15B0.9700
C5—H5B0.9700C15—H15C0.9700
C5—H5C0.9700
O5—Al1—O691.81 (6)C7—C6—H6A109.5
O5—Al1—O189.02 (6)C7—C6—H6B109.5
O6—Al1—O190.29 (5)H6A—C6—H6B109.5
O5—Al1—O2178.00 (6)C7—C6—H6C109.5
O6—Al1—O290.18 (5)H6A—C6—H6C109.5
O1—Al1—O291.15 (5)H6B—C6—H6C109.5
O5—Al1—O490.81 (6)O3—C7—C8124.31 (15)
O6—Al1—O488.27 (5)O3—C7—C6115.75 (15)
O1—Al1—O4178.55 (6)C8—C7—C6119.93 (15)
O2—Al1—O489.08 (5)C9—C8—C7123.56 (15)
O5—Al1—O388.23 (6)C9—C8—H8118.2
O6—Al1—O3179.71 (6)C7—C8—H8118.2
O1—Al1—O390.00 (5)O4—C9—C8123.58 (15)
O2—Al1—O389.78 (6)O4—C9—C10115.65 (15)
O4—Al1—O391.44 (5)C8—C9—C10120.76 (15)
C2—O1—Al1128.76 (11)C9—C10—H10A109.5
C4—O2—Al1128.21 (11)C9—C10—H10B109.5
C7—O3—Al1127.98 (11)H10A—C10—H10B109.5
C9—O4—Al1128.68 (11)C9—C10—H10C109.5
C12—O5—Al1128.57 (12)H10A—C10—H10C109.5
C14—O6—Al1128.07 (12)H10B—C10—H10C109.5
C2—C1—H1A109.5C12—C11—H11A109.5
C2—C1—H1B109.5C12—C11—H11B109.5
H1A—C1—H1B109.5H11A—C11—H11B109.5
C2—C1—H1C109.5C12—C11—H11C109.5
H1A—C1—H1C109.5H11A—C11—H11C109.5
H1B—C1—H1C109.5H11B—C11—H11C109.5
O1—C2—C3123.44 (15)O5—C12—C13123.78 (17)
O1—C2—C1115.86 (16)O5—C12—C11115.5 (2)
C3—C2—C1120.69 (17)C13—C12—C11120.7 (2)
C2—C3—C4123.59 (17)C14—C13—C12123.49 (19)
C2—C3—H3118.2C14—C13—H13118.3
C4—C3—H3118.2C12—C13—H13118.3
O2—C4—C3123.94 (16)O6—C14—C13123.87 (18)
O2—C4—C5116.14 (17)O6—C14—C15114.81 (18)
C3—C4—C5119.90 (18)C13—C14—C15121.33 (19)
C4—C5—H5A109.5C14—C15—H15A109.5
C4—C5—H5B109.5C14—C15—H15B109.5
H5A—C5—H5B109.5H15A—C15—H15B109.5
C4—C5—H5C109.5C14—C15—H15C109.5
H5A—C5—H5C109.5H15A—C15—H15C109.5
H5B—C5—H5C109.5H15B—C15—H15C109.5
O5—Al1—O1—C2171.36 (13)Al1—O1—C2—C30.9 (2)
O6—Al1—O1—C296.83 (13)Al1—O1—C2—C1179.56 (12)
O2—Al1—O1—C26.65 (13)O1—C2—C3—C44.7 (3)
O3—Al1—O1—C283.13 (13)C1—C2—C3—C4173.94 (17)
O6—Al1—O2—C4100.77 (14)Al1—O2—C4—C38.6 (2)
O1—Al1—O2—C410.47 (14)Al1—O2—C4—C5173.26 (12)
O4—Al1—O2—C4170.96 (13)C2—C3—C4—O20.7 (3)
O3—Al1—O2—C479.52 (13)C2—C3—C4—C5177.38 (17)
O5—Al1—O3—C784.21 (14)Al1—O3—C7—C83.5 (2)
O1—Al1—O3—C7173.23 (14)Al1—O3—C7—C6177.59 (12)
O2—Al1—O3—C795.62 (14)O3—C7—C8—C92.5 (3)
O4—Al1—O3—C76.55 (14)C6—C7—C8—C9176.35 (16)
O5—Al1—O4—C981.93 (14)Al1—O4—C9—C83.0 (2)
O6—Al1—O4—C9173.71 (13)Al1—O4—C9—C10177.42 (11)
O2—Al1—O4—C996.08 (13)C7—C8—C9—O42.8 (3)
O3—Al1—O4—C96.32 (14)C7—C8—C9—C10176.81 (16)
O6—Al1—O5—C126.58 (17)Al1—O5—C12—C133.8 (3)
O1—Al1—O5—C1296.84 (17)Al1—O5—C12—C11175.12 (15)
O4—Al1—O5—C1281.72 (16)O5—C12—C13—C142.2 (4)
O3—Al1—O5—C12173.14 (16)C11—C12—C13—C14179.0 (2)
O5—Al1—O6—C145.97 (16)Al1—O6—C14—C132.6 (3)
O1—Al1—O6—C1495.00 (16)Al1—O6—C14—C15178.10 (16)
O2—Al1—O6—C14173.85 (16)C12—C13—C14—O62.8 (4)
O4—Al1—O6—C1484.78 (16)C12—C13—C14—C15176.5 (2)
(Ib) Tris(pentane-2,4-dionato-κ2O,O')aluminium(III) top
Crystal data top
[Al(C5H7O2)3]F(000) = 688
Mr = 324.30Dx = 1.298 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13500 reflections
a = 13.8640 (6) Åθ = 2.5–27.5°
b = 7.4755 (3) ŵ = 0.15 mm1
c = 16.2080 (11) ÅT = 210 K
β = 98.821 (2)°Hexagonal prism, colourless
V = 1659.94 (15) Å30.42 × 0.39 × 0.18 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3823 independent reflections
Radiation source: rotating anode3133 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1818
Tmin = 0.70, Tmax = 0.97k = 99
29627 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.114H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.057P)2 + 0.4987P]
where P = (Fo2 + 2Fc2)/3
3823 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Al(C5H7O2)3]V = 1659.94 (15) Å3
Mr = 324.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.8640 (6) ŵ = 0.15 mm1
b = 7.4755 (3) ÅT = 210 K
c = 16.2080 (11) Å0.42 × 0.39 × 0.18 mm
β = 98.821 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3823 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3133 reflections with I > 2σ(I)
Tmin = 0.70, Tmax = 0.97Rint = 0.025
29627 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.07Δρmax = 0.21 e Å3
3823 reflectionsΔρmin = 0.25 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.24082 (3)0.26895 (6)0.46901 (3)0.03361 (13)
O10.25852 (8)0.49881 (14)0.51632 (6)0.0393 (3)
O20.36460 (8)0.19675 (14)0.52302 (7)0.0385 (2)
O30.29746 (8)0.34609 (14)0.37664 (6)0.0411 (3)
O40.22130 (8)0.03729 (14)0.42382 (6)0.0405 (3)
O50.11984 (8)0.34302 (16)0.41203 (7)0.0446 (3)
O60.18443 (8)0.19074 (15)0.56071 (6)0.0389 (3)
C10.32446 (16)0.7541 (2)0.58904 (12)0.0540 (5)
H1A0.29600.82820.54250.081*
H1B0.38840.80010.61190.081*
H1C0.28270.75570.63190.081*
C20.33421 (12)0.5652 (2)0.55935 (9)0.0374 (3)
C30.42108 (12)0.4721 (2)0.58041 (11)0.0467 (4)
H30.47530.53370.60880.056*
C40.43200 (11)0.2926 (2)0.56170 (9)0.0388 (3)
C50.52737 (13)0.2005 (3)0.59007 (13)0.0578 (5)
H5A0.51990.11690.63440.087*
H5B0.57650.28870.61060.087*
H5C0.54740.13630.54350.087*
C60.35038 (14)0.3605 (3)0.24593 (10)0.0510 (4)
H6A0.35290.48710.25930.077*
H6B0.31200.34280.19130.077*
H6C0.41610.31600.24570.077*
C70.30413 (10)0.2610 (2)0.31016 (9)0.0355 (3)
C80.27340 (12)0.0854 (2)0.29496 (9)0.0420 (4)
H80.27880.03500.24270.050*
C90.23530 (10)0.0191 (2)0.35266 (9)0.0344 (3)
C100.20818 (12)0.2108 (2)0.33397 (11)0.0446 (4)
H10A0.24070.28650.37840.067*
H10B0.22830.24520.28150.067*
H10C0.13810.22480.33000.067*
C110.04766 (16)0.3834 (4)0.36890 (14)0.0798 (7)
H11A0.03090.49620.34520.120*
H11B0.10480.39940.39590.120*
H11C0.06150.29500.32490.120*
C120.03655 (13)0.3206 (3)0.43206 (11)0.0518 (4)
C130.02028 (13)0.2410 (4)0.50621 (13)0.0682 (6)
H130.04450.22570.51540.082*
C140.09492 (13)0.1831 (3)0.56746 (10)0.0485 (4)
C150.07378 (16)0.1074 (4)0.64851 (13)0.0731 (7)
H15A0.11560.00500.66390.110*
H15B0.00600.07050.64230.110*
H15C0.08610.19790.69170.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0406 (2)0.0346 (2)0.0258 (2)0.00459 (18)0.00554 (17)0.00092 (17)
O10.0477 (6)0.0362 (6)0.0334 (5)0.0076 (5)0.0046 (5)0.0041 (4)
O20.0393 (6)0.0382 (6)0.0384 (6)0.0073 (4)0.0070 (4)0.0018 (4)
O30.0577 (7)0.0369 (6)0.0304 (5)0.0019 (5)0.0119 (5)0.0026 (4)
O40.0531 (6)0.0359 (6)0.0328 (5)0.0009 (5)0.0079 (5)0.0019 (4)
O50.0471 (6)0.0509 (7)0.0333 (5)0.0081 (5)0.0016 (5)0.0012 (5)
O60.0396 (6)0.0482 (6)0.0295 (5)0.0049 (5)0.0069 (4)0.0023 (4)
C10.0806 (13)0.0370 (9)0.0454 (10)0.0033 (8)0.0129 (9)0.0054 (7)
C20.0529 (9)0.0353 (8)0.0254 (7)0.0036 (7)0.0109 (6)0.0018 (6)
C30.0444 (9)0.0462 (9)0.0484 (9)0.0069 (7)0.0041 (7)0.0025 (7)
C40.0347 (7)0.0506 (9)0.0331 (7)0.0023 (7)0.0112 (6)0.0050 (6)
C50.0381 (9)0.0718 (13)0.0636 (12)0.0103 (9)0.0079 (8)0.0029 (10)
C60.0610 (11)0.0597 (11)0.0346 (8)0.0065 (9)0.0139 (7)0.0004 (8)
C70.0351 (7)0.0441 (8)0.0264 (7)0.0070 (6)0.0019 (6)0.0006 (6)
C80.0533 (9)0.0437 (9)0.0290 (7)0.0033 (7)0.0065 (6)0.0069 (6)
C90.0313 (7)0.0372 (8)0.0316 (7)0.0072 (6)0.0053 (5)0.0042 (6)
C100.0466 (9)0.0382 (8)0.0452 (9)0.0020 (7)0.0050 (7)0.0070 (7)
C110.0586 (13)0.113 (2)0.0592 (13)0.0257 (13)0.0195 (10)0.0090 (13)
C120.0449 (9)0.0649 (12)0.0415 (9)0.0095 (8)0.0068 (7)0.0112 (8)
C130.0359 (9)0.119 (2)0.0485 (10)0.0013 (11)0.0041 (8)0.0002 (11)
C140.0442 (9)0.0643 (11)0.0378 (8)0.0060 (8)0.0091 (7)0.0037 (8)
C150.0610 (12)0.1118 (19)0.0491 (11)0.0179 (12)0.0162 (9)0.0115 (12)
Geometric parameters (Å, º) top
Al1—O51.8702 (12)C6—C71.501 (2)
Al1—O61.8756 (11)C6—H6A0.9700
Al1—O21.8820 (11)C6—H6B0.9700
Al1—O11.8823 (11)C6—H6C0.9700
Al1—O41.8836 (11)C7—C81.391 (2)
Al1—O31.8845 (11)C8—C91.384 (2)
O1—C21.2684 (19)C8—H80.9400
O2—C41.2650 (19)C9—C101.501 (2)
O3—C71.2667 (17)C10—H10A0.9700
O4—C91.2706 (17)C10—H10B0.9700
O5—C121.258 (2)C10—H10C0.9700
O6—C141.2637 (19)C11—C121.505 (2)
C1—C21.505 (2)C11—H11A0.9700
C1—H1A0.9700C11—H11B0.9700
C1—H1B0.9700C11—H11C0.9700
C1—H1C0.9700C12—C131.390 (3)
C2—C31.387 (2)C13—C141.389 (3)
C3—C41.389 (2)C13—H130.9400
C3—H30.9400C14—C151.500 (3)
C4—C51.499 (2)C15—H15A0.9700
C5—H5A0.9700C15—H15B0.9700
C5—H5B0.9700C15—H15C0.9700
C5—H5C0.9700
O5—Al1—O691.86 (5)C7—C6—H6A109.5
O5—Al1—O2177.96 (5)C7—C6—H6B109.5
O6—Al1—O290.18 (5)H6A—C6—H6B109.5
O5—Al1—O188.97 (5)C7—C6—H6C109.5
O6—Al1—O190.34 (5)H6A—C6—H6C109.5
O2—Al1—O191.13 (5)H6B—C6—H6C109.5
O5—Al1—O490.90 (5)O3—C7—C8124.36 (14)
O6—Al1—O488.23 (5)O3—C7—C6115.84 (14)
O2—Al1—O489.06 (5)C8—C7—C6119.79 (14)
O1—Al1—O4178.56 (5)C9—C8—C7123.47 (14)
O5—Al1—O388.20 (5)C9—C8—H8118.3
O6—Al1—O3179.65 (5)C7—C8—H8118.3
O2—Al1—O389.76 (5)O4—C9—C8123.60 (14)
O1—Al1—O390.00 (5)O4—C9—C10115.58 (14)
O4—Al1—O391.43 (5)C8—C9—C10120.82 (14)
C2—O1—Al1128.77 (10)C9—C10—H10A109.5
C4—O2—Al1128.29 (10)C9—C10—H10B109.5
C7—O3—Al1128.01 (10)H10A—C10—H10B109.5
C9—O4—Al1128.70 (10)C9—C10—H10C109.5
C12—O5—Al1128.49 (11)H10A—C10—H10C109.5
C14—O6—Al1128.08 (11)H10B—C10—H10C109.5
C2—C1—H1A109.5C12—C11—H11A109.5
C2—C1—H1B109.5C12—C11—H11B109.5
H1A—C1—H1B109.5H11A—C11—H11B109.5
C2—C1—H1C109.5C12—C11—H11C109.5
H1A—C1—H1C109.5H11A—C11—H11C109.5
H1B—C1—H1C109.5H11B—C11—H11C109.5
O1—C2—C3123.57 (14)O5—C12—C13123.88 (16)
O1—C2—C1115.82 (15)O5—C12—C11115.46 (18)
C3—C2—C1120.60 (15)C13—C12—C11120.65 (19)
C2—C3—C4123.38 (15)C14—C13—C12123.33 (17)
C2—C3—H3118.3C14—C13—H13118.3
C4—C3—H3118.3C12—C13—H13118.3
O2—C4—C3123.95 (15)O6—C14—C13123.91 (16)
O2—C4—C5116.20 (15)O6—C14—C15114.79 (16)
C3—C4—C5119.82 (16)C13—C14—C15121.29 (17)
C4—C5—H5A109.5C14—C15—H15A109.5
C4—C5—H5B109.5C14—C15—H15B109.5
H5A—C5—H5B109.5H15A—C15—H15B109.5
C4—C5—H5C109.5C14—C15—H15C109.5
H5A—C5—H5C109.5H15A—C15—H15C109.5
H5B—C5—H5C109.5H15B—C15—H15C109.5
O5—Al1—O1—C2171.33 (12)Al1—O1—C2—C30.8 (2)
O6—Al1—O1—C296.82 (12)Al1—O1—C2—C1179.44 (11)
O2—Al1—O1—C26.63 (12)O1—C2—C3—C44.8 (3)
O3—Al1—O1—C283.13 (12)C1—C2—C3—C4173.78 (15)
O6—Al1—O2—C4100.86 (13)Al1—O2—C4—C38.6 (2)
O1—Al1—O2—C410.51 (13)Al1—O2—C4—C5173.19 (11)
O4—Al1—O2—C4170.92 (12)C2—C3—C4—O20.8 (3)
O3—Al1—O2—C479.49 (12)C2—C3—C4—C5177.37 (16)
O5—Al1—O3—C784.52 (13)Al1—O3—C7—C83.2 (2)
O2—Al1—O3—C795.39 (13)Al1—O3—C7—C6177.93 (11)
O1—Al1—O3—C7173.49 (13)O3—C7—C8—C92.7 (2)
O4—Al1—O3—C76.33 (13)C6—C7—C8—C9176.15 (15)
O5—Al1—O4—C981.93 (13)Al1—O4—C9—C83.1 (2)
O6—Al1—O4—C9173.76 (12)Al1—O4—C9—C10177.31 (10)
O2—Al1—O4—C996.03 (12)C7—C8—C9—O42.7 (2)
O3—Al1—O4—C96.29 (13)C7—C8—C9—C10176.87 (14)
O6—Al1—O5—C126.70 (15)Al1—O5—C12—C133.8 (3)
O1—Al1—O5—C1297.00 (15)Al1—O5—C12—C11175.12 (14)
O4—Al1—O5—C1281.56 (15)O5—C12—C13—C142.2 (4)
O3—Al1—O5—C12172.96 (15)C11—C12—C13—C14178.9 (2)
O5—Al1—O6—C146.19 (15)Al1—O6—C14—C132.8 (3)
O2—Al1—O6—C14173.71 (15)Al1—O6—C14—C15177.90 (14)
O1—Al1—O6—C1495.17 (15)C12—C13—C14—O62.7 (4)
O4—Al1—O6—C1484.65 (15)C12—C13—C14—C15176.5 (2)
(Ic) Tris(pentane-2,4-dionato-κ2O,O')aluminium(III) top
Crystal data top
[Al(C5H7O2)3]F(000) = 688
Mr = 324.30Dx = 1.304 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14128 reflections
a = 13.8385 (7) Åθ = 2.7–27.5°
b = 7.4614 (3) ŵ = 0.15 mm1
c = 16.1873 (11) ÅT = 180 K
β = 98.871 (2)°Hexagonal prism, colourless
V = 1651.42 (16) Å30.42 × 0.39 × 0.18 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3801 independent reflections
Radiation source: rotating anode3201 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1717
Tmin = 0.73, Tmax = 0.97k = 99
29482 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.103H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.5412P]
where P = (Fo2 + 2Fc2)/3
3801 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Al(C5H7O2)3]V = 1651.42 (16) Å3
Mr = 324.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.8385 (7) ŵ = 0.15 mm1
b = 7.4614 (3) ÅT = 180 K
c = 16.1873 (11) Å0.42 × 0.39 × 0.18 mm
β = 98.871 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3801 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3201 reflections with I > 2σ(I)
Tmin = 0.73, Tmax = 0.97Rint = 0.023
29482 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.08Δρmax = 0.22 e Å3
3801 reflectionsΔρmin = 0.25 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.24071 (3)0.26924 (6)0.46892 (2)0.02861 (12)
O10.25861 (7)0.49954 (13)0.51639 (6)0.0336 (2)
O20.36499 (7)0.19656 (13)0.52284 (6)0.0329 (2)
O30.29746 (8)0.34657 (13)0.37634 (6)0.0351 (2)
O40.22093 (7)0.03714 (13)0.42360 (6)0.0347 (2)
O50.11932 (8)0.34385 (15)0.41200 (6)0.0382 (2)
O60.18445 (7)0.19053 (14)0.56086 (6)0.0332 (2)
C10.32520 (14)0.7553 (2)0.58923 (10)0.0449 (4)
H1A0.29590.83020.54220.067*
H1B0.39010.80200.61190.067*
H1C0.28340.75700.63290.067*
C20.33473 (11)0.56592 (19)0.55951 (8)0.0319 (3)
C30.42193 (11)0.4728 (2)0.58047 (10)0.0395 (3)
H30.47690.53520.60920.047*
C40.43290 (10)0.2928 (2)0.56149 (9)0.0329 (3)
C50.52847 (12)0.2003 (3)0.58965 (12)0.0490 (4)
H5A0.52130.11710.63520.074*
H5B0.57860.28970.60950.074*
H5C0.54800.13360.54270.074*
C60.35076 (12)0.3604 (2)0.24538 (9)0.0427 (4)
H6A0.35610.48770.26010.064*
H6B0.31040.34660.19040.064*
H6C0.41610.31140.24360.064*
C70.30423 (10)0.26115 (19)0.30970 (8)0.0298 (3)
C80.27325 (11)0.0849 (2)0.29431 (9)0.0357 (3)
H80.27870.03380.24150.043*
C90.23492 (9)0.01968 (18)0.35221 (8)0.0292 (3)
C100.20772 (11)0.2121 (2)0.33363 (10)0.0377 (3)
H10A0.24080.28850.37860.057*
H10B0.22790.24700.28050.057*
H10C0.13680.22620.32970.057*
C110.04869 (14)0.3845 (3)0.36913 (12)0.0671 (6)
H11A0.03190.49940.34570.101*
H11B0.10670.39950.39640.101*
H11C0.06240.29580.32420.101*
C120.03572 (12)0.3210 (2)0.43236 (10)0.0437 (4)
C130.01938 (12)0.2409 (3)0.50653 (11)0.0573 (5)
H130.04620.22560.51590.069*
C140.09463 (11)0.1821 (2)0.56770 (9)0.0403 (4)
C150.07355 (14)0.1057 (3)0.64881 (11)0.0608 (5)
H15A0.11630.00250.66440.091*
H15B0.00510.06750.64240.091*
H15C0.08550.19740.69260.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0346 (2)0.0294 (2)0.02197 (19)0.00400 (16)0.00491 (15)0.00063 (15)
O10.0407 (5)0.0311 (5)0.0286 (5)0.0067 (4)0.0040 (4)0.0036 (4)
O20.0330 (5)0.0330 (5)0.0330 (5)0.0060 (4)0.0065 (4)0.0019 (4)
O30.0492 (6)0.0314 (5)0.0263 (5)0.0017 (4)0.0107 (4)0.0023 (4)
O40.0459 (6)0.0307 (5)0.0277 (5)0.0012 (4)0.0067 (4)0.0014 (4)
O50.0404 (6)0.0436 (6)0.0285 (5)0.0063 (5)0.0014 (4)0.0016 (4)
O60.0334 (5)0.0413 (6)0.0251 (5)0.0049 (4)0.0055 (4)0.0022 (4)
C10.0659 (11)0.0318 (8)0.0380 (8)0.0029 (7)0.0108 (8)0.0046 (6)
C20.0449 (8)0.0308 (7)0.0216 (6)0.0033 (6)0.0098 (5)0.0011 (5)
C30.0373 (8)0.0401 (8)0.0405 (8)0.0056 (6)0.0041 (6)0.0021 (7)
C40.0298 (7)0.0427 (8)0.0280 (6)0.0024 (6)0.0099 (5)0.0039 (6)
C50.0324 (8)0.0608 (11)0.0539 (10)0.0094 (7)0.0066 (7)0.0020 (8)
C60.0505 (9)0.0503 (10)0.0291 (7)0.0046 (7)0.0116 (6)0.0005 (7)
C70.0292 (6)0.0368 (7)0.0224 (6)0.0057 (5)0.0011 (5)0.0010 (5)
C80.0443 (8)0.0381 (8)0.0245 (6)0.0026 (6)0.0049 (6)0.0062 (6)
C90.0262 (6)0.0318 (7)0.0269 (6)0.0067 (5)0.0045 (5)0.0032 (5)
C100.0397 (8)0.0327 (7)0.0375 (8)0.0013 (6)0.0040 (6)0.0052 (6)
C110.0502 (11)0.0943 (17)0.0492 (10)0.0222 (11)0.0161 (8)0.0066 (11)
C120.0382 (8)0.0546 (10)0.0347 (8)0.0084 (7)0.0061 (6)0.0097 (7)
C130.0308 (8)0.0986 (16)0.0418 (9)0.0000 (9)0.0035 (7)0.0003 (10)
C140.0376 (8)0.0517 (9)0.0322 (7)0.0037 (7)0.0073 (6)0.0028 (7)
C150.0509 (10)0.0916 (15)0.0420 (9)0.0135 (10)0.0136 (8)0.0100 (10)
Geometric parameters (Å, º) top
Al1—O51.8718 (11)C6—C71.501 (2)
Al1—O61.8770 (10)C6—H6A0.9800
Al1—O11.8831 (11)C6—H6B0.9800
Al1—O41.8842 (11)C6—H6C0.9800
Al1—O21.8843 (10)C7—C81.394 (2)
Al1—O31.8864 (10)C8—C91.386 (2)
O1—C21.2709 (17)C8—H80.9500
O2—C41.2684 (18)C9—C101.502 (2)
O3—C71.2688 (16)C10—H10A0.9800
O4—C91.2734 (16)C10—H10B0.9800
O5—C121.262 (2)C10—H10C0.9800
O6—C141.2664 (18)C11—C121.506 (2)
C1—C21.505 (2)C11—H11A0.9800
C1—H1A0.9800C11—H11B0.9800
C1—H1B0.9800C11—H11C0.9800
C1—H1C0.9800C12—C131.390 (3)
C2—C31.388 (2)C13—C141.393 (2)
C3—C41.391 (2)C13—H130.9500
C3—H30.9500C14—C151.501 (2)
C4—C51.499 (2)C15—H15A0.9800
C5—H5A0.9800C15—H15B0.9800
C5—H5B0.9800C15—H15C0.9800
C5—H5C0.9800
O5—Al1—O691.88 (5)C7—C6—H6A109.5
O5—Al1—O188.91 (5)C7—C6—H6B109.5
O6—Al1—O190.37 (5)H6A—C6—H6B109.5
O5—Al1—O490.93 (5)C7—C6—H6C109.5
O6—Al1—O488.17 (5)H6A—C6—H6C109.5
O1—Al1—O4178.53 (5)H6B—C6—H6C109.5
O5—Al1—O2177.93 (5)O3—C7—C8124.40 (13)
O6—Al1—O290.18 (5)O3—C7—C6115.97 (13)
O1—Al1—O291.17 (5)C8—C7—C6119.62 (13)
O4—Al1—O289.04 (5)C9—C8—C7123.33 (13)
O5—Al1—O388.28 (5)C9—C8—H8118.3
O6—Al1—O3179.58 (5)C7—C8—H8118.3
O1—Al1—O390.02 (5)O4—C9—C8123.62 (13)
O4—Al1—O391.44 (4)O4—C9—C10115.55 (13)
O2—Al1—O389.66 (5)C8—C9—C10120.83 (13)
C2—O1—Al1128.71 (9)C9—C10—H10A109.5
C4—O2—Al1128.28 (10)C9—C10—H10B109.5
C7—O3—Al1128.03 (10)H10A—C10—H10B109.5
C9—O4—Al1128.76 (9)C9—C10—H10C109.5
C12—O5—Al1128.35 (10)H10A—C10—H10C109.5
C14—O6—Al1128.14 (10)H10B—C10—H10C109.5
C2—C1—H1A109.5C12—C11—H11A109.5
C2—C1—H1B109.5C12—C11—H11B109.5
H1A—C1—H1B109.5H11A—C11—H11B109.5
C2—C1—H1C109.5C12—C11—H11C109.5
H1A—C1—H1C109.5H11A—C11—H11C109.5
H1B—C1—H1C109.5H11B—C11—H11C109.5
O1—C2—C3123.69 (13)O5—C12—C13124.12 (14)
O1—C2—C1115.81 (13)O5—C12—C11115.23 (16)
C3—C2—C1120.49 (14)C13—C12—C11120.64 (17)
C2—C3—C4123.33 (14)C12—C13—C14123.10 (16)
C2—C3—H3118.3C12—C13—H13118.5
C4—C3—H3118.3C14—C13—H13118.5
O2—C4—C3123.89 (13)O6—C14—C13123.96 (15)
O2—C4—C5116.18 (14)O6—C14—C15114.92 (14)
C3—C4—C5119.90 (14)C13—C14—C15121.11 (15)
C4—C5—H5A109.5C14—C15—H15A109.5
C4—C5—H5B109.5C14—C15—H15B109.5
H5A—C5—H5B109.5H15A—C15—H15B109.5
C4—C5—H5C109.5C14—C15—H15C109.5
H5A—C5—H5C109.5H15A—C15—H15C109.5
H5B—C5—H5C109.5H15B—C15—H15C109.5
O5—Al1—O1—C2171.32 (11)Al1—O1—C2—C30.7 (2)
O6—Al1—O1—C296.80 (11)Al1—O1—C2—C1179.55 (10)
O2—Al1—O1—C26.61 (11)O1—C2—C3—C44.8 (2)
O3—Al1—O1—C283.04 (11)C1—C2—C3—C4174.02 (14)
O6—Al1—O2—C4101.05 (12)Al1—O2—C4—C38.9 (2)
O1—Al1—O2—C410.67 (12)Al1—O2—C4—C5173.12 (10)
O4—Al1—O2—C4170.78 (11)C2—C3—C4—O20.5 (2)
O3—Al1—O2—C479.34 (11)C2—C3—C4—C5177.38 (14)
O5—Al1—O3—C784.73 (12)Al1—O3—C7—C83.0 (2)
O1—Al1—O3—C7173.64 (12)Al1—O3—C7—C6178.11 (10)
O4—Al1—O3—C76.15 (12)O3—C7—C8—C92.7 (2)
O2—Al1—O3—C795.19 (12)C6—C7—C8—C9176.09 (13)
O5—Al1—O4—C982.09 (12)Al1—O4—C9—C83.04 (19)
O6—Al1—O4—C9173.95 (11)Al1—O4—C9—C10177.46 (9)
O2—Al1—O4—C995.84 (12)C7—C8—C9—O42.7 (2)
O3—Al1—O4—C96.21 (12)C7—C8—C9—C10176.74 (13)
O6—Al1—O5—C126.74 (14)Al1—O5—C12—C133.8 (3)
O1—Al1—O5—C1297.07 (14)Al1—O5—C12—C11175.14 (12)
O4—Al1—O5—C1281.46 (14)O5—C12—C13—C142.1 (3)
O3—Al1—O5—C12172.87 (14)C11—C12—C13—C14179.06 (18)
O5—Al1—O6—C146.53 (14)Al1—O6—C14—C133.4 (3)
O1—Al1—O6—C1495.45 (13)Al1—O6—C14—C15177.73 (12)
O4—Al1—O6—C1484.34 (13)C12—C13—C14—O62.2 (3)
O2—Al1—O6—C14173.38 (13)C12—C13—C14—C15176.56 (19)
(Id) Tris(pentane-2,4-dionato-κ2O,O')aluminium(III) top
Crystal data top
[Al(C5H7O2)3]F(000) = 688
Mr = 324.30Dx = 1.315 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15180 reflections
a = 13.7961 (5) Åθ = 2.7–27.5°
b = 7.44012 (17) ŵ = 0.15 mm1
c = 16.1488 (5) ÅT = 150 K
β = 98.914 (3)°Hexagonal prism, colourless
V = 1637.57 (9) Å30.42 × 0.39 × 0.18 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3771 independent reflections
Radiation source: rotating anode3248 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1717
Tmin = 0.74, Tmax = 0.98k = 99
29260 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.094H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.6404P]
where P = (Fo2 + 2Fc2)/3
3771 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Al(C5H7O2)3]V = 1637.57 (9) Å3
Mr = 324.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.7961 (5) ŵ = 0.15 mm1
b = 7.44012 (17) ÅT = 150 K
c = 16.1488 (5) Å0.42 × 0.39 × 0.18 mm
β = 98.914 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3771 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3248 reflections with I > 2σ(I)
Tmin = 0.74, Tmax = 0.98Rint = 0.023
29260 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
3771 reflectionsΔρmin = 0.26 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.24065 (3)0.26972 (5)0.46881 (2)0.02358 (11)
O10.25881 (7)0.50063 (12)0.51643 (5)0.0276 (2)
O20.36545 (6)0.19660 (12)0.52262 (6)0.0273 (2)
O30.29744 (7)0.34722 (12)0.37594 (5)0.0291 (2)
O40.22046 (7)0.03713 (12)0.42335 (5)0.0288 (2)
O50.11878 (7)0.34509 (13)0.41201 (6)0.0316 (2)
O60.18457 (7)0.19064 (13)0.56095 (5)0.0273 (2)
C10.32596 (12)0.75682 (19)0.58974 (9)0.0369 (3)
H1A0.29770.83270.54250.055*
H1B0.39100.80270.61340.055*
H1C0.28320.75870.63280.055*
C20.33535 (10)0.56719 (17)0.55974 (7)0.0262 (3)
C30.42302 (10)0.4740 (2)0.58064 (9)0.0325 (3)
H30.47830.53640.60940.039*
C40.43368 (9)0.29314 (19)0.56141 (8)0.0274 (3)
C50.52971 (11)0.2004 (2)0.58929 (10)0.0403 (3)
H5A0.52280.11680.63490.060*
H5B0.58000.29000.60910.060*
H5C0.54900.13380.54210.060*
C60.35147 (11)0.3602 (2)0.24476 (8)0.0345 (3)
H6A0.35770.48780.25970.052*
H6B0.31080.34740.18970.052*
H6C0.41670.30970.24280.052*
C70.30435 (9)0.26160 (18)0.30919 (7)0.0245 (3)
C80.27311 (10)0.08460 (19)0.29371 (8)0.0293 (3)
H80.27850.03330.24070.035*
C90.23456 (9)0.02008 (17)0.35182 (7)0.0238 (3)
C100.20720 (10)0.21297 (18)0.33328 (9)0.0306 (3)
H10A0.23890.28920.37910.046*
H10B0.22900.24920.28080.046*
H10C0.13580.22640.32780.046*
C110.04996 (13)0.3857 (3)0.36939 (11)0.0537 (5)
H11A0.03300.50060.34560.081*
H11B0.10790.40150.39700.081*
H11C0.06420.29650.32450.081*
C120.03487 (11)0.3217 (2)0.43253 (9)0.0353 (3)
C130.01861 (11)0.2406 (3)0.50675 (10)0.0453 (4)
H130.04710.22490.51620.054*
C140.09429 (10)0.1815 (2)0.56779 (8)0.0328 (3)
C150.07335 (13)0.1039 (3)0.64897 (10)0.0489 (4)
H15A0.11660.00080.66450.073*
H15B0.00480.06470.64240.073*
H15C0.08500.19550.69300.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0284 (2)0.0244 (2)0.01814 (18)0.00330 (15)0.00413 (14)0.00063 (14)
O10.0335 (5)0.0262 (5)0.0228 (4)0.0054 (4)0.0036 (4)0.0026 (4)
O20.0274 (5)0.0272 (5)0.0276 (5)0.0047 (4)0.0054 (4)0.0015 (4)
O30.0410 (5)0.0257 (5)0.0219 (4)0.0012 (4)0.0091 (4)0.0021 (4)
O40.0383 (5)0.0258 (5)0.0227 (4)0.0009 (4)0.0057 (4)0.0013 (4)
O50.0338 (5)0.0360 (5)0.0232 (4)0.0050 (4)0.0007 (4)0.0015 (4)
O60.0273 (4)0.0341 (5)0.0207 (4)0.0041 (4)0.0048 (3)0.0018 (4)
C10.0537 (9)0.0259 (7)0.0318 (7)0.0019 (6)0.0091 (6)0.0035 (6)
C20.0370 (7)0.0253 (6)0.0178 (5)0.0021 (5)0.0085 (5)0.0008 (5)
C30.0305 (7)0.0336 (7)0.0330 (7)0.0041 (6)0.0031 (5)0.0016 (6)
C40.0254 (6)0.0360 (7)0.0223 (6)0.0018 (5)0.0085 (5)0.0039 (5)
C50.0278 (7)0.0495 (9)0.0435 (8)0.0079 (6)0.0058 (6)0.0013 (7)
C60.0405 (8)0.0402 (8)0.0237 (6)0.0038 (6)0.0083 (5)0.0011 (6)
C70.0240 (6)0.0305 (7)0.0182 (5)0.0051 (5)0.0006 (4)0.0013 (5)
C80.0366 (7)0.0310 (7)0.0204 (6)0.0016 (5)0.0047 (5)0.0051 (5)
C90.0213 (6)0.0258 (6)0.0220 (6)0.0054 (5)0.0034 (4)0.0020 (5)
C100.0321 (7)0.0270 (7)0.0302 (7)0.0008 (5)0.0028 (5)0.0046 (5)
C110.0415 (9)0.0727 (13)0.0409 (9)0.0173 (9)0.0131 (7)0.0053 (9)
C120.0320 (7)0.0414 (8)0.0294 (7)0.0067 (6)0.0045 (6)0.0075 (6)
C130.0252 (7)0.0752 (12)0.0350 (8)0.0006 (7)0.0031 (6)0.0003 (8)
C140.0317 (7)0.0406 (8)0.0264 (6)0.0030 (6)0.0057 (5)0.0020 (6)
C150.0421 (9)0.0711 (12)0.0352 (8)0.0107 (8)0.0110 (7)0.0079 (8)
Geometric parameters (Å, º) top
Al1—O51.8721 (10)C6—C71.5008 (18)
Al1—O61.8750 (9)C6—H6A0.9800
Al1—O11.8830 (10)C6—H6B0.9800
Al1—O41.8836 (10)C6—H6C0.9800
Al1—O21.8846 (10)C7—C81.3961 (19)
Al1—O31.8867 (10)C8—C91.3874 (18)
O1—C21.2730 (16)C8—H80.9500
O2—C41.2694 (16)C9—C101.5022 (18)
O3—C71.2683 (15)C10—H10A0.9800
O4—C91.2740 (15)C10—H10B0.9800
O5—C121.2645 (18)C10—H10C0.9800
O6—C141.2691 (16)C11—C121.505 (2)
C1—C21.5038 (18)C11—H11A0.9800
C1—H1A0.9800C11—H11B0.9800
C1—H1B0.9800C11—H11C0.9800
C1—H1C0.9800C12—C131.391 (2)
C2—C31.3898 (19)C13—C141.392 (2)
C3—C41.394 (2)C13—H130.9500
C3—H30.9500C14—C151.501 (2)
C4—C51.4997 (19)C15—H15A0.9800
C5—H5A0.9800C15—H15B0.9800
C5—H5B0.9800C15—H15C0.9800
C5—H5C0.9800
O5—Al1—O691.89 (4)C7—C6—H6A109.5
O5—Al1—O188.82 (4)C7—C6—H6B109.5
O6—Al1—O190.42 (4)H6A—C6—H6B109.5
O5—Al1—O490.97 (5)C7—C6—H6C109.5
O6—Al1—O488.09 (4)H6A—C6—H6C109.5
O1—Al1—O4178.49 (4)H6B—C6—H6C109.5
O5—Al1—O2177.91 (5)O3—C7—C8124.35 (12)
O6—Al1—O290.19 (4)O3—C7—C6116.19 (12)
O1—Al1—O291.20 (4)C8—C7—C6119.45 (11)
O4—Al1—O289.08 (4)C9—C8—C7123.26 (12)
O5—Al1—O388.34 (4)C9—C8—H8118.4
O6—Al1—O3179.50 (5)C7—C8—H8118.4
O1—Al1—O390.03 (4)O4—C9—C8123.65 (12)
O4—Al1—O391.46 (4)O4—C9—C10115.52 (12)
O2—Al1—O389.57 (4)C8—C9—C10120.82 (12)
C2—O1—Al1128.74 (9)C9—C10—H10A109.5
C4—O2—Al1128.23 (9)C9—C10—H10B109.5
C7—O3—Al1128.12 (9)H10A—C10—H10B109.5
C9—O4—Al1128.77 (9)C9—C10—H10C109.5
C12—O5—Al1128.28 (9)H10A—C10—H10C109.5
C14—O6—Al1128.10 (9)H10B—C10—H10C109.5
C2—C1—H1A109.5C12—C11—H11A109.5
C2—C1—H1B109.5C12—C11—H11B109.5
H1A—C1—H1B109.5H11A—C11—H11B109.5
C2—C1—H1C109.5C12—C11—H11C109.5
H1A—C1—H1C109.5H11A—C11—H11C109.5
H1B—C1—H1C109.5H11B—C11—H11C109.5
O1—C2—C3123.77 (12)O5—C12—C13124.19 (13)
O1—C2—C1115.88 (12)O5—C12—C11115.22 (14)
C3—C2—C1120.33 (13)C13—C12—C11120.57 (15)
C2—C3—C4123.06 (13)C12—C13—C14122.96 (14)
C2—C3—H3118.5C12—C13—H13118.5
C4—C3—H3118.5C14—C13—H13118.5
O2—C4—C3124.08 (12)O6—C14—C13124.07 (13)
O2—C4—C5116.16 (13)O6—C14—C15114.89 (13)
C3—C4—C5119.74 (13)C13—C14—C15121.03 (14)
C4—C5—H5A109.5C14—C15—H15A109.5
C4—C5—H5B109.5C14—C15—H15B109.5
H5A—C5—H5B109.5H15A—C15—H15B109.5
C4—C5—H5C109.5C14—C15—H15C109.5
H5A—C5—H5C109.5H15A—C15—H15C109.5
H5B—C5—H5C109.5H15B—C15—H15C109.5
O5—Al1—O1—C2171.44 (10)Al1—O1—C2—C30.50 (18)
O6—Al1—O1—C296.67 (10)Al1—O1—C2—C1179.40 (9)
O2—Al1—O1—C26.47 (11)O1—C2—C3—C44.9 (2)
O3—Al1—O1—C283.11 (10)C1—C2—C3—C4173.93 (12)
O6—Al1—O2—C4100.98 (11)Al1—O2—C4—C38.77 (18)
O1—Al1—O2—C410.55 (11)Al1—O2—C4—C5173.02 (9)
O4—Al1—O2—C4170.93 (10)C2—C3—C4—O20.7 (2)
O3—Al1—O2—C479.47 (11)C2—C3—C4—C5177.50 (13)
O5—Al1—O3—C785.05 (11)Al1—O3—C7—C82.74 (18)
O1—Al1—O3—C7173.86 (11)Al1—O3—C7—C6178.53 (9)
O4—Al1—O3—C75.88 (11)O3—C7—C8—C92.9 (2)
O2—Al1—O3—C794.94 (11)C6—C7—C8—C9175.82 (12)
O5—Al1—O4—C982.41 (11)Al1—O4—C9—C82.83 (18)
O6—Al1—O4—C9174.27 (11)Al1—O4—C9—C10177.63 (8)
O2—Al1—O4—C995.51 (11)C7—C8—C9—O42.8 (2)
O3—Al1—O4—C95.96 (11)C7—C8—C9—C10176.68 (12)
O6—Al1—O5—C126.99 (12)Al1—O5—C12—C133.9 (2)
O1—Al1—O5—C1297.38 (12)Al1—O5—C12—C11175.07 (11)
O4—Al1—O5—C1281.13 (12)O5—C12—C13—C142.1 (3)
O3—Al1—O5—C12172.56 (12)C11—C12—C13—C14179.00 (16)
O5—Al1—O6—C146.92 (12)Al1—O6—C14—C133.8 (2)
O1—Al1—O6—C1495.75 (12)Al1—O6—C14—C15177.36 (11)
O4—Al1—O6—C1483.98 (12)C12—C13—C14—O62.1 (3)
O2—Al1—O6—C14173.05 (12)C12—C13—C14—C15176.66 (16)
(Ie) Tris(pentane-2,4-dionato-κ2O,O')aluminium(III) top
Crystal data top
[Al(C5H7O2)3]F(000) = 2064
Mr = 324.30Dx = 1.323 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 37277 reflections
a = 22.7424 (11) Åθ = 1.8–27.5°
b = 7.4467 (2) ŵ = 0.15 mm1
c = 29.6165 (13) ÅT = 110 K
β = 103.221 (2)°Hexagonal prism, colourless
V = 4882.8 (3) Å30.42 × 0.39 × 0.18 mm
Z = 12
Data collection top
Nonius KappaCCD
diffractometer
11232 independent reflections
Radiation source: rotating anode8990 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 2929
Tmin = 0.66, Tmax = 0.98k = 99
83926 measured reflectionsl = 3838
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: difference Fourier map
wR(F2) = 0.111H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0512P)2 + 1.8338P]
where P = (Fo2 + 2Fc2)/3
11232 reflections(Δ/σ)max = 0.001
613 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Al(C5H7O2)3]V = 4882.8 (3) Å3
Mr = 324.30Z = 12
Monoclinic, P21/cMo Kα radiation
a = 22.7424 (11) ŵ = 0.15 mm1
b = 7.4467 (2) ÅT = 110 K
c = 29.6165 (13) Å0.42 × 0.39 × 0.18 mm
β = 103.221 (2)°
Data collection top
Nonius KappaCCD
diffractometer
11232 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
8990 reflections with I > 2σ(I)
Tmin = 0.66, Tmax = 0.98Rint = 0.036
83926 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.05Δρmax = 0.34 e Å3
11232 reflectionsΔρmin = 0.26 e Å3
613 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.266240 (16)0.23797 (5)0.263289 (12)0.01514 (9)
O110.24162 (4)0.00709 (12)0.23997 (3)0.01853 (19)
O210.26978 (4)0.31780 (12)0.20351 (3)0.01883 (19)
O310.34809 (4)0.16641 (12)0.27374 (3)0.01876 (19)
O410.28831 (4)0.47085 (12)0.28573 (3)0.01918 (19)
O510.26693 (4)0.15542 (13)0.32305 (3)0.02024 (19)
O610.18470 (4)0.30855 (13)0.25335 (3)0.01965 (19)
C110.21872 (6)0.24808 (18)0.19157 (5)0.0252 (3)
H11A0.23890.32280.21780.038*
H11B0.22830.29320.16300.038*
H11C0.17490.25270.18860.038*
C210.24022 (5)0.05708 (17)0.19968 (4)0.0178 (3)
C310.25605 (6)0.04028 (18)0.16398 (4)0.0218 (3)
H310.25740.02030.13600.026*
C410.26996 (5)0.22322 (18)0.16770 (4)0.0184 (3)
C510.28387 (7)0.3204 (2)0.12697 (5)0.0275 (3)
H51A0.24980.39820.11300.041*
H51B0.29060.23280.10400.041*
H51C0.32030.39350.13740.041*
C610.45413 (6)0.1588 (2)0.30037 (5)0.0250 (3)
H61A0.44710.03150.29250.038*
H61B0.47710.16980.33250.038*
H61C0.47700.21330.27960.038*
C710.39450 (5)0.25326 (18)0.29486 (4)0.0172 (2)
C810.39327 (6)0.42857 (18)0.31163 (4)0.0210 (3)
H810.43010.48060.32810.025*
C910.34070 (6)0.53032 (17)0.30525 (4)0.0167 (2)
C1010.34257 (6)0.72294 (18)0.32123 (4)0.0214 (3)
H10A0.32080.79870.29580.032*
H10B0.38470.76290.33060.032*
H10C0.32350.73240.34760.032*
C1110.23944 (7)0.0711 (2)0.39181 (5)0.0302 (3)
H11D0.26060.04320.39120.045*
H11E0.20240.05070.40270.045*
H11F0.26570.15460.41280.045*
C1210.22363 (6)0.14976 (18)0.34380 (4)0.0209 (3)
C1310.16547 (6)0.2097 (2)0.32466 (5)0.0291 (3)
H1310.13570.19840.34240.035*
C1410.14872 (6)0.28631 (19)0.28032 (5)0.0228 (3)
C1510.08433 (6)0.3432 (2)0.26160 (6)0.0355 (4)
H15A0.08210.42220.23480.053*
H15B0.06970.40770.28570.053*
H15C0.05920.23680.25210.053*
Al20.398382 (17)0.78593 (5)0.071077 (13)0.01698 (9)
O120.42417 (4)1.01742 (12)0.09265 (3)0.02006 (19)
O220.39249 (4)0.71437 (12)0.13108 (3)0.02006 (19)
O320.31710 (4)0.86337 (12)0.05864 (3)0.02072 (19)
O420.37465 (4)0.55312 (12)0.04928 (3)0.0213 (2)
O520.40169 (4)0.85966 (13)0.01102 (3)0.0217 (2)
O620.47864 (4)0.70554 (13)0.08354 (3)0.01979 (19)
C120.45177 (6)1.27368 (18)0.13946 (5)0.0260 (3)
H12A0.49471.27500.13890.039*
H12B0.44681.31980.16930.039*
H12C0.42921.34950.11440.039*
C220.42823 (5)1.08412 (17)0.13291 (4)0.0187 (3)
C320.41348 (6)0.99220 (19)0.16974 (5)0.0236 (3)
H320.41511.05490.19790.028*
C420.39642 (5)0.81148 (19)0.16699 (4)0.0196 (3)
C520.38358 (7)0.7197 (2)0.20889 (5)0.0279 (3)
H52A0.34700.64640.19960.042*
H52B0.37760.81020.23140.042*
H52C0.41780.64250.22300.042*
C620.21116 (6)0.8767 (2)0.03182 (5)0.0248 (3)
H62A0.18740.82350.05220.037*
H62B0.18860.86720.00050.037*
H62C0.21901.00340.03990.037*
C720.27016 (6)0.77833 (18)0.03777 (4)0.0179 (3)
C820.27038 (6)0.60195 (19)0.02158 (4)0.0218 (3)
H820.23340.55180.00480.026*
C920.32240 (6)0.49614 (17)0.02893 (4)0.0179 (3)
C1020.31939 (6)0.30352 (18)0.01321 (4)0.0223 (3)
H10D0.33890.29160.01290.033*
H10E0.27700.26630.00340.033*
H10F0.34020.22720.03890.033*
C1120.42919 (7)0.8862 (2)0.06056 (5)0.0293 (3)
H11G0.40410.79550.07990.044*
H11H0.46710.90050.07060.044*
H11I0.40761.00100.06370.044*
C1220.44277 (6)0.82728 (18)0.01073 (4)0.0210 (3)
C1320.49728 (6)0.74131 (19)0.00868 (5)0.0242 (3)
H1320.52490.71930.01040.029*
C1420.51279 (6)0.68643 (17)0.05502 (4)0.0198 (3)
C1520.57331 (6)0.6038 (2)0.07493 (5)0.0272 (3)
H15D0.60000.69380.09330.041*
H15E0.59110.56130.04970.041*
H15F0.56850.50240.09490.041*
Al30.067589 (17)0.75773 (5)0.399724 (13)0.01828 (9)
O130.09427 (4)0.98843 (12)0.42106 (3)0.0210 (2)
O230.05918 (4)0.69004 (12)0.45946 (3)0.02054 (19)
O330.01282 (4)0.84299 (12)0.38616 (3)0.0234 (2)
O430.04168 (4)0.52609 (12)0.37825 (3)0.0223 (2)
O530.07388 (4)0.82466 (14)0.33967 (3)0.0262 (2)
O630.14713 (4)0.67189 (13)0.41436 (3)0.01970 (19)
C130.12045 (6)1.24807 (18)0.46711 (5)0.0269 (3)
H13A0.16341.24890.46650.040*
H13B0.11551.29490.49700.040*
H13C0.09791.32370.44200.040*
C230.09675 (5)1.05853 (17)0.46081 (5)0.0200 (3)
C330.08002 (6)0.96961 (19)0.49733 (5)0.0254 (3)
H330.08071.03430.52510.031*
C430.06226 (6)0.78926 (19)0.49493 (5)0.0210 (3)
C530.04731 (7)0.7007 (2)0.53649 (5)0.0305 (3)
H53A0.00780.64180.52730.046*
H53B0.04610.79150.56020.046*
H53C0.07830.61100.54910.046*
C630.11941 (6)0.85826 (19)0.36565 (5)0.0247 (3)
H63A0.11070.97940.37830.037*
H63B0.14530.79560.38280.037*
H63C0.14010.86620.33280.037*
C730.06132 (6)0.75625 (17)0.37024 (4)0.0180 (3)
C830.06337 (6)0.57532 (18)0.35749 (5)0.0224 (3)
H830.10160.52240.34490.027*
C930.01185 (6)0.46880 (17)0.36238 (4)0.0176 (2)
C1030.01703 (6)0.27343 (18)0.34896 (5)0.0225 (3)
H10G0.00010.25460.32180.034*
H10H0.05970.23790.34160.034*
H10I0.00530.20060.37480.034*
C1130.10442 (8)0.8294 (3)0.26841 (5)0.0434 (4)
H11J0.09500.72110.24930.065*
H11K0.14080.88610.26250.065*
H11L0.07050.91350.26060.065*
C1230.11515 (7)0.7795 (2)0.31885 (5)0.0276 (3)
C1330.16815 (7)0.6885 (2)0.33987 (5)0.0298 (3)
H1330.19570.65660.32150.036*
C1430.18211 (6)0.64306 (19)0.38669 (5)0.0219 (3)
C1530.24182 (6)0.5591 (2)0.40839 (5)0.0290 (3)
H15G0.26770.64810.42770.043*
H15H0.26130.51740.38400.043*
H15I0.23550.45700.42760.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.01391 (18)0.01679 (19)0.01467 (18)0.00143 (14)0.00312 (14)0.00030 (14)
O110.0192 (4)0.0186 (4)0.0171 (4)0.0031 (4)0.0027 (3)0.0003 (3)
O210.0205 (4)0.0193 (5)0.0173 (4)0.0030 (4)0.0056 (3)0.0007 (4)
O310.0158 (4)0.0196 (5)0.0206 (4)0.0008 (3)0.0035 (3)0.0027 (4)
O410.0173 (4)0.0190 (5)0.0202 (4)0.0003 (4)0.0022 (3)0.0024 (4)
O510.0204 (5)0.0235 (5)0.0167 (4)0.0005 (4)0.0040 (4)0.0011 (4)
O610.0160 (4)0.0230 (5)0.0197 (4)0.0005 (4)0.0035 (3)0.0002 (4)
C110.0254 (7)0.0178 (7)0.0301 (7)0.0006 (5)0.0015 (6)0.0044 (5)
C210.0123 (6)0.0183 (6)0.0213 (6)0.0030 (5)0.0007 (5)0.0019 (5)
C310.0238 (7)0.0234 (7)0.0188 (6)0.0021 (5)0.0062 (5)0.0031 (5)
C410.0135 (6)0.0258 (7)0.0163 (6)0.0010 (5)0.0042 (5)0.0015 (5)
C510.0306 (7)0.0336 (8)0.0210 (7)0.0028 (6)0.0114 (6)0.0039 (6)
C610.0165 (6)0.0318 (8)0.0249 (7)0.0035 (5)0.0005 (5)0.0031 (6)
C710.0162 (6)0.0230 (6)0.0122 (5)0.0005 (5)0.0029 (4)0.0021 (5)
C810.0170 (6)0.0235 (7)0.0207 (6)0.0036 (5)0.0006 (5)0.0013 (5)
C910.0206 (6)0.0187 (6)0.0109 (5)0.0032 (5)0.0036 (5)0.0020 (5)
C1010.0273 (7)0.0183 (6)0.0178 (6)0.0028 (5)0.0036 (5)0.0016 (5)
C1110.0355 (8)0.0372 (8)0.0184 (7)0.0085 (7)0.0069 (6)0.0029 (6)
C1210.0258 (7)0.0211 (6)0.0167 (6)0.0062 (5)0.0066 (5)0.0035 (5)
C1310.0229 (7)0.0444 (9)0.0229 (7)0.0018 (6)0.0111 (6)0.0017 (6)
C1410.0186 (6)0.0260 (7)0.0243 (7)0.0006 (5)0.0061 (5)0.0067 (5)
C1510.0202 (7)0.0495 (10)0.0373 (8)0.0076 (7)0.0075 (6)0.0066 (7)
Al20.01516 (19)0.01800 (19)0.01682 (18)0.00129 (14)0.00163 (14)0.00091 (15)
O120.0206 (5)0.0201 (5)0.0184 (4)0.0032 (4)0.0023 (4)0.0010 (4)
O220.0202 (5)0.0208 (5)0.0197 (4)0.0024 (4)0.0058 (4)0.0013 (4)
O320.0176 (4)0.0191 (5)0.0240 (5)0.0008 (4)0.0017 (4)0.0011 (4)
O420.0190 (5)0.0197 (5)0.0229 (5)0.0003 (4)0.0001 (4)0.0011 (4)
O520.0221 (5)0.0234 (5)0.0179 (4)0.0012 (4)0.0014 (4)0.0020 (4)
O620.0164 (4)0.0243 (5)0.0183 (4)0.0003 (4)0.0032 (3)0.0030 (4)
C120.0253 (7)0.0198 (7)0.0310 (7)0.0019 (5)0.0026 (6)0.0032 (6)
C220.0126 (6)0.0188 (6)0.0226 (6)0.0021 (5)0.0004 (5)0.0014 (5)
C320.0262 (7)0.0253 (7)0.0197 (6)0.0010 (5)0.0062 (5)0.0025 (5)
C420.0126 (6)0.0272 (7)0.0194 (6)0.0026 (5)0.0042 (5)0.0038 (5)
C520.0275 (7)0.0362 (8)0.0223 (7)0.0015 (6)0.0105 (6)0.0064 (6)
C620.0186 (6)0.0292 (7)0.0250 (7)0.0031 (5)0.0013 (5)0.0016 (6)
C720.0162 (6)0.0236 (6)0.0136 (6)0.0007 (5)0.0024 (5)0.0032 (5)
C820.0182 (6)0.0237 (7)0.0214 (6)0.0037 (5)0.0000 (5)0.0020 (5)
C920.0221 (6)0.0198 (6)0.0116 (5)0.0032 (5)0.0035 (5)0.0023 (5)
C1020.0275 (7)0.0212 (7)0.0176 (6)0.0030 (5)0.0039 (5)0.0013 (5)
C1120.0396 (8)0.0299 (8)0.0169 (6)0.0034 (6)0.0033 (6)0.0012 (6)
C1220.0273 (7)0.0183 (6)0.0167 (6)0.0055 (5)0.0034 (5)0.0020 (5)
C1320.0258 (7)0.0279 (7)0.0201 (6)0.0008 (6)0.0076 (5)0.0012 (5)
C1420.0201 (6)0.0168 (6)0.0223 (6)0.0022 (5)0.0047 (5)0.0015 (5)
C1520.0220 (7)0.0292 (8)0.0304 (7)0.0054 (6)0.0062 (6)0.0021 (6)
Al30.01498 (19)0.01725 (19)0.0211 (2)0.00244 (14)0.00095 (15)0.00296 (15)
O130.0193 (5)0.0193 (5)0.0228 (5)0.0044 (4)0.0015 (4)0.0032 (4)
O230.0191 (5)0.0184 (5)0.0250 (5)0.0020 (4)0.0069 (4)0.0027 (4)
O330.0167 (4)0.0171 (5)0.0333 (5)0.0019 (4)0.0010 (4)0.0017 (4)
O430.0182 (5)0.0191 (5)0.0276 (5)0.0009 (4)0.0010 (4)0.0006 (4)
O530.0254 (5)0.0278 (5)0.0219 (5)0.0044 (4)0.0020 (4)0.0054 (4)
O630.0161 (4)0.0245 (5)0.0184 (4)0.0007 (4)0.0037 (3)0.0028 (4)
C130.0240 (7)0.0187 (7)0.0358 (8)0.0037 (5)0.0020 (6)0.0003 (6)
C230.0126 (6)0.0180 (6)0.0272 (7)0.0011 (5)0.0002 (5)0.0009 (5)
C330.0264 (7)0.0239 (7)0.0268 (7)0.0016 (6)0.0077 (6)0.0006 (6)
C430.0144 (6)0.0252 (7)0.0241 (7)0.0012 (5)0.0057 (5)0.0033 (5)
C530.0340 (8)0.0316 (8)0.0295 (7)0.0040 (6)0.0145 (6)0.0051 (6)
C630.0175 (6)0.0257 (7)0.0292 (7)0.0005 (5)0.0015 (5)0.0010 (6)
C730.0166 (6)0.0214 (6)0.0151 (6)0.0009 (5)0.0020 (5)0.0043 (5)
C830.0174 (6)0.0219 (7)0.0253 (7)0.0043 (5)0.0005 (5)0.0010 (5)
C930.0213 (6)0.0187 (6)0.0125 (5)0.0034 (5)0.0031 (5)0.0012 (5)
C1030.0270 (7)0.0198 (7)0.0194 (6)0.0019 (5)0.0027 (5)0.0019 (5)
C1130.0522 (11)0.0557 (11)0.0191 (7)0.0152 (9)0.0013 (7)0.0068 (7)
C1230.0312 (8)0.0317 (8)0.0181 (6)0.0127 (6)0.0020 (6)0.0016 (6)
C1330.0275 (7)0.0418 (9)0.0215 (7)0.0058 (6)0.0087 (6)0.0019 (6)
C1430.0182 (6)0.0240 (7)0.0234 (6)0.0045 (5)0.0047 (5)0.0016 (5)
C1530.0215 (7)0.0358 (8)0.0309 (8)0.0021 (6)0.0085 (6)0.0003 (6)
Geometric parameters (Å, º) top
Al1—O511.8704 (9)C62—C721.5032 (17)
Al1—O411.8837 (10)C62—H62A0.9800
Al1—O611.8847 (9)C62—H62B0.9800
Al1—O211.8867 (9)C62—H62C0.9800
Al1—O111.8894 (10)C72—C821.3987 (19)
Al1—O311.8924 (9)C82—C921.3965 (18)
O11—C211.2788 (15)C82—H820.9500
O21—C411.2739 (15)C92—C1021.5048 (18)
O31—C711.2735 (15)C102—H10D0.9800
O41—C911.2786 (15)C102—H10E0.9800
O51—C1211.2750 (15)C102—H10F0.9800
O61—C1411.2780 (15)C112—C1221.5023 (17)
C11—C211.5053 (18)C112—H11G0.9800
C11—H11A0.9800C112—H11H0.9800
C11—H11B0.9800C112—H11I0.9800
C11—H11C0.9800C122—C1321.3969 (19)
C21—C311.3955 (18)C132—C1421.3978 (18)
C31—C411.3972 (19)C132—H1320.9500
C31—H310.9500C142—C1521.4999 (18)
C41—C511.5012 (17)C152—H15D0.9800
C51—H51A0.9800C152—H15E0.9800
C51—H51B0.9800C152—H15F0.9800
C51—H51C0.9800Al3—O631.8735 (10)
C61—C711.5032 (17)Al3—O131.8824 (10)
C61—H61A0.9800Al3—O531.8838 (10)
C61—H61B0.9800Al3—O431.8857 (10)
C61—H61C0.9800Al3—O331.8902 (10)
C71—C811.3992 (18)Al3—O231.8910 (10)
C81—C911.3914 (18)O13—C231.2771 (16)
C81—H810.9500O23—C431.2730 (16)
C91—C1011.5080 (18)O33—C731.2720 (15)
C101—H10A0.9800O43—C931.2740 (15)
C101—H10B0.9800O53—C1231.2801 (18)
C101—H10C0.9800O63—C1431.2842 (15)
C111—C1211.5034 (18)C13—C231.5072 (18)
C111—H11D0.9800C13—H13A0.9800
C111—H11E0.9800C13—H13B0.9800
C111—H11F0.9800C13—H13C0.9800
C121—C1311.388 (2)C23—C331.3935 (19)
C131—C1411.402 (2)C33—C431.3996 (19)
C131—H1310.9500C33—H330.9500
C141—C1511.5034 (19)C43—C531.5021 (18)
C151—H15A0.9800C53—H53A0.9800
C151—H15B0.9800C53—H53B0.9800
C151—H15C0.9800C53—H53C0.9800
Al2—O621.8757 (10)C63—C731.5030 (17)
Al2—O521.8793 (10)C63—H63A0.9800
Al2—O121.8848 (10)C63—H63B0.9800
Al2—O421.8853 (10)C63—H63C0.9800
Al2—O221.8890 (9)C73—C831.3972 (19)
Al2—O321.8904 (10)C83—C931.3947 (18)
O12—C221.2754 (15)C83—H830.9500
O22—C421.2723 (16)C93—C1031.5056 (18)
O32—C721.2732 (15)C103—H10G0.9800
O42—C921.2757 (15)C103—H10H0.9800
O52—C1221.2734 (16)C103—H10I0.9800
O62—C1421.2793 (15)C113—C1231.5042 (19)
C12—C221.5064 (18)C113—H11J0.9800
C12—H12A0.9800C113—H11K0.9800
C12—H12B0.9800C113—H11L0.9800
C12—H12C0.9800C123—C1331.399 (2)
C22—C321.3920 (18)C133—C1431.3918 (19)
C32—C421.3978 (19)C133—H1330.9500
C32—H320.9500C143—C1531.4994 (19)
C42—C521.5029 (17)C153—H15G0.9800
C52—H52A0.9800C153—H15H0.9800
C52—H52B0.9800C153—H15I0.9800
C52—H52C0.9800
O51—Al1—O4191.42 (4)C72—C62—H62A109.5
O51—Al1—O6191.98 (4)C72—C62—H62B109.5
O41—Al1—O6188.38 (4)H62A—C62—H62B109.5
O51—Al1—O21177.04 (4)C72—C62—H62C109.5
O41—Al1—O2188.62 (4)H62A—C62—H62C109.5
O61—Al1—O2190.99 (4)H62B—C62—H62C109.5
O51—Al1—O1189.11 (4)O32—C72—C82124.41 (12)
O41—Al1—O11178.19 (4)O32—C72—C62116.20 (12)
O61—Al1—O1189.88 (4)C82—C72—C62119.38 (12)
O21—Al1—O1190.93 (4)C92—C82—C72123.08 (12)
O51—Al1—O3187.57 (4)C92—C82—H82118.5
O41—Al1—O3191.65 (4)C72—C82—H82118.5
O61—Al1—O31179.55 (4)O42—C92—C82123.39 (12)
O21—Al1—O3189.47 (4)O42—C92—C102115.78 (12)
O11—Al1—O3190.09 (4)C82—C92—C102120.83 (12)
C21—O11—Al1128.55 (8)C92—C102—H10D109.5
C41—O21—Al1128.02 (9)C92—C102—H10E109.5
C71—O31—Al1127.66 (8)H10D—C102—H10E109.5
C91—O41—Al1128.60 (8)C92—C102—H10F109.5
C121—O51—Al1128.80 (9)H10D—C102—H10F109.5
C141—O61—Al1127.87 (9)H10E—C102—H10F109.5
C21—C11—H11A109.5C122—C112—H11G109.5
C21—C11—H11B109.5C122—C112—H11H109.5
H11A—C11—H11B109.5H11G—C112—H11H109.5
C21—C11—H11C109.5C122—C112—H11I109.5
H11A—C11—H11C109.5H11G—C112—H11I109.5
H11B—C11—H11C109.5H11H—C112—H11I109.5
O11—C21—C31123.85 (12)O52—C122—C132124.29 (12)
O11—C21—C11116.09 (11)O52—C122—C112115.59 (12)
C31—C21—C11120.04 (12)C132—C122—C112120.11 (12)
C21—C31—C41122.67 (12)C122—C132—C142122.61 (12)
C21—C31—H31118.7C122—C132—H132118.7
C41—C31—H31118.7C142—C132—H132118.7
O21—C41—C31124.13 (12)O62—C142—C132124.12 (12)
O21—C41—C51116.36 (12)O62—C142—C152115.29 (11)
C31—C41—C51119.47 (12)C132—C142—C152120.57 (12)
C41—C51—H51A109.5C142—C152—H15D109.5
C41—C51—H51B109.5C142—C152—H15E109.5
H51A—C51—H51B109.5H15D—C152—H15E109.5
C41—C51—H51C109.5C142—C152—H15F109.5
H51A—C51—H51C109.5H15D—C152—H15F109.5
H51B—C51—H51C109.5H15E—C152—H15F109.5
C71—C61—H61A109.5O63—Al3—O1390.78 (4)
C71—C61—H61B109.5O63—Al3—O5391.77 (4)
H61A—C61—H61B109.5O13—Al3—O5389.27 (4)
C71—C61—H61C109.5O63—Al3—O4388.66 (4)
H61A—C61—H61C109.5O13—Al3—O43179.40 (5)
H61B—C61—H61C109.5O53—Al3—O4390.51 (5)
O31—C71—C81124.51 (12)O63—Al3—O33178.85 (5)
O31—C71—C61116.18 (11)O13—Al3—O3389.24 (4)
C81—C71—C61119.28 (12)O53—Al3—O3389.38 (4)
C91—C81—C71123.11 (12)O43—Al3—O3391.32 (4)
C91—C81—H81118.4O63—Al3—O2389.51 (4)
C71—C81—H81118.4O13—Al3—O2391.31 (4)
O41—C91—C81123.76 (12)O53—Al3—O23178.58 (5)
O41—C91—C101115.33 (11)O43—Al3—O2388.92 (4)
C81—C91—C101120.91 (11)O33—Al3—O2389.34 (4)
C91—C101—H10A109.5C23—O13—Al3128.72 (9)
C91—C101—H10B109.5C43—O23—Al3128.26 (9)
H10A—C101—H10B109.5C73—O33—Al3128.53 (9)
C91—C101—H10C109.5C93—O43—Al3129.00 (9)
H10A—C101—H10C109.5C123—O53—Al3127.42 (9)
H10B—C101—H10C109.5C143—O63—Al3128.00 (9)
C121—C111—H11D109.5C23—C13—H13A109.5
C121—C111—H11E109.5C23—C13—H13B109.5
H11D—C111—H11E109.5H13A—C13—H13B109.5
C121—C111—H11F109.5C23—C13—H13C109.5
H11D—C111—H11F109.5H13A—C13—H13C109.5
H11E—C111—H11F109.5H13B—C13—H13C109.5
O51—C121—C131124.15 (12)O13—C23—C33123.98 (12)
O51—C121—C111115.13 (12)O13—C23—C13115.86 (12)
C131—C121—C111120.72 (12)C33—C23—C13120.15 (13)
C121—C131—C141122.86 (12)C23—C33—C43122.92 (13)
C121—C131—H131118.6C23—C33—H33118.5
C141—C131—H131118.6C43—C33—H33118.5
O61—C141—C131124.21 (12)O23—C43—C33124.02 (12)
O61—C141—C151116.23 (12)O23—C43—C53116.19 (12)
C131—C141—C151119.54 (12)C33—C43—C53119.76 (13)
C141—C151—H15A109.5C43—C53—H53A109.5
C141—C151—H15B109.5C43—C53—H53B109.5
H15A—C151—H15B109.5H53A—C53—H53B109.5
C141—C151—H15C109.5C43—C53—H53C109.5
H15A—C151—H15C109.5H53A—C53—H53C109.5
H15B—C151—H15C109.5H53B—C53—H53C109.5
O62—Al2—O5291.82 (4)C73—C63—H63A109.5
O62—Al2—O1290.68 (4)C73—C63—H63B109.5
O52—Al2—O1288.68 (4)H63A—C63—H63B109.5
O62—Al2—O4287.90 (4)C73—C63—H63C109.5
O52—Al2—O4290.85 (4)H63A—C63—H63C109.5
O12—Al2—O42178.49 (5)H63B—C63—H63C109.5
O62—Al2—O2290.00 (4)O33—C73—C83124.22 (12)
O52—Al2—O22178.18 (5)O33—C73—C63116.52 (12)
O12—Al2—O2291.30 (4)C83—C73—C63119.25 (12)
O42—Al2—O2289.22 (4)C93—C83—C73123.03 (12)
O62—Al2—O32179.13 (5)C93—C83—H83118.5
O52—Al2—O3288.60 (4)C73—C83—H83118.5
O12—Al2—O3290.10 (4)O43—C93—C83123.85 (12)
O42—Al2—O3291.33 (4)O43—C93—C103115.55 (12)
O22—Al2—O3289.59 (4)C83—C93—C103120.60 (12)
C22—O12—Al2128.57 (8)C93—C103—H10G109.5
C42—O22—Al2128.28 (9)C93—C103—H10H109.5
C72—O32—Al2128.09 (9)H10G—C103—H10H109.5
C92—O42—Al2129.07 (9)C93—C103—H10I109.5
C122—O52—Al2128.05 (9)H10G—C103—H10I109.5
C142—O62—Al2128.02 (9)H10H—C103—H10I109.5
C22—C12—H12A109.5C123—C113—H11J109.5
C22—C12—H12B109.5C123—C113—H11K109.5
H12A—C12—H12B109.5H11J—C113—H11K109.5
C22—C12—H12C109.5C123—C113—H11L109.5
H12A—C12—H12C109.5H11J—C113—H11L109.5
H12B—C12—H12C109.5H11K—C113—H11L109.5
O12—C22—C32124.20 (12)O53—C123—C133124.41 (13)
O12—C22—C12115.64 (12)O53—C123—C113116.31 (14)
C32—C22—C12120.15 (12)C133—C123—C113119.28 (14)
C22—C32—C42122.76 (12)C143—C133—C123122.56 (13)
C22—C32—H32118.6C143—C133—H133118.7
C42—C32—H32118.6C123—C133—H133118.7
O22—C42—C32124.15 (12)O63—C143—C133124.18 (13)
O22—C42—C52116.23 (12)O63—C143—C153115.37 (12)
C32—C42—C52119.58 (12)C133—C143—C153120.43 (12)
C42—C52—H52A109.5C143—C153—H15G109.5
C42—C52—H52B109.5C143—C153—H15H109.5
H52A—C52—H52B109.5H15G—C153—H15H109.5
C42—C52—H52C109.5C143—C153—H15I109.5
H52A—C52—H52C109.5H15G—C153—H15I109.5
H52B—C52—H52C109.5H15H—C153—H15I109.5
O51—Al1—O11—C21167.25 (10)Al2—O12—C22—C320.01 (19)
O61—Al1—O11—C21100.77 (10)Al2—O12—C22—C12178.86 (8)
O21—Al1—O11—C219.78 (11)O12—C22—C32—C424.5 (2)
O31—Al1—O11—C2179.68 (10)C12—C22—C32—C42174.34 (12)
O41—Al1—O21—C41166.64 (10)Al2—O22—C42—C328.12 (19)
O61—Al1—O21—C41105.01 (10)Al2—O22—C42—C52173.98 (9)
O11—Al1—O21—C4115.11 (11)C22—C32—C42—O220.3 (2)
O31—Al1—O21—C4174.97 (10)C22—C32—C42—C52177.56 (12)
O51—Al1—O31—C7182.82 (10)Al2—O32—C72—C823.18 (18)
O41—Al1—O31—C718.53 (10)Al2—O32—C72—C62178.42 (8)
O21—Al1—O31—C7197.14 (10)O32—C72—C82—C923.6 (2)
O11—Al1—O31—C71171.93 (10)C62—C72—C82—C92174.75 (12)
O51—Al1—O41—C9180.06 (10)Al2—O42—C92—C824.23 (18)
O61—Al1—O41—C91172.00 (10)Al2—O42—C92—C102176.34 (8)
O21—Al1—O41—C9196.97 (10)C72—C82—C92—O423.1 (2)
O31—Al1—O41—C917.55 (10)C72—C82—C92—C102176.32 (12)
O41—Al1—O51—C12191.30 (11)Al2—O52—C122—C1326.24 (19)
O61—Al1—O51—C1212.88 (11)Al2—O52—C122—C112173.04 (9)
O11—Al1—O51—C12186.97 (11)O52—C122—C132—C1421.9 (2)
O31—Al1—O51—C121177.11 (11)C112—C122—C132—C142178.85 (13)
O51—Al1—O61—C1413.96 (11)Al2—O62—C142—C1326.87 (19)
O41—Al1—O61—C14195.32 (11)Al2—O62—C142—C152174.88 (9)
O21—Al1—O61—C141176.09 (11)C122—C132—C142—O621.6 (2)
O11—Al1—O61—C14185.15 (11)C122—C132—C142—C152176.59 (13)
Al1—O11—C21—C311.88 (18)O63—Al3—O13—C2395.95 (11)
Al1—O11—C21—C11179.43 (8)O53—Al3—O13—C23172.29 (11)
O11—C21—C31—C415.8 (2)O33—Al3—O13—C2382.90 (11)
C11—C21—C31—C41172.84 (12)O23—Al3—O13—C236.42 (11)
Al1—O21—C41—C3112.69 (18)O63—Al3—O23—C43100.60 (11)
Al1—O21—C41—C51169.74 (9)O13—Al3—O23—C439.83 (11)
C21—C31—C41—O210.2 (2)O43—Al3—O23—C43170.73 (11)
C21—C31—C41—C51177.28 (12)O33—Al3—O23—C4379.39 (11)
Al1—O31—C71—C815.14 (18)O13—Al3—O33—C73177.96 (11)
Al1—O31—C71—C61176.66 (8)O53—Al3—O33—C7392.76 (11)
O31—C71—C81—C912.6 (2)O43—Al3—O33—C732.27 (11)
C61—C71—C81—C91175.51 (12)O23—Al3—O33—C7386.64 (11)
Al1—O41—C91—C813.04 (17)O63—Al3—O43—C93177.71 (11)
Al1—O41—C91—C101177.33 (8)O53—Al3—O43—C9390.53 (11)
C71—C81—C91—O413.8 (2)O33—Al3—O43—C931.14 (11)
C71—C81—C91—C101175.85 (11)O23—Al3—O43—C9388.18 (11)
Al1—O51—C121—C1311.0 (2)O63—Al3—O53—C12313.35 (12)
Al1—O51—C121—C111178.77 (9)O13—Al3—O53—C123104.11 (12)
O51—C121—C131—C1411.2 (2)O43—Al3—O53—C12375.33 (12)
C111—C121—C131—C141179.09 (14)O33—Al3—O53—C123166.64 (12)
Al1—O61—C141—C1313.2 (2)O13—Al3—O63—C143101.66 (11)
Al1—O61—C141—C151175.16 (10)O53—Al3—O63—C14312.36 (11)
C121—C131—C141—O610.0 (2)O43—Al3—O63—C14378.11 (11)
C121—C131—C141—C151178.32 (14)O23—Al3—O63—C143167.03 (11)
O62—Al2—O12—C2295.42 (11)Al3—O13—C23—C331.11 (19)
O52—Al2—O12—C22172.78 (11)Al3—O13—C23—C13179.90 (9)
O22—Al2—O12—C225.41 (11)O13—C23—C33—C434.2 (2)
O32—Al2—O12—C2284.18 (11)C13—C23—C33—C43174.79 (12)
O62—Al2—O22—C42100.11 (11)Al3—O23—C43—C338.01 (19)
O12—Al2—O22—C429.43 (11)Al3—O23—C43—C53173.86 (9)
O42—Al2—O22—C42171.99 (11)C23—C33—C43—O230.6 (2)
O32—Al2—O22—C4280.66 (11)C23—C33—C43—C53177.50 (13)
O52—Al2—O32—C7283.55 (11)Al3—O33—C73—C833.07 (19)
O12—Al2—O32—C72172.22 (10)Al3—O33—C73—C63176.38 (9)
O42—Al2—O32—C727.27 (11)O33—C73—C83—C932.1 (2)
O22—Al2—O32—C7296.48 (11)C63—C73—C83—C93177.32 (12)
O62—Al2—O42—C92172.54 (11)Al3—O43—C93—C830.78 (18)
O52—Al2—O42—C9280.76 (11)Al3—O43—C93—C103178.84 (8)
O22—Al2—O42—C9297.43 (11)C73—C83—C93—O430.9 (2)
O32—Al2—O42—C927.86 (11)C73—C83—C93—C103178.68 (12)
O62—Al2—O52—C12210.46 (11)Al3—O53—C123—C1338.7 (2)
O12—Al2—O52—C122101.10 (11)Al3—O53—C123—C113171.24 (10)
O42—Al2—O52—C12277.46 (11)O53—C123—C133—C1432.2 (2)
O32—Al2—O52—C122168.77 (11)C113—C123—C133—C143177.89 (14)
O52—Al2—O62—C14210.76 (11)Al3—O63—C143—C1336.6 (2)
O12—Al2—O62—C14299.46 (11)Al3—O63—C143—C153175.06 (9)
O42—Al2—O62—C14280.03 (11)C123—C133—C143—O633.4 (2)
O22—Al2—O62—C142169.24 (11)C123—C133—C143—C153174.95 (14)

Experimental details

(Ia)(Ib)(Ic)(Id)
Crystal data
Chemical formula[Al(C5H7O2)3][Al(C5H7O2)3][Al(C5H7O2)3][Al(C5H7O2)3]
Mr324.30324.30324.30324.30
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/cMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)240210180150
a, b, c (Å)13.9140 (7), 7.50076 (17), 16.2547 (6)13.8640 (6), 7.4755 (3), 16.2080 (11)13.8385 (7), 7.4614 (3), 16.1873 (11)13.7961 (5), 7.44012 (17), 16.1488 (5)
β (°) 98.806 (2) 98.821 (2) 98.871 (2) 98.914 (3)
V3)1676.44 (11)1659.94 (15)1651.42 (16)1637.57 (9)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.150.150.150.15
Crystal size (mm)0.42 × 0.39 × 0.180.42 × 0.39 × 0.180.42 × 0.39 × 0.180.42 × 0.39 × 0.18
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Multi-scan
(SADABS; Sheldrick, 2002)
Multi-scan
(SADABS; Sheldrick, 2002)
Multi-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.67, 0.970.70, 0.970.73, 0.970.74, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
29848, 3870, 3065 29627, 3823, 3133 29482, 3801, 3201 29260, 3771, 3248
Rint0.0260.0250.0230.023
(sin θ/λ)max1)0.6500.6500.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.124, 1.08 0.039, 0.114, 1.07 0.037, 0.103, 1.08 0.034, 0.094, 1.05
No. of reflections3870382338013771
No. of parameters205205205205
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.230.21, 0.250.22, 0.250.26, 0.26


(Ie)
Crystal data
Chemical formula[Al(C5H7O2)3]
Mr324.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)22.7424 (11), 7.4467 (2), 29.6165 (13)
β (°) 103.221 (2)
V3)4882.8 (3)
Z12
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.42 × 0.39 × 0.18
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.66, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
83926, 11232, 8990
Rint0.036
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.111, 1.05
No. of reflections11232
No. of parameters613
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.26

Computer programs: COLLECT (Nonius, 1999), PEAKREF (Schreurs, 2005), EVAL14 (Duisenberg et al., 2003), EVAL15 (Xian et al., 2006), SHELXS97 (Sheldrick, 1997), coordinates were taken from (Ia), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), manual editing of SHELXL97 output.

Selected bond lengths (Å) for (Ie) top
Al1—O511.8704 (9)Al2—O421.8853 (10)
Al1—O411.8837 (10)Al2—O221.8890 (9)
Al1—O611.8847 (9)Al2—O321.8904 (10)
Al1—O211.8867 (9)Al3—O631.8735 (10)
Al1—O111.8894 (10)Al3—O131.8824 (10)
Al1—O311.8924 (9)Al3—O531.8838 (10)
Al2—O621.8757 (10)Al3—O431.8857 (10)
Al2—O521.8793 (10)Al3—O331.8902 (10)
Al2—O121.8848 (10)Al3—O231.8910 (10)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds