Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105035833/bc1081sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270105035833/bc1081Isup2.hkl |
Crystals of K2Cr4O13 were formed during an attempt to prepare Ce(CrO4)2·H2O and/or Ce(CrO4)2·2H2O. Ce(SO4)2·4H2O (1.50 g, 3.75 mmol) was dissolved in water (10 ml) and Ce(OH)4 was precipitated with 15 M ammonia. Ce(OH)4 (0.12 g 0.76 mmol) was added to a saturated solution of KCrO4 (1.5 ml), and then concentrated sulfuric acid was added until the cerium hydroxide was completely dissolved. This particular sample was left covered and unguarded and, after nine months, dark orange–red crystals of K2Cr4O13, suitable for single-crystal X-analysis, were obtained.
Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT and SADABS (Sheldrick, 2002); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXTL.
K2Cr4O13 | F(000) = 476 |
Mr = 494.20 | Dx = 2.750 Mg m−3 |
Monoclinic, Pc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P -2yc | Cell parameters from 3954 reflections |
a = 8.6165 (2) Å | θ = 2.4–33.0° |
b = 7.4725 (1) Å | µ = 4.30 mm−1 |
c = 9.2811 (3) Å | T = 173 K |
β = 92.746 (2)° | Rhombic, orange–red |
V = 596.89 (3) Å3 | 0.06 × 0.06 × 0.04 mm |
Z = 2 |
Siemens SMART 1K CCD area-detector diffractometer | 4076 independent reflections |
Radiation source: fine-focus sealed tube | 3268 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
ω scans | θmax = 33.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −13→13 |
Tmin = 0.782, Tmax = 0.847 | k = −11→10 |
7800 measured reflections | l = −14→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | w = 1/[σ2(Fo2) + (0.0471P)2 + 0.0614P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.105 | (Δ/σ)max < 0.001 |
S = 1.01 | Δρmax = 0.69 e Å−3 |
4076 reflections | Δρmin = −0.84 e Å−3 |
173 parameters | Absolute structure: Flack (1983), 1935 Friedel pairs |
2 restraints | Absolute structure parameter: 0.64 (3) |
K2Cr4O13 | V = 596.89 (3) Å3 |
Mr = 494.20 | Z = 2 |
Monoclinic, Pc | Mo Kα radiation |
a = 8.6165 (2) Å | µ = 4.30 mm−1 |
b = 7.4725 (1) Å | T = 173 K |
c = 9.2811 (3) Å | 0.06 × 0.06 × 0.04 mm |
β = 92.746 (2)° |
Siemens SMART 1K CCD area-detector diffractometer | 4076 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 3268 reflections with I > 2σ(I) |
Tmin = 0.782, Tmax = 0.847 | Rint = 0.045 |
7800 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 2 restraints |
wR(F2) = 0.105 | Δρmax = 0.69 e Å−3 |
S = 1.01 | Δρmin = −0.84 e Å−3 |
4076 reflections | Absolute structure: Flack (1983), 1935 Friedel pairs |
173 parameters | Absolute structure parameter: 0.64 (3) |
Experimental. Data were collected at low temperature using a Siemens SMART CCD diffractometer equiped with a LT-2 device. A full sphere of reciprocal space was scanned by 0.3° steps in ω with a crystal–to–detector distance of 3.97 cm, xx s per frame. Preliminary orientation matrix was obtained from the first 100 frames using SMART (Siemens, 1995). The collected frames were integrated using the preliminary orientation matrix which was updated every 100 frames. Final cell parameters were obtained by refinement on the position of 3954 reflections with I>10σ(I) after integration of all the frames data using SAINT (Siemens, 1995). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
K1 | −0.18218 (15) | 0.40208 (18) | 0.24453 (13) | 0.0189 (3) | |
K2 | 0.53715 (15) | −0.10604 (18) | 0.10280 (13) | 0.0186 (3) | |
Cr1 | 0.51828 (9) | 0.43180 (11) | −0.03277 (9) | 0.01284 (18) | |
Cr2 | 0.17134 (10) | 0.44328 (11) | 0.01327 (9) | 0.01418 (17) | |
Cr3 | 0.18289 (10) | 0.10769 (11) | 0.24480 (9) | 0.01196 (16) | |
Cr4 | −0.14713 (9) | −0.07133 (12) | 0.36963 (9) | 0.01249 (17) | |
O11 | 0.5276 (5) | 0.2597 (6) | 0.0691 (5) | 0.0269 (10) | |
O12 | 0.3431 (5) | 0.5592 (5) | 0.0063 (5) | 0.0161 (8) | |
O13 | 0.6639 (5) | 0.5616 (5) | 0.0006 (5) | 0.0189 (8) | |
O14 | 0.5104 (5) | 0.3757 (7) | −0.1998 (5) | 0.0293 (11) | |
O21 | 0.0276 (5) | 0.5770 (6) | −0.0043 (5) | 0.0266 (11) | |
O22 | 0.1642 (5) | 0.3017 (6) | −0.1148 (5) | 0.0263 (10) | |
O23 | 0.1608 (5) | 0.3304 (6) | 0.1782 (4) | 0.0193 (9) | |
O31 | 0.3379 (5) | 0.0952 (6) | 0.3427 (5) | 0.0222 (9) | |
O32 | 0.1982 (5) | −0.0274 (6) | 0.1164 (4) | 0.0232 (9) | |
O41 | −0.1339 (5) | −0.1544 (6) | 0.5295 (5) | 0.0266 (10) | |
O42 | −0.1635 (5) | −0.2270 (6) | 0.2508 (5) | 0.0256 (10) | |
O43 | 0.0251 (5) | 0.0658 (5) | 0.3416 (4) | 0.0166 (8) | |
O44 | −0.2953 (5) | 0.0606 (5) | 0.3511 (5) | 0.0210 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
K1 | 0.0229 (6) | 0.0181 (6) | 0.0159 (5) | 0.0021 (5) | 0.0015 (5) | −0.0022 (5) |
K2 | 0.0227 (6) | 0.0148 (6) | 0.0183 (6) | 0.0022 (5) | 0.0001 (5) | 0.0017 (5) |
Cr1 | 0.0129 (4) | 0.0114 (4) | 0.0144 (4) | 0.0006 (3) | 0.0024 (3) | −0.0001 (3) |
Cr2 | 0.0130 (4) | 0.0153 (4) | 0.0143 (4) | −0.0010 (3) | 0.0012 (3) | 0.0037 (3) |
Cr3 | 0.0119 (4) | 0.0135 (4) | 0.0106 (3) | −0.0003 (3) | 0.0013 (3) | 0.0013 (3) |
Cr4 | 0.0121 (4) | 0.0111 (4) | 0.0143 (4) | −0.0017 (3) | 0.0011 (3) | 0.0024 (3) |
O11 | 0.025 (2) | 0.016 (2) | 0.040 (3) | 0.0013 (18) | 0.0086 (19) | 0.0105 (19) |
O12 | 0.0168 (18) | 0.0135 (18) | 0.018 (2) | 0.0023 (15) | 0.0012 (15) | −0.0001 (15) |
O13 | 0.0153 (19) | 0.0191 (19) | 0.022 (2) | −0.0029 (16) | 0.0013 (16) | −0.0012 (18) |
O14 | 0.026 (2) | 0.040 (3) | 0.022 (2) | 0.002 (2) | 0.0025 (18) | −0.017 (2) |
O21 | 0.016 (2) | 0.032 (3) | 0.032 (3) | 0.0062 (19) | 0.0048 (19) | 0.011 (2) |
O22 | 0.029 (2) | 0.030 (3) | 0.020 (2) | −0.0108 (19) | 0.0014 (17) | −0.0029 (18) |
O23 | 0.024 (2) | 0.019 (2) | 0.0153 (19) | −0.0030 (17) | 0.0029 (16) | 0.0013 (15) |
O31 | 0.016 (2) | 0.028 (2) | 0.022 (2) | −0.0033 (17) | −0.0032 (16) | 0.0035 (17) |
O32 | 0.031 (2) | 0.023 (2) | 0.0165 (19) | 0.0010 (18) | 0.0025 (17) | 0.0001 (17) |
O41 | 0.018 (2) | 0.036 (3) | 0.025 (2) | −0.0046 (19) | 0.0005 (18) | 0.014 (2) |
O42 | 0.024 (2) | 0.020 (2) | 0.033 (2) | −0.0045 (17) | −0.0002 (18) | −0.010 (2) |
O43 | 0.020 (2) | 0.014 (2) | 0.0163 (19) | −0.0044 (15) | 0.0057 (16) | 0.0000 (14) |
O44 | 0.0159 (19) | 0.021 (2) | 0.027 (2) | 0.0039 (16) | 0.0046 (17) | 0.0000 (17) |
Cr1—O11 | 1.596 (4) | K2—O14vii | 2.740 (5) |
Cr1—O12 | 1.835 (4) | K2—O31iv | 2.896 (4) |
Cr1—O13 | 1.605 (4) | K2—O31 | 3.246 (5) |
Cr1—O14 | 1.604 (5) | K2—O32 | 2.988 (4) |
Cr2—O12 | 1.719 (4) | K2—O42viii | 3.003 (5) |
Cr2—O21 | 1.594 (4) | K2—O44ix | 2.825 (4) |
Cr2—O22 | 1.590 (5) | K2—O44viii | 2.937 (5) |
Cr2—O23 | 1.753 (4) | K1—Cr1i | 3.5635 (15) |
Cr3—O23 | 1.783 (4) | K2—Cr4viii | 3.5993 (15) |
Cr3—O31 | 1.582 (4) | K2—Cr1vi | 3.6765 (15) |
Cr3—O32 | 1.572 (4) | Cr1—K1viii | 3.5634 (15) |
Cr3—O43 | 1.694 (4) | Cr1—K1x | 3.6036 (15) |
Cr4—O41 | 1.607 (5) | Cr1—K2v | 3.6766 (15) |
Cr4—O42 | 1.604 (4) | Cr4—K2i | 3.5994 (15) |
Cr4—O43 | 1.833 (4) | Cr4—K2xi | 3.7954 (15) |
Cr4—O44 | 1.615 (4) | O11—K1viii | 3.106 (5) |
K1—O11i | 3.106 (5) | O12—K2v | 3.116 (4) |
K1—O13ii | 2.790 (5) | O13—K1x | 2.790 (5) |
K1—O13i | 2.831 (5) | O13—K1viii | 2.831 (5) |
K1—O14ii | 3.189 (5) | O13—K2v | 2.892 (4) |
K1—O21iii | 2.884 (5) | O14—K2iv | 2.740 (5) |
K1—O21 | 3.273 (5) | O14—K1x | 3.189 (5) |
K1—O23 | 3.094 (4) | O21—K1xii | 2.885 (5) |
K1—O41iv | 2.768 (5) | O31—K2vii | 2.896 (4) |
K1—O42v | 2.777 (5) | O41—K1vii | 2.768 (5) |
K1—O43 | 3.188 (4) | O42—K1vi | 2.777 (5) |
K1—O44 | 2.921 (4) | O42—K2i | 3.003 (5) |
K2—O11 | 2.751 (5) | O44—K2xi | 2.825 (4) |
K2—O12vi | 3.116 (4) | O44—K2i | 2.937 (5) |
K2—O13vi | 2.892 (4) | ||
O41iv—K1—O42v | 132.22 (14) | O12vi—K2—Cr4viii | 129.27 (9) |
O41iv—K1—O13ii | 140.66 (14) | O31—K2—Cr4viii | 84.37 (8) |
O42v—K1—O13ii | 85.09 (13) | O14vii—K2—Cr1vi | 62.25 (12) |
O41iv—K1—O13i | 77.63 (13) | O11—K2—Cr1vi | 153.31 (12) |
O42v—K1—O13i | 67.74 (13) | O44ix—K2—Cr1vi | 81.14 (9) |
O13ii—K1—O13i | 114.63 (15) | O13vi—K2—Cr1vi | 24.78 (9) |
O41iv—K1—O21iii | 120.59 (14) | O31iv—K2—Cr1vi | 74.11 (9) |
O42v—K1—O21iii | 83.99 (13) | O44viii—K2—Cr1vi | 132.74 (9) |
O13ii—K1—O21iii | 67.13 (12) | O32—K2—Cr1vi | 99.90 (9) |
O13i—K1—O21iii | 150.99 (13) | O42viii—K2—Cr1vi | 84.07 (9) |
O41iv—K1—O44 | 73.99 (13) | O12vi—K2—Cr1vi | 29.92 (8) |
O42v—K1—O44 | 152.23 (13) | O31—K2—Cr1vi | 130.83 (8) |
O13ii—K1—O44 | 67.46 (11) | Cr4viii—K2—Cr1vi | 108.83 (4) |
O13i—K1—O44 | 119.17 (14) | O11—Cr1—O14 | 111.1 (3) |
O21iii—K1—O44 | 88.86 (13) | O11—Cr1—O13 | 110.9 (2) |
O41iv—K1—O23 | 64.07 (12) | O14—Cr1—O13 | 109.9 (3) |
O42v—K1—O23 | 97.00 (13) | O11—Cr1—O12 | 108.6 (2) |
O13ii—K1—O23 | 133.15 (13) | O14—Cr1—O12 | 109.2 (2) |
O13i—K1—O23 | 109.20 (12) | O13—Cr1—O12 | 106.9 (2) |
O21iii—K1—O23 | 66.59 (12) | O11—Cr1—K1viii | 60.52 (18) |
O44—K1—O23 | 104.69 (12) | O14—Cr1—K1viii | 132.64 (18) |
O41iv—K1—O11i | 62.48 (13) | O13—Cr1—K1viii | 50.61 (16) |
O42v—K1—O11i | 113.42 (13) | O12—Cr1—K1viii | 117.63 (14) |
O13ii—K1—O11i | 94.38 (13) | O11—Cr1—K1x | 126.88 (16) |
O13i—K1—O11i | 52.45 (12) | O14—Cr1—K1x | 62.23 (18) |
O21iii—K1—O11i | 154.13 (13) | O13—Cr1—K1x | 47.73 (17) |
O44—K1—O11i | 66.73 (12) | O12—Cr1—K1x | 123.57 (13) |
O23—K1—O11i | 126.08 (12) | K1viii—Cr1—K1x | 85.52 (3) |
O41iv—K1—O43 | 64.86 (12) | O11—Cr1—K2v | 123.66 (19) |
O42v—K1—O43 | 138.56 (13) | O14—Cr1—K2v | 125.1 (2) |
O13ii—K1—O43 | 96.82 (11) | O13—Cr1—K2v | 49.07 (15) |
O13i—K1—O43 | 142.41 (11) | O12—Cr1—K2v | 57.89 (13) |
O21iii—K1—O43 | 59.56 (12) | K1viii—Cr1—K2v | 78.04 (3) |
O44—K1—O43 | 53.65 (11) | K1x—Cr1—K2v | 81.46 (3) |
O23—K1—O43 | 52.58 (10) | O22—Cr2—O21 | 109.8 (3) |
O11i—K1—O43 | 107.72 (11) | O22—Cr2—O12 | 108.0 (2) |
O41iv—K1—O14ii | 128.29 (14) | O21—Cr2—O12 | 110.3 (2) |
O42v—K1—O14ii | 61.63 (13) | O22—Cr2—O23 | 109.3 (2) |
O13ii—K1—O14ii | 51.61 (12) | O21—Cr2—O23 | 108.6 (2) |
O13i—K1—O14ii | 63.23 (12) | O12—Cr2—O23 | 110.8 (2) |
O21iii—K1—O14ii | 109.51 (13) | O22—Cr2—K1 | 111.27 (16) |
O44—K1—O14ii | 96.13 (12) | O21—Cr2—K1 | 58.10 (16) |
O23—K1—O14ii | 158.58 (13) | O12—Cr2—K1 | 140.60 (14) |
O11i—K1—O14ii | 67.00 (13) | O23—Cr2—K1 | 52.79 (14) |
O43—K1—O14ii | 145.40 (11) | O32—Cr3—O31 | 107.4 (2) |
O41iv—K1—O21 | 69.57 (13) | O32—Cr3—O43 | 112.5 (2) |
O42v—K1—O21 | 65.34 (12) | O31—Cr3—O43 | 111.2 (2) |
O13ii—K1—O21 | 149.72 (12) | O32—Cr3—O23 | 110.4 (2) |
O13i—K1—O21 | 61.37 (11) | O31—Cr3—O23 | 109.1 (2) |
O21iii—K1—O21 | 101.70 (14) | O43—Cr3—O23 | 106.35 (19) |
O44—K1—O21 | 142.41 (12) | O32—Cr3—K2 | 50.15 (16) |
O23—K1—O21 | 50.47 (11) | O31—Cr3—K2 | 59.77 (16) |
O11i—K1—O21 | 102.99 (13) | O43—Cr3—K2 | 142.85 (14) |
O43—K1—O21 | 101.15 (11) | O23—Cr3—K2 | 110.59 (13) |
O14ii—K1—O21 | 113.42 (11) | O32—Cr3—K1 | 117.78 (16) |
O41iv—K1—Cr1i | 69.49 (10) | O31—Cr3—K1 | 134.70 (17) |
O42v—K1—Cr1i | 89.56 (10) | O43—Cr3—K1 | 55.10 (14) |
O13ii—K1—Cr1i | 104.59 (10) | O23—Cr3—K1 | 52.47 (13) |
O13i—K1—Cr1i | 25.98 (8) | K2—Cr3—K1 | 157.98 (4) |
O21iii—K1—Cr1i | 169.85 (10) | O42—Cr4—O41 | 110.7 (3) |
O44—K1—Cr1i | 93.28 (10) | O42—Cr4—O44 | 109.1 (2) |
O23—K1—Cr1i | 122.18 (8) | O41—Cr4—O44 | 110.8 (2) |
O11i—K1—Cr1i | 26.57 (8) | O42—Cr4—O43 | 110.7 (2) |
O43—K1—Cr1i | 129.05 (8) | O41—Cr4—O43 | 109.0 (2) |
O14ii—K1—Cr1i | 60.40 (9) | O44—Cr4—O43 | 106.56 (19) |
O21—K1—Cr1i | 82.57 (9) | O42—Cr4—K2i | 55.70 (17) |
O14vii—K2—O11 | 143.45 (16) | O41—Cr4—K2i | 128.69 (16) |
O14vii—K2—O44ix | 134.75 (14) | O44—Cr4—K2i | 53.37 (16) |
O11—K2—O44ix | 78.47 (13) | O43—Cr4—K2i | 122.23 (13) |
O14vii—K2—O13vi | 68.47 (14) | O42—Cr4—K1 | 118.07 (18) |
O11—K2—O13vi | 145.64 (14) | O41—Cr4—K1 | 130.89 (18) |
O44ix—K2—O13vi | 67.42 (12) | O44—Cr4—K1 | 48.45 (15) |
O14vii—K2—O31iv | 120.81 (14) | O43—Cr4—K1 | 58.64 (13) |
O11—K2—O31iv | 82.19 (14) | K2i—Cr4—K1 | 78.87 (3) |
O44ix—K2—O31iv | 67.26 (13) | O42—Cr4—K2xi | 127.11 (16) |
O13vi—K2—O31iv | 88.21 (12) | O41—Cr4—K2xi | 68.27 (17) |
O14vii—K2—O44viii | 80.86 (14) | O44—Cr4—K2xi | 42.54 (16) |
O11—K2—O44viii | 71.29 (13) | O43—Cr4—K2xi | 119.55 (13) |
O44ix—K2—O44viii | 110.27 (13) | K2i—Cr4—K2xi | 83.03 (3) |
O13vi—K2—O44viii | 116.25 (13) | K1—Cr4—K2xi | 78.28 (3) |
O31iv—K2—O44viii | 153.11 (12) | Cr1—O11—K2 | 150.3 (3) |
O14vii—K2—O32 | 90.15 (13) | Cr1—O11—K1viii | 92.91 (19) |
O11—K2—O32 | 77.61 (13) | K2—O11—K1viii | 105.17 (15) |
O44ix—K2—O32 | 123.41 (13) | Cr2—O12—Cr1 | 117.6 (2) |
O13vi—K2—O32 | 124.63 (13) | Cr2—O12—K2v | 147.6 (2) |
O31iv—K2—O32 | 59.20 (12) | Cr1—O12—K2v | 92.19 (17) |
O44viii—K2—O32 | 109.16 (12) | Cr1—O13—K1x | 107.1 (2) |
O14vii—K2—O42viii | 64.58 (13) | Cr1—O13—K1viii | 103.41 (18) |
O11—K2—O42viii | 111.80 (14) | K1x—O13—K1viii | 119.91 (17) |
O44ix—K2—O42viii | 87.29 (13) | Cr1—O13—K2v | 106.2 (2) |
O13vi—K2—O42viii | 64.01 (13) | K1x—O13—K2v | 113.47 (14) |
O31iv—K2—O42viii | 148.41 (13) | K1viii—O13—K2v | 105.61 (15) |
O44viii—K2—O42viii | 52.37 (12) | Cr1—O14—K2iv | 146.8 (3) |
O32—K2—O42viii | 149.29 (13) | Cr1—O14—K1x | 91.3 (2) |
O14vii—K2—O12vi | 62.66 (14) | K2iv—O14—K1x | 100.22 (14) |
O11—K2—O12vi | 138.75 (14) | Cr2—O21—K1xii | 124.8 (2) |
O44ix—K2—O12vi | 98.47 (12) | Cr2—O21—K1 | 97.48 (18) |
O13vi—K2—O12vi | 54.70 (12) | K1xii—O21—K1 | 104.25 (15) |
O31iv—K2—O12vi | 59.62 (12) | Cr2—O23—Cr3 | 138.0 (2) |
O44viii—K2—O12vi | 143.38 (12) | Cr2—O23—K1 | 100.39 (17) |
O32—K2—O12vi | 70.00 (12) | Cr3—O23—K1 | 100.34 (16) |
O42viii—K2—O12vi | 109.09 (12) | Cr3—O31—K2vii | 158.1 (2) |
O14vii—K2—O31 | 79.51 (13) | Cr3—O31—K2 | 95.33 (19) |
O11—K2—O31 | 66.67 (12) | K2vii—O31—K2 | 105.83 (13) |
O44ix—K2—O31 | 145.06 (12) | Cr3—O32—K2 | 106.0 (2) |
O13vi—K2—O31 | 147.53 (12) | Cr4—O41—K1vii | 156.5 (3) |
O31iv—K2—O31 | 104.29 (12) | Cr4—O42—K1vi | 137.8 (3) |
O44viii—K2—O31 | 61.42 (11) | Cr4—O42—K2i | 98.1 (2) |
O32—K2—O31 | 47.89 (11) | K1vi—O42—K2i | 104.07 (14) |
O42viii—K2—O31 | 107.26 (12) | Cr3—O43—Cr4 | 148.7 (2) |
O12vi—K2—O31 | 105.96 (11) | Cr3—O43—K1 | 99.06 (16) |
O14vii—K2—Cr4viii | 71.22 (11) | Cr4—O43—K1 | 91.96 (15) |
O11—K2—Cr4viii | 91.39 (11) | Cr4—O44—K2xi | 114.7 (2) |
O44ix—K2—Cr4viii | 99.26 (10) | Cr4—O44—K1 | 107.11 (19) |
O13vi—K2—Cr4viii | 90.15 (10) | K2xi—O44—K1 | 111.53 (14) |
O31iv—K2—Cr4viii | 165.94 (10) | Cr4—O44—K2i | 100.44 (18) |
O44viii—K2—Cr4viii | 26.19 (8) | K2xi—O44—K2i | 116.64 (15) |
O32—K2—Cr4viii | 131.67 (9) | K1—O44—K2i | 105.31 (14) |
O42viii—K2—Cr4viii | 26.19 (8) |
Symmetry codes: (i) x−1, y, z; (ii) x−1, −y+1, z+1/2; (iii) x, −y+1, z+1/2; (iv) x, −y, z−1/2; (v) x, y+1, z; (vi) x, y−1, z; (vii) x, −y, z+1/2; (viii) x+1, y, z; (ix) x+1, −y, z−1/2; (x) x+1, −y+1, z−1/2; (xi) x−1, −y, z+1/2; (xii) x, −y+1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | K2Cr4O13 |
Mr | 494.20 |
Crystal system, space group | Monoclinic, Pc |
Temperature (K) | 173 |
a, b, c (Å) | 8.6165 (2), 7.4725 (1), 9.2811 (3) |
β (°) | 92.746 (2) |
V (Å3) | 596.89 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 4.30 |
Crystal size (mm) | 0.06 × 0.06 × 0.04 |
Data collection | |
Diffractometer | Siemens SMART 1K CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2002) |
Tmin, Tmax | 0.782, 0.847 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7800, 4076, 3268 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.766 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.105, 1.01 |
No. of reflections | 4076 |
No. of parameters | 173 |
No. of restraints | 2 |
Δρmax, Δρmin (e Å−3) | 0.69, −0.84 |
Absolute structure | Flack (1983), 1935 Friedel pairs |
Absolute structure parameter | 0.64 (3) |
Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SAINT and SADABS (Sheldrick, 2002), SHELXTL (Bruker, 2001), SHELXTL, DIAMOND (Brandenburg, 2000).
Cr1—O11 | 1.596 (4) | K1—O14ii | 3.189 (5) |
Cr1—O12 | 1.835 (4) | K1—O21iii | 2.884 (5) |
Cr1—O13 | 1.605 (4) | K1—O21 | 3.273 (5) |
Cr1—O14 | 1.604 (5) | K1—O23 | 3.094 (4) |
Cr2—O12 | 1.719 (4) | K1—O41iv | 2.768 (5) |
Cr2—O21 | 1.594 (4) | K1—O42v | 2.777 (5) |
Cr2—O22 | 1.590 (5) | K1—O43 | 3.188 (4) |
Cr2—O23 | 1.753 (4) | K1—O44 | 2.921 (4) |
Cr3—O23 | 1.783 (4) | K2—O11 | 2.751 (5) |
Cr3—O31 | 1.582 (4) | K2—O12vi | 3.116 (4) |
Cr3—O32 | 1.572 (4) | K2—O13vi | 2.892 (4) |
Cr3—O43 | 1.694 (4) | K2—O14vii | 2.740 (5) |
Cr4—O41 | 1.607 (5) | K2—O31iv | 2.896 (4) |
Cr4—O42 | 1.604 (4) | K2—O31 | 3.246 (5) |
Cr4—O43 | 1.833 (4) | K2—O32 | 2.988 (4) |
Cr4—O44 | 1.615 (4) | K2—O42viii | 3.003 (5) |
K1—O11i | 3.106 (5) | K2—O44ix | 2.825 (4) |
K1—O13ii | 2.790 (5) | K2—O44viii | 2.937 (5) |
K1—O13i | 2.831 (5) |
Symmetry codes: (i) x−1, y, z; (ii) x−1, −y+1, z+1/2; (iii) x, −y+1, z+1/2; (iv) x, −y, z−1/2; (v) x, y+1, z; (vi) x, y−1, z; (vii) x, −y, z+1/2; (viii) x+1, y, z; (ix) x+1, −y, z−1/2. |
Angle | K2Cr4O13a | Rb2Cr4O13b | Cs2Cr4O13c | Cr8O21d | |
Cr1—Cr2—Cr3—Cr4 | 172.99 (3) | 172.30 (5) | 177.58 (2) | 180.0 (9) | |
Cr1—Cr2—Cr3 | 94.06 (3) | 96.05 (5) | 86.48 (2) | 117.5 (5) | |
Cr2—Cr3—Cr4 | 121.45 (3) | 122.33 (5) | 127.29 (2) | 117.5 (5) | |
Cr2—O—Cr3 | 138.0 (3) | 139.3 (4) | 131.6 (2) | 180.0 (7) |
Notes: (a) this work; (b) Löfgren (1973); (c) Kolitsch (2004); (d) Norby et al. (1991). |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
CrO3 derivatives are a field of current interest for surface finishing which proceeds in systems containing CrO3 dissolved in water. The structure of the predominant species in chromium electroplating baths has been investigated extensively (Radnai & Dorgai, 1992; Šarmaitis et al., 1996; Çengeloglu et al., 2003). These compounds are also continuing to attract interest (Carlsen et al., 1995; Islam et al., 2005; Karunakaran & Suresh, 2004) as they represent the most widely used group of oxidizing agents in organic chemistry, able to oxidize almost every organic functional group (Cainelli & Cardillo, 1984). Chromic acid is a common reagent but the active species in the oxidizing solutions may vary depending on the reaction conditions. The polymerization of the CrO42− units into corner-sharing dimers, trimers or longer chains is pH and concentration dependent (Šarmaitis et al., 1996). The deformation of the CrO4 tetrahedra increases with the length of the chains (Gili & Lorenzo-Louis, 1999). Pressprich et al. (1988) studied and compared the Cr—O bond lengths within anions of the formula [CrnO(3n + 1)]2−. They found that, with increasing polymerization, the average bridging bond length increases, while the average non-bridging bond length decreases. The structure of CrO3 (Hanic & Štempelová, 1960; Stephens & Cruickshank, 1970) consists of infinite chains of corner-sharing CrO4 tetrahedra with the bridging Cr—O distances 0.15 Å longer than the mean terminal distance, resulting in deformed CrO4 units. The structures of trichromate compounds consist of [Cr3O10]2− anions, together with inorganic cations (Mattes & Meschede, 1973; Kolitsch, 2003; Blum et al., 1979; Blum & Guitel, 1980; Löfgren, 1974) or organic cations (Ding et al., 2004; Stepien & Grabowski, 1977; Garrison et al., 2001; Luis et al., 1995; Fossé et al., 2001). In these structures, the [Cr3O10]2− units adopt different conformations as a result of the diversity in packing (Casari & Langer, 2005).
Four compounds containing the tetrachromate unit have been structurally characterized before now, including three alkali metal salts and one mixed valence binary oxide. The chemical analogues K2Cr4O13 (Golovachev et al., 1970; Kuz'min et al., 1972), Rb2Cr4O13 (Löfgren, 1971, 1973) and Cs2Cr4O13 (Kolitsch, 2004) all belong to the monoclinic system, with space groups Pc, P21/c and P21/n, respectively. Blum & Tran Qui (1979) reported indexed powder diffraction data on (NH4)2Cr4O13 and assigned the space group to be P21/c, as determined for Rb2Cr4O13 (Löfgren, 1973) and unpublished work on K2Cr4O13 by Löfgren. Doubts about both the space-group assignment and the unit-cell parameters of the K2Cr4O13 structure were expressed by Kolitsch (2004). Furthermore, neither s.u. values nor anisotropic displacement parameters are given in the papers (Golovachev et al., 1970; Kuz'min et al., 1972), and an R value of 0.108 was reported, based on film data. We present here a redetermination of the structure of K2Cr4O13.
The K2Cr4O13 structure belongs to the non-centrosymmetric space group Pc, while the other three chemical analogues belong to space group P21/c with unit cells doubled in the a direction (Löfgren, 1973; Kolitsch, 2004; Blum & Tran Qui, 1979). The reciprocal space was searched carefully for weak extra reflections, especially for h = (2n − 1)/2, but without success. The crystal under investigation was twinned by an inversion operation and the twin volume ratio was refined to 0.64 (3)/0.36 (3).
There are one discrete chromate tetramer and two non equivalent potassium ions in the asymmetric unit of K2Cr4O13 (Fig. 1). The tetrachromate ion, [Cr4O13]2−, is composed of a chain of four CrO4 tetrahedra, joined by shared corners. The Cr—O bridging distances, can be divided into two groups (Table 1). The two terminal CrO4 units have longer Cr—O bridging distances [mean 1.834 (4) Å] than the two inner units [mean 1.74 (4) Å]. The non-bridging Cr—O bonding distances are significantly shorter [mean 1.605 (6) Å] (Fig. 1 and Table 1). Despite the variation of bond lengths, the mean Cr—O distance within the individual tetrahedra remains constant [1.66 (5) Å]. The [Cr4O13]2− anions form isolated zigzag chains in the c direction, whose charge is counterbalanced by the intercalating potassium ions (Fig. 2).
The two cations, K1 and K2, are irregularly coordinated (within 3.28 Å) by 11 and ten O atoms, respectively (Table 1), but have similar mean K—O bond lengths [2.96 (3) Å]. The O atoms neighbouring each potassium ion belong to six different tetrachromate chains. The relatively high potassium coordination, compared with the ninefold coordination in K2Cr3O10 (Blum et al., 1979), may be attributed to the high oxygen/potassium ratio (Löfgren, 1973) or to the packing features, as in the case of the 11-coordinate ammonium ions in α-(NH4)2Cr3O10 (Casari & Langer, 2005).
Comparing the structural arrangement in the tetrachromate analogues, it is evident that Cs2Cr4O13 (Fig. 3a) differs from Rb2Cr4O13 and K2Cr4O13 (Fig. 3b and 3c). The latter are quite similar but contain different cation–cation distances for the Rb1—Rb1, Rb2—Rb2, K1—K1 and K2—K2 pairs (Fig. 3b and 3c). These distances vary by 0.111 (3) Å in Rb2Cr4O13 and 0.038 (4) Å in K2Cr4O13. Furthermore, every other tetrachromate group is rotated in Rb2Cr4O13 compared with K2Cr4O13, but the shapes of the tetrachromate chains are almost the same (Fig. 4a). In Cs2Cr4O13, the packing of the [Cr4O13]2− anions and cations different, as is the shape of the chromate chain (Fig. 4b). Structural data have so far been determined for only one other compound containing the [Cr4O13]2− unit, i.e. the mixed valence Cr8O21 oxide, which is better described as CrIII2(CrVIO4)2(CrVI4O13) (Norby et al., 1991). In this compound, the tetrachromate chain adopts a third conformation (Fig. 4c), resembling a section of the one-dimensional chains in CrO3 (Hanic & Štempelová, 1960), except for the Cr—O—Cr angle of 180.0 (7)°.
Values of the Cr1—Cr2—Cr3—Cr4 torsion angles, and the Cr1—Cr2—Cr3 and Cr2—Cr3—Cr4 angles in tetrachromate structures, are presented in Table 2. In the nearly planar tetrachromate units, the Cr1—Cr2—Cr3 and Cr2—Cr3—Cr4 angles seem to occur in pairs of a small and a large angle. A combination of two extreme values [86.48 (2) and 127.29 (2)°] is encountered in the Cs2Cr4O13 structure (Kolitsch, 2004). The Cr1—Cr2—Cr3 angles have also been examined in trichromates (Casari & Langer, 2005) which interestingly showed a range of angles between 86.85 (2) and 127.73 (4)°.
In summary, the structure of K2Cr3O13 has been redetermined from a racemic twinned crystal and it has been shown that, even if the structure shows similarities with Rb2Cr3O13 (Löfgren, 1973), the compounds are different enough to lead to a different unit cell and space group.