Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C24H24N2O3S, exhibits anti­fungal and anti­bacterial properties. The compound crystallizes with two mol­ecules in the asymmetric unit, with one mol­ecule exhibiting `orientational disorder' in the crystal structure with respect to the cyclo­hexene ring. The o-toluidine groups in both mol­ecules are noncoplanar with the respective cyclo­hexene-fused thio­phene ring. In both mol­ecules, there is an intra­molecular N—H...N hydrogen bond forming a pseudo-six-membered ring which locks the mol­ecular conformation and eliminates conformational flexibility. The crystal structure is stabilized by O—H...O hydrogen bonds; both mol­ecules in the asymmetric unit form independent chains, each such chain consisting of alternating `ordered' and `disordered' mol­ecules in the crystal lattice.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108001133/av3133sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108001133/av3133Isup2.hkl
Contains datablock I

CCDC reference: 682842

Comment top

The design of compounds possessing important pharmacological properties, such as antibacterial, anti-cancer, anti-inflammatory and antitoxic activities, is an important area of research. In this respect, Schiff bases (Pellis & West, 1968; Cohen et al.,1977; Csaszar & Morvay, 1983; Lakshmi et al., 1985) and their related thiophene derivatives (El-Maghraby et al., 1984; Dzhurayev et al., 1992; Gewald et al., 1966) have been synthesized and found to exhibit such biological activities. In this context, sulfur-containing Schiff bases are the most effective. In view of medicinal applications of such classes of compounds, single-crystal structure determinations on a series of biologically active thiophene-3-carboxamide derivatives have been performed (Vasu et al., 2003). In most of these structure determinations the molecular scaffold which remains invariant is the 2-[(E)-benzylideneamino]-N-phenyl-4,5,6,7-tetrahydro-1-benzothiophene- 3-carboxamide group. The molecular skeleton is divided into three parts, namely the cyclohexene fused thiophene group, the N-phenyl part and the benzylideneamino group. It was observed that the cyclohexene ring is ordered in all the above determined crystal structures. In one such structure determination, viz. 2-({(1E)-[4-(dimethylamino)phenyl]methylene}amino)-N-(4-methylphenyl)- 4,5,6,7-tetrahydro-1-benzothiophene-3-carboxamide (Vasu et al., 2003), the asymmetric unit contains two molecules·It is indeed noteworthy that in the title compound, although it crystallizes with two molecules (A and B) in asymmetric unit (Fig. 1), one molecule exhibits orientational disorder (molecule B) in the crystal lattice. The disorder could be well resolved, with the cyclohexene ring having two independent conformations, the major conformer (C25/C26B/C27A/C28/C29/C30 ring) having an occupancy of 0.54 (2). With this background, in order to compare with our previous studies the changes in molecular conformation and associated intermolecular interactions due to the presence of different substituents on the invariant group, the crystal structure analysis of the title compound has been carried out.

The thiophene ring is essentially planar with the maximum deviation of 0.005 (3) Å and -0.017 (3) Å for atom C9 and C31 in the two molecules. The six-membered cyclohexene ring adopts a half-chair conformation, with atoms C13 and C14 deviating from the C10/C11/C12/C15 plane by 0.228 (4) and -0.408 (5) Å, for A and the corresponding displacements for atoms C27A and C26B (of the major conformer in molecule B) from the C25/C28/C29/C30 plane are 0.23 (2) and -0.51 (2) Å respectively. The ring-puckering parameters (Cremer & Pople, 1975) generated by PLATON (Spek, 2003) for the cyclohexene ring are Q(2)= 0.324 (3) Å, phi(2) = 200.2 (6)° and theta = 49.8 (4)° in molecule A, with corresponding values of 0.39 (2) Å, 88.0 (12)° and 131.9 (12)° in molecule B (major conformer).

The bond angles C20—C21—C23 and C42—C47—C46 in molecule A and B are 116.9 (2)° and 117.06 (3)° which deviate significantly from the ideal bond angle value of 120°. This deviation is due to the electron-donating inductive effect of the methyl group and similar variations in bond angles has also been observed in 2-[(E)-(4-Chlorophenyl)methylene- amino]-N-(X-methylphenyl)-4,5,6,7-tetrahydro-1-benzothiophene- 3-carboxamide, where X = 2 and 3 (Vasu et al., 2004a), and in 2-{[(E)-(4-methoxyphenyl)methylene]amino}- N-(3-methylphenyl)-4,5,6,7-tetrahydro-1-benzothiophene-3- carboxamide and N-(4-methylphenyl)-2- {[(E)-(4-methylphenyl)methylene]amino}-4,5,6,7-tetrahydro- 1-benzothiophene-3-carboxamide respectively (Vasu et al.,2004(b)). Similarly the bond angles, C8—N1—C7 [121.9 (2)°] and C16—N2—C23 [123.9 (2)°] in molecule A around the azomethane N and amide N atoms are different, indicating the delocalization of the N-atom lone pair of electrons. The corresponding bond angles C41—N4—C42 and C31—N3—C32 in molecule B are 124.2 (2)° and 122.3 (2)° respectively. This is further demonstrated by the bond lengths in the carboxamide and imine moieties being significantly different. In molecule A, the C16—N2 and C8—N1 bond lengths are 1.342 (3) Å and 1.384 (3) Å. The corresponding values (C41···N4 and C31—N3) in molecule B are 1.343 (3) Å and 1.388 (3) Å respectively indicating that the electronic and steric environment around these are different (Table 1). Similarity in bond lengths have been observed in the literature in analogous systems (Vasu et al., 2003, 2004(a) and (b), Kumar et al., 2005).

The angles between the mean planes of the o-toluidine and thiophene rings are 58.6 (1)° and 64.4 (1)° in molecule A and B respectively, indicating sufficient deviation from coplanarity to minimize the steric repulsions between the methoxy group and the hydrogen atoms of the benzene ring (H17 and H18 in molecule A, H43 and H44 in molecule B)·This is further demonstrated by the torsion C17—C23—N2—C16 about the C23—N2 bond in A, and the C43—C42—N4—C41 about the C42—N4 bond in B being -107.6 (3)° and -102.7 (3)° respectively. The benzylideneamino group is essentially planar with the thiophene ring in both molecule A and B. The corresponding dihedral angles being 176.3 (1) Å and 172.1 (1) Å respectively. It is noteworthy, that in case of 2-{[(E)-(4-methoxyphenyl)methylene]amino}- N-(3-methylphenyl)-4,5,6,7-tetrahydro-1-benzothiophene-3- carboxamide and N-(4-methylphenyl)-2- {[(E)-(4-methylphenyl)methylene]amino}-4,5,6,7-tetrahydro- 1-benzothiophene-3-carboxamide (Vasu et al., 2004b), the m-toluidine and p-toluidine rings are coplanar with the thiophene rings because of the stabilization imparted, due to electron delocalization and also the absence of steric interactions. The introduction of one methyl group on the N-phenyl ring in the ortho and meta positions, as in case of 2-[(E)-(4-Chlorophenyl)methyleneamino]-N-(2-methylphenyl) -4,5,6,7-tetrahydro-1-benzothiophene-3-carboxamide ((Vasu et al., 2004(a)), introduces loss of planarity due to steric interaction between the methyl group and the benzene H atoms bounded to the imine group. The dihedral angles between the mean planes of the m-toluidine and thiophene rings is 18.4 (1)° whereas that between the o-toluidine and thiophene rings is 12.9 (1)°. On addition of a F atom, as in case of 2-[(E)-Benzylideneamino]-N-(2-fluorophenyl)- 4,5,6,7-tetrahydro-1-benzothiophene-3-carboxamide (Vasu et al., 2005), the torsion angle is 151.8 (2)° between the o-fluorophenyl and thiophene rings indicating the importance role of sterics in dictating molecular conformation. This deviation from planarity is further increased when a substituent, a methoxy group, in the present compound, was introduced in the phenyl ring attached to imine group as reflected in the values of the dihedral angles observed in the present study.

The conformation of both the molecules in the asymmetric unit is stabilized by intramolecular N—H···N hydrogen bonds which lock the molecular conformation. The crystal structure in the title compound is stabilized by intermolecular O—H···O hydrogen bonds involving the phenolic hydrogen with the carbonyl ring forming C(12) chains (Bernstein et al., 1995) along the crystallographic c axis related by glide plane (Fig. 2, Table 2). >From the packing characteristics, it is interesting to note that the ordered molecule (A) forms molecular chains involving O—H···O hydrogen bonds (involving H1O and O6) with disordered molecules on either side. Similarly, in the parallel chain along [001] direction, the disordered molecule B forms chain with ordered molecules utilizing O—H···O hydrogen bonds (involving H4O and O3). In between parallel layers of molecules the crystal structure is held by van-der Waals forces (Vaas et al., 2003).

In conclusion, the role of different substitutions on the conformational preferences in a series of carboxamide derivatives is highlighted. The associated packing features is mainly through strong hydrogen bonds with cooperativity from van der Waals interactions.

Related literature top

For related literature, see: Bernstein et al. (1995); Cohen et al. (1977); Cremer & Pople (1975); Csaszar & Morvay (1983); Dzhurayev et al. (1992); El-Maghraby, Haroun & Mohammed (1984); Gewald et al. (1966); Lakshmi et al. (1985); Pellis & West (1968); Spek (2003); Vasu, Nirmala, Chopra, Mohan & Saravanan (2005); Vasu, Nirmala, Choudhury, Mohan, Saravanan & Narasimhamurthy (2003).

Experimental top

The title compound was synthesized using Gewald reaction (Gewald et al., 1966). Ortho-cyanotoluidine (0.04 mol) was refluxed with ethyl methyl ketone in the presence of sulfur at 313–323 K for one hr. The product was then reacted with 4-hydroxy-5-methoxybenzaldehyde in an equi-molar ratio in the presence of ethanol which yielded the title compound (68%). This was purified by recrystallization from ethylacetate by slow evaporation, yielding orange needle-shaped crystals.

Refinement top

The hydrogen atoms of the phenolic oxygen, amide nitrogen and the carbon connected to imine nitrogen were located from difference Fourier map and refined isotropically. The N—H and O—H bond lengths are in the range of 0.81 (2)–0.82 (2) Å and 0.86 (4)–0.84 (4) Å respectively. The disordered C26 and C27 atoms of the cyclohexene ring in molecule B were split up and refined using the PART command in SHELXL97.The remaining hydrogen atoms were placed in calculated positions and allowed to ride on the carbon atoms with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999) & CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP view of the two molecules of (I) drawn with 50% ellipsoidal probability·The dotted lines depict intramolecular N—H···N hydrogen bonds.
[Figure 2] Fig. 2. Packing view of the molecules showing O—H···O hydrogen bonds along [001] direction. The molecules at * and # have the symmetry codes at (x - 1/2, - y + 1/2, z - 1/2) and (x + 1/2, - y + 1/2, z - 1/2.)
2-{[(E)-(4-hydroxy-3-methoxyphenyl)methylene]amino}- N-(2-methylphenyl)-4,5,6,7-tetrahydro-1-benzothiophene-3- carboxamide top
Crystal data top
C24H24N2O3SF(000) = 1776
Mr = 420.52Dx = 1.308 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 966 reflections
a = 14.817 (8) Åθ = 1.4–25.2°
b = 13.701 (8) ŵ = 0.18 mm1
c = 22.224 (13) ÅT = 290 K
β = 108.807 (11)°Needle, orange
V = 4271 (4) Å30.18 × 0.09 × 0.08 mm
Z = 8
Data collection top
Bruker SMART CCD area detector
diffractometer
7512 independent reflections
Radiation source: fine-focus sealed tube4900 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1517
Tmin = 0.937, Tmax = 0.986k = 1616
30379 measured reflectionsl = 2526
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0742P)2 + 0.2254P]
where P = (Fo2 + 2Fc2)/3
7512 reflections(Δ/σ)max = 0.001
587 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C24H24N2O3SV = 4271 (4) Å3
Mr = 420.52Z = 8
Monoclinic, P21/nMo Kα radiation
a = 14.817 (8) ŵ = 0.18 mm1
b = 13.701 (8) ÅT = 290 K
c = 22.224 (13) Å0.18 × 0.09 × 0.08 mm
β = 108.807 (11)°
Data collection top
Bruker SMART CCD area detector
diffractometer
7512 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
4900 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.986Rint = 0.037
30379 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.28 e Å3
7512 reflectionsΔρmin = 0.25 e Å3
587 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.89918 (5)0.92051 (5)0.25384 (3)0.0577 (2)
S20.37454 (5)0.27951 (4)0.25158 (3)0.0527 (2)
N10.88085 (13)0.72001 (13)0.25172 (9)0.0448 (5)
N20.82445 (17)0.65000 (15)0.34988 (11)0.0548 (6)
N30.35969 (13)0.07897 (13)0.24744 (8)0.0428 (5)
N40.32786 (17)0.00023 (14)0.35192 (10)0.0529 (6)
O10.87388 (14)0.37120 (13)0.06075 (9)0.0638 (5)
O20.87414 (14)0.36031 (12)0.17809 (8)0.0612 (5)
O30.86785 (16)0.74034 (13)0.43853 (8)0.0780 (6)
O40.36778 (15)0.26720 (14)0.05810 (10)0.0712 (6)
O50.37704 (14)0.27993 (12)0.17644 (8)0.0651 (5)
O60.36139 (15)0.09260 (12)0.43903 (8)0.0662 (5)
C10.88193 (17)0.45654 (18)0.09255 (11)0.0477 (6)
C20.89026 (17)0.54599 (18)0.06620 (11)0.0505 (6)
C30.89502 (17)0.63052 (18)0.10064 (11)0.0493 (6)
C40.89104 (16)0.62715 (17)0.16243 (10)0.0430 (6)
C50.88510 (16)0.53654 (17)0.18963 (11)0.0452 (6)
C60.88059 (17)0.45184 (17)0.15587 (11)0.0452 (6)
C70.89134 (17)0.71715 (17)0.19668 (11)0.0454 (6)
C80.88401 (16)0.80691 (16)0.28410 (11)0.0431 (6)
C90.87418 (16)0.81588 (15)0.34373 (10)0.0408 (5)
C100.88040 (16)0.91534 (16)0.36490 (11)0.0425 (6)
C110.89335 (17)0.97829 (16)0.32134 (12)0.0505 (6)
C120.9026 (2)1.08684 (18)0.32882 (15)0.0714 (8)
C130.9252 (3)1.1127 (2)0.39916 (19)0.0998 (12)
C140.8682 (2)1.0609 (2)0.43056 (15)0.0790 (9)
C150.87478 (19)0.95116 (18)0.42809 (12)0.0550 (7)
C160.85648 (17)0.73296 (17)0.38167 (11)0.0463 (6)
C170.8759 (2)0.4886 (2)0.38832 (15)0.0761 (9)
C180.8637 (3)0.4007 (2)0.41417 (18)0.0902 (11)
C190.7834 (3)0.3857 (2)0.43052 (14)0.0755 (9)
C200.7176 (2)0.4580 (2)0.42221 (12)0.0654 (8)
C210.72811 (19)0.54821 (18)0.39630 (11)0.0531 (6)
C220.6539 (2)0.6260 (2)0.38577 (17)0.0897 (10)
C230.80913 (19)0.56149 (17)0.37936 (11)0.0500 (6)
C240.8663 (2)0.35302 (19)0.24010 (12)0.0599 (7)
C250.3968 (2)0.44117 (17)0.33335 (14)0.0669 (8)
C26A0.4341 (7)0.4628 (10)0.4030 (9)0.077 (3)0.50
C26B0.3885 (7)0.4694 (9)0.3980 (8)0.066 (3)0.50
C27A0.4401 (6)0.3982 (5)0.4495 (3)0.0621 (17)0.50
C27B0.3779 (6)0.4115 (5)0.4393 (4)0.0667 (18)0.50
C280.38793 (19)0.29922 (17)0.43483 (11)0.0564 (7)
C290.37737 (16)0.26764 (16)0.36793 (11)0.0425 (6)
C300.38295 (17)0.33324 (16)0.32344 (12)0.0484 (6)
C310.36404 (16)0.16471 (16)0.28156 (11)0.0414 (6)
C320.37255 (18)0.07732 (18)0.19336 (11)0.0469 (6)
C330.37357 (16)0.01171 (17)0.15861 (10)0.0451 (6)
C340.37406 (18)0.00763 (19)0.09607 (11)0.0540 (7)
C350.37160 (18)0.09198 (19)0.06169 (11)0.0566 (7)
C360.37090 (18)0.18205 (19)0.08895 (11)0.0510 (6)
C370.37418 (17)0.18761 (17)0.15321 (11)0.0476 (6)
C380.37430 (16)0.10369 (17)0.18654 (11)0.0462 (6)
C390.3867 (2)0.2897 (2)0.24195 (12)0.0680 (8)
C400.36408 (15)0.16948 (15)0.34372 (10)0.0394 (5)
C410.35211 (17)0.08521 (16)0.38252 (11)0.0422 (6)
C420.31711 (19)0.08931 (16)0.38188 (10)0.0477 (6)
C430.3863 (2)0.16002 (18)0.38932 (13)0.0618 (7)
C440.3775 (2)0.2485 (2)0.41544 (15)0.0762 (9)
C450.2999 (3)0.2670 (2)0.43451 (14)0.0763 (9)
C460.2312 (2)0.1969 (2)0.42731 (12)0.0667 (8)
C470.23777 (19)0.10587 (18)0.40070 (11)0.0534 (7)
C480.1616 (2)0.0310 (2)0.39172 (17)0.0840 (10)
H2N0.8328 (18)0.6435 (18)0.3154 (12)0.059 (9)*
H4N0.3361 (17)0.0037 (18)0.3178 (12)0.053 (8)*
H1O0.871 (2)0.387 (2)0.0219 (16)0.107 (13)*
H4O0.367 (3)0.251 (3)0.0205 (18)0.133 (16)*
H20.89270.54920.02490.061*
H30.90090.69040.08250.059*
H50.88420.53350.23120.054*
H70.9007 (15)0.7760 (17)0.1762 (10)0.052 (7)*
H12A0.84361.11800.30390.086*
H12B0.95331.11000.31370.086*
H13A0.99191.09880.42110.120*
H13B0.91571.18220.40270.120*
H14A0.80211.07980.41120.095*
H14B0.88781.08100.47470.095*
H15A0.81930.92260.43540.066*
H15B0.93090.92940.46190.066*
H170.93000.49910.37670.091*
H180.90950.35190.42050.108*
H190.77370.32600.44740.091*
H200.66390.44680.43420.078*
H22A0.67900.67970.41400.135*
H22B0.59880.60000.39400.135*
H22C0.63620.64830.34260.135*
H24A0.92380.37680.27080.090*
H24B0.85670.28600.24910.090*
H24C0.81320.39130.24220.090*
H25A0.34890.47570.29990.080*0.50
H25B0.45910.45960.33160.080*0.50
H25C0.44190.46400.31320.080*0.50
H25D0.33660.47430.31360.080*0.50
H26A0.41500.53420.40940.080*0.50
H26B0.32170.47160.39480.080*0.50
H26C0.43170.53270.40940.093*0.50
H26D0.50030.44260.41960.093*0.50
H27A0.44010.42210.49060.075*0.50
H27B0.50570.39090.45060.075*0.50
H27C0.31130.42970.42200.080*0.50
H27D0.40110.43150.48350.080*0.50
H28A0.42370.25040.46470.068*0.50
H28B0.32540.30500.43970.068*0.50
H28C0.44990.27910.46300.068*0.50
H28D0.33960.26720.44870.068*0.50
H320.3830 (17)0.1390 (18)0.1747 (11)0.061 (7)*
H340.37610.05260.07730.065*
H350.37040.08790.01970.068*
H380.37490.10760.22840.055*
H39A0.44320.25620.26710.102*
H39B0.39140.35750.25320.102*
H39C0.33200.26180.24970.102*
H430.43900.14750.37650.074*
H440.42410.29610.42020.091*
H450.29390.32700.45230.092*
H460.17900.21030.44050.080*
H48A0.18510.02160.42120.126*
H48B0.10720.06000.39920.126*
H48C0.14350.00630.34910.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0834 (5)0.0418 (4)0.0562 (4)0.0060 (3)0.0339 (4)0.0072 (3)
S20.0693 (5)0.0413 (3)0.0521 (4)0.0005 (3)0.0257 (3)0.0080 (3)
N10.0583 (13)0.0396 (11)0.0417 (12)0.0052 (9)0.0232 (10)0.0015 (9)
N20.0852 (17)0.0441 (12)0.0436 (13)0.0118 (11)0.0323 (12)0.0012 (10)
N30.0531 (12)0.0428 (11)0.0341 (11)0.0004 (9)0.0162 (9)0.0002 (9)
N40.0839 (17)0.0398 (12)0.0397 (13)0.0094 (10)0.0265 (12)0.0023 (10)
O10.0926 (15)0.0566 (11)0.0464 (12)0.0059 (10)0.0281 (11)0.0067 (9)
O20.0933 (14)0.0464 (10)0.0486 (11)0.0049 (9)0.0294 (10)0.0033 (8)
O30.1359 (19)0.0623 (12)0.0399 (11)0.0178 (12)0.0340 (11)0.0005 (9)
O40.1042 (17)0.0631 (13)0.0490 (12)0.0173 (11)0.0283 (11)0.0097 (10)
O50.0977 (15)0.0495 (10)0.0512 (11)0.0118 (10)0.0284 (10)0.0010 (9)
O60.1116 (16)0.0537 (11)0.0364 (10)0.0121 (10)0.0281 (10)0.0036 (8)
C10.0481 (15)0.0546 (15)0.0401 (14)0.0040 (11)0.0137 (12)0.0050 (12)
C20.0562 (17)0.0611 (16)0.0364 (13)0.0005 (12)0.0181 (12)0.0019 (12)
C30.0546 (16)0.0540 (15)0.0425 (14)0.0054 (12)0.0199 (12)0.0040 (12)
C40.0441 (15)0.0496 (14)0.0358 (13)0.0035 (11)0.0138 (11)0.0005 (11)
C50.0521 (16)0.0515 (14)0.0331 (13)0.0006 (11)0.0156 (11)0.0016 (11)
C60.0487 (15)0.0498 (14)0.0383 (14)0.0026 (11)0.0157 (11)0.0015 (11)
C70.0513 (16)0.0431 (14)0.0425 (15)0.0067 (11)0.0160 (12)0.0053 (11)
C80.0506 (15)0.0394 (13)0.0414 (14)0.0029 (10)0.0177 (11)0.0051 (10)
C90.0452 (14)0.0402 (13)0.0373 (13)0.0032 (10)0.0137 (11)0.0003 (10)
C100.0389 (14)0.0424 (13)0.0446 (14)0.0026 (10)0.0111 (11)0.0016 (11)
C110.0547 (16)0.0401 (13)0.0571 (16)0.0045 (11)0.0187 (13)0.0015 (12)
C120.082 (2)0.0395 (15)0.096 (2)0.0055 (13)0.0340 (18)0.0006 (15)
C130.128 (3)0.0551 (19)0.136 (3)0.0235 (19)0.069 (3)0.039 (2)
C140.096 (2)0.0623 (19)0.074 (2)0.0007 (17)0.0209 (18)0.0195 (16)
C150.0559 (17)0.0568 (16)0.0501 (15)0.0015 (12)0.0140 (13)0.0127 (12)
C160.0574 (16)0.0446 (14)0.0405 (14)0.0019 (11)0.0206 (12)0.0019 (11)
C170.087 (2)0.0586 (18)0.101 (2)0.0050 (16)0.0556 (19)0.0126 (17)
C180.109 (3)0.0508 (19)0.124 (3)0.0155 (17)0.055 (2)0.0181 (18)
C190.110 (3)0.0449 (16)0.073 (2)0.0146 (17)0.0305 (19)0.0109 (14)
C200.078 (2)0.0648 (19)0.0587 (17)0.0227 (16)0.0300 (15)0.0060 (14)
C210.0619 (18)0.0540 (15)0.0454 (15)0.0102 (13)0.0200 (13)0.0008 (12)
C220.080 (2)0.082 (2)0.121 (3)0.0105 (18)0.052 (2)0.022 (2)
C230.0712 (18)0.0417 (13)0.0415 (14)0.0085 (12)0.0243 (13)0.0016 (11)
C240.0745 (19)0.0559 (16)0.0497 (16)0.0003 (13)0.0205 (14)0.0100 (12)
C250.078 (2)0.0388 (14)0.089 (2)0.0020 (13)0.0340 (17)0.0002 (14)
C26A0.074 (8)0.048 (5)0.112 (8)0.020 (6)0.033 (9)0.026 (5)
C26B0.063 (7)0.045 (4)0.089 (6)0.003 (6)0.021 (7)0.024 (4)
C27A0.069 (5)0.051 (4)0.066 (4)0.013 (4)0.019 (4)0.019 (3)
C27B0.072 (5)0.055 (4)0.073 (5)0.008 (4)0.023 (5)0.017 (3)
C280.0707 (18)0.0488 (14)0.0509 (15)0.0103 (12)0.0213 (13)0.0126 (12)
C290.0412 (14)0.0389 (13)0.0474 (14)0.0027 (10)0.0141 (11)0.0035 (11)
C300.0500 (15)0.0401 (13)0.0580 (16)0.0013 (11)0.0215 (13)0.0014 (12)
C310.0430 (14)0.0380 (13)0.0430 (14)0.0020 (10)0.0137 (11)0.0031 (10)
C320.0565 (16)0.0449 (14)0.0397 (14)0.0021 (12)0.0161 (12)0.0054 (11)
C330.0477 (15)0.0508 (14)0.0367 (13)0.0054 (11)0.0133 (11)0.0011 (11)
C340.0675 (18)0.0583 (16)0.0411 (14)0.0079 (13)0.0242 (13)0.0063 (12)
C350.0660 (18)0.0708 (19)0.0336 (14)0.0141 (14)0.0170 (12)0.0030 (13)
C360.0535 (16)0.0583 (16)0.0410 (15)0.0132 (12)0.0153 (12)0.0061 (12)
C370.0485 (15)0.0521 (15)0.0420 (14)0.0089 (11)0.0141 (12)0.0016 (12)
C380.0492 (15)0.0568 (15)0.0336 (13)0.0078 (11)0.0147 (11)0.0004 (11)
C390.091 (2)0.0581 (17)0.0580 (18)0.0024 (15)0.0274 (16)0.0057 (13)
C400.0416 (14)0.0370 (12)0.0393 (13)0.0013 (10)0.0128 (11)0.0019 (10)
C410.0501 (15)0.0404 (13)0.0367 (14)0.0012 (10)0.0149 (11)0.0009 (10)
C420.0681 (18)0.0373 (13)0.0374 (13)0.0077 (12)0.0166 (12)0.0011 (10)
C430.069 (2)0.0498 (16)0.0680 (18)0.0069 (14)0.0235 (15)0.0037 (13)
C440.094 (3)0.0446 (16)0.081 (2)0.0081 (16)0.0167 (19)0.0065 (15)
C450.118 (3)0.0420 (16)0.0635 (19)0.0134 (18)0.0225 (19)0.0081 (14)
C460.093 (2)0.0612 (18)0.0526 (17)0.0228 (16)0.0321 (16)0.0012 (14)
C470.0640 (18)0.0525 (15)0.0448 (15)0.0084 (13)0.0190 (13)0.0025 (12)
C480.078 (2)0.078 (2)0.107 (3)0.0032 (17)0.043 (2)0.0049 (19)
Geometric parameters (Å, º) top
C27A—C26B1.511 (17)C39—H39B0.9600
C27A—C281.543 (7)C39—H39C0.9600
C27A—H27A0.9700C45—C441.370 (4)
C27A—H27B0.9700C45—H450.9300
C26B—C251.530 (15)C44—H440.9300
C26B—H26A0.9700S1—C111.722 (3)
C26B—H26B0.9700S1—C81.738 (2)
C27B—C26A1.508 (17)O1—C11.352 (3)
C27B—C281.552 (8)O1—H1O0.89 (3)
C27B—H27C0.9700O2—C61.362 (3)
C27B—H27D0.9700O2—C241.422 (3)
C26A—C251.496 (17)O3—C161.223 (3)
C26A—H26C0.9700C5—C61.371 (3)
C26A—H26D0.9700C5—C41.396 (3)
C25—C301.499 (3)C5—H50.9300
C25—H25A0.9700N1—C71.283 (3)
C25—H25B0.9700N1—C81.384 (3)
C25—H25C0.9700C9—C81.384 (3)
C25—H25D0.9700C9—C101.435 (3)
C28—C291.508 (3)C9—C161.489 (3)
C28—H28A0.9700N2—C161.342 (3)
C28—H28B0.9700N2—C231.431 (3)
C28—H28C0.9700N2—H2N0.82 (2)
C28—H28D0.9700C1—C21.380 (3)
S2—C301.726 (3)C1—C61.415 (3)
S2—C311.735 (2)C4—C31.395 (3)
N3—C321.277 (3)C4—C71.448 (3)
N3—C311.388 (3)C10—C111.355 (3)
O6—C411.222 (3)C10—C151.516 (3)
O4—C361.346 (3)C23—C171.374 (4)
O4—H4O0.86 (4)C23—C211.381 (3)
O5—C371.362 (3)C7—H70.97 (2)
O5—C391.422 (3)C3—C21.378 (3)
N4—C411.344 (3)C3—H30.9300
N4—C421.424 (3)C2—H20.9300
N4—H4N0.81 (2)C20—C191.360 (4)
C40—C311.382 (3)C20—C211.395 (3)
C40—C291.438 (3)C20—H200.9300
C40—C411.486 (3)C11—C121.497 (3)
C32—C331.446 (3)C21—C221.493 (4)
C32—H320.97 (2)C24—H24A0.9600
C36—C351.377 (3)C24—H24B0.9600
C36—C371.416 (3)C24—H24C0.9600
C29—C301.360 (3)C15—C141.510 (4)
C38—C371.366 (3)C15—H15A0.9700
C38—C331.403 (3)C15—H15B0.9700
C38—H380.9300C19—C181.364 (4)
C42—C431.379 (3)C19—H190.9300
C42—C471.387 (3)C12—C131.533 (4)
C35—C341.379 (3)C12—H12A0.9700
C35—H350.9300C12—H12B0.9700
C47—C461.397 (3)C22—H22A0.9600
C47—C481.490 (4)C22—H22B0.9600
C33—C341.393 (3)C22—H22C0.9600
C34—H340.9300C17—C181.372 (4)
C46—C451.368 (4)C17—H170.9300
C46—H460.9300C13—C141.442 (4)
C43—C441.369 (4)C13—H13A0.9700
C43—H430.9300C13—H13B0.9700
C48—H48A0.9600C14—H14A0.9700
C48—H48B0.9600C14—H14B0.9700
C48—H48C0.9600C18—H180.9300
C39—H39A0.9600
C26B—C27A—C28108.1 (7)C47—C48—H48A109.5
C26B—C27A—H27A110.1C47—C48—H48B109.5
C28—C27A—H27A110.1H48A—C48—H48B109.5
C26B—C27A—H27B110.1C47—C48—H48C109.5
C28—C27A—H27B110.1H48A—C48—H48C109.5
H27A—C27A—H27B108.4H48B—C48—H48C109.5
C27A—C26B—C25112.0 (7)O5—C39—H39A109.5
C27A—C26B—H26A109.2O5—C39—H39B109.5
C25—C26B—H26A109.2H39A—C39—H39B109.5
C27A—C26B—H26B109.2O5—C39—H39C109.5
C25—C26B—H26B109.2H39A—C39—H39C109.5
H26A—C26B—H26B107.9H39B—C39—H39C109.5
C26A—C27B—C28110.3 (7)C46—C45—C44119.9 (3)
C26A—C27B—H27C109.6C46—C45—H45120.0
C28—C27B—H27C109.6C44—C45—H45120.0
C26A—C27B—H27D109.6C43—C44—C45119.9 (3)
C28—C27B—H27D109.6C43—C44—H44120.0
H27C—C27B—H27D108.1C45—C44—H44120.0
C25—C26A—C27B112.2 (8)C11—S1—C891.46 (11)
C25—C26A—H26C109.2C1—O1—H1O105 (2)
C27B—C26A—H26C109.2C6—O2—C24116.93 (18)
C25—C26A—H26D109.2C6—C5—C4121.0 (2)
C27B—C26A—H26D109.2C6—C5—H5119.5
H26C—C26A—H26D107.9C4—C5—H5119.5
C26A—C25—C30109.6 (6)C7—N1—C8121.89 (19)
C30—C25—C26B109.9 (6)C8—C9—C10112.52 (19)
C26A—C25—H25A129.2C8—C9—C16124.58 (19)
C30—C25—H25A109.7C10—C9—C16122.9 (2)
C26B—C25—H25A109.7C16—N2—C23123.9 (2)
C26A—C25—H25B87.2C16—N2—H2N117.2 (18)
C30—C25—H25B109.7C23—N2—H2N115.2 (17)
C26B—C25—H25B109.7O1—C1—C2123.4 (2)
H25A—C25—H25B108.2O1—C1—C6117.0 (2)
C26A—C25—H25C109.5C2—C1—C6119.6 (2)
C30—C25—H25C109.4O2—C6—C5125.3 (2)
C26B—C25—H25C128.9O2—C6—C1115.3 (2)
H25A—C25—H25C86.0C5—C6—C1119.4 (2)
C26A—C25—H25D110.9C3—C4—C5118.9 (2)
C30—C25—H25D109.4C3—C4—C7119.7 (2)
C26B—C25—H25D88.1C5—C4—C7121.3 (2)
H25B—C25—H25D127.4C9—C8—N1125.27 (19)
H25C—C25—H25D108.0C9—C8—S1110.93 (16)
C29—C28—C27A110.3 (3)N1—C8—S1123.79 (16)
C29—C28—C27B111.5 (4)C11—C10—C9112.2 (2)
C29—C28—H28A109.6C11—C10—C15121.3 (2)
C27A—C28—H28A109.6C9—C10—C15126.5 (2)
C27B—C28—H28A133.0C17—C23—C21120.9 (2)
C29—C28—H28B109.6C17—C23—N2118.0 (2)
C27A—C28—H28B109.6C21—C23—N2121.1 (2)
C27B—C28—H28B78.3N1—C7—C4123.2 (2)
H28A—C28—H28B108.1N1—C7—H7120.4 (13)
C29—C28—H28C109.3C4—C7—H7116.5 (13)
C27A—C28—H28C78.9C2—C3—C4120.6 (2)
C27B—C28—H28C109.3C2—C3—H3119.7
H28B—C28—H28C133.7C4—C3—H3119.7
C29—C28—H28D109.3O3—C16—N2121.4 (2)
C27A—C28—H28D134.5O3—C16—C9122.1 (2)
C27B—C28—H28D109.4N2—C16—C9116.4 (2)
H28A—C28—H28D76.6C3—C2—C1120.4 (2)
H28C—C28—H28D108.0C3—C2—H2119.8
C30—S2—C3191.17 (11)C1—C2—H2119.8
C32—N3—C31122.33 (19)C19—C20—C21122.2 (3)
C36—O4—H4O106 (2)C19—C20—H20118.9
C37—O5—C39117.11 (19)C21—C20—H20118.9
C41—N4—C42124.2 (2)C10—C11—C12125.5 (2)
C41—N4—H4N115.5 (17)C10—C11—S1112.83 (17)
C42—N4—H4N117.5 (17)C12—C11—S1121.62 (19)
C31—C40—C29111.99 (19)C23—C21—C20116.7 (2)
C31—C40—C41125.58 (19)C23—C21—C22121.7 (2)
C29—C40—C41122.4 (2)C20—C21—C22121.6 (3)
C40—C31—N3124.82 (19)O2—C24—H24A109.5
C40—C31—S2111.69 (16)O2—C24—H24B109.5
N3—C31—S2123.45 (17)H24A—C24—H24B109.5
O6—C41—N4121.0 (2)O2—C24—H24C109.5
O6—C41—C40122.5 (2)H24A—C24—H24C109.5
N4—C41—C40116.5 (2)H24B—C24—H24C109.5
N3—C32—C33123.3 (2)C14—C15—C10112.3 (2)
N3—C32—H32118.4 (14)C14—C15—H15A109.1
C33—C32—H32118.4 (14)C10—C15—H15A109.1
O4—C36—C35123.8 (2)C14—C15—H15B109.1
O4—C36—C37116.9 (2)C10—C15—H15B109.1
C35—C36—C37119.3 (2)H15A—C15—H15B107.9
C30—C29—C40112.3 (2)C20—C19—C18120.1 (3)
C30—C29—C28121.1 (2)C20—C19—H19119.9
C40—C29—C28126.6 (2)C18—C19—H19119.9
C37—C38—C33121.1 (2)C11—C12—C13108.9 (2)
C37—C38—H38119.4C11—C12—H12A109.9
C33—C38—H38119.4C13—C12—H12A109.9
C43—C42—C47121.2 (2)C11—C12—H12B109.9
C43—C42—N4117.9 (2)C13—C12—H12B109.9
C47—C42—N4120.9 (2)H12A—C12—H12B108.3
O5—C37—C38125.6 (2)C21—C22—H22A109.5
O5—C37—C36114.8 (2)C21—C22—H22B109.5
C38—C37—C36119.7 (2)H22A—C22—H22B109.5
C36—C35—C34120.7 (2)C21—C22—H22C109.5
C36—C35—H35119.7H22A—C22—H22C109.5
C34—C35—H35119.7H22B—C22—H22C109.5
C29—C30—C25125.6 (2)C18—C17—C23120.9 (3)
C29—C30—S2112.79 (17)C18—C17—H17119.6
C25—C30—S2121.56 (19)C23—C17—H17119.6
C42—C47—C46117.0 (2)C14—C13—C12114.2 (3)
C42—C47—C48121.8 (2)C14—C13—H13A108.7
C46—C47—C48121.3 (3)C12—C13—H13A108.7
C34—C33—C38118.4 (2)C14—C13—H13B108.7
C34—C33—C32120.2 (2)C12—C13—H13B108.7
C38—C33—C32121.4 (2)H13A—C13—H13B107.6
C35—C34—C33120.8 (2)C13—C14—C15114.6 (3)
C35—C34—H34119.6C13—C14—H14A108.6
C33—C34—H34119.6C15—C14—H14A108.6
C45—C46—C47121.7 (3)C13—C14—H14B108.6
C45—C46—H46119.1C15—C14—H14B108.6
C47—C46—H46119.1H14A—C14—H14B107.6
C44—C43—C42120.2 (3)C19—C18—C17119.2 (3)
C44—C43—H43119.9C19—C18—H18120.4
C42—C43—H43119.9C17—C18—H18120.4
C28—C27A—C26B—C2566.5 (10)C47—C42—C43—C440.2 (4)
C28—C27B—C26A—C2563.8 (11)N4—C42—C43—C44177.3 (2)
C27B—C26A—C25—C3048.3 (10)C47—C46—C45—C440.3 (4)
C27B—C26A—C25—C26B46.8 (18)C42—C43—C44—C450.3 (4)
C27A—C26B—C25—C26A51.2 (19)C46—C45—C44—C430.0 (4)
C27A—C26B—C25—C3042.7 (9)C24—O2—C6—C53.5 (3)
C26B—C27A—C28—C2953.1 (8)C24—O2—C6—C1176.0 (2)
C26B—C27A—C28—C27B45.6 (8)C4—C5—C6—O2179.6 (2)
C26A—C27B—C28—C2944.5 (9)C4—C5—C6—C10.1 (3)
C26A—C27B—C28—C27A50.1 (8)O1—C1—C6—O21.8 (3)
C29—C40—C31—N3174.9 (2)C2—C1—C6—O2178.7 (2)
C41—C40—C31—N35.0 (4)O1—C1—C6—C5177.7 (2)
C29—C40—C31—S22.9 (2)C2—C1—C6—C51.8 (3)
C41—C40—C31—S2177.24 (17)C6—C5—C4—C31.8 (3)
C32—N3—C31—C40170.5 (2)C6—C5—C4—C7177.1 (2)
C32—N3—C31—S27.0 (3)C10—C9—C8—N1179.8 (2)
C30—S2—C31—C401.88 (18)C16—C9—C8—N11.3 (4)
C30—S2—C31—N3175.9 (2)C10—C9—C8—S10.9 (3)
C42—N4—C41—O64.3 (4)C16—C9—C8—S1177.62 (18)
C42—N4—C41—C40177.3 (2)C7—N1—C8—C9179.5 (2)
C31—C40—C41—O6173.1 (2)C7—N1—C8—S11.8 (3)
C29—C40—C41—O66.8 (4)C11—S1—C8—C90.59 (19)
C31—C40—C41—N48.5 (3)C11—S1—C8—N1179.5 (2)
C29—C40—C41—N4171.6 (2)C8—C9—C10—C110.8 (3)
C31—N3—C32—C33176.5 (2)C16—C9—C10—C11177.7 (2)
C31—C40—C29—C302.6 (3)C8—C9—C10—C15178.5 (2)
C41—C40—C29—C30177.5 (2)C16—C9—C10—C152.9 (4)
C31—C40—C29—C28175.6 (2)C16—N2—C23—C17102.8 (3)
C41—C40—C29—C284.3 (4)C16—N2—C23—C2179.5 (3)
C27A—C28—C29—C3020.9 (4)C8—N1—C7—C4178.2 (2)
C27B—C28—C29—C3015.0 (4)C3—C4—C7—N1174.8 (2)
C27A—C28—C29—C40157.1 (4)C5—C4—C7—N14.1 (4)
C27B—C28—C29—C40166.9 (4)C5—C4—C3—C22.0 (3)
C41—N4—C42—C43107.6 (3)C7—C4—C3—C2176.9 (2)
C41—N4—C42—C4774.9 (3)C23—N2—C16—O35.8 (4)
C39—O5—C37—C383.9 (4)C23—N2—C16—C9176.2 (2)
C39—O5—C37—C36176.0 (2)C8—C9—C16—O3164.4 (2)
C33—C38—C37—O5178.3 (2)C10—C9—C16—O317.2 (4)
C33—C38—C37—C361.6 (4)C8—C9—C16—N217.6 (3)
O4—C36—C37—O52.3 (3)C10—C9—C16—N2160.8 (2)
C35—C36—C37—O5177.5 (2)C4—C3—C2—C10.3 (4)
O4—C36—C37—C38177.8 (2)O1—C1—C2—C3177.9 (2)
C35—C36—C37—C382.4 (4)C6—C1—C2—C31.6 (4)
O4—C36—C35—C34179.4 (2)C9—C10—C11—C12180.0 (2)
C37—C36—C35—C340.8 (4)C15—C10—C11—C120.6 (4)
C40—C29—C30—C25180.0 (2)C9—C10—C11—S10.3 (3)
C28—C29—C30—C251.7 (4)C15—C10—C11—S1179.04 (18)
C40—C29—C30—S21.2 (3)C8—S1—C11—C100.13 (19)
C28—C29—C30—S2177.15 (18)C8—S1—C11—C12179.5 (2)
C26A—C25—C30—C2917.9 (5)C17—C23—C21—C200.3 (4)
C26B—C25—C30—C298.7 (5)N2—C23—C21—C20177.3 (2)
C26A—C25—C30—S2160.9 (4)C17—C23—C21—C22178.9 (3)
C26B—C25—C30—S2172.6 (4)N2—C23—C21—C221.3 (4)
C31—S2—C30—C290.38 (19)C19—C20—C21—C230.2 (4)
C31—S2—C30—C25178.5 (2)C19—C20—C21—C22178.4 (3)
C43—C42—C47—C460.0 (3)C11—C10—C15—C149.9 (3)
N4—C42—C47—C46177.5 (2)C9—C10—C15—C14170.9 (2)
C43—C42—C47—C48178.7 (3)C21—C20—C19—C180.9 (5)
N4—C42—C47—C481.3 (4)C10—C11—C12—C1316.9 (4)
C37—C38—C33—C340.8 (3)S1—C11—C12—C13162.8 (2)
C37—C38—C33—C32179.3 (2)C21—C23—C17—C180.1 (5)
N3—C32—C33—C34170.7 (2)N2—C23—C17—C18177.6 (3)
N3—C32—C33—C389.5 (4)C11—C12—C13—C1444.6 (4)
C36—C35—C34—C331.6 (4)C12—C13—C14—C1557.7 (4)
C38—C33—C34—C352.5 (4)C10—C15—C14—C1338.0 (4)
C32—C33—C34—C35177.7 (2)C20—C19—C18—C171.2 (5)
C42—C47—C46—C450.3 (4)C23—C17—C18—C190.7 (5)
C48—C47—C46—C45178.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···N30.81 (3)2.05 (3)2.738 (3)143 (2)
N2—H2N···N10.82 (3)2.06 (3)2.748 (4)141 (2)
O4—H4O···O3i0.86 (4)1.83 (4)2.683 (3)171 (4)
O1—H1O···O6ii0.88 (4)1.82 (4)2.697 (3)174 (3)
C35—H35···Cg1iii0.932.893.670 (3)143
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC24H24N2O3S
Mr420.52
Crystal system, space groupMonoclinic, P21/n
Temperature (K)290
a, b, c (Å)14.817 (8), 13.701 (8), 22.224 (13)
β (°) 108.807 (11)
V3)4271 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.18 × 0.09 × 0.08
Data collection
DiffractometerBruker SMART CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.937, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
30379, 7512, 4900
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.134, 1.02
No. of reflections7512
No. of parameters587
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.25

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1999) & CAMERON (Watkin et al., 1993), PLATON (Spek, 2003).

Selected bond lengths (Å) top
N3—C321.277 (3)N1—C71.283 (3)
N3—C311.388 (3)N1—C81.384 (3)
N4—C411.344 (3)N2—C161.342 (3)
N4—C421.424 (3)N2—C231.431 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···N30.81 (3)2.05 (3)2.738 (3)143 (2)
N2—H2N···N10.82 (3)2.06 (3)2.748 (4)141 (2)
O4—H4O···O3i0.86 (4)1.83 (4)2.683 (3)171 (4)
O1—H1O···O6ii0.88 (4)1.82 (4)2.697 (3)174 (3)
C35—H35···Cg1iii0.932.893.670 (3)143
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x+1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds