Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108003296/av3136sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270108003296/av3136Isup2.hkl |
CCDC reference: 686413
For related literature, see: Allen (2002); Bencini et al. (1986); Berg et al. (2002); Chen et al. (1994, 1998); Cremer & Pople (1975); Cronin et al. (1999); Delgado et al. (2006); Dominguez-Vera, Gulvez, Colacio, Cuesta, Costes & Laurent (1996); Jubert et al. (2002); Nash & Schaefer (1969); Real et al. (1994); Sanz et al. (1996); Sun et al. (2007); Tao, Zang, Cheng, Wang, Hu, Niu & Liao (2003).
All reagents were of AR grade and were used without further purification. The H2dmapheoxd ligand was synthesized as follows. An ethanol solution (10 ml) of 3-dimethylamino-1-propylamine (1.26 ml, 10 mmol) was added very slowly, via a dropping funnel, to an ethanol solution (10 ml) of diethyl oxalate (1.36 ml, 10 mmol) with continuous stirring. The mixture was stirred quickly for 30 min, and then an ethanol solution (10 ml) containing enthanolamine (0.60 ml) was added dropwise. The reaction solution was kept at room temperature with stirring for 3 h. The resulting solution was concentrated under vacuum and H2dmapheoxd precipitated as a white powder (yield 78%).
[Cu3(dmapheoxd)2(MeCN)2(NCS)2] was obtained according to the following procedure. To a solution of H2dmapheoxd (0.0217 g, 0.1 mmol) in acetonitrile (5 ml) were added successively piperidine (0.2 mmol) and a solution of CuCl2·2H2O (0.0256 g, 0.15 mmol) in acetonitrile (5 ml). The mixture was stirred quickly for 30 min, and then an acetonitrile solution (5 ml) containing KSCN (0.0098 g, 0.1 mmol) was added dropwise. The reaction solution was stirred continuously at 333 K for a further 5 h. Green crystals of the title complex suitable for X-ray analysis were obtained from the solution by slow evaporation at room temperature for 7 d (yield 70%). Elemental analysis for C24H40Cu3N10O6S2, calculated: C 35.18, H 4.92, N 17.09%; found: C 35.28, H 4.99, N 17.04%.
The hydroxyl H atom was located in a difference Fourier map and treated as riding, with O—H = 0.85 Å and with a fixed Uiso(H) = 0.08 Å2. The remaining H atoms were placed in calculated positions, with C—H distances of 0.96 (methyl) or 0.97 Å (methylene), and refined in riding mode, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The CH3 groups were allowed to rotate freely around the C—N or C—C bond. Atoms C6, C7, C8 and C9 in the N-[3-(dimethylamino)propyl] moiety appeared to be disordered, and were refined as two parts (occupancy factors 0.55 and 0.45).
Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: WinGX (Farrugia, 1999).
[Cu3(C9H17N3O3)2(NCS)2(C2H3N)2] | Z = 1 |
Mr = 819.45 | F(000) = 421 |
Triclinic, P1 | Dx = 1.606 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.040 (5) Å | Cell parameters from 1007 reflections |
b = 8.262 (6) Å | θ = 2.4–25.2° |
c = 17.256 (13) Å | µ = 2.04 mm−1 |
α = 91.999 (10)° | T = 298 K |
β = 97.831 (10)° | Prism, green |
γ = 96.185 (10)° | 0.19 × 0.12 × 0.08 mm |
V = 847.1 (11) Å3 |
Bruker APEX area-detector diffractometer | 2987 independent reflections |
Radiation source: fine-focus sealed tube | 1649 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
ϕ and ω scans | θmax = 25.2°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −6→7 |
Tmin = 0.698, Tmax = 0.854 | k = −9→9 |
4458 measured reflections | l = −18→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.063 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.175 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0826P)2] where P = (Fo2 + 2Fc2)/3 |
2987 reflections | (Δ/σ)max < 0.001 |
247 parameters | Δρmax = 0.63 e Å−3 |
19 restraints | Δρmin = −0.49 e Å−3 |
[Cu3(C9H17N3O3)2(NCS)2(C2H3N)2] | γ = 96.185 (10)° |
Mr = 819.45 | V = 847.1 (11) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.040 (5) Å | Mo Kα radiation |
b = 8.262 (6) Å | µ = 2.04 mm−1 |
c = 17.256 (13) Å | T = 298 K |
α = 91.999 (10)° | 0.19 × 0.12 × 0.08 mm |
β = 97.831 (10)° |
Bruker APEX area-detector diffractometer | 2987 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 1649 reflections with I > 2σ(I) |
Tmin = 0.698, Tmax = 0.854 | Rint = 0.048 |
4458 measured reflections |
R[F2 > 2σ(F2)] = 0.063 | 19 restraints |
wR(F2) = 0.175 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.63 e Å−3 |
2987 reflections | Δρmin = −0.49 e Å−3 |
247 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.0000 | 0.0000 | 0.0000 | 0.0445 (4) | |
Cu2 | 0.26972 (16) | 0.31187 (12) | 0.27230 (6) | 0.0438 (4) | |
S1 | 0.0488 (5) | 0.7658 (3) | 0.40289 (15) | 0.0693 (8) | |
O1 | −0.5675 (10) | 0.1578 (7) | −0.0271 (4) | 0.0637 (17) | |
H1 | −0.4716 | 0.1249 | −0.0540 | 0.080* | |
O2 | 0.0379 (9) | 0.3276 (6) | 0.1780 (3) | 0.0516 (15) | |
O3 | 0.1903 (9) | −0.0347 (6) | 0.0983 (3) | 0.0455 (14) | |
N1 | −0.0662 (10) | 0.1953 (7) | 0.0556 (4) | 0.0392 (15) | |
N2 | 0.3151 (10) | 0.1090 (8) | 0.2160 (4) | 0.0406 (16) | |
N3 | 0.4609 (10) | 0.2646 (7) | 0.3749 (4) | 0.0506 (18) | |
N4 | 0.1577 (12) | 0.4950 (9) | 0.3228 (4) | 0.0522 (18) | |
N5 | 0.5423 (14) | 0.4881 (10) | 0.2179 (5) | 0.071 (2) | |
C1 | −0.4541 (14) | 0.2754 (10) | 0.0318 (5) | 0.053 (2) | |
H1A | −0.4672 | 0.2327 | 0.0829 | 0.064* | |
H1B | −0.5293 | 0.3734 | 0.0283 | 0.064* | |
C2 | −0.2050 (13) | 0.3211 (9) | 0.0260 (5) | 0.046 (2) | |
H2A | −0.1873 | 0.3376 | −0.0283 | 0.055* | |
H2B | −0.1528 | 0.4231 | 0.0557 | 0.055* | |
C3 | 0.0407 (13) | 0.2147 (9) | 0.1270 (5) | 0.0389 (18) | |
C4 | 0.1922 (13) | 0.0833 (9) | 0.1496 (5) | 0.0388 (19) | |
C5 | 0.4874 (16) | −0.0004 (11) | 0.2370 (5) | 0.065 (3) | |
H5A | 0.6241 | 0.0397 | 0.2168 | 0.078* | 0.454 (18) |
H5B | 0.4358 | −0.1080 | 0.2127 | 0.078* | 0.454 (18) |
H5C | 0.4183 | −0.1010 | 0.2551 | 0.078* | 0.546 (18) |
H5D | 0.5553 | −0.0271 | 0.1911 | 0.078* | 0.546 (18) |
C6A | 0.539 (4) | −0.013 (2) | 0.3246 (7) | 0.058 (7) | 0.454 (18) |
H6A | 0.4014 | −0.0491 | 0.3456 | 0.070* | 0.454 (18) |
H6B | 0.6437 | −0.0927 | 0.3363 | 0.070* | 0.454 (18) |
C6B | 0.669 (2) | 0.080 (2) | 0.3005 (7) | 0.056 (6) | 0.546 (18) |
H6C | 0.7901 | 0.0122 | 0.3099 | 0.067* | 0.546 (18) |
H6D | 0.7302 | 0.1848 | 0.2841 | 0.067* | 0.546 (18) |
C7A | 0.638 (3) | 0.1507 (19) | 0.3619 (18) | 0.059 (9) | 0.454 (18) |
H7A | 0.7398 | 0.2024 | 0.3289 | 0.070* | 0.454 (18) |
H7B | 0.7256 | 0.1348 | 0.4120 | 0.070* | 0.454 (18) |
C7B | 0.566 (4) | 0.1034 (19) | 0.3741 (12) | 0.056 (7) | 0.546 (18) |
H7C | 0.6813 | 0.1037 | 0.4193 | 0.067* | 0.546 (18) |
H7D | 0.4516 | 0.0133 | 0.3777 | 0.067* | 0.546 (18) |
C8A | 0.338 (6) | 0.201 (4) | 0.439 (2) | 0.044 (7) | 0.454 (18) |
H8A | 0.2653 | 0.2871 | 0.4604 | 0.066* | 0.454 (18) |
H8B | 0.4422 | 0.1635 | 0.4795 | 0.066* | 0.454 (18) |
H8C | 0.2267 | 0.1130 | 0.4184 | 0.066* | 0.454 (18) |
C8B | 0.301 (5) | 0.251 (3) | 0.4347 (17) | 0.045 (6) | 0.546 (18) |
H8D | 0.3822 | 0.2340 | 0.4850 | 0.067* | 0.546 (18) |
H8E | 0.1869 | 0.1615 | 0.4197 | 0.067* | 0.546 (18) |
H8F | 0.2319 | 0.3504 | 0.4377 | 0.067* | 0.546 (18) |
C9A | 0.585 (3) | 0.425 (2) | 0.406 (2) | 0.039 (7) | 0.454 (18) |
H9A | 0.6854 | 0.4097 | 0.4530 | 0.059* | 0.454 (18) |
H9B | 0.4796 | 0.4981 | 0.4185 | 0.059* | 0.454 (18) |
H9C | 0.6703 | 0.4716 | 0.3678 | 0.059* | 0.454 (18) |
C9B | 0.648 (3) | 0.398 (2) | 0.400 (2) | 0.049 (7) | 0.546 (18) |
H9D | 0.7329 | 0.3710 | 0.4483 | 0.073* | 0.546 (18) |
H9E | 0.5854 | 0.4983 | 0.4084 | 0.073* | 0.546 (18) |
H9F | 0.7439 | 0.4099 | 0.3605 | 0.073* | 0.546 (18) |
C10 | 0.1182 (14) | 0.6088 (10) | 0.3561 (5) | 0.047 (2) | |
C11 | 0.6791 (16) | 0.5777 (11) | 0.1996 (5) | 0.053 (2) | |
C12 | 0.8580 (16) | 0.6906 (10) | 0.1797 (6) | 0.063 (2) | |
H12A | 0.9814 | 0.6326 | 0.1696 | 0.094* | |
H12B | 0.9073 | 0.7695 | 0.2224 | 0.094* | |
H12C | 0.8050 | 0.7452 | 0.1337 | 0.094* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0654 (10) | 0.0367 (8) | 0.0301 (9) | 0.0107 (7) | 0.0001 (7) | −0.0075 (6) |
Cu2 | 0.0410 (6) | 0.0498 (6) | 0.0389 (7) | 0.0093 (4) | 0.0004 (5) | −0.0146 (5) |
S1 | 0.0906 (19) | 0.0505 (14) | 0.0660 (18) | 0.0188 (13) | 0.0055 (15) | −0.0176 (12) |
O1 | 0.061 (4) | 0.071 (4) | 0.056 (4) | 0.005 (3) | 0.002 (3) | −0.012 (3) |
O2 | 0.052 (4) | 0.057 (3) | 0.045 (4) | 0.022 (3) | −0.004 (3) | −0.022 (3) |
O3 | 0.058 (4) | 0.042 (3) | 0.036 (3) | 0.012 (3) | 0.004 (3) | −0.008 (3) |
N1 | 0.045 (4) | 0.042 (4) | 0.031 (4) | 0.011 (3) | 0.002 (3) | 0.000 (3) |
N2 | 0.039 (4) | 0.052 (4) | 0.028 (4) | 0.010 (3) | −0.007 (3) | −0.007 (3) |
N3 | 0.052 (4) | 0.054 (4) | 0.045 (5) | 0.009 (4) | 0.005 (4) | −0.011 (3) |
N4 | 0.056 (5) | 0.060 (5) | 0.038 (5) | 0.008 (4) | 0.002 (4) | −0.016 (4) |
N5 | 0.073 (6) | 0.069 (5) | 0.070 (6) | −0.003 (5) | 0.020 (5) | −0.005 (4) |
C1 | 0.059 (6) | 0.057 (5) | 0.046 (6) | 0.017 (4) | 0.011 (4) | −0.005 (4) |
C2 | 0.049 (5) | 0.040 (4) | 0.046 (6) | 0.002 (4) | 0.003 (4) | −0.006 (4) |
C3 | 0.035 (4) | 0.046 (5) | 0.036 (5) | 0.004 (4) | 0.006 (4) | 0.001 (4) |
C4 | 0.037 (5) | 0.037 (4) | 0.043 (5) | 0.003 (4) | 0.013 (4) | −0.006 (4) |
C5 | 0.089 (7) | 0.066 (6) | 0.039 (6) | 0.036 (6) | −0.009 (5) | −0.018 (5) |
C6A | 0.065 (15) | 0.063 (14) | 0.051 (15) | 0.034 (12) | 0.004 (11) | 0.009 (11) |
C6B | 0.067 (12) | 0.078 (13) | 0.022 (10) | 0.028 (10) | −0.011 (8) | −0.006 (9) |
C7A | 0.050 (15) | 0.066 (17) | 0.05 (2) | 0.009 (14) | −0.011 (13) | −0.010 (14) |
C7B | 0.069 (16) | 0.047 (11) | 0.047 (13) | 0.012 (11) | −0.014 (11) | 0.002 (11) |
C8A | 0.056 (15) | 0.019 (16) | 0.060 (18) | 0.015 (11) | 0.012 (13) | 0.009 (11) |
C8B | 0.068 (16) | 0.029 (15) | 0.037 (11) | 0.008 (10) | 0.001 (10) | 0.017 (11) |
C9A | 0.008 (10) | 0.064 (14) | 0.044 (13) | 0.003 (10) | 0.007 (12) | −0.027 (12) |
C9B | 0.027 (11) | 0.071 (13) | 0.052 (13) | 0.016 (10) | 0.013 (12) | −0.011 (10) |
C10 | 0.051 (5) | 0.050 (5) | 0.035 (5) | 0.004 (4) | −0.009 (4) | −0.012 (4) |
C11 | 0.060 (6) | 0.057 (5) | 0.046 (6) | 0.017 (5) | 0.008 (5) | 0.006 (4) |
C12 | 0.073 (6) | 0.050 (5) | 0.064 (7) | 0.002 (5) | 0.008 (5) | 0.005 (5) |
Cu1—N1 | 1.954 (6) | C5—C6A | 1.511 (11) |
Cu1—N1i | 1.954 (6) | C5—C6B | 1.520 (11) |
Cu1—O3 | 1.964 (5) | C5—H5A | 0.9700 |
Cu1—O3i | 1.964 (5) | C5—H5B | 0.9700 |
Cu2—N2 | 1.972 (6) | C5—H5C | 0.9700 |
Cu2—N3 | 2.052 (7) | C5—H5D | 0.9700 |
Cu2—N4 | 1.948 (7) | C6A—C7A | 1.506 (11) |
Cu2—N5 | 2.390 (9) | C6A—H6A | 0.9700 |
Cu2—O2 | 2.015 (6) | C6A—H6B | 0.9700 |
S1—C10 | 1.626 (8) | C7A—H7A | 0.9700 |
O1—C1 | 1.430 (9) | C7A—H7B | 0.9700 |
O1—H1 | 0.8499 | C8A—H8A | 0.9600 |
O2—C3 | 1.262 (9) | C8A—H8B | 0.9600 |
O3—C4 | 1.291 (8) | C8A—H8C | 0.9600 |
N1—C3 | 1.307 (9) | C9A—H9A | 0.9600 |
N1—C2 | 1.467 (9) | C9A—H9B | 0.9600 |
N2—C4 | 1.275 (9) | C9A—H9C | 0.9600 |
N2—C5 | 1.467 (10) | C6B—C7B | 1.502 (11) |
N3—C7A | 1.533 (14) | C6B—H6C | 0.9700 |
N3—C7B | 1.537 (13) | C6B—H6D | 0.9700 |
N3—C8A | 1.494 (10) | C7B—H7C | 0.9700 |
N3—C8B | 1.506 (9) | C7B—H7D | 0.9700 |
N3—C9A | 1.500 (10) | C8B—H8D | 0.9600 |
N3—C9B | 1.496 (10) | C8B—H8E | 0.9600 |
N4—C10 | 1.148 (9) | C8B—H8F | 0.9600 |
N5—C11 | 1.134 (11) | C9B—H9D | 0.9600 |
C1—C2 | 1.529 (11) | C9B—H9E | 0.9600 |
C1—H1A | 0.9700 | C9B—H9F | 0.9600 |
C1—H1B | 0.9700 | C11—C12 | 1.436 (13) |
C2—H2A | 0.9700 | C12—H12A | 0.9600 |
C2—H2B | 0.9700 | C12—H12B | 0.9600 |
C3—C4 | 1.522 (10) | C12—H12C | 0.9600 |
O3—Cu1—O3i | 180 | N2—C5—H5D | 109.4 |
N1i—Cu1—N1 | 180 | C6A—C5—C6B | 45.4 (9) |
N1i—Cu1—O3 | 95.2 (2) | C6A—C5—H5A | 109.2 |
N1—Cu1—O3 | 84.8 (2) | C6A—C5—H5B | 109.2 |
N1i—Cu1—O3i | 84.8 (2) | C6A—C5—H5C | 67.0 |
N1—Cu1—O3i | 95.2 (2) | C6A—C5—H5D | 137.4 |
O2—Cu2—N3 | 169.2 (2) | C6B—C5—H5A | 67.3 |
O2—Cu2—N5 | 91.4 (3) | C6B—C5—H5B | 139.0 |
N2—Cu2—N3 | 95.0 (3) | C6B—C5—H5C | 109.8 |
N2—Cu2—N5 | 97.0 (3) | C6B—C5—H5D | 109.2 |
N2—Cu2—O2 | 82.7 (2) | H5A—C5—H5B | 107.9 |
N3—Cu2—N5 | 99.3 (3) | H5A—C5—H5C | 138.9 |
N4—Cu2—N2 | 167.9 (3) | H5A—C5—H5D | 45.3 |
N4—Cu2—N3 | 91.5 (3) | H5B—C5—H5C | 45.8 |
N4—Cu2—N5 | 92.1 (3) | H5B—C5—H5D | 65.2 |
N4—Cu2—O2 | 89.1 (2) | H5C—C5—H5D | 108.1 |
N4—Cu2—N3 | 91.5 (3) | C5—C6A—H6A | 109.8 |
C1—O1—H1 | 108.8 | C5—C6A—H6B | 109.8 |
C3—O2—Cu2 | 111.5 (5) | C7A—C6A—C5 | 109.5 (18) |
C4—O3—Cu1 | 111.4 (5) | C7A—C6A—H6A | 109.8 |
C2—N1—Cu1 | 128.6 (5) | C7A—C6A—H6B | 109.8 |
C3—N1—C2 | 118.6 (6) | C7A—C6A—H5C | 146.2 |
C3—N1—Cu1 | 112.7 (5) | H5C—C6A—H6A | 82.1 |
C4—N2—C5 | 118.0 (6) | H5C—C6A—H6B | 95.2 |
C4—N2—Cu2 | 113.6 (5) | H6A—C6A—H6B | 108.2 |
C5—N2—Cu2 | 127.9 (5) | N3—C7A—H7A | 108.9 |
C7A—N3—Cu2 | 112.5 (12) | N3—C7A—H7B | 108.9 |
C7B—N3—Cu2 | 115.4 (9) | C6A—C7A—N3 | 113.3 (13) |
C8A—N3—C7A | 108.3 (8) | C6A—C7A—H7A | 108.9 |
C8A—N3—C7B | 87.7 (12) | C6A—C7A—H7B | 108.9 |
C8A—N3—C9A | 106 (2) | H7A—C7A—H7B | 107.7 |
C8A—N3—C9B | 115 (2) | N3—C8A—H8A | 109.5 |
C8A—N3—Cu2 | 117.0 (18) | N3—C8A—H8B | 109.5 |
C8B—N3—C7A | 127.2 (13) | N3—C8A—H8C | 109.5 |
C8B—N3—C7B | 106.5 (7) | N3—C9A—H9A | 109.5 |
C8B—N3—Cu2 | 105.4 (14) | N3—C9A—H9B | 109.5 |
C9A—N3—C7A | 107.1 (8) | N3—C9A—H9C | 109.5 |
C9A—N3—C7B | 124.4 (15) | C5—C6B—H6C | 110.0 |
C9A—N3—C8B | 96.1 (19) | C5—C6B—H6D | 110.0 |
C9A—N3—Cu2 | 105.7 (17) | C6B—C7B—N3 | 110.8 (12) |
C9B—N3—C7A | 88.7 (12) | C6B—C7B—H7C | 109.5 |
C9B—N3—C7B | 107.3 (8) | C6B—C7B—H7D | 109.5 |
C9B—N3—C8B | 109.9 (19) | C7B—C6B—C5 | 108.6 (15) |
C9B—N3—Cu2 | 112.1 (15) | C7B—C6B—H6C | 110.0 |
C10—N4—Cu2 | 171.7 (7) | C7B—C6B—H6D | 110.0 |
C11—N5—Cu2 | 173.1 (8) | H6C—C6B—H6D | 108.3 |
O1—C1—C2 | 114.3 (6) | N3—C7B—H7C | 109.5 |
O1—C1—H1A | 108.7 | N3—C7B—H7D | 109.5 |
O1—C1—H1B | 108.7 | H7C—C7B—H7D | 108.1 |
C2—C1—H1A | 108.7 | N3—C8B—H8D | 109.5 |
C2—C1—H1B | 108.7 | N3—C8B—H8E | 109.5 |
H1A—C1—H1B | 107.6 | N3—C8B—H8F | 109.5 |
N1—C2—C1 | 112.2 (7) | H8D—C8B—H8E | 109.5 |
N1—C2—H2A | 109.2 | H8D—C8B—H8F | 109.5 |
N1—C2—H2B | 109.2 | H8E—C8B—H8F | 109.5 |
C1—C2—H2A | 109.2 | N3—C9B—H9D | 109.5 |
C1—C2—H2B | 109.2 | N3—C9B—H9E | 109.5 |
H2A—C2—H2B | 107.9 | N3—C9B—H9F | 109.5 |
O2—C3—N1 | 129.0 (7) | H9D—C9B—H9E | 109.5 |
O2—C3—C4 | 116.8 (7) | H9D—C9B—H9F | 109.5 |
N1—C3—C4 | 114.2 (6) | H9E—C9B—H9F | 109.5 |
O3—C4—C3 | 116.9 (7) | N4—C10—S1 | 177.0 (8) |
N2—C4—O3 | 128.0 (7) | N5—C11—C12 | 177.5 (10) |
N2—C4—C3 | 115.0 (6) | C11—C12—H12A | 109.5 |
N2—C5—C6A | 111.8 (9) | C11—C12—H12B | 109.5 |
N2—C5—C6B | 110.6 (8) | C11—C12—H12C | 109.5 |
N2—C5—H5A | 109.2 | H12A—C12—H12B | 109.5 |
N2—C5—H5B | 109.2 | H12A—C12—H12C | 109.5 |
N2—C5—H5C | 109.7 | H12B—C12—H12C | 109.5 |
N2—Cu2—O2—C3 | −4.9 (5) | C3—N1—C2—C1 | −98.3 (8) |
N3—Cu2—O2—C3 | −82.7 (13) | Cu1—N1—C2—C1 | 85.7 (8) |
N4—Cu2—O2—C3 | −175.9 (5) | O1—C1—C2—N1 | −77.0 (9) |
N5—Cu2—O2—C3 | 92.0 (5) | Cu2—O2—C3—N1 | −171.8 (6) |
N1i—Cu1—O3—C4 | 177.2 (5) | Cu2—O2—C3—C4 | 6.7 (8) |
N1—Cu1—O3—C4 | −2.8 (5) | C2—N1—C3—O2 | 2.6 (12) |
O3—Cu1—N1—C3 | 1.1 (5) | Cu1—N1—C3—O2 | 179.2 (7) |
O3i—Cu1—N1—C3 | −178.9 (5) | C2—N1—C3—C4 | −175.9 (6) |
O3—Cu1—N1—C2 | 177.3 (6) | Cu1—N1—C3—C4 | 0.7 (8) |
O3i—Cu1—N1—C2 | −2.7 (6) | C5—N2—C4—O3 | 4.2 (12) |
N4—Cu2—N2—C4 | 49.5 (16) | Cu2—N2—C4—O3 | 177.0 (6) |
O2—Cu2—N2—C4 | 1.8 (5) | C5—N2—C4—C3 | −171.7 (7) |
N3—Cu2—N2—C4 | 171.2 (5) | Cu2—N2—C4—C3 | 1.1 (8) |
N5—Cu2—N2—C4 | −88.7 (6) | Cu1—O3—C4—N2 | −171.9 (7) |
N4—Cu2—N2—C5 | −138.5 (13) | Cu1—O3—C4—C3 | 3.9 (8) |
O2—Cu2—N2—C5 | 173.8 (7) | O2—C3—C4—N2 | −5.6 (10) |
N3—Cu2—N2—C5 | −16.8 (7) | N1—C3—C4—N2 | 173.2 (6) |
N5—Cu2—N2—C5 | 83.3 (7) | O2—C3—C4—O3 | 178.1 (6) |
N4—Cu2—N3—C8A | 68.7 (15) | N1—C3—C4—O3 | −3.2 (10) |
N2—Cu2—N3—C8A | −101.0 (15) | C4—N2—C5—C6A | −152.1 (10) |
O2—Cu2—N3—C8A | −24 (2) | Cu2—N2—C5—C6A | 36.2 (13) |
N5—Cu2—N3—C8A | 161.0 (15) | C4—N2—C5—C6B | 159.0 (9) |
N4—Cu2—N3—C9B | −66.9 (10) | Cu2—N2—C5—C6B | −12.7 (12) |
N2—Cu2—N3—C9B | 123.4 (10) | N2—C5—C6A—C7A | −63.9 (16) |
O2—Cu2—N3—C9B | −159.8 (13) | C6B—C5—C6A—C7A | 33.9 (11) |
N5—Cu2—N3—C9B | 25.5 (10) | C5—C6A—C7A—N3 | 82 (2) |
N4—Cu2—N3—C9A | −48.5 (11) | C8A—N3—C7A—C6A | 71 (3) |
N2—Cu2—N3—C9A | 141.8 (11) | C9B—N3—C7A—C6A | −173 (2) |
O2—Cu2—N3—C9A | −141.4 (14) | C9A—N3—C7A—C6A | −176 (3) |
N5—Cu2—N3—C9A | 43.8 (11) | C8B—N3—C7A—C6A | 72 (3) |
N4—Cu2—N3—C8B | 52.6 (12) | C7B—N3—C7A—C6A | 42 (3) |
N2—Cu2—N3—C8B | −117.1 (12) | Cu2—N3—C7A—C6A | −60 (2) |
O2—Cu2—N3—C8B | −40.3 (18) | N2—C5—C6B—C7B | 65.9 (14) |
N5—Cu2—N3—C8B | 145.0 (12) | C6A—C5—C6B—C7B | −34.9 (11) |
N4—Cu2—N3—C7A | −165.0 (8) | C5—C6B—C7B—N3 | −86.4 (18) |
N2—Cu2—N3—C7A | 25.3 (8) | C8A—N3—C7B—C6B | 164 (2) |
O2—Cu2—N3—C7A | 102.0 (14) | C9B—N3—C7B—C6B | −80.6 (19) |
N5—Cu2—N3—C7A | −72.7 (8) | C9A—N3—C7B—C6B | −88 (3) |
N4—Cu2—N3—C7B | 169.8 (8) | C8B—N3—C7B—C6B | 162 (2) |
N2—Cu2—N3—C7B | 0.1 (8) | C7A—N3—C7B—C6B | −43 (3) |
O2—Cu2—N3—C7B | 76.9 (15) | Cu2—N3—C7B—C6B | 45.2 (18) |
N5—Cu2—N3—C7B | −97.8 (8) |
Symmetry code: (i) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3i | 0.85 | 2.15 | 2.985 (8) | 168 |
C12—H12C···O1ii | 0.96 | 2.39 | 3.320 (11) | 163 |
Symmetry codes: (i) −x, −y, −z; (ii) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu3(C9H17N3O3)2(NCS)2(C2H3N)2] |
Mr | 819.45 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 6.040 (5), 8.262 (6), 17.256 (13) |
α, β, γ (°) | 91.999 (10), 97.831 (10), 96.185 (10) |
V (Å3) | 847.1 (11) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 2.04 |
Crystal size (mm) | 0.19 × 0.12 × 0.08 |
Data collection | |
Diffractometer | Bruker APEX area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.698, 0.854 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4458, 2987, 1649 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.600 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.063, 0.175, 1.00 |
No. of reflections | 2987 |
No. of parameters | 247 |
No. of restraints | 19 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.63, −0.49 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994), WinGX (Farrugia, 1999).
Cu1—N1 | 1.954 (6) | Cu2—N4 | 1.948 (7) |
Cu1—O3 | 1.964 (5) | Cu2—N5 | 2.390 (9) |
Cu2—N2 | 1.972 (6) | Cu2—O2 | 2.015 (6) |
Cu2—N3 | 2.052 (7) | ||
O3—Cu1—O3i | 180 | N4—Cu2—N3 | 91.5 (3) |
N1i—Cu1—N1 | 180 | N4—Cu2—N5 | 92.1 (3) |
N1i—Cu1—O3 | 95.2 (2) | N4—Cu2—O2 | 89.1 (2) |
N1—Cu1—O3 | 84.8 (2) | N4—Cu2—N3 | 91.5 (3) |
O2—Cu2—N3 | 169.2 (2) | C2—N1—Cu1 | 128.6 (5) |
O2—Cu2—N5 | 91.4 (3) | C3—N1—C2 | 118.6 (6) |
N2—Cu2—N3 | 95.0 (3) | C3—N1—Cu1 | 112.7 (5) |
N2—Cu2—N5 | 97.0 (3) | C4—N2—C5 | 118.0 (6) |
N2—Cu2—O2 | 82.7 (2) | C4—N2—Cu2 | 113.6 (5) |
N3—Cu2—N5 | 99.3 (3) | C5—N2—Cu2 | 127.9 (5) |
N4—Cu2—N2 | 167.9 (3) |
Symmetry code: (i) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3i | 0.85 | 2.15 | 2.985 (8) | 168 |
C12—H12C···O1ii | 0.96 | 2.39 | 3.320 (11) | 163 |
Symmetry codes: (i) −x, −y, −z; (ii) −x, −y+1, −z. |
Complex | CSD refcode | Substituent 1 of the oxamide ligand | Substituent 2 of the oxamide ligand |
[MnCu(obzp)(H2O)3]n.nH2O (a) | JASNOG | benzoate | propionate |
[MnCu(obze)(H2O)4].2H2O (b) | KOCYUW | benzoate | ethanoate |
[CoCu(obze)(H2O)4].2H2O (c) | PIWZOK | benzoate | ethanoate |
{[Cu2(oxbe)2(DMF)]Mn(H2O)}n.nDMF.nH2O (d) | TUSWOT | benzoate | 2-aminoethyl |
{[Cu(oxbe)]2Co(H2O)2}.2DMF.DMA (e) | BAZDIQ | benzoate | 2-aminoethyl |
{[Ni(oxbe)]2Ni(H2O)2}.2.5DMF (f) | ULOQIV | benzoate | 2-aminoethyl |
{[Cu(oxbe)(py)]2Ni(py)2}.2DMF (g) | ABOCAW | benzoate | 2-aminoethyl |
{[Ni(oxbe)]2Cu(H2O)2}.2.5DMF (h) | OBUCIY | benzoate | 2-aminoethyl |
{[Cu(oxbp)]2Co(H2O)2}.1.5DMF.0.5H2O (i) | IYEWIS | benzoate | 3-aminopropyl |
{Na2[Cu(oxbp)]2(H2O)}n.nH2O (j) | NAQWAE | benzoate | 3-aminopropyl |
[Sn2(oxhh)(phenyl)4] (k) | QEHNIB | 2-hydroxy-phenyl | 2-hydroxy-1-methyl-2-phenyl-ethyl |
Notes: (a) Pei et al. (1989) (obzp is Oxamido-N-benzoato-N'-propionate); (b) Pei et al. (1991) (obze is Oxamido-N-benzoato-N'-ethanoate); (c) Larionova et al. (1997); (d) Zang et al. (2003) [oxbe is N-benzoato-N'-(2-aminoethyl)oxamide, DMF is dimethylformamide]; (e) Tao, Zang, Hu et al. (2003) (DMA is dimethylamine); (f) Tao, Zang, Cheng et al. (2003); (g) Tao, Zang et al. (2004) (py is pyridine); (h) Tao, Mei et al. (2004); (i) Tao, Zang, Mei et al. (2003) [oxbp is N-benzoato-N'-(3-aminopropyl)oxamide]; (j) Matović et al. (2005); (k) Jiménez-Pérez et al. (2006) {H4oxhh is (1S,2R)-(-)-[N-(2-hydroxy-1-methyl-2-phenylethyl)-N'-(2-hydroxyphenyl)oxamide}. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
Symmetrical N,N'-bis(substituent)oxamides have been fully studied and are known to be versatile organic ligands which can both chelate and bridge metal ions to construct discrete and extended structures (Bencini et al., 1986; Dominguez-Vera et al., 1996; Real et al., 1994; Sanz et al., 1996). Compared with the large number of complexes bridged by symmetrical N,N'-bis(substituted)oxamides, only 11 complexes bridged by asymmetrical N,N'-bis(substituted)oxamides have been characterized to date by single-crystal X-ray diffraction (Table 3) [Cambridge Structural Database (CSD), Version 5.28; Allen, 2002]. In these complexes, all the asymmetrical ligands contain aromatic structure moieties as terminal groups, while no asymmetrical N,N'-bis(aminoalkyl)oxamide has been found. Taking the above facts into account, we synthesized a novel asymmetrical ligand, N-[3-(dimethylamino)propyl]-N'-(2-hydroxyethyl)oxamide (H2dmapheoxd), and its tricopper complex, the title compound, [Cu3(dmapheoxd)2(MeCN)2(NCS)2] (I), and report the crystal structure of the complex here.
The molecular structure of complex (I) is illustrated in Fig. 1. Selected bond lengths and angles are listed in Table 1. Compound (I), a trinuclear CuII complex, is formed by two trans-oxamidate-chelated [Cu(dmapheoxd)(MeCN)(NCS)]- units as ligands coordinating another CuII ion (Cu1) sitting on a crystallographic inversion center. The central CuII atom (Cu1) is in a square-planar environment, while in the complex ligand the CuII ion (Cu2) has a slightly distorted [CuN4O] square-pyramidal coordination geometry. The basal plane is defined by the atom N4 of the SCN- ligand and three atoms (O2, N2 and N3) from the dmapheoxd ligand, with a maximum deviation of 0.013 (3) Å for atom O2 from the least-squares plane. The apical position is occupied by atom N5 of a coordinated acetonitrile molecule. In the basal plane, the Cu2—N2(amide) bond [1.972 (6) Å] is shorter than the Cu2—N3(amine) bond [2.052 (9) Å], which is consistent with the stronger donor ability of the deprotonated amide N atom compared with the amine N atom (Jubert et al., 2002). The axial Cu—N bond length [Cu2—N5 = 2.390 (9) Å] is significantly longer than those in the basal plane, from which atom Cu2 is displaced by 0.177 (3) Å towards the apex. The Cu1···Cu2 distance is 5.248 (3) Å.
Although several examples have been observed of cis-oxamide bridging ligands chelating two metal ions with different coordination numbers (Cronin et al., 1999; Sun et al., 2007; Tao, Zang, Cheng et al., 2003), for transoid ligands the metal ions usually have equal ligancy, such as both five or four in general (denoted [5 + 5] or [4 + 4], respectively). Among the reported crystal structures of trans-oxamide bridging complexes, only two two-dimensional complexes have the styles of [4 + 5] (Chen et al., 1998) and [5 + 6] (Chen et al., 1994). The title compound also has the style of [4 + 5], and this is the first instance of this for a zero-dimensional complex with different ligancies. The hydroxyl group in the dmapheoxd ligand acts as a donor of the intramolecular hydrogen bond O1—H1···O3i [symmetry code: (i) -x, -y, -z; Table 2] and a seven-membered hydrogen-bonding circuit is formed (Fig. 1), folding at C2—O3i with a dihedral angle of 59.2 (3)°.
The distances C3—N1 [1.307 (9) Å] and C4—N2 [1.275 (9) Å] have typical values for C═N. Whereas the bond lengths of C3—O2 [1.262 (9) Å] and C4—O3 [1.291 (8) Å] are well in accordance with those of (O═)C—O- fragments in many complexes (Berg et al., 2002; Delgado et al., 2006; Nash & Schaefer, 1969), the oximade fragment is best described as N═ C—O- rather than delocalized.
The dimethylaminopropyl group in the dmapheoxd ligand is disordered over two positions (C6A–C9A and C6B–C9B), with occupancy factors of 0.55 and 0.45, respectively (Fig. 2). The puckering parameters (Cremer & Pople, 1975) of the corresponding six-membered chelating rings around Cu2 are Q = 0.575 (19) Å, θ = 142.7 (14)° and ϕ = 26 (2)°, and Q = 0.698 (15) Å, θ = 68.5 (10)° and ϕ = 196.5 (11)°, respectively.
In the crystal structure, only one classical hydrogen bond is observed, as noted above (Table 2). For all that, due to the activation of the methyl group by the cyano group of the acetonitrile ligand, the methyl interacts with the O atom of the hydroxyl group of a neighboring molecule, forming a non-classical C—H···O hydrogen bond (Fig. 3), via which a one-dimensional chain extending in the b direction is formed.