Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The conformations of organic compounds determined in the solid state are important because they can be compared with those in solution and/or from theoretical calculations. In this work, the crystal and mol­ecular structures of four closely related diesters, namely methyl isopropyl 2-(triphenyl­phosphoranylidene)malonate, C25H25O4P, ethyl isopropyl 2-(triphenyl­phosphoranylidene)malonate, C26H27O4P, methyl tert-butyl 2-(triphenyl­phosphoranylidene)malonate, C26H27O4P, and ethyl tert-butyl 2-(triphenyl­phosphoranylidene)­malonate, C27H29O4P, have been analysed as a preliminary step for such comparative studies. As a result of extensive electronic delocalization, as well as intra- and inter­molecular inter­actions, a remarkably similar pattern of preferred conformations in the crystal structures results, viz. a syn-anti conformation of the acyl groups with respect to the P atom, with the bulkier alk­oxy groups oriented towards the P atom. The crystal structures are controlled by nonconventional hydrogen-bonding and intra­molecular inter­actions between cationoid P and acyl and alk­oxy O atoms in syn positions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108018246/av3152sup1.cif
Contains datablocks global, Ia, Ib, IIa, IIb

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108018246/av3152Iasup2.hkl
Contains datablock Ia

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108018246/av3152Ibsup3.hkl
Contains datablock Ib

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108018246/av3152IIasup4.hkl
Contains datablock IIa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108018246/av3152IIbsup5.hkl
Contains datablock IIb

CCDC references: 697590; 697591; 697592; 697593

Comment top

The conformations of crystalline triphenylphosphonium ylides stabilized by electron-withdrawing groups such as ester, keto or cyano depend on the balance between electronic delocalization and intra- and intermolecular non-bonding interactions (Castañeda et al., 2003; Castañeda, Acuña et al., 2007). The bond between P and the ylidic C atom allows free rotation at ambient temperatures on the NMR time scale, indicating the inadequacy of a structure with a classical CP double bond (Bachrach & Nitsche, 1994). In ylides stabilized by a single keto or ester group, there is a strong interaction between cationoid phosphorus and the syn acyl O atom (Wilson & Tebby, 1972; Zeliger et al., 1969), but synsyn diesters have never been observed and are not shown, as in the first scheme for synanti and antianti mixtures. The crystal conformation is controlled by minor changes in the diester groups because the dimethyl ester is a 1:1 antianti:synanti mixture, in the methyl ethyl diester the acyl O atom of the methyl ester group is syn and that of the ethyl ester group is anti (Castañeda, Jullian et al., 2007), and in the diethyl ester both acyl O atoms are anti to the P atom (Castañeda et al., 2005). This limited evidence indicates that acyl groups can adopt either geometry, but the bulkier alkoxy group tends to be syn to P.

A series of diesters with methoxy, ethoxy, isopropoxy or tert-butoxy groups, methyl isopropyl-, ethyl isopropyl-, methyl tert-butyl- and ethyl tert-butyl 2-triphenylphosphoranylidene malonate diesters, Ph3PC(CO2R)CO2R' (where R = Me or Et and R' = iPr or tBu), the title compounds (Ia)–(IIb), respectively, have been prepared and their structures analysed. Figs. 1, 3, 5 and 7 show the molecular structures of the compounds, while Figs. 2, 4, 6 and 8 present the corresponding packing views. Selected bond distances for (Ia), (Ib), (IIa) and (IIb) are given in Tables 1, 3, 5 and 7. Tables 2, 4, 6, 8 and 9 show the non-bonding interactions and short contacts relevant to the packing discussion.

In the crystals of these diesters, the bulkier alkoxy groups are oriented towards, and smaller alkoxy groups away from, the P atom. The ester groups have Z conformations, as is typical of carboxylic esters (Eliel & Wilen, 1994), and are approximately in the ylidic plane. The 1H and 13C NMR spectra of these diesters indicate that the conformations are the same in solution and the solid state, as detailed elsewhere (Reference?). The geometries of the crystalline diesters are governed by the balance between ylidic resonance and intra- and intermolecular interactions. As is generally the case, the CP bond lengths are in between those characteristic of single and double bonds (Howells et al., 1973) and in solution the 1H and 13C NMR signals indicate free rotation about this bond. However, in the crystal structure, the orientations of the phenyl groups are similar in the four ylides and are apparently insensitive to the bulkiness of the alkoxy ester groups.

To a first approximation, the bonds between the ylidic and acyl C atoms are in the same plane, consistent with important ylidic resonance. Some angles at these C atoms differ from the expected 120°, but the sum of the angles is approximately 360°. In earlier observations of ylidic diesters with methoxy or ethoxy substituents, we found that the bulkier alkoxy group was oriented towards the P atom (Castañeda, Jullian et al., 2007), and the present results fit this generalization. In the crystal structure, bulky alkoxy groups oriented away from the P atom would interfere both intra- and intermolecularly. Both isopropoxy and tert-butoxy groups are oriented towards the face of the phenyl group which is approximately orthogonal to the CP bond, as shown by the 1H NMR signals in solution (CDCl3). The bond lengths between ylidic and acyl C atoms are in between those typical of single and double bonds, as are those in the acyl groups (Howells et al., 1973).

Elsewhere, we show that computed interatomic distances and angles for isolated molecules are generally similar to those in the crystal structure (Reference?). Computations indicate that the conformations of isolated ylidic diesters have minor effects on their computed energies, indicating the role of intermolecular interactions in controlling conformation. Intramolecular interactions in the crystal structure, and probably also in solution, involve interactions between cationoid P and acyl and alkyl O atoms in the syn position, which slightly lengthens the acyl group syn to P relative to the anti acyl group, as shown by the relative lengths of O4—C3 and O2—C2. This generalization fails for the methyl tert-butyl diester, (IIa). There are also, in some diesters, intramolecular interactions between methyl H atoms and anti acyl O atoms. There are always intermolecular interactions between phenyl H atoms and the acyl O atoms of an adjacent molecule (Desiraju & Steiner, 1999). These interactions between phenyl H atoms and acyl O atoms are generally important and play key roles in determining the conformations of individual molecules and crystal structures (Castañeda, Jullian et al., 2007).

In the crystal structure of (Ib) (Fig. 4), one alkoxy group syn to P is directed towards the face of a phenyl group which is approximately orthogonal to the ylidic C—P bond. The consequent C—H—π interaction should be modestly stabilizing (Nishio et al., 1995, Nishio & Hirota, 1989) and is seen in a variety of diesters and keto esters. In the other ester residue, the syn-acyl group is oriented between two phenyl groups, and independent evidence indicates that for some diester ylides the geometries are similar for isolated molecules and in the crystal structure.

Due to the common skeleton, all four ylides exhibit analogous weak intramolecular interactions, viz. two short P···O contacts and one further C—H···π hydrogen bond between the terminal methyl H atom (C5—H5C) and the phenyl ring C31–C36 (Cg3) (entries 1–3 in Tables 2, 4, 6 and 8). There are, however, differences in the intermolecular interactions and the derived packing schemes. In (Ia) and (Ib), there is one non-conventional intermolecular C—H···O bond between the C21–C26 phenyl ring (Cg2) and atom O4, but it gives dissimilar packing schemes: in (Ia), hydrogen-bonded dimers are built up around a group of symmetry centres (Fig. 2), while for (Ib) it results in the formation of a chain around the screw axis running along the unique b axis (Fig. 4) In ylides (IIa) and (IIb), these interactions differ, viz. in (IIa), the preferred intermolecular contacts are non-conventional C—H···O bonds (Table 6,) while in (IIb) they are mainly C—H···π (Table 8) and ππ bonds (Table 9), and the crystal structures differ. In (IIa), the predominant C—H···O bonds are spread uniformly in four directions (Fig. 6), generating a homogeneously connected three-dimensional structure. In (IIb), dimeric structures are built up around a group of symmetry centres [at (0, 1/2, 0), Zone A in Fig. 8], connected into [111] chains by rather weak ππ bonds around the inversion centre at (1/2, 1, 1/2) (B in Fig. 8). Finally, weak hydrogen bonds with atom O2 as an acceptor link these chains, with their [100] translated homologues, into a two-dimensional structure parallel to the (011) plane.

Related literature top

For related literature, see: Bachrach & Nitsche (1994); Castañeda, Acuña, Garland, Gillitt, Shirazi, Yunes & Bunton (2007); Castañeda, Aliaga, Bunton, Garland & Baggio (2005); Castañeda, Jullian, Bunton, Garland & Baggio (2007); Castañeda, Terraza, Bunton, Gillitt & Garland (2003); Cristau & Plénat (1994); Desiraju & Steiner (1999); Eliel & Wilen (1994); Howells et al. (1973); Nishio & Hirota (1989); Nishio et al. (1995); Wilson & Tebby (1972); Zeliger et al. (1969).

Experimental top

The isopropyl and tert-butyl diesters of triphenylphosphonium ylides, (Ia), (Ib), (IIa) and (IIb), were synthesized by transylidation (Cristau & Plénat, 1994). The general procedure was as follows. A solution of methyl or ethyl chloroformate (20 mmol) in dry benzene (8 ml) was added slowly to isopropyl or tert-butyl 2-triphenylphosphoranylidene acetate (Ph3PCH—CO2R, R = iPr or tBu; 40 mmol) in dry benzene (100 ml) under a dry atmosphere. The resulting solution was stirred for 4 h at room temperature and a white solid separated. The carboalkoxy methyltriphenylphosphonium chloride (Ph3P+—CH2—CO2R Cl-; R = iPr or tBu) was removed by filtration and the solvent was evaporated, giving a solid or an oil. Recrystallization from ethyl acetate gave the title novel diester ylides, (Ia), (Ib), (IIa) or (IIb) (yields 65–80%).

For methyl isopropyl 2-triphenylphosphoranylidene malonate, (Ia): yield 82%; m.p. 393 K; analysis calculated for C25H25O4P: C 71.42, H 5.99%; found: C 71.70, H 6.22%.

For ethyl isopropyl 2-triphenylphosphoranylidene malonate, (Ib): yield 78%; m.p. 397 K; analysis calculated for C26H27O4P: C 71.88, H 6.26%; found: C 72.15, H 6.35%.

For methyl tert-butyl 2-triphenylphosphoranylidene malonate, (IIa): yield 70%; m.p. 460 K; analysis calculated for C26H27O4P: C 71.88, H 6.26%; found: C 72.12, H 6.30%.

For ethyl tert-butyl 2-triphenylphosphoranylidene malonate, (IIb): yield 65%; m.p. 412 K; analysis calculated for C27H29O4P: C 72.31, H 6.52%; found: C 72.45, H 6.80%.

1H NMR spectra in solution were monitored on a Bruker DRX 300 spectrometer referenced to trimethyl siloxane. IR spectra were obtained with a KBr disk on a Bruker IFS 56 FT spectrometer. Elemental analyses were carried out with a Fison EA 1108 analyser. Spectroscopic data are available in the archived CIF.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H = 0.93 (aromatic), 0.97 (CH2) or 0.96 Å (CH3), and with Uiso(H) = 1.2Ueq(C) for aromatic H and CH2, or 1.5Ueq(C) for CH3.

Some terminal groups were disordered over two different orientations and accordingly were refined with a metrically restrained split model; these were the OMe group in (Ia) and the OEt groups in (Ib and IIb). The refinements converged to final occupancies of 0.66/0.34 (2), 0.616/384 (4) and 0.747 (4)/0.253 (4), using two, seven and three restraints, respectively.

Computing details top

For all compounds, data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 2001); data reduction: SAINT-NT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-NT (Sheldrick, 2008); software used to prepare material for publication: SHELXTL-NT (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. A molecular diagram of (Ia), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. Cg1, Cg2 and Cg3 denote ring centroids. Intramolecular interactions (P···P [P···O ?] contacts and C—H···π bonds) are shown as single dashed lines. The minor component of the disordered methyl group is shown by double dashed bonds and dashed ellipsoids.
[Figure 2] Fig. 2. A packing diagram for (Ia), showing the weakly connected dimeric structure. Intermolecular C—H···O and intramolecular C—H···π bonds are shown as dashed lines. Symmetry codes as in Table 2.
[Figure 3] Fig. 3. A molecular diagram of (Ib), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. Cg1, Cg2 and Cg3 denote ring centroids. Intramolecular interactions (P···P [P···O ?] contacts and C—H···π bonds) are shown as single dashed lines. The minor component of the disordered ethyl group is shown by double dashed bonds and dashed ellipsoids.
[Figure 4] Fig. 4. A packing diagram for (Ib), showing the weakly connected chains running along the b axis. Intermolecular C—H···O and intramolecular C—H···π bonds are shown as dashed lines. Symmetry codes as in Table 4.
[Figure 5] Fig. 5. A molecular diagram of (IIa), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. Cg1, Cg2 and Cg3 denote ring centroids. Intramolecular interactions (P···P [P···O ?] contacts and C—H···π bonds) are shown as dashed lines.
[Figure 6] Fig. 6. A packing diagram for (IIa), showing the three-dimensional structure. Intermolecular C—H···O bonds are shown as dashed lines. Intramolecular hydrogen bonds have been omitted for clarity. Symmetry codes as in Table 6.
[Figure 7] Fig. 7. A molecular diagram of (IIb), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. Cg1, Cg2 and Cg3 denote ring centroids. Intramolecular interactions (P···P [P···O ?] contacts and C—H···π bonds) are shown as dashed lines. The minor component of the disordered ethyl group is shown by double dashed bonds and dashed ellipsoids.
[Figure 8] Fig. 8. A packing diagram for (IIb), showing the dimeric structures (at site A) conected into chains (at site B). Intermolecular C—H···π and ππ interactions are shown as dashed lines. Intramolecular interactions have been omitted for clarity. Symmetry codes as in Tables 8 and 9.
(Ia) methyl isopropyl 2-(triphenylphosphoranyliden)malonate top
Crystal data top
C25H25O4PZ = 2
Mr = 420.42F(000) = 444
Triclinic, P1Dx = 1.277 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8033 (6) ÅCell parameters from 1718 reflections
b = 10.4492 (7) Åθ = 2.5–21.9°
c = 11.2169 (7) ŵ = 0.15 mm1
α = 100.573 (2)°T = 273 K
β = 94.878 (2)°Block, colourless
γ = 102.446 (3)°0.20 × 0.17 × 0.14 mm
V = 1093.64 (12) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3133 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 27.8°, θmin = 1.9°
ϕ and ω scansh = 1212
9176 measured reflectionsk = 1313
4675 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0646P)2]
where P = (Fo2 + 2Fc2)/3
4675 reflections(Δ/σ)max < 0.001
282 parametersΔρmax = 0.27 e Å3
2 restraintsΔρmin = 0.17 e Å3
Crystal data top
C25H25O4Pγ = 102.446 (3)°
Mr = 420.42V = 1093.64 (12) Å3
Triclinic, P1Z = 2
a = 9.8033 (6) ÅMo Kα radiation
b = 10.4492 (7) ŵ = 0.15 mm1
c = 11.2169 (7) ÅT = 273 K
α = 100.573 (2)°0.20 × 0.17 × 0.14 mm
β = 94.878 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3133 reflections with I > 2σ(I)
9176 measured reflectionsRint = 0.025
4675 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0522 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.01Δρmax = 0.27 e Å3
4675 reflectionsΔρmin = 0.17 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.15100 (5)0.32873 (5)0.22639 (5)0.04233 (17)
O10.37276 (15)0.23368 (13)0.12939 (14)0.0538 (4)
O20.36216 (19)0.04992 (16)0.20754 (18)0.0788 (6)
O30.2072 (16)0.0425 (8)0.3867 (10)0.0620 (16)0.66 (2)
C70.1996 (15)0.0002 (13)0.5010 (12)0.067 (2)0.66 (2)
H7A0.26880.05060.51190.101*0.66 (2)
H7B0.10740.05450.50110.101*0.66 (2)
H7C0.21750.07740.56660.101*0.66 (2)
O3'0.221 (3)0.0571 (15)0.4171 (15)0.0620 (16)0.34 (2)
C7'0.189 (3)0.022 (3)0.5312 (17)0.067 (2)0.34 (2)
H7'A0.10250.04480.55050.101*0.34 (2)
H7'B0.26400.07030.59470.101*0.34 (2)
H7'C0.17930.07250.52460.101*0.34 (2)
O40.14402 (17)0.23495 (16)0.46638 (14)0.0638 (4)
C10.2189 (2)0.20166 (19)0.27093 (19)0.0444 (5)
C20.3203 (2)0.1497 (2)0.2025 (2)0.0510 (5)
C30.1872 (2)0.1672 (2)0.3853 (2)0.0490 (5)
C40.4666 (2)0.1924 (2)0.0455 (2)0.0575 (6)
H40.52220.13910.08270.069*
C50.3833 (3)0.1088 (3)0.0698 (3)0.0808 (8)
H5A0.32020.03270.05200.121*
H5B0.44580.07870.12410.121*
H5C0.32990.16080.10780.121*
C60.5634 (3)0.3176 (3)0.0289 (3)0.0889 (9)
H6A0.51010.36950.00960.133*
H6B0.63250.29480.02160.133*
H6C0.60980.36910.10730.133*
C110.2649 (2)0.49492 (19)0.27479 (18)0.0438 (5)
C120.3953 (2)0.5102 (2)0.3400 (2)0.0540 (6)
H120.42240.43580.35980.065*
C130.4854 (3)0.6352 (3)0.3759 (2)0.0692 (7)
H130.57390.64480.41840.083*
C140.4447 (3)0.7456 (2)0.3490 (3)0.0728 (7)
H140.50530.82990.37450.087*
C150.3155 (3)0.7322 (2)0.2850 (2)0.0666 (7)
H150.28830.80740.26770.080*
C160.2259 (2)0.6077 (2)0.2464 (2)0.0534 (6)
H160.13910.59850.20120.064*
C210.0163 (2)0.3286 (2)0.28335 (18)0.0449 (5)
C220.0486 (2)0.4440 (2)0.3444 (2)0.0534 (6)
H220.01860.52480.35970.064*
C230.1797 (3)0.4405 (3)0.3830 (2)0.0640 (7)
H230.19980.51830.42470.077*
C240.2795 (3)0.3221 (3)0.3595 (2)0.0654 (7)
H240.36820.32020.38370.079*
C250.2496 (2)0.2072 (3)0.3011 (2)0.0623 (6)
H250.31780.12710.28620.075*
C260.1183 (2)0.2088 (2)0.2637 (2)0.0552 (6)
H260.09830.12950.22520.066*
C310.1138 (2)0.29891 (19)0.06101 (18)0.0436 (5)
C320.0160 (2)0.1853 (2)0.0032 (2)0.0598 (6)
H320.03320.12610.03950.072*
C330.0098 (3)0.1588 (3)0.1287 (2)0.0678 (7)
H330.07680.08270.16980.081*
C340.0622 (3)0.2432 (3)0.1932 (2)0.0646 (7)
H340.04560.22440.27820.078*
C350.1591 (3)0.3557 (2)0.1321 (2)0.0668 (7)
H350.20800.41400.17570.080*
C360.1851 (2)0.3833 (2)0.0061 (2)0.0574 (6)
H360.25170.46010.03420.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0441 (3)0.0381 (3)0.0480 (3)0.0128 (2)0.0062 (2)0.0135 (2)
O10.0579 (9)0.0459 (8)0.0698 (10)0.0214 (7)0.0239 (8)0.0250 (7)
O20.0845 (12)0.0628 (11)0.1221 (16)0.0449 (10)0.0522 (11)0.0531 (10)
O30.104 (3)0.0550 (18)0.039 (4)0.032 (2)0.013 (4)0.023 (2)
C70.093 (3)0.076 (5)0.050 (5)0.034 (2)0.023 (3)0.033 (4)
O3'0.104 (3)0.0550 (18)0.039 (4)0.032 (2)0.013 (4)0.023 (2)
C7'0.093 (3)0.076 (5)0.050 (5)0.034 (2)0.023 (3)0.033 (4)
O40.0813 (12)0.0655 (10)0.0530 (10)0.0303 (9)0.0134 (9)0.0160 (8)
C10.0481 (12)0.0404 (11)0.0501 (12)0.0149 (9)0.0078 (10)0.0166 (9)
C20.0488 (13)0.0414 (12)0.0683 (15)0.0123 (10)0.0114 (11)0.0221 (11)
C30.0470 (12)0.0441 (12)0.0568 (14)0.0109 (10)0.0004 (11)0.0153 (11)
C40.0513 (13)0.0590 (14)0.0721 (16)0.0213 (11)0.0205 (12)0.0232 (12)
C50.0772 (19)0.0745 (18)0.090 (2)0.0271 (15)0.0163 (16)0.0020 (15)
C60.086 (2)0.0833 (19)0.097 (2)0.0016 (16)0.0353 (17)0.0286 (16)
C110.0461 (12)0.0401 (11)0.0463 (12)0.0105 (9)0.0065 (9)0.0110 (9)
C120.0523 (14)0.0525 (13)0.0574 (14)0.0134 (11)0.0049 (11)0.0118 (11)
C130.0506 (14)0.0719 (17)0.0754 (18)0.0023 (13)0.0004 (12)0.0092 (14)
C140.0714 (18)0.0505 (15)0.0839 (19)0.0067 (13)0.0086 (15)0.0072 (13)
C150.0790 (18)0.0455 (14)0.0791 (18)0.0142 (13)0.0183 (15)0.0190 (12)
C160.0564 (13)0.0433 (12)0.0636 (15)0.0148 (10)0.0083 (11)0.0154 (10)
C210.0460 (12)0.0499 (12)0.0441 (12)0.0179 (10)0.0052 (9)0.0160 (9)
C220.0606 (14)0.0533 (13)0.0520 (13)0.0210 (11)0.0102 (11)0.0153 (10)
C230.0693 (17)0.0766 (18)0.0588 (15)0.0367 (14)0.0185 (13)0.0187 (13)
C240.0543 (15)0.095 (2)0.0581 (15)0.0318 (15)0.0145 (12)0.0247 (14)
C250.0503 (14)0.0775 (17)0.0588 (15)0.0070 (12)0.0074 (11)0.0225 (13)
C260.0522 (13)0.0576 (14)0.0563 (14)0.0128 (11)0.0103 (11)0.0120 (11)
C310.0460 (12)0.0405 (11)0.0478 (12)0.0155 (9)0.0044 (9)0.0121 (9)
C320.0647 (15)0.0536 (14)0.0567 (15)0.0040 (12)0.0069 (12)0.0126 (11)
C330.0681 (16)0.0639 (16)0.0602 (16)0.0062 (13)0.0029 (13)0.0008 (13)
C340.0762 (17)0.0722 (17)0.0501 (14)0.0322 (14)0.0015 (13)0.0114 (13)
C350.0835 (18)0.0638 (16)0.0570 (15)0.0135 (14)0.0086 (13)0.0268 (13)
C360.0656 (15)0.0509 (13)0.0546 (14)0.0081 (11)0.0023 (11)0.0171 (11)
Geometric parameters (Å, º) top
P1—C11.7388 (19)C12—C131.377 (3)
P1—C111.809 (2)C12—H120.9300
P1—C211.810 (2)C13—C141.374 (3)
P1—C311.815 (2)C13—H130.9300
O1—C21.360 (2)C14—C151.368 (4)
O1—C41.445 (3)C14—H140.9300
O2—C21.208 (2)C15—C161.374 (3)
O3—C31.362 (4)C15—H150.9300
O3—C71.434 (5)C16—H160.9300
C7—H7A0.9600C21—C221.386 (3)
C7—H7B0.9600C21—C261.392 (3)
C7—H7C0.9600C22—C231.385 (3)
O3'—C31.361 (7)C22—H220.9300
O3'—C7'1.435 (8)C23—C241.368 (3)
C7'—H7'A0.9600C23—H230.9300
C7'—H7'B0.9600C24—C251.361 (3)
C7'—H7'C0.9600C24—H240.9300
O4—C31.211 (2)C25—C261.385 (3)
C1—C31.436 (3)C25—H250.9300
C1—C21.443 (3)C26—H260.9300
C4—C51.483 (3)C31—C361.378 (3)
C4—C61.494 (3)C31—C321.388 (3)
C4—H40.9800C32—C331.374 (3)
C5—H5A0.9600C32—H320.9300
C5—H5B0.9600C33—C341.361 (3)
C5—H5C0.9600C33—H330.9300
C6—H6A0.9600C34—C351.366 (3)
C6—H6B0.9600C34—H340.9300
C6—H6C0.9600C35—C361.379 (3)
C11—C121.380 (3)C35—H350.9300
C11—C161.395 (3)C36—H360.9300
C1—P1—C11114.92 (9)C11—C12—H12119.9
C1—P1—C21109.49 (9)C14—C13—C12120.1 (2)
C11—P1—C21108.93 (9)C14—C13—H13120.0
C1—P1—C31110.74 (9)C12—C13—H13120.0
C11—P1—C31106.43 (9)C15—C14—C13120.4 (2)
C21—P1—C31105.91 (9)C15—C14—H14119.8
C2—O1—C4118.34 (16)C13—C14—H14119.8
C3—O3—C7116.3 (7)C14—C15—C16120.0 (2)
C3—O3'—C7'120.6 (18)C14—C15—H15120.0
O3'—C7'—H7'A109.5C16—C15—H15120.0
O3'—C7'—H7'B109.5C15—C16—C11120.2 (2)
H7'A—C7'—H7'B109.5C15—C16—H16119.9
O3'—C7'—H7'C109.5C11—C16—H16119.9
H7'A—C7'—H7'C109.5C22—C21—C26118.1 (2)
H7'B—C7'—H7'C109.5C22—C21—P1122.64 (17)
C3—C1—C2122.36 (18)C26—C21—P1119.22 (16)
C3—C1—P1117.71 (15)C23—C22—C21120.9 (2)
C2—C1—P1119.26 (15)C23—C22—H22119.5
O2—C2—O1121.2 (2)C21—C22—H22119.5
O2—C2—C1128.4 (2)C24—C23—C22119.8 (2)
O1—C2—C1110.30 (17)C24—C23—H23120.1
O4—C3—O3'113.3 (8)C22—C23—H23120.1
O4—C3—O3124.7 (5)C25—C24—C23120.4 (2)
O4—C3—C1126.00 (19)C25—C24—H24119.8
O3'—C3—C1120.3 (9)C23—C24—H24119.8
O3—C3—C1109.2 (5)C24—C25—C26120.5 (2)
O1—C4—C5109.69 (18)C24—C25—H25119.8
O1—C4—C6106.54 (19)C26—C25—H25119.8
C5—C4—C6113.9 (2)C25—C26—C21120.3 (2)
O1—C4—H4108.9C25—C26—H26119.9
C5—C4—H4108.9C21—C26—H26119.9
C6—C4—H4108.9C36—C31—C32117.4 (2)
C4—C5—H5A109.5C36—C31—P1122.03 (16)
C4—C5—H5B109.5C32—C31—P1120.52 (16)
H5A—C5—H5B109.5C33—C32—C31121.3 (2)
C4—C5—H5C109.5C33—C32—H32119.4
H5A—C5—H5C109.5C31—C32—H32119.4
H5B—C5—H5C109.5C34—C33—C32120.4 (2)
C4—C6—H6A109.5C34—C33—H33119.8
C4—C6—H6B109.5C32—C33—H33119.8
H6A—C6—H6B109.5C33—C34—C35119.4 (2)
C4—C6—H6C109.5C33—C34—H34120.3
H6A—C6—H6C109.5C35—C34—H34120.3
H6B—C6—H6C109.5C34—C35—C36120.5 (2)
C12—C11—C16119.1 (2)C34—C35—H35119.7
C12—C11—P1118.92 (16)C36—C35—H35119.7
C16—C11—P1121.99 (16)C31—C36—C35121.0 (2)
C13—C12—C11120.2 (2)C31—C36—H36119.5
C13—C12—H12119.9C35—C36—H36119.5
C11—P1—C1—C391.24 (18)C11—C12—C13—C141.3 (4)
C21—P1—C1—C331.72 (19)C12—C13—C14—C150.9 (4)
C31—P1—C1—C3148.13 (16)C13—C14—C15—C160.5 (4)
C11—P1—C1—C279.61 (19)C14—C15—C16—C111.6 (4)
C21—P1—C1—C2157.44 (16)C12—C11—C16—C151.2 (3)
C31—P1—C1—C241.02 (19)P1—C11—C16—C15179.91 (17)
C4—O1—C2—O28.0 (3)C1—P1—C21—C22131.52 (18)
C4—O1—C2—C1174.49 (17)C11—P1—C21—C225.1 (2)
C3—C1—C2—O222.0 (4)C31—P1—C21—C22109.04 (18)
P1—C1—C2—O2167.6 (2)C1—P1—C21—C2649.68 (19)
C3—C1—C2—O1155.35 (19)C11—P1—C21—C26176.12 (16)
P1—C1—C2—O115.0 (2)C31—P1—C21—C2669.76 (18)
C7'—O3'—C3—O47 (3)C26—C21—C22—C231.0 (3)
C7'—O3'—C3—O3136 (10)P1—C21—C22—C23177.79 (16)
C7'—O3'—C3—C1180 (2)C21—C22—C23—C240.7 (3)
C7—O3—C3—O411.2 (16)C22—C23—C24—C251.6 (4)
C7—O3—C3—O3'30 (7)C23—C24—C25—C260.6 (4)
C7—O3—C3—C1171.4 (10)C24—C25—C26—C211.2 (3)
C2—C1—C3—O4153.5 (2)C22—C21—C26—C252.0 (3)
P1—C1—C3—O417.0 (3)P1—C21—C26—C25176.85 (16)
C2—C1—C3—O3'18.5 (15)C1—P1—C31—C36115.23 (18)
P1—C1—C3—O3'171.0 (15)C11—P1—C31—C3610.3 (2)
C2—C1—C3—O329.1 (8)C21—P1—C31—C36126.16 (18)
P1—C1—C3—O3160.3 (7)C1—P1—C31—C3261.69 (19)
C2—O1—C4—C585.8 (2)C11—P1—C31—C32172.75 (17)
C2—O1—C4—C6150.5 (2)C21—P1—C31—C3256.92 (19)
C1—P1—C11—C121.1 (2)C36—C31—C32—C330.6 (3)
C21—P1—C11—C12124.33 (17)P1—C31—C32—C33177.64 (18)
C31—P1—C11—C12121.88 (17)C31—C32—C33—C340.9 (4)
C1—P1—C11—C16179.97 (17)C32—C33—C34—C350.9 (4)
C21—P1—C11—C1656.78 (19)C33—C34—C35—C360.6 (4)
C31—P1—C11—C1657.00 (19)C32—C31—C36—C350.3 (3)
C16—C11—C12—C130.2 (3)P1—C31—C36—C35177.29 (17)
P1—C11—C12—C13178.70 (17)C34—C35—C36—C310.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
P1···O12.799 (2)
P1···O43.030 (2)
C5—H5C···Cg30.962.893.657 (3)138
C23—H23···O4i0.932.563.430 (3)156
Symmetry code: (i) x, y+1, z+1.
(Ib) ethyl isopropyl 2-(triphenylphosphoranyliden)malonate top
Crystal data top
C26H27O4PF(000) = 920
Mr = 434.45Dx = 1.245 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1773 reflections
a = 12.5175 (16) Åθ = 2.4–18.8°
b = 9.1555 (12) ŵ = 0.15 mm1
c = 20.351 (3) ÅT = 140 K
β = 96.342 (2)°Block, colourless
V = 2318.0 (5) Å30.18 × 0.16 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2713 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Graphite monochromatorθmax = 28.1°, θmin = 2.0°
ϕ and ω scansh = 1616
19001 measured reflectionsk = 1211
5252 independent reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.0649P)2]
where P = (Fo2 + 2Fc2)/3
5252 reflections(Δ/σ)max < 0.001
300 parametersΔρmax = 0.33 e Å3
7 restraintsΔρmin = 0.27 e Å3
Crystal data top
C26H27O4PV = 2318.0 (5) Å3
Mr = 434.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5175 (16) ŵ = 0.15 mm1
b = 9.1555 (12) ÅT = 140 K
c = 20.351 (3) Å0.18 × 0.16 × 0.16 mm
β = 96.342 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2713 reflections with I > 2σ(I)
19001 measured reflectionsRint = 0.053
5252 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0577 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 0.86Δρmax = 0.33 e Å3
5252 reflectionsΔρmin = 0.27 e Å3
300 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.73850 (5)0.02844 (7)0.17875 (3)0.0439 (2)
O10.62126 (16)0.2614 (2)0.10059 (10)0.0973 (8)
O20.73010 (15)0.2958 (2)0.02568 (9)0.0903 (7)
O30.9224 (3)0.1642 (6)0.0498 (2)0.0647 (15)0.616 (4)
O3'0.9339 (5)0.2182 (8)0.0701 (4)0.070 (3)0.384 (4)
O40.95195 (13)0.04885 (19)0.14924 (9)0.0686 (5)
C10.77891 (17)0.1334 (2)0.11455 (10)0.0456 (6)
C20.71144 (19)0.2344 (3)0.07458 (12)0.0510 (6)
C30.8908 (2)0.1173 (3)0.10908 (13)0.0595 (7)
C40.5427 (2)0.3578 (4)0.06629 (17)0.0883 (10)
H40.57270.40190.02850.106*
C50.4466 (3)0.2731 (4)0.04265 (18)0.1286 (14)
H5A0.46600.19580.01440.193*
H5B0.39500.33580.01840.193*
H5C0.41590.23210.07970.193*
C60.5222 (3)0.4721 (4)0.11353 (19)0.1204 (13)
H6A0.58800.52210.12790.181*
H6B0.49400.42890.15100.181*
H6C0.47100.54050.09270.181*
C71.0358 (3)0.1456 (6)0.0431 (3)0.0897 (17)0.616 (4)
H7A1.04590.12930.00290.108*0.616 (4)
H7B1.06370.06150.06850.108*0.616 (4)
C7'1.0485 (5)0.2473 (9)0.0793 (5)0.0897 (17)0.384 (4)
H7'A1.07510.23960.12580.108*0.384 (4)
H7'B1.06260.34550.06450.108*0.384 (4)
C81.0953 (6)0.2825 (8)0.0683 (4)0.185 (4)0.616 (4)
H8A1.06290.36630.04570.278*0.616 (4)
H8B1.16920.27560.06010.278*0.616 (4)
H8C1.09140.29230.11490.278*0.616 (4)
C8'1.1053 (8)0.1363 (14)0.0393 (6)0.185 (4)0.384 (4)
H8'A1.08620.15360.00700.278*0.384 (4)
H8'B1.08370.03940.05020.278*0.384 (4)
H8'C1.18170.14600.04960.278*0.384 (4)
C110.78585 (17)0.1571 (2)0.17111 (12)0.0472 (6)
C120.82857 (19)0.2374 (3)0.22506 (12)0.0571 (7)
H120.83580.19570.26700.069*
C130.8607 (2)0.3802 (3)0.21667 (16)0.0739 (8)
H130.89010.43390.25310.089*
C140.8498 (2)0.4429 (3)0.15545 (18)0.0774 (9)
H140.87010.53960.15030.093*
C150.8090 (2)0.3634 (3)0.10210 (15)0.0775 (8)
H150.80210.40590.06030.093*
C160.7780 (2)0.2208 (3)0.10917 (13)0.0622 (7)
H160.75150.16690.07220.075*
C210.78327 (17)0.0933 (2)0.26071 (11)0.0447 (6)
C220.74220 (18)0.0353 (3)0.31610 (11)0.0544 (6)
H220.69350.04160.31090.065*
C230.7725 (2)0.0898 (3)0.37771 (12)0.0631 (7)
H230.74350.05050.41400.076*
C240.8454 (2)0.2020 (3)0.38665 (13)0.0670 (8)
H240.86560.23900.42870.080*
C250.8880 (2)0.2588 (3)0.33310 (14)0.0661 (7)
H250.93830.33370.33890.079*
C260.85643 (19)0.2052 (3)0.27018 (12)0.0560 (7)
H260.88510.24550.23400.067*
C310.59357 (18)0.0143 (3)0.17709 (11)0.0483 (6)
C320.5370 (2)0.0903 (3)0.13930 (14)0.0718 (8)
H320.57330.15510.11440.086*
C330.4269 (2)0.1000 (4)0.13799 (18)0.0948 (11)
H330.38920.16960.11140.114*
C340.3730 (2)0.0081 (4)0.17536 (19)0.0952 (11)
H340.29880.01630.17500.114*
C350.4283 (2)0.0969 (4)0.21374 (15)0.0805 (9)
H350.39190.15980.23940.097*
C360.5376 (2)0.1081 (3)0.21376 (12)0.0627 (7)
H360.57470.18040.23900.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0432 (4)0.0451 (4)0.0433 (4)0.0004 (3)0.0037 (3)0.0017 (3)
O10.0757 (13)0.1258 (17)0.0976 (15)0.0543 (13)0.0420 (12)0.0682 (13)
O20.0849 (14)0.1184 (17)0.0729 (13)0.0319 (12)0.0317 (11)0.0499 (13)
O30.046 (2)0.087 (4)0.064 (3)0.003 (2)0.0169 (18)0.019 (3)
O3'0.060 (4)0.083 (5)0.068 (5)0.025 (3)0.017 (3)0.003 (4)
O40.0474 (11)0.0798 (13)0.0781 (13)0.0087 (9)0.0050 (9)0.0189 (11)
C10.0432 (14)0.0486 (14)0.0455 (14)0.0017 (11)0.0062 (11)0.0044 (11)
C20.0501 (15)0.0578 (16)0.0455 (15)0.0045 (12)0.0074 (12)0.0042 (13)
C30.0533 (17)0.0624 (17)0.0637 (18)0.0032 (14)0.0110 (14)0.0111 (14)
C40.073 (2)0.106 (3)0.089 (2)0.039 (2)0.0226 (18)0.049 (2)
C50.127 (3)0.132 (3)0.114 (3)0.014 (3)0.042 (3)0.027 (3)
C60.105 (3)0.114 (3)0.143 (3)0.038 (2)0.017 (3)0.019 (3)
C70.065 (3)0.115 (5)0.096 (4)0.009 (3)0.037 (3)0.019 (3)
C7'0.065 (3)0.115 (5)0.096 (4)0.009 (3)0.037 (3)0.019 (3)
C80.108 (5)0.275 (11)0.185 (7)0.092 (6)0.070 (5)0.089 (7)
C8'0.108 (5)0.275 (11)0.185 (7)0.092 (6)0.070 (5)0.089 (7)
C110.0423 (13)0.0456 (14)0.0534 (15)0.0011 (11)0.0035 (11)0.0028 (12)
C120.0542 (16)0.0559 (17)0.0607 (17)0.0005 (13)0.0035 (13)0.0091 (13)
C130.0708 (19)0.0570 (18)0.091 (2)0.0082 (15)0.0022 (17)0.0204 (17)
C140.074 (2)0.0485 (18)0.110 (3)0.0069 (14)0.0072 (19)0.0025 (19)
C150.087 (2)0.064 (2)0.080 (2)0.0066 (17)0.0030 (17)0.0158 (17)
C160.0716 (18)0.0575 (17)0.0557 (17)0.0105 (14)0.0008 (13)0.0047 (13)
C210.0407 (13)0.0452 (13)0.0477 (14)0.0006 (11)0.0032 (11)0.0013 (11)
C220.0525 (15)0.0623 (16)0.0481 (15)0.0106 (13)0.0047 (12)0.0009 (13)
C230.0606 (17)0.083 (2)0.0454 (16)0.0006 (15)0.0063 (13)0.0012 (14)
C240.0610 (18)0.083 (2)0.0545 (17)0.0064 (15)0.0067 (14)0.0168 (15)
C250.0597 (17)0.0647 (18)0.0721 (19)0.0076 (14)0.0006 (15)0.0161 (15)
C260.0563 (16)0.0552 (16)0.0566 (16)0.0027 (13)0.0075 (13)0.0004 (13)
C310.0432 (13)0.0504 (14)0.0513 (14)0.0013 (12)0.0056 (11)0.0065 (12)
C320.0519 (17)0.0607 (17)0.102 (2)0.0052 (14)0.0039 (15)0.0089 (16)
C330.057 (2)0.077 (2)0.147 (3)0.0189 (17)0.005 (2)0.006 (2)
C340.0464 (18)0.111 (3)0.129 (3)0.0029 (19)0.015 (2)0.030 (2)
C350.0547 (19)0.109 (3)0.080 (2)0.0156 (18)0.0176 (16)0.0113 (19)
C360.0502 (16)0.0799 (19)0.0577 (17)0.0052 (14)0.0045 (13)0.0009 (15)
Geometric parameters (Å, º) top
P1—C11.741 (2)C8'—H8'C0.9600
P1—C211.801 (2)C11—C121.379 (3)
P1—C111.811 (2)C11—C161.382 (3)
P1—C311.815 (2)C12—C131.384 (3)
O1—C21.322 (3)C12—H120.9300
O1—C41.442 (3)C13—C141.365 (4)
O2—C21.188 (3)C13—H130.9300
O3—C31.379 (4)C14—C151.359 (4)
O3—C71.451 (3)C14—H140.9300
O3'—C31.367 (7)C15—C161.375 (3)
O3'—C7'1.451 (3)C15—H150.9300
O4—C31.228 (3)C16—H160.9300
C1—C31.425 (3)C21—C261.373 (3)
C1—C21.441 (3)C21—C221.395 (3)
C4—C61.463 (4)C22—C231.364 (3)
C4—C51.467 (4)C22—H220.9300
C4—H40.9800C23—C241.373 (3)
C5—H5A0.9600C23—H230.9300
C5—H5B0.9600C24—C251.368 (3)
C5—H5C0.9600C24—H240.9300
C6—H6A0.9600C25—C261.387 (3)
C6—H6B0.9600C25—H250.9300
C6—H6C0.9600C26—H260.9300
C7—C81.518 (3)C31—C321.375 (3)
C7—H7A0.9700C31—C361.378 (3)
C7—H7B0.9700C32—C331.379 (4)
C7'—C8'1.526 (3)C32—H320.9300
C7'—H7'A0.9700C33—C341.362 (4)
C7'—H7'B0.9700C33—H330.9300
C8—H8A0.9600C34—C351.377 (4)
C8—H8B0.9600C34—H340.9300
C8—H8C0.9600C35—C361.372 (3)
C8'—H8'A0.9600C35—H350.9300
C8'—H8'B0.9600C36—H360.9300
C1—P1—C21115.24 (11)H8'B—C8'—H8'C109.5
C1—P1—C11109.17 (11)C12—C11—C16118.9 (2)
C21—P1—C11108.51 (11)C12—C11—P1122.24 (19)
C1—P1—C31113.44 (10)C16—C11—P1118.85 (18)
C21—P1—C31104.40 (11)C11—C12—C13119.9 (2)
C11—P1—C31105.51 (11)C11—C12—H12120.1
C2—O1—C4119.2 (2)C13—C12—H12120.1
C3—O3—C7115.1 (4)C14—C13—C12120.6 (3)
C3—O3'—C7'119.8 (7)C14—C13—H13119.7
C3—C1—C2122.8 (2)C12—C13—H13119.7
C3—C1—P1111.77 (17)C15—C14—C13119.7 (3)
C2—C1—P1125.22 (17)C15—C14—H14120.2
O2—C2—O1120.1 (2)C13—C14—H14120.2
O2—C2—C1128.2 (2)C14—C15—C16120.7 (3)
O1—C2—C1111.5 (2)C14—C15—H15119.6
O4—C3—O3'118.4 (4)C16—C15—H15119.6
O4—C3—O3121.5 (3)C15—C16—C11120.2 (3)
O4—C3—C1123.1 (2)C15—C16—H16119.9
O3'—C3—C1115.4 (4)C11—C16—H16119.9
O3—C3—C1114.6 (3)C26—C21—C22118.1 (2)
O1—C4—C6106.2 (3)C26—C21—P1120.69 (18)
O1—C4—C5109.0 (3)C22—C21—P1121.22 (18)
C6—C4—C5113.3 (3)C23—C22—C21120.9 (2)
O1—C4—H4109.4C23—C22—H22119.5
C6—C4—H4109.4C21—C22—H22119.5
C5—C4—H4109.4C22—C23—C24120.6 (2)
C4—C5—H5A109.5C22—C23—H23119.7
C4—C5—H5B109.5C24—C23—H23119.7
H5A—C5—H5B109.5C25—C24—C23119.4 (2)
C4—C5—H5C109.5C25—C24—H24120.3
H5A—C5—H5C109.5C23—C24—H24120.3
H5B—C5—H5C109.5C24—C25—C26120.3 (2)
C4—C6—H6A109.5C24—C25—H25119.8
C4—C6—H6B109.5C26—C25—H25119.8
H6A—C6—H6B109.5C21—C26—C25120.7 (2)
C4—C6—H6C109.5C21—C26—H26119.7
H6A—C6—H6C109.5C25—C26—H26119.7
H6B—C6—H6C109.5C32—C31—C36118.4 (2)
O3—C7—C8108.7 (4)C32—C31—P1120.77 (19)
O3—C7—H7A110.0C36—C31—P1120.80 (19)
C8—C7—H7A110.0C31—C32—C33120.5 (3)
O3—C7—H7B110.0C31—C32—H32119.8
C8—C7—H7B110.0C33—C32—H32119.8
H7A—C7—H7B108.3C34—C33—C32120.4 (3)
O3'—C7'—C8'108.7 (6)C34—C33—H33119.8
O3'—C7'—H7'A109.9C32—C33—H33119.8
C8'—C7'—H7'A109.9C33—C34—C35119.9 (3)
O3'—C7'—H7'B109.9C33—C34—H34120.0
C8'—C7'—H7'B109.9C35—C34—H34120.0
H7'A—C7'—H7'B108.3C36—C35—C34119.5 (3)
C7'—C8'—H8'A109.5C36—C35—H35120.3
C7'—C8'—H8'B109.5C34—C35—H35120.3
H8'A—C8'—H8'B109.5C35—C36—C31121.3 (3)
C7'—C8'—H8'C109.5C35—C36—H36119.4
H8'A—C8'—H8'C109.5C31—C36—H36119.4
C21—P1—C1—C372.0 (2)P1—C11—C12—C13178.16 (19)
C11—P1—C1—C350.4 (2)C11—C12—C13—C140.5 (4)
C31—P1—C1—C3167.72 (17)C12—C13—C14—C151.4 (4)
C21—P1—C1—C2103.2 (2)C13—C14—C15—C160.5 (4)
C11—P1—C1—C2134.5 (2)C14—C15—C16—C111.3 (4)
C31—P1—C1—C217.1 (2)C12—C11—C16—C152.1 (4)
C4—O1—C2—O24.5 (4)P1—C11—C16—C15177.3 (2)
C4—O1—C2—C1178.6 (2)C1—P1—C21—C268.9 (2)
C3—C1—C2—O215.0 (4)C11—P1—C21—C26113.87 (19)
P1—C1—C2—O2170.4 (2)C31—P1—C21—C26133.97 (19)
C3—C1—C2—O1161.6 (2)C1—P1—C21—C22168.92 (18)
P1—C1—C2—O113.0 (3)C11—P1—C21—C2268.4 (2)
C7'—O3'—C3—O43.2 (8)C31—P1—C21—C2243.8 (2)
C7'—O3'—C3—O3107.7 (12)C26—C21—C22—C231.1 (3)
C7'—O3'—C3—C1157.5 (5)P1—C21—C22—C23176.75 (18)
C7—O3—C3—O48.6 (6)C21—C22—C23—C240.9 (4)
C7—O3—C3—O3'82.9 (10)C22—C23—C24—C250.2 (4)
C7—O3—C3—C1178.8 (3)C23—C24—C25—C261.1 (4)
C2—C1—C3—O4168.6 (2)C22—C21—C26—C250.2 (3)
P1—C1—C3—O46.7 (3)P1—C21—C26—C25177.64 (18)
C2—C1—C3—O3'8.9 (5)C24—C25—C26—C210.9 (4)
P1—C1—C3—O3'166.4 (4)C1—P1—C31—C3285.3 (2)
C2—C1—C3—O321.4 (4)C21—P1—C31—C32148.4 (2)
P1—C1—C3—O3163.3 (3)C11—P1—C31—C3234.1 (2)
C2—O1—C4—C6125.0 (3)C1—P1—C31—C3694.8 (2)
C2—O1—C4—C5112.5 (3)C21—P1—C31—C3631.5 (2)
C3—O3—C7—C890.3 (6)C11—P1—C31—C36145.8 (2)
C3—O3'—C7'—C8'85.6 (10)C36—C31—C32—C330.4 (4)
C1—P1—C11—C12138.36 (19)P1—C31—C32—C33179.7 (2)
C21—P1—C11—C1212.0 (2)C31—C32—C33—C341.6 (5)
C31—P1—C11—C1299.4 (2)C32—C33—C34—C351.2 (5)
C1—P1—C11—C1642.3 (2)C33—C34—C35—C360.2 (5)
C21—P1—C11—C16168.59 (19)C34—C35—C36—C311.3 (4)
C31—P1—C11—C1680.0 (2)C32—C31—C36—C351.0 (4)
C16—C11—C12—C131.2 (4)P1—C31—C36—C35178.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
P1···O12.953 (2)
P1···O42.809 (2)
C5—H5C···Cg30.962.933.663 (4)134
C25—H25···O4i0.932.403.323 (3)172
Symmetry code: (i) x+2, y+1/2, z+1/2.
(IIa) methyl tert-butyl 2-(triphenylphosphoranyliden)malonate top
Crystal data top
C26H27O4PF(000) = 920
Mr = 434.45Dx = 1.201 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7347 reflections
a = 9.8140 (7) Åθ = 2.4–27.5°
b = 15.889 (2) ŵ = 0.14 mm1
c = 15.404 (2) ÅT = 140 K
β = 90.413 (2)°Block, colourless
V = 2402.0 (5) Å30.16 × 0.16 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4501 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 27.8°, θmin = 1.8°
ϕ and ω scansh = 1112
19840 measured reflectionsk = 2020
5292 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0764P)2 + 0.8536P]
where P = (Fo2 + 2Fc2)/3
5292 reflections(Δ/σ)max = 0.008
284 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C26H27O4PV = 2402.0 (5) Å3
Mr = 434.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.8140 (7) ŵ = 0.14 mm1
b = 15.889 (2) ÅT = 140 K
c = 15.404 (2) Å0.16 × 0.16 × 0.16 mm
β = 90.413 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4501 reflections with I > 2σ(I)
19840 measured reflectionsRint = 0.021
5292 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.04Δρmax = 0.60 e Å3
5292 reflectionsΔρmin = 0.45 e Å3
284 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.14127 (4)0.18082 (3)0.47388 (3)0.03449 (14)
O10.03175 (14)0.28668 (8)0.56513 (8)0.0484 (3)
O20.04149 (14)0.22305 (9)0.69524 (8)0.0525 (3)
O30.11969 (15)0.08631 (9)0.70944 (8)0.0583 (4)
O40.2686 (2)0.06909 (18)0.60761 (12)0.1345 (12)
C10.09323 (16)0.16494 (10)0.58150 (10)0.0365 (3)
C20.00120 (17)0.22425 (10)0.62166 (10)0.0392 (4)
C30.16718 (18)0.10306 (12)0.63060 (11)0.0464 (4)
C40.1236 (3)0.35562 (14)0.58826 (14)0.0665 (6)
C50.1376 (4)0.40236 (18)0.50279 (19)0.0982 (10)
H5A0.04910.41910.48310.147*
H5B0.19330.45140.51090.147*
H5C0.17950.36620.46040.147*
C60.0546 (5)0.40994 (18)0.6566 (2)0.1148 (13)
H6A0.04970.37960.71040.172*
H6B0.10630.46060.66460.172*
H6C0.03570.42400.63800.172*
C70.2604 (3)0.3214 (2)0.6159 (2)0.1119 (13)
H7A0.24980.29070.66920.168*
H7B0.29550.28460.57170.168*
H7C0.32260.36720.62450.168*
C80.1943 (3)0.02723 (16)0.76090 (15)0.0767 (7)
H8A0.16020.02770.81920.115*
H8B0.28900.04230.76150.115*
H8C0.18390.02810.73670.115*
C110.26076 (17)0.26686 (10)0.46337 (11)0.0387 (4)
C120.3300 (2)0.28250 (12)0.38661 (11)0.0477 (4)
H12A0.31280.24930.33800.057*
C130.4241 (2)0.34692 (14)0.38185 (14)0.0588 (5)
H130.46920.35750.33010.071*
C140.4506 (3)0.39522 (15)0.45370 (16)0.0708 (7)
H140.51430.43840.45060.085*
C150.3836 (3)0.38024 (15)0.53036 (15)0.0707 (7)
H150.40210.41340.57880.085*
C160.2890 (2)0.31607 (12)0.53573 (12)0.0512 (5)
H160.24440.30590.58770.061*
C210.22434 (17)0.09091 (10)0.42527 (10)0.0387 (4)
C220.1478 (2)0.03033 (12)0.38286 (13)0.0517 (4)
H220.05370.03600.37890.062*
C230.2116 (3)0.03907 (13)0.34610 (16)0.0658 (6)
H230.16000.08000.31780.079*
C240.3503 (3)0.04726 (14)0.35148 (16)0.0666 (6)
H240.39250.09380.32680.080*
C250.4274 (2)0.01279 (14)0.39303 (14)0.0602 (5)
H250.52160.00690.39620.072*
C260.36547 (19)0.08184 (13)0.43009 (13)0.0500 (4)
H260.41790.12240.45830.060*
C310.00707 (18)0.20010 (11)0.40597 (11)0.0418 (4)
C320.1290 (2)0.16113 (13)0.42658 (14)0.0539 (5)
H320.13450.12610.47480.065*
C330.2431 (2)0.17488 (16)0.37440 (17)0.0695 (6)
H330.32510.14890.38820.083*
C340.2367 (3)0.22568 (18)0.30367 (17)0.0772 (7)
H340.31430.23510.27000.093*
C350.1165 (3)0.26294 (19)0.28190 (16)0.0804 (8)
H350.11170.29650.23260.096*
C360.0010 (2)0.25077 (15)0.33332 (14)0.0625 (5)
H360.08050.27690.31870.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0317 (2)0.0407 (2)0.0311 (2)0.00082 (15)0.00176 (16)0.00031 (15)
O10.0604 (8)0.0452 (7)0.0397 (6)0.0135 (6)0.0059 (6)0.0031 (5)
O20.0598 (8)0.0608 (8)0.0369 (6)0.0137 (6)0.0121 (6)0.0032 (6)
O30.0698 (9)0.0637 (8)0.0416 (7)0.0220 (7)0.0111 (6)0.0158 (6)
O40.1237 (17)0.218 (3)0.0619 (11)0.1255 (19)0.0422 (11)0.0563 (14)
C10.0329 (8)0.0443 (8)0.0324 (8)0.0009 (6)0.0025 (6)0.0019 (6)
C20.0375 (8)0.0437 (9)0.0365 (8)0.0004 (7)0.0010 (7)0.0003 (7)
C30.0423 (9)0.0602 (11)0.0367 (9)0.0093 (8)0.0055 (7)0.0048 (8)
C40.0855 (16)0.0594 (12)0.0547 (12)0.0324 (12)0.0033 (11)0.0003 (10)
C50.148 (3)0.0711 (16)0.0752 (17)0.0497 (18)0.0028 (17)0.0162 (13)
C60.189 (4)0.0683 (17)0.087 (2)0.038 (2)0.022 (2)0.0282 (15)
C70.0759 (19)0.144 (3)0.116 (3)0.055 (2)0.0222 (18)0.028 (2)
C80.107 (2)0.0749 (15)0.0482 (12)0.0345 (14)0.0042 (12)0.0197 (11)
C110.0375 (8)0.0423 (8)0.0362 (8)0.0050 (6)0.0034 (6)0.0004 (6)
C120.0543 (11)0.0522 (10)0.0367 (9)0.0108 (8)0.0093 (8)0.0066 (7)
C130.0675 (13)0.0599 (11)0.0492 (11)0.0187 (10)0.0215 (10)0.0041 (9)
C140.0799 (16)0.0644 (13)0.0686 (14)0.0346 (12)0.0257 (12)0.0163 (11)
C150.0813 (16)0.0729 (14)0.0583 (13)0.0342 (12)0.0195 (11)0.0266 (11)
C160.0537 (11)0.0596 (11)0.0405 (9)0.0142 (9)0.0119 (8)0.0097 (8)
C210.0391 (8)0.0423 (8)0.0349 (8)0.0013 (7)0.0058 (6)0.0005 (6)
C220.0480 (10)0.0488 (10)0.0584 (11)0.0050 (8)0.0063 (9)0.0071 (8)
C230.0749 (15)0.0492 (11)0.0736 (15)0.0066 (10)0.0117 (12)0.0171 (10)
C240.0785 (16)0.0508 (11)0.0707 (14)0.0140 (10)0.0229 (12)0.0059 (10)
C250.0510 (11)0.0665 (13)0.0631 (13)0.0156 (10)0.0121 (9)0.0021 (10)
C260.0411 (10)0.0579 (11)0.0510 (10)0.0033 (8)0.0044 (8)0.0041 (8)
C310.0384 (9)0.0502 (9)0.0368 (8)0.0050 (7)0.0040 (7)0.0031 (7)
C320.0430 (10)0.0631 (11)0.0556 (11)0.0014 (9)0.0047 (8)0.0016 (9)
C330.0419 (11)0.0859 (16)0.0804 (16)0.0019 (10)0.0139 (11)0.0127 (13)
C340.0609 (15)0.1006 (19)0.0696 (15)0.0190 (13)0.0283 (12)0.0068 (14)
C350.0766 (17)0.107 (2)0.0575 (14)0.0124 (15)0.0199 (12)0.0199 (13)
C360.0559 (12)0.0820 (15)0.0494 (11)0.0028 (10)0.0049 (9)0.0153 (10)
Geometric parameters (Å, º) top
P1—C11.7451 (16)C12—H12A0.9300
P1—C111.8092 (17)C13—C141.370 (3)
P1—C211.8097 (17)C13—H130.9300
P1—C311.8126 (17)C14—C151.376 (3)
O1—C21.357 (2)C14—H140.9300
O1—C41.464 (2)C15—C161.382 (3)
O2—C21.211 (2)C15—H150.9300
O3—C31.331 (2)C16—H160.9300
O3—C81.427 (2)C21—C221.382 (2)
O4—C31.188 (2)C21—C261.394 (2)
C1—C31.434 (2)C22—C231.390 (3)
C1—C21.447 (2)C22—H220.9300
C4—C71.512 (4)C23—C241.369 (3)
C4—C61.516 (4)C23—H230.9300
C4—C51.517 (3)C24—C251.373 (3)
C5—H5A0.9600C24—H240.9300
C5—H5B0.9600C25—C261.380 (3)
C5—H5C0.9600C25—H250.9300
C6—H6A0.9600C26—H260.9300
C6—H6B0.9600C31—C361.380 (3)
C6—H6C0.9600C31—C321.386 (3)
C7—H7A0.9600C32—C331.391 (3)
C7—H7B0.9600C32—H320.9300
C7—H7C0.9600C33—C341.358 (4)
C8—H8A0.9600C33—H330.9300
C8—H8B0.9600C34—C351.364 (4)
C8—H8C0.9600C34—H340.9300
C11—C161.388 (2)C35—C361.392 (3)
C11—C121.390 (2)C35—H350.9300
C12—C131.381 (3)C36—H360.9300
C1—P1—C11111.96 (8)C13—C12—H12A119.7
C1—P1—C21113.86 (8)C11—C12—H12A119.7
C11—P1—C21105.38 (8)C14—C13—C12119.70 (18)
C1—P1—C31110.57 (8)C14—C13—H13120.1
C11—P1—C31109.82 (8)C12—C13—H13120.1
C21—P1—C31104.89 (8)C13—C14—C15120.47 (19)
C2—O1—C4122.33 (14)C13—C14—H14119.8
C3—O3—C8117.18 (16)C15—C14—H14119.8
C3—C1—C2122.41 (15)C14—C15—C16120.27 (19)
C3—C1—P1117.44 (12)C14—C15—H15119.9
C2—C1—P1119.05 (12)C16—C15—H15119.9
O2—C2—O1121.96 (15)C15—C16—C11119.88 (17)
O2—C2—C1127.64 (15)C15—C16—H16120.1
O1—C2—C1110.37 (14)C11—C16—H16120.1
O4—C3—O3118.73 (17)C22—C21—C26119.29 (16)
O4—C3—C1125.16 (17)C22—C21—P1120.04 (14)
O3—C3—C1116.04 (15)C26—C21—P1120.66 (14)
O1—C4—C7110.4 (2)C21—C22—C23120.03 (19)
O1—C4—C6108.8 (2)C21—C22—H22120.0
C7—C4—C6113.7 (3)C23—C22—H22120.0
O1—C4—C5101.97 (18)C24—C23—C22120.1 (2)
C7—C4—C5110.2 (2)C24—C23—H23120.0
C6—C4—C5111.2 (2)C22—C23—H23120.0
C4—C5—H5A109.5C23—C24—C25120.43 (19)
C4—C5—H5B109.5C23—C24—H24119.8
H5A—C5—H5B109.5C25—C24—H24119.8
C4—C5—H5C109.5C24—C25—C26120.1 (2)
H5A—C5—H5C109.5C24—C25—H25119.9
H5B—C5—H5C109.5C26—C25—H25119.9
C4—C6—H6A109.5C25—C26—C21120.04 (19)
C4—C6—H6B109.5C25—C26—H26120.0
H6A—C6—H6B109.5C21—C26—H26120.0
C4—C6—H6C109.5C36—C31—C32119.25 (18)
H6A—C6—H6C109.5C36—C31—P1121.82 (15)
H6B—C6—H6C109.5C32—C31—P1118.91 (14)
C4—C7—H7A109.5C31—C32—C33119.4 (2)
C4—C7—H7B109.5C31—C32—H32120.3
H7A—C7—H7B109.5C33—C32—H32120.3
C4—C7—H7C109.5C34—C33—C32121.0 (2)
H7A—C7—H7C109.5C34—C33—H33119.5
H7B—C7—H7C109.5C32—C33—H33119.5
O3—C8—H8A109.5C33—C34—C35120.1 (2)
O3—C8—H8B109.5C33—C34—H34120.0
H8A—C8—H8B109.5C35—C34—H34120.0
O3—C8—H8C109.5C34—C35—C36120.1 (2)
H8A—C8—H8C109.5C34—C35—H35119.9
H8B—C8—H8C109.5C36—C35—H35119.9
C16—C11—C12119.09 (16)C31—C36—C35120.2 (2)
C16—C11—P1118.67 (13)C31—C36—H36119.9
C12—C11—P1122.16 (13)C35—C36—H36119.9
C13—C12—C11120.58 (17)
C11—P1—C1—C394.67 (15)C14—C15—C16—C110.4 (4)
C21—P1—C1—C324.74 (16)C12—C11—C16—C150.8 (3)
C31—P1—C1—C3142.52 (14)P1—C11—C16—C15177.62 (19)
C11—P1—C1—C273.63 (15)C1—P1—C21—C2289.73 (16)
C21—P1—C1—C2166.96 (13)C11—P1—C21—C22147.19 (15)
C31—P1—C1—C249.18 (15)C31—P1—C21—C2231.27 (17)
C4—O1—C2—O21.5 (3)C1—P1—C21—C2690.24 (16)
C4—O1—C2—C1179.97 (17)C11—P1—C21—C2632.84 (16)
C3—C1—C2—O211.8 (3)C31—P1—C21—C26148.75 (15)
P1—C1—C2—O2179.49 (15)C26—C21—C22—C230.5 (3)
C3—C1—C2—O1166.58 (16)P1—C21—C22—C23179.50 (16)
P1—C1—C2—O11.12 (19)C21—C22—C23—C240.3 (3)
C8—O3—C3—O40.7 (3)C22—C23—C24—C250.0 (4)
C8—O3—C3—C1177.8 (2)C23—C24—C25—C260.3 (4)
C2—C1—C3—O4158.2 (3)C24—C25—C26—C210.1 (3)
P1—C1—C3—O49.6 (3)C22—C21—C26—C250.2 (3)
C2—C1—C3—O318.6 (3)P1—C21—C26—C25179.73 (15)
P1—C1—C3—O3173.51 (14)C1—P1—C31—C36149.13 (17)
C2—O1—C4—C757.8 (3)C11—P1—C31—C3625.08 (19)
C2—O1—C4—C667.6 (3)C21—P1—C31—C3687.72 (18)
C2—O1—C4—C5174.9 (2)C1—P1—C31—C3232.46 (18)
C1—P1—C11—C167.33 (18)C11—P1—C31—C32156.51 (15)
C21—P1—C11—C16131.61 (15)C21—P1—C31—C3290.70 (16)
C31—P1—C11—C16115.91 (16)C36—C31—C32—C330.9 (3)
C1—P1—C11—C12169.37 (15)P1—C31—C32—C33179.39 (16)
C21—P1—C11—C1245.09 (17)C31—C32—C33—C340.1 (3)
C31—P1—C11—C1267.39 (17)C32—C33—C34—C351.2 (4)
C16—C11—C12—C131.0 (3)C33—C34—C35—C361.7 (4)
P1—C11—C12—C13177.70 (17)C32—C31—C36—C350.5 (3)
C11—C12—C13—C140.8 (4)P1—C31—C36—C35178.9 (2)
C12—C13—C14—C150.3 (4)C34—C35—C36—C310.8 (4)
C13—C14—C15—C160.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
P1···O12.729 (2)
P1···O42.986 (2)
C5—H5C···Cg30.962.993.788 (3)141
C23—H23···O2i0.932.563.424 (2)154
C25—H25···O4ii0.932.393.255 (3)155
C34—H34···O2iii0.932.593.511 (3)171
C13—H13···O3iv0.932.543.455 (3)166
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x1/2, y+1/2, z1/2; (iv) x+1/2, y+1/2, z1/2.
(IIb) ethyl tert-butyl 2-(triphenylphosphoranyliden)malonate top
Crystal data top
C27H29O4PZ = 2
Mr = 448.47F(000) = 476
Triclinic, P1Dx = 1.231 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9616 (7) ÅCell parameters from 2361 reflections
b = 10.3589 (8) Åθ = 2.3–23.8°
c = 14.5644 (11) ŵ = 0.14 mm1
α = 97.388 (2)°T = 140 K
β = 107.705 (3)°Block, colourless
γ = 105.338 (2)°0.20 × 0.18 × 0.14 mm
V = 1209.55 (16) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3919 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 27.9°, θmin = 2.1°
ϕ and ω scansh = 1111
10154 measured reflectionsk = 1313
5183 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.070P)2 + 0.1417P]
where P = (Fo2 + 2Fc2)/3
5183 reflections(Δ/σ)max = 0.018
299 parametersΔρmax = 0.36 e Å3
3 restraintsΔρmin = 0.16 e Å3
Crystal data top
C27H29O4Pγ = 105.338 (2)°
Mr = 448.47V = 1209.55 (16) Å3
Triclinic, P1Z = 2
a = 8.9616 (7) ÅMo Kα radiation
b = 10.3589 (8) ŵ = 0.14 mm1
c = 14.5644 (11) ÅT = 140 K
α = 97.388 (2)°0.20 × 0.18 × 0.14 mm
β = 107.705 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3919 reflections with I > 2σ(I)
10154 measured reflectionsRint = 0.019
5183 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0503 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.03Δρmax = 0.36 e Å3
5183 reflectionsΔρmin = 0.16 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.42921 (4)0.76990 (4)0.21270 (3)0.03683 (9)
O10.61257 (12)0.58687 (10)0.27373 (8)0.0503 (3)
O20.84030 (12)0.68548 (12)0.24039 (9)0.0627 (3)
O30.89536 (17)0.95837 (9)0.25831 (11)0.0572 (4)0.747 (4)
C80.9971 (3)1.10238 (17)0.29425 (10)0.0817 (7)0.747 (4)
H8A1.08871.11730.27030.098*0.747 (4)
H8B0.93151.15870.26710.098*0.747 (4)
C91.0620 (4)1.1465 (4)0.40136 (14)0.0982 (11)0.747 (4)
H9A1.13051.24100.42070.147*0.747 (4)
H9B1.12651.09080.42890.147*0.747 (4)
H9C0.97201.13670.42540.147*0.747 (4)
O3'0.8921 (5)0.97469 (16)0.2822 (3)0.0572 (4)0.253 (4)
C8'1.0056 (6)1.1099 (3)0.2922 (3)0.0817 (7)0.253 (4)
H8'A1.10631.10420.28250.098*0.253 (4)
H8'B0.95461.15980.24690.098*0.253 (4)
C9'1.0355 (14)1.1705 (14)0.3943 (4)0.0982 (11)0.253 (4)
H9'A1.10791.26370.41180.147*0.253 (4)
H9'B1.08601.11860.43680.147*0.253 (4)
H9'C0.93241.16950.40170.147*0.253 (4)
O40.67961 (12)1.03388 (11)0.26410 (8)0.0535 (3)
C10.63747 (16)0.79704 (14)0.23226 (10)0.0389 (3)
C20.71058 (17)0.68898 (15)0.24759 (11)0.0437 (4)
C30.73341 (17)0.93876 (16)0.25398 (11)0.0434 (4)
C40.6506 (2)0.45896 (17)0.28767 (14)0.0604 (5)
C50.5013 (3)0.3781 (2)0.30767 (18)0.0906 (7)
H5A0.49690.42650.36710.136*
H5B0.50950.28940.31560.136*
H5C0.40270.36700.25310.136*
C60.6591 (3)0.3845 (2)0.19436 (17)0.0876 (7)
H6A0.75450.43660.18250.131*
H6B0.56100.37400.13950.131*
H6C0.66710.29550.20160.131*
C70.8083 (3)0.4914 (2)0.37591 (19)0.1079 (9)
H7A0.79750.53950.43320.162*
H7B0.89950.54780.36240.162*
H7C0.82800.40740.38800.162*
C110.38572 (16)0.79984 (15)0.32493 (10)0.0408 (4)
C120.23174 (17)0.80506 (16)0.32664 (12)0.0484 (4)
H120.14750.79720.26790.058*
C130.2051 (2)0.82173 (17)0.41457 (12)0.0557 (4)
H130.10270.82500.41520.067*
C140.3288 (2)0.83371 (18)0.50179 (13)0.0601 (5)
H140.31010.84530.56130.072*
C150.4802 (2)0.82852 (19)0.50116 (12)0.0600 (5)
H150.56370.83650.56030.072*
C160.50869 (18)0.81148 (16)0.41330 (11)0.0479 (4)
H160.61130.80780.41340.058*
C210.35241 (16)0.87693 (14)0.13323 (10)0.0387 (3)
C220.35132 (18)0.85366 (16)0.03733 (11)0.0482 (4)
H220.39080.78530.01610.058*
C230.2925 (2)0.93023 (17)0.02746 (12)0.0541 (4)
H230.29280.91350.09170.065*
C240.2337 (2)1.03107 (17)0.00327 (13)0.0584 (5)
H240.19291.08230.04030.070*
C250.2354 (2)1.05596 (18)0.09807 (14)0.0659 (5)
H250.19541.12430.11870.079*
C260.2958 (2)0.98094 (17)0.16349 (12)0.0549 (4)
H260.29841.00030.22820.066*
C310.30318 (16)0.59683 (14)0.14338 (11)0.0408 (4)
C320.16589 (19)0.52632 (17)0.16322 (13)0.0542 (4)
H320.14320.56490.21660.065*
C330.0628 (2)0.39923 (18)0.10418 (15)0.0628 (5)
H330.02880.35260.11820.075*
C340.0946 (2)0.34161 (17)0.02529 (14)0.0603 (5)
H340.02380.25670.01490.072*
C350.2306 (2)0.40903 (17)0.00554 (13)0.0578 (5)
H350.25250.36930.04780.069*
C360.33556 (19)0.53558 (16)0.06426 (11)0.0491 (4)
H360.42850.58010.05080.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.03210 (16)0.03876 (18)0.03629 (18)0.00930 (14)0.00937 (14)0.00832 (14)
O10.0479 (5)0.0490 (5)0.0612 (6)0.0198 (4)0.0214 (5)0.0227 (5)
O20.0406 (5)0.0616 (7)0.0897 (8)0.0200 (5)0.0248 (5)0.0179 (6)
O30.0395 (5)0.0494 (7)0.0758 (9)0.0041 (5)0.0276 (6)0.0050 (6)
C80.0526 (10)0.0702 (13)0.1054 (16)0.0009 (10)0.0298 (10)0.0010 (11)
C90.0669 (16)0.102 (2)0.1039 (19)0.0286 (15)0.0094 (14)0.0035 (16)
O3'0.0395 (5)0.0494 (7)0.0758 (9)0.0041 (5)0.0276 (6)0.0050 (6)
C8'0.0526 (10)0.0702 (13)0.1054 (16)0.0009 (10)0.0298 (10)0.0010 (11)
C9'0.0669 (16)0.102 (2)0.1039 (19)0.0286 (15)0.0094 (14)0.0035 (16)
O40.0471 (5)0.0440 (6)0.0600 (7)0.0109 (5)0.0110 (5)0.0072 (5)
C10.0329 (6)0.0424 (7)0.0394 (7)0.0101 (6)0.0116 (5)0.0103 (6)
C20.0338 (7)0.0491 (8)0.0424 (8)0.0101 (6)0.0097 (6)0.0070 (6)
C30.0370 (7)0.0475 (8)0.0402 (8)0.0081 (6)0.0112 (6)0.0089 (6)
C40.0587 (9)0.0517 (9)0.0688 (11)0.0229 (7)0.0108 (8)0.0250 (8)
C50.0988 (14)0.0734 (12)0.1100 (16)0.0247 (11)0.0420 (12)0.0494 (11)
C60.1047 (14)0.0654 (12)0.1031 (16)0.0413 (11)0.0407 (12)0.0157 (11)
C70.0982 (16)0.0875 (14)0.1065 (18)0.0310 (13)0.0155 (14)0.0405 (13)
C110.0376 (7)0.0405 (7)0.0401 (7)0.0080 (6)0.0124 (6)0.0079 (6)
C120.0400 (7)0.0541 (9)0.0475 (8)0.0128 (7)0.0144 (6)0.0073 (7)
C130.0502 (8)0.0595 (10)0.0609 (9)0.0147 (7)0.0283 (7)0.0102 (8)
C140.0696 (9)0.0676 (11)0.0509 (9)0.0199 (8)0.0329 (8)0.0158 (8)
C150.0606 (9)0.0758 (11)0.0419 (8)0.0204 (8)0.0150 (7)0.0188 (8)
C160.0432 (7)0.0581 (9)0.0423 (8)0.0162 (7)0.0138 (6)0.0137 (7)
C210.0306 (6)0.0374 (7)0.0412 (7)0.0066 (5)0.0071 (5)0.0081 (6)
C220.0521 (8)0.0468 (8)0.0477 (8)0.0169 (7)0.0184 (7)0.0132 (6)
C230.0605 (9)0.0559 (9)0.0459 (8)0.0176 (7)0.0161 (7)0.0198 (7)
C240.0581 (9)0.0533 (9)0.0616 (10)0.0205 (7)0.0111 (8)0.0242 (7)
C250.0835 (11)0.0590 (9)0.0676 (11)0.0420 (8)0.0254 (9)0.0195 (8)
C260.0674 (9)0.0540 (9)0.0492 (9)0.0301 (7)0.0196 (7)0.0120 (7)
C310.0358 (6)0.0400 (7)0.0426 (7)0.0123 (6)0.0076 (6)0.0112 (6)
C320.0445 (8)0.0483 (9)0.0643 (10)0.0079 (7)0.0201 (7)0.0070 (7)
C330.0455 (8)0.0467 (9)0.0871 (13)0.0041 (7)0.0226 (8)0.0084 (9)
C340.0491 (9)0.0414 (9)0.0692 (11)0.0098 (7)0.0002 (8)0.0018 (8)
C350.0642 (10)0.0468 (9)0.0529 (9)0.0174 (8)0.0122 (8)0.0004 (7)
C360.0492 (8)0.0458 (8)0.0475 (8)0.0109 (7)0.0156 (7)0.0078 (7)
Geometric parameters (Å, º) top
P1—C11.7383 (14)C7—H7B0.9600
P1—C111.8004 (15)C7—H7C0.9600
P1—C311.8107 (14)C11—C161.383 (2)
P1—C211.8142 (15)C11—C121.403 (2)
O1—C21.3603 (18)C12—C131.370 (2)
O1—C41.476 (2)C12—H120.9300
O2—C21.2080 (18)C13—C141.374 (2)
O3—C31.392 (2)C13—H130.9300
O3—C81.4560 (17)C14—C151.374 (2)
C8—C91.451 (2)C14—H140.9300
C8—H8A0.9700C15—C161.378 (2)
C8—H8B0.9700C15—H150.9300
C9—H9A0.9600C16—H160.9300
C9—H9B0.9600C21—C221.383 (2)
C9—H9C0.9600C21—C261.384 (2)
O3'—C31.287 (4)C22—C231.381 (2)
O3'—C8'1.4560 (19)C22—H220.9300
C8'—C9'1.451 (2)C23—C241.373 (2)
C8'—H8'A0.9700C23—H230.9300
C8'—H8'B0.9700C24—C251.366 (3)
C9'—H9'A0.9600C24—H240.9300
C9'—H9'B0.9600C25—C261.380 (2)
C9'—H9'C0.9600C25—H250.9300
O4—C31.2174 (19)C26—H260.9300
C1—C31.429 (2)C31—C321.388 (2)
C1—C21.448 (2)C31—C361.388 (2)
C4—C61.507 (3)C32—C331.381 (2)
C4—C51.511 (3)C32—H320.9300
C4—C71.515 (3)C33—C341.368 (3)
C5—H5A0.9600C33—H330.9300
C5—H5B0.9600C34—C351.368 (2)
C5—H5C0.9600C34—H340.9300
C6—H6A0.9600C35—C361.380 (2)
C6—H6B0.9600C35—H350.9300
C6—H6C0.9600C36—H360.9300
C7—H7A0.9600
C1—P1—C11113.80 (6)H6B—C6—H6C109.5
C1—P1—C31111.58 (7)C4—C7—H7A109.5
C11—P1—C31107.85 (7)C4—C7—H7B109.5
C1—P1—C21110.05 (7)H7A—C7—H7B109.5
C11—P1—C21109.51 (7)C4—C7—H7C109.5
C31—P1—C21103.53 (6)H7A—C7—H7C109.5
C2—O1—C4122.35 (13)H7B—C7—H7C109.5
C3—O3—C8112.12 (16)C16—C11—C12118.70 (14)
C9—C8—O3113.2 (2)C16—C11—P1117.81 (12)
C9—C8—H8A108.9C12—C11—P1123.41 (11)
O3—C8—H8A108.9C13—C12—C11120.20 (14)
C9—C8—H8B108.9C13—C12—H12119.9
O3—C8—H8B108.9C11—C12—H12119.9
H8A—C8—H8B107.7C12—C13—C14120.39 (16)
C8—C9—H9A109.5C12—C13—H13119.8
C8—C9—H9B109.5C14—C13—H13119.8
H9A—C9—H9B109.5C13—C14—C15120.02 (16)
C8—C9—H9C109.5C13—C14—H14120.0
H9A—C9—H9C109.5C15—C14—H14120.0
H9B—C9—H9C109.5C14—C15—C16120.26 (15)
C3—O3'—C8'127.1 (3)C14—C15—H15119.9
C9'—C8'—O3'99.5 (6)C16—C15—H15119.9
C9'—C8'—H8'A111.9C15—C16—C11120.44 (15)
O3'—C8'—H8'A111.9C15—C16—H16119.8
C9'—C8'—H8'B111.8C11—C16—H16119.8
O3'—C8'—H8'B111.9C22—C21—C26118.28 (14)
H8'A—C8'—H8'B109.6C22—C21—P1118.11 (12)
C8'—C9'—H9'A109.5C26—C21—P1123.61 (12)
C8'—C9'—H9'B109.5C23—C22—C21121.10 (16)
H9'A—C9'—H9'B109.5C23—C22—H22119.4
C8'—C9'—H9'C109.5C21—C22—H22119.5
H9'A—C9'—H9'C109.5C24—C23—C22119.78 (16)
H9'B—C9'—H9'C109.5C24—C23—H23120.1
C3—C1—C2123.02 (12)C22—C23—H23120.1
C3—C1—P1113.73 (11)C25—C24—C23119.73 (16)
C2—C1—P1121.77 (10)C25—C24—H24120.1
O2—C2—O1122.42 (15)C23—C24—H24120.1
O2—C2—C1127.20 (15)C24—C25—C26120.77 (17)
O1—C2—C1110.38 (12)C24—C25—H25119.6
O4—C3—O3'114.29 (16)C26—C25—H25119.6
O4—C3—O3122.50 (13)C25—C26—C21120.31 (16)
O4—C3—C1124.35 (13)C25—C26—H26119.8
O3'—C3—C1120.22 (15)C21—C26—H26119.8
O3—C3—C1113.09 (13)C32—C31—C36118.47 (13)
O1—C4—C6110.87 (15)C32—C31—P1121.13 (12)
O1—C4—C5101.49 (15)C36—C31—P1120.25 (11)
C6—C4—C5110.16 (16)C33—C32—C31120.42 (17)
O1—C4—C7109.66 (14)C33—C32—H32119.8
C6—C4—C7112.54 (19)C31—C32—H32119.8
C5—C4—C7111.59 (18)C34—C33—C32120.36 (16)
C4—C5—H5A109.5C34—C33—H33119.8
C4—C5—H5B109.5C32—C33—H33119.8
H5A—C5—H5B109.5C33—C34—C35119.91 (15)
C4—C5—H5C109.5C33—C34—H34120.0
H5A—C5—H5C109.5C35—C34—H34120.0
H5B—C5—H5C109.5C34—C35—C36120.46 (17)
C4—C6—H6A109.5C34—C35—H35119.8
C4—C6—H6B109.5C36—C35—H35119.8
H6A—C6—H6B109.5C35—C36—C31120.36 (15)
C4—C6—H6C109.5C35—C36—H36119.8
H6A—C6—H6C109.5C31—C36—H36119.8
C3—O3—C8—C982.8 (3)P1—C11—C12—C13176.87 (12)
C3—O3'—C8'—C9'89.8 (7)C11—C12—C13—C140.1 (2)
C11—P1—C1—C378.64 (12)C12—C13—C14—C150.2 (3)
C31—P1—C1—C3159.04 (11)C13—C14—C15—C160.1 (3)
C21—P1—C1—C344.70 (13)C14—C15—C16—C110.2 (3)
C11—P1—C1—C287.90 (13)C12—C11—C16—C150.3 (2)
C31—P1—C1—C234.42 (14)P1—C11—C16—C15177.20 (13)
C21—P1—C1—C2148.77 (12)C1—P1—C21—C2263.88 (12)
C4—O1—C2—O24.9 (2)C11—P1—C21—C22170.31 (10)
C4—O1—C2—C1175.87 (12)C31—P1—C21—C2255.49 (12)
C3—C1—C2—O232.2 (2)C1—P1—C21—C26115.75 (13)
P1—C1—C2—O2162.53 (13)C11—P1—C21—C2610.05 (14)
C3—C1—C2—O1146.98 (14)C31—P1—C21—C26124.87 (13)
P1—C1—C2—O118.30 (17)C26—C21—C22—C231.2 (2)
C8'—O3'—C3—O422.0 (5)P1—C21—C22—C23179.17 (11)
C8'—O3'—C3—O3103.0 (5)C21—C22—C23—C240.1 (2)
C8'—O3'—C3—C1169.7 (3)C22—C23—C24—C250.7 (2)
C8—O3—C3—O410.9 (2)C23—C24—C25—C260.1 (3)
C8—O3—C3—O3'51.4 (2)C24—C25—C26—C211.4 (3)
C8—O3—C3—C1171.79 (13)C22—C21—C26—C251.9 (2)
C2—C1—C3—O4162.15 (15)P1—C21—C26—C25178.43 (13)
P1—C1—C3—O44.2 (2)C1—P1—C31—C32143.80 (13)
C2—C1—C3—O3'4.9 (3)C11—P1—C31—C3218.12 (15)
P1—C1—C3—O3'171.3 (2)C21—P1—C31—C3297.89 (14)
C2—C1—C3—O320.5 (2)C1—P1—C31—C3640.81 (14)
P1—C1—C3—O3173.11 (11)C11—P1—C31—C36166.49 (12)
C2—O1—C4—C658.90 (18)C21—P1—C31—C3677.51 (13)
C2—O1—C4—C5175.89 (14)C36—C31—C32—C331.1 (2)
C2—O1—C4—C766.0 (2)P1—C31—C32—C33174.34 (14)
C1—P1—C11—C1613.50 (15)C31—C32—C33—C340.2 (3)
C31—P1—C11—C16110.86 (12)C32—C33—C34—C351.0 (3)
C21—P1—C11—C16137.12 (12)C33—C34—C35—C360.5 (3)
C1—P1—C11—C12169.76 (12)C34—C35—C36—C310.8 (3)
C31—P1—C11—C1265.88 (14)C32—C31—C36—C351.6 (2)
C21—P1—C11—C1246.14 (14)P1—C31—C36—C35173.87 (13)
C16—C11—C12—C130.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
P1···O12.877 (2)
P1···O42.877 (2)
C5—H5C···Cg30.963.073.944 (2)152
C34—H34···Cg2i0.932.903.712 (2)146
C12—H12···O2ii0.932.573.168 (2)123
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z.

Experimental details

(Ia)(Ib)(IIa)(IIb)
Crystal data
Chemical formulaC25H25O4PC26H27O4PC26H27O4PC27H29O4P
Mr420.42434.45434.45448.47
Crystal system, space groupTriclinic, P1Monoclinic, P21/cMonoclinic, P21/nTriclinic, P1
Temperature (K)273140140140
a, b, c (Å)9.8033 (6), 10.4492 (7), 11.2169 (7)12.5175 (16), 9.1555 (12), 20.351 (3)9.8140 (7), 15.889 (2), 15.404 (2)8.9616 (7), 10.3589 (8), 14.5644 (11)
α, β, γ (°)100.573 (2), 94.878 (2), 102.446 (3)90, 96.342 (2), 9090, 90.413 (2), 9097.388 (2), 107.705 (3), 105.338 (2)
V3)1093.64 (12)2318.0 (5)2402.0 (5)1209.55 (16)
Z2442
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.150.150.140.14
Crystal size (mm)0.20 × 0.17 × 0.140.18 × 0.16 × 0.160.16 × 0.16 × 0.160.20 × 0.18 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9176, 4675, 3133 19001, 5252, 2713 19840, 5292, 4501 10154, 5183, 3919
Rint0.0250.0530.0210.019
(sin θ/λ)max1)0.6550.6620.6570.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.134, 1.01 0.057, 0.140, 0.86 0.052, 0.144, 1.04 0.050, 0.136, 1.03
No. of reflections4675525252925183
No. of parameters282300284299
No. of restraints2703
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.170.33, 0.270.60, 0.450.36, 0.16

Computer programs: SMART-NT (Bruker, 2001), SAINT-NT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-NT (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected bond lengths (Å) for (Ia) top
P1—C11.7388 (19)C1—C31.436 (3)
O2—C21.208 (2)C1—C21.443 (3)
O4—C31.211 (2)
Hydrogen-bond geometry (Å, º) for (Ia) top
D—H···AD—HH···AD···AD—H···A
P1···O1..2.799 (2).
P1···O4..3.030 (2).
C5—H5C···Cg30.962.893.657 (3)138
C23—H23···O4i0.932.563.430 (3)156
Symmetry code: (i) x, y+1, z+1.
Selected bond lengths (Å) for (Ib) top
P1—C11.741 (2)C1—C31.425 (3)
O2—C21.188 (3)C1—C21.441 (3)
O4—C31.228 (3)
Hydrogen-bond geometry (Å, º) for (Ib) top
D—H···AD—HH···AD···AD—H···A
P1···O1..2.953 (2).
P1···O4..2.809 (2).
C5—H5C···Cg30.962.933.663 (4)134
C25—H25···O4i0.932.403.323 (3)172.3
Symmetry code: (i) x+2, y+1/2, z+1/2.
Selected bond lengths (Å) for (IIa) top
P1—C11.7451 (16)C1—C31.434 (2)
O2—C21.211 (2)C1—C21.447 (2)
O4—C31.188 (2)
Hydrogen-bond geometry (Å, º) for (IIa) top
D—H···AD—HH···AD···AD—H···A
P1···O1..2.729 (2).
P1···O4..2.986 (2).
C5—H5C···Cg30.962.993.788 (3)141
C23—H23···O2i0.932.563.424 (2)154
C25—H25···O4ii0.932.393.255 (3)155
C34—H34···O2iii0.932.593.511 (3)171
C13—H13···O3iv0.932.543.455 (3)166
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x1/2, y+1/2, z1/2; (iv) x+1/2, y+1/2, z1/2.
Selected bond lengths (Å) for (IIb) top
P1—C11.7383 (14)C1—C31.429 (2)
O2—C21.2080 (18)C1—C21.448 (2)
O4—C31.2174 (19)
Hydrogen-bond geometry (Å, º) for (IIb) top
D—H···AD—HH···AD···AD—H···A
P1···O1..2.877 (2).
P1···O4..2.877 (2).
C5—H5C···Cg30.963.073.944 (2)152
C34—H34···Cg2i0.932.903.712 (2)146
C12—H12···O2ii0.932.573.168 (2)123
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z.
ππ contacts (Å, °) for (IIb) top
Group 1Group 2DA (°)IPD (Å)CCD (Å)
Cg1Cg1ii03.3863.974 (2)
Cg3Cg3i03.6633.937 (2)
Cg1 and Cg3 are as defined in Fig. 1. Symmetry codes: (i) -x, 1-y, -z, (ii) 1-x, 2-y, 1-z.

DA is the mean slippage angle, IPD is the mean interplanar distance and CCD is the centre-to-centre distance (for details, see Janiak, 2000).
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds