Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of dipotassium tetra­chromium(VI) trideca­oxide, K2Cr4O13, has been determined from single-crystal X-ray data collected at 173 (2) K on a racemically twinned crystal with monoclinic Pc space-group symmetry. The structure is composed of discrete [Cr4O13]2- zigzag chains held together by the charge-balancing potassium ions. The conformations adopted by the tetra­chromate anion in alkali metal salts and Cr8O21 are different and can be divided into three categories.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105035833/bc1081sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105035833/bc1081Isup2.hkl
Contains datablock I

Comment top

CrO3 derivatives are a field of current interest for surface finishing which proceeds in systems containing CrO3 dissolved in water. The structure of the predominant species in chromium electroplating baths has been investigated extensively (Radnai & Dorgai, 1992; Šarmaitis et al., 1996; Çengeloglu et al., 2003). These compounds are also continuing to attract interest (Carlsen et al., 1995; Islam et al., 2005; Karunakaran & Suresh, 2004) as they represent the most widely used group of oxidizing agents in organic chemistry, able to oxidize almost every organic functional group (Cainelli & Cardillo, 1984). Chromic acid is a common reagent but the active species in the oxidizing solutions may vary depending on the reaction conditions. The polymerization of the CrO42− units into corner-sharing dimers, trimers or longer chains is pH and concentration dependent (Šarmaitis et al., 1996). The deformation of the CrO4 tetrahedra increases with the length of the chains (Gili & Lorenzo-Louis, 1999). Pressprich et al. (1988) studied and compared the Cr—O bond lengths within anions of the formula [CrnO(3n + 1)]2−. They found that, with increasing polymerization, the average bridging bond length increases, while the average non-bridging bond length decreases. The structure of CrO3 (Hanic & Štempelová, 1960; Stephens & Cruickshank, 1970) consists of infinite chains of corner-sharing CrO4 tetrahedra with the bridging Cr—O distances 0.15 Å longer than the mean terminal distance, resulting in deformed CrO4 units. The structures of trichromate compounds consist of [Cr3O10]2− anions, together with inorganic cations (Mattes & Meschede, 1973; Kolitsch, 2003; Blum et al., 1979; Blum & Guitel, 1980; Löfgren, 1974) or organic cations (Ding et al., 2004; Stepien & Grabowski, 1977; Garrison et al., 2001; Luis et al., 1995; Fossé et al., 2001). In these structures, the [Cr3O10]2− units adopt different conformations as a result of the diversity in packing (Casari & Langer, 2005).

Four compounds containing the tetrachromate unit have been structurally characterized before now, including three alkali metal salts and one mixed valence binary oxide. The chemical analogues K2Cr4O13 (Golovachev et al., 1970; Kuz'min et al., 1972), Rb2Cr4O13 (Löfgren, 1971, 1973) and Cs2Cr4O13 (Kolitsch, 2004) all belong to the monoclinic system, with space groups Pc, P21/c and P21/n, respectively. Blum & Tran Qui (1979) reported indexed powder diffraction data on (NH4)2Cr4O13 and assigned the space group to be P21/c, as determined for Rb2Cr4O13 (Löfgren, 1973) and unpublished work on K2Cr4O13 by Löfgren. Doubts about both the space-group assignment and the unit-cell parameters of the K2Cr4O13 structure were expressed by Kolitsch (2004). Furthermore, neither s.u. values nor anisotropic displacement parameters are given in the papers (Golovachev et al., 1970; Kuz'min et al., 1972), and an R value of 0.108 was reported, based on film data. We present here a redetermination of the structure of K2Cr4O13.

The K2Cr4O13 structure belongs to the non-centrosymmetric space group Pc, while the other three chemical analogues belong to space group P21/c with unit cells doubled in the a direction (Löfgren, 1973; Kolitsch, 2004; Blum & Tran Qui, 1979). The reciprocal space was searched carefully for weak extra reflections, especially for h = (2n − 1)/2, but without success. The crystal under investigation was twinned by an inversion operation and the twin volume ratio was refined to 0.64 (3)/0.36 (3).

There are one discrete chromate tetramer and two non equivalent potassium ions in the asymmetric unit of K2Cr4O13 (Fig. 1). The tetrachromate ion, [Cr4O13]2−, is composed of a chain of four CrO4 tetrahedra, joined by shared corners. The Cr—O bridging distances, can be divided into two groups (Table 1). The two terminal CrO4 units have longer Cr—O bridging distances [mean 1.834 (4) Å] than the two inner units [mean 1.74 (4) Å]. The non-bridging Cr—O bonding distances are significantly shorter [mean 1.605 (6) Å] (Fig. 1 and Table 1). Despite the variation of bond lengths, the mean Cr—O distance within the individual tetrahedra remains constant [1.66 (5) Å]. The [Cr4O13]2− anions form isolated zigzag chains in the c direction, whose charge is counterbalanced by the intercalating potassium ions (Fig. 2).

The two cations, K1 and K2, are irregularly coordinated (within 3.28 Å) by 11 and ten O atoms, respectively (Table 1), but have similar mean K—O bond lengths [2.96 (3) Å]. The O atoms neighbouring each potassium ion belong to six different tetrachromate chains. The relatively high potassium coordination, compared with the ninefold coordination in K2Cr3O10 (Blum et al., 1979), may be attributed to the high oxygen/potassium ratio (Löfgren, 1973) or to the packing features, as in the case of the 11-coordinate ammonium ions in α-(NH4)2Cr3O10 (Casari & Langer, 2005).

Comparing the structural arrangement in the tetrachromate analogues, it is evident that Cs2Cr4O13 (Fig. 3a) differs from Rb2Cr4O13 and K2Cr4O13 (Fig. 3b and 3c). The latter are quite similar but contain different cation–cation distances for the Rb1—Rb1, Rb2—Rb2, K1—K1 and K2—K2 pairs (Fig. 3b and 3c). These distances vary by 0.111 (3) Å in Rb2Cr4O13 and 0.038 (4) Å in K2Cr4O13. Furthermore, every other tetrachromate group is rotated in Rb2Cr4O13 compared with K2Cr4O13, but the shapes of the tetrachromate chains are almost the same (Fig. 4a). In Cs2Cr4O13, the packing of the [Cr4O13]2− anions and cations different, as is the shape of the chromate chain (Fig. 4b). Structural data have so far been determined for only one other compound containing the [Cr4O13]2− unit, i.e. the mixed valence Cr8O21 oxide, which is better described as CrIII2(CrVIO4)2(CrVI4O13) (Norby et al., 1991). In this compound, the tetrachromate chain adopts a third conformation (Fig. 4c), resembling a section of the one-dimensional chains in CrO3 (Hanic & Štempelová, 1960), except for the Cr—O—Cr angle of 180.0 (7)°.

Values of the Cr1—Cr2—Cr3—Cr4 torsion angles, and the Cr1—Cr2—Cr3 and Cr2—Cr3—Cr4 angles in tetrachromate structures, are presented in Table 2. In the nearly planar tetrachromate units, the Cr1—Cr2—Cr3 and Cr2—Cr3—Cr4 angles seem to occur in pairs of a small and a large angle. A combination of two extreme values [86.48 (2) and 127.29 (2)°] is encountered in the Cs2Cr4O13 structure (Kolitsch, 2004). The Cr1—Cr2—Cr3 angles have also been examined in trichromates (Casari & Langer, 2005) which interestingly showed a range of angles between 86.85 (2) and 127.73 (4)°.

In summary, the structure of K2Cr3O13 has been redetermined from a racemic twinned crystal and it has been shown that, even if the structure shows similarities with Rb2Cr3O13 (Löfgren, 1973), the compounds are different enough to lead to a different unit cell and space group.

Experimental top

Crystals of K2Cr4O13 were formed during an attempt to prepare Ce(CrO4)2·H2O and/or Ce(CrO4)2·2H2O. Ce(SO4)2·4H2O (1.50 g, 3.75 mmol) was dissolved in water (10 ml) and Ce(OH)4 was precipitated with 15 M ammonia. Ce(OH)4 (0.12 g 0.76 mmol) was added to a saturated solution of KCrO4 (1.5 ml), and then concentrated sulfuric acid was added until the cerium hydroxide was completely dissolved. This particular sample was left covered and unguarded and, after nine months, dark orange–red crystals of K2Cr4O13, suitable for single-crystal X-analysis, were obtained.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT and SADABS (Sheldrick, 2002); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of K2Cr4O13, with atomic displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing in K2Cr4O13.
[Figure 3] Fig. 3. A comparison of the packing in (a) Cs2Cr4O13 (Kolitsch, 2004), (b) Rb2Cr4O13 (Löfgren, 1973) and (c) K2Cr4O13 (this work). The numbers 1 and 2 denote M1–M1 and M2–M2 cation pairs in (b) and (c).
[Figure 4] Fig. 4. The configuration of [Cr4O13]2− chains in (a) K2Cr4O13 (this paper), (b) Cs2Cr4O13 (Kolitsch, 2004) and (c) Cr8O21 (Norby et al., 1991).
dipotassium tetrachromium(VI) tridecaoxide top
Crystal data top
K2Cr4O13F(000) = 476
Mr = 494.20Dx = 2.750 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 3954 reflections
a = 8.6165 (2) Åθ = 2.4–33.0°
b = 7.4725 (1) ŵ = 4.30 mm1
c = 9.2811 (3) ÅT = 173 K
β = 92.746 (2)°Rhombic, orange–red
V = 596.89 (3) Å30.06 × 0.06 × 0.04 mm
Z = 2
Data collection top
Siemens SMART 1K CCD area-detector
diffractometer
4076 independent reflections
Radiation source: fine-focus sealed tube3268 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 33.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1313
Tmin = 0.782, Tmax = 0.847k = 1110
7800 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.0614P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.69 e Å3
4076 reflectionsΔρmin = 0.84 e Å3
173 parametersAbsolute structure: Flack (1983), 1935 Friedel pairs
2 restraintsAbsolute structure parameter: 0.64 (3)
Crystal data top
K2Cr4O13V = 596.89 (3) Å3
Mr = 494.20Z = 2
Monoclinic, PcMo Kα radiation
a = 8.6165 (2) ŵ = 4.30 mm1
b = 7.4725 (1) ÅT = 173 K
c = 9.2811 (3) Å0.06 × 0.06 × 0.04 mm
β = 92.746 (2)°
Data collection top
Siemens SMART 1K CCD area-detector
diffractometer
4076 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3268 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 0.847Rint = 0.045
7800 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0482 restraints
wR(F2) = 0.105Δρmax = 0.69 e Å3
S = 1.01Δρmin = 0.84 e Å3
4076 reflectionsAbsolute structure: Flack (1983), 1935 Friedel pairs
173 parametersAbsolute structure parameter: 0.64 (3)
Special details top

Experimental. Data were collected at low temperature using a Siemens SMART CCD diffractometer equiped with a LT-2 device. A full sphere of reciprocal space was scanned by 0.3° steps in ω with a crystal–to–detector distance of 3.97 cm, xx s per frame. Preliminary orientation matrix was obtained from the first 100 frames using SMART (Siemens, 1995). The collected frames were integrated using the preliminary orientation matrix which was updated every 100 frames. Final cell parameters were obtained by refinement on the position of 3954 reflections with I>10σ(I) after integration of all the frames data using SAINT (Siemens, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.18218 (15)0.40208 (18)0.24453 (13)0.0189 (3)
K20.53715 (15)0.10604 (18)0.10280 (13)0.0186 (3)
Cr10.51828 (9)0.43180 (11)0.03277 (9)0.01284 (18)
Cr20.17134 (10)0.44328 (11)0.01327 (9)0.01418 (17)
Cr30.18289 (10)0.10769 (11)0.24480 (9)0.01196 (16)
Cr40.14713 (9)0.07133 (12)0.36963 (9)0.01249 (17)
O110.5276 (5)0.2597 (6)0.0691 (5)0.0269 (10)
O120.3431 (5)0.5592 (5)0.0063 (5)0.0161 (8)
O130.6639 (5)0.5616 (5)0.0006 (5)0.0189 (8)
O140.5104 (5)0.3757 (7)0.1998 (5)0.0293 (11)
O210.0276 (5)0.5770 (6)0.0043 (5)0.0266 (11)
O220.1642 (5)0.3017 (6)0.1148 (5)0.0263 (10)
O230.1608 (5)0.3304 (6)0.1782 (4)0.0193 (9)
O310.3379 (5)0.0952 (6)0.3427 (5)0.0222 (9)
O320.1982 (5)0.0274 (6)0.1164 (4)0.0232 (9)
O410.1339 (5)0.1544 (6)0.5295 (5)0.0266 (10)
O420.1635 (5)0.2270 (6)0.2508 (5)0.0256 (10)
O430.0251 (5)0.0658 (5)0.3416 (4)0.0166 (8)
O440.2953 (5)0.0606 (5)0.3511 (5)0.0210 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0229 (6)0.0181 (6)0.0159 (5)0.0021 (5)0.0015 (5)0.0022 (5)
K20.0227 (6)0.0148 (6)0.0183 (6)0.0022 (5)0.0001 (5)0.0017 (5)
Cr10.0129 (4)0.0114 (4)0.0144 (4)0.0006 (3)0.0024 (3)0.0001 (3)
Cr20.0130 (4)0.0153 (4)0.0143 (4)0.0010 (3)0.0012 (3)0.0037 (3)
Cr30.0119 (4)0.0135 (4)0.0106 (3)0.0003 (3)0.0013 (3)0.0013 (3)
Cr40.0121 (4)0.0111 (4)0.0143 (4)0.0017 (3)0.0011 (3)0.0024 (3)
O110.025 (2)0.016 (2)0.040 (3)0.0013 (18)0.0086 (19)0.0105 (19)
O120.0168 (18)0.0135 (18)0.018 (2)0.0023 (15)0.0012 (15)0.0001 (15)
O130.0153 (19)0.0191 (19)0.022 (2)0.0029 (16)0.0013 (16)0.0012 (18)
O140.026 (2)0.040 (3)0.022 (2)0.002 (2)0.0025 (18)0.017 (2)
O210.016 (2)0.032 (3)0.032 (3)0.0062 (19)0.0048 (19)0.011 (2)
O220.029 (2)0.030 (3)0.020 (2)0.0108 (19)0.0014 (17)0.0029 (18)
O230.024 (2)0.019 (2)0.0153 (19)0.0030 (17)0.0029 (16)0.0013 (15)
O310.016 (2)0.028 (2)0.022 (2)0.0033 (17)0.0032 (16)0.0035 (17)
O320.031 (2)0.023 (2)0.0165 (19)0.0010 (18)0.0025 (17)0.0001 (17)
O410.018 (2)0.036 (3)0.025 (2)0.0046 (19)0.0005 (18)0.014 (2)
O420.024 (2)0.020 (2)0.033 (2)0.0045 (17)0.0002 (18)0.010 (2)
O430.020 (2)0.014 (2)0.0163 (19)0.0044 (15)0.0057 (16)0.0000 (14)
O440.0159 (19)0.021 (2)0.027 (2)0.0039 (16)0.0046 (17)0.0000 (17)
Geometric parameters (Å, º) top
Cr1—O111.596 (4)K2—O14vii2.740 (5)
Cr1—O121.835 (4)K2—O31iv2.896 (4)
Cr1—O131.605 (4)K2—O313.246 (5)
Cr1—O141.604 (5)K2—O322.988 (4)
Cr2—O121.719 (4)K2—O42viii3.003 (5)
Cr2—O211.594 (4)K2—O44ix2.825 (4)
Cr2—O221.590 (5)K2—O44viii2.937 (5)
Cr2—O231.753 (4)K1—Cr1i3.5635 (15)
Cr3—O231.783 (4)K2—Cr4viii3.5993 (15)
Cr3—O311.582 (4)K2—Cr1vi3.6765 (15)
Cr3—O321.572 (4)Cr1—K1viii3.5634 (15)
Cr3—O431.694 (4)Cr1—K1x3.6036 (15)
Cr4—O411.607 (5)Cr1—K2v3.6766 (15)
Cr4—O421.604 (4)Cr4—K2i3.5994 (15)
Cr4—O431.833 (4)Cr4—K2xi3.7954 (15)
Cr4—O441.615 (4)O11—K1viii3.106 (5)
K1—O11i3.106 (5)O12—K2v3.116 (4)
K1—O13ii2.790 (5)O13—K1x2.790 (5)
K1—O13i2.831 (5)O13—K1viii2.831 (5)
K1—O14ii3.189 (5)O13—K2v2.892 (4)
K1—O21iii2.884 (5)O14—K2iv2.740 (5)
K1—O213.273 (5)O14—K1x3.189 (5)
K1—O233.094 (4)O21—K1xii2.885 (5)
K1—O41iv2.768 (5)O31—K2vii2.896 (4)
K1—O42v2.777 (5)O41—K1vii2.768 (5)
K1—O433.188 (4)O42—K1vi2.777 (5)
K1—O442.921 (4)O42—K2i3.003 (5)
K2—O112.751 (5)O44—K2xi2.825 (4)
K2—O12vi3.116 (4)O44—K2i2.937 (5)
K2—O13vi2.892 (4)
O41iv—K1—O42v132.22 (14)O12vi—K2—Cr4viii129.27 (9)
O41iv—K1—O13ii140.66 (14)O31—K2—Cr4viii84.37 (8)
O42v—K1—O13ii85.09 (13)O14vii—K2—Cr1vi62.25 (12)
O41iv—K1—O13i77.63 (13)O11—K2—Cr1vi153.31 (12)
O42v—K1—O13i67.74 (13)O44ix—K2—Cr1vi81.14 (9)
O13ii—K1—O13i114.63 (15)O13vi—K2—Cr1vi24.78 (9)
O41iv—K1—O21iii120.59 (14)O31iv—K2—Cr1vi74.11 (9)
O42v—K1—O21iii83.99 (13)O44viii—K2—Cr1vi132.74 (9)
O13ii—K1—O21iii67.13 (12)O32—K2—Cr1vi99.90 (9)
O13i—K1—O21iii150.99 (13)O42viii—K2—Cr1vi84.07 (9)
O41iv—K1—O4473.99 (13)O12vi—K2—Cr1vi29.92 (8)
O42v—K1—O44152.23 (13)O31—K2—Cr1vi130.83 (8)
O13ii—K1—O4467.46 (11)Cr4viii—K2—Cr1vi108.83 (4)
O13i—K1—O44119.17 (14)O11—Cr1—O14111.1 (3)
O21iii—K1—O4488.86 (13)O11—Cr1—O13110.9 (2)
O41iv—K1—O2364.07 (12)O14—Cr1—O13109.9 (3)
O42v—K1—O2397.00 (13)O11—Cr1—O12108.6 (2)
O13ii—K1—O23133.15 (13)O14—Cr1—O12109.2 (2)
O13i—K1—O23109.20 (12)O13—Cr1—O12106.9 (2)
O21iii—K1—O2366.59 (12)O11—Cr1—K1viii60.52 (18)
O44—K1—O23104.69 (12)O14—Cr1—K1viii132.64 (18)
O41iv—K1—O11i62.48 (13)O13—Cr1—K1viii50.61 (16)
O42v—K1—O11i113.42 (13)O12—Cr1—K1viii117.63 (14)
O13ii—K1—O11i94.38 (13)O11—Cr1—K1x126.88 (16)
O13i—K1—O11i52.45 (12)O14—Cr1—K1x62.23 (18)
O21iii—K1—O11i154.13 (13)O13—Cr1—K1x47.73 (17)
O44—K1—O11i66.73 (12)O12—Cr1—K1x123.57 (13)
O23—K1—O11i126.08 (12)K1viii—Cr1—K1x85.52 (3)
O41iv—K1—O4364.86 (12)O11—Cr1—K2v123.66 (19)
O42v—K1—O43138.56 (13)O14—Cr1—K2v125.1 (2)
O13ii—K1—O4396.82 (11)O13—Cr1—K2v49.07 (15)
O13i—K1—O43142.41 (11)O12—Cr1—K2v57.89 (13)
O21iii—K1—O4359.56 (12)K1viii—Cr1—K2v78.04 (3)
O44—K1—O4353.65 (11)K1x—Cr1—K2v81.46 (3)
O23—K1—O4352.58 (10)O22—Cr2—O21109.8 (3)
O11i—K1—O43107.72 (11)O22—Cr2—O12108.0 (2)
O41iv—K1—O14ii128.29 (14)O21—Cr2—O12110.3 (2)
O42v—K1—O14ii61.63 (13)O22—Cr2—O23109.3 (2)
O13ii—K1—O14ii51.61 (12)O21—Cr2—O23108.6 (2)
O13i—K1—O14ii63.23 (12)O12—Cr2—O23110.8 (2)
O21iii—K1—O14ii109.51 (13)O22—Cr2—K1111.27 (16)
O44—K1—O14ii96.13 (12)O21—Cr2—K158.10 (16)
O23—K1—O14ii158.58 (13)O12—Cr2—K1140.60 (14)
O11i—K1—O14ii67.00 (13)O23—Cr2—K152.79 (14)
O43—K1—O14ii145.40 (11)O32—Cr3—O31107.4 (2)
O41iv—K1—O2169.57 (13)O32—Cr3—O43112.5 (2)
O42v—K1—O2165.34 (12)O31—Cr3—O43111.2 (2)
O13ii—K1—O21149.72 (12)O32—Cr3—O23110.4 (2)
O13i—K1—O2161.37 (11)O31—Cr3—O23109.1 (2)
O21iii—K1—O21101.70 (14)O43—Cr3—O23106.35 (19)
O44—K1—O21142.41 (12)O32—Cr3—K250.15 (16)
O23—K1—O2150.47 (11)O31—Cr3—K259.77 (16)
O11i—K1—O21102.99 (13)O43—Cr3—K2142.85 (14)
O43—K1—O21101.15 (11)O23—Cr3—K2110.59 (13)
O14ii—K1—O21113.42 (11)O32—Cr3—K1117.78 (16)
O41iv—K1—Cr1i69.49 (10)O31—Cr3—K1134.70 (17)
O42v—K1—Cr1i89.56 (10)O43—Cr3—K155.10 (14)
O13ii—K1—Cr1i104.59 (10)O23—Cr3—K152.47 (13)
O13i—K1—Cr1i25.98 (8)K2—Cr3—K1157.98 (4)
O21iii—K1—Cr1i169.85 (10)O42—Cr4—O41110.7 (3)
O44—K1—Cr1i93.28 (10)O42—Cr4—O44109.1 (2)
O23—K1—Cr1i122.18 (8)O41—Cr4—O44110.8 (2)
O11i—K1—Cr1i26.57 (8)O42—Cr4—O43110.7 (2)
O43—K1—Cr1i129.05 (8)O41—Cr4—O43109.0 (2)
O14ii—K1—Cr1i60.40 (9)O44—Cr4—O43106.56 (19)
O21—K1—Cr1i82.57 (9)O42—Cr4—K2i55.70 (17)
O14vii—K2—O11143.45 (16)O41—Cr4—K2i128.69 (16)
O14vii—K2—O44ix134.75 (14)O44—Cr4—K2i53.37 (16)
O11—K2—O44ix78.47 (13)O43—Cr4—K2i122.23 (13)
O14vii—K2—O13vi68.47 (14)O42—Cr4—K1118.07 (18)
O11—K2—O13vi145.64 (14)O41—Cr4—K1130.89 (18)
O44ix—K2—O13vi67.42 (12)O44—Cr4—K148.45 (15)
O14vii—K2—O31iv120.81 (14)O43—Cr4—K158.64 (13)
O11—K2—O31iv82.19 (14)K2i—Cr4—K178.87 (3)
O44ix—K2—O31iv67.26 (13)O42—Cr4—K2xi127.11 (16)
O13vi—K2—O31iv88.21 (12)O41—Cr4—K2xi68.27 (17)
O14vii—K2—O44viii80.86 (14)O44—Cr4—K2xi42.54 (16)
O11—K2—O44viii71.29 (13)O43—Cr4—K2xi119.55 (13)
O44ix—K2—O44viii110.27 (13)K2i—Cr4—K2xi83.03 (3)
O13vi—K2—O44viii116.25 (13)K1—Cr4—K2xi78.28 (3)
O31iv—K2—O44viii153.11 (12)Cr1—O11—K2150.3 (3)
O14vii—K2—O3290.15 (13)Cr1—O11—K1viii92.91 (19)
O11—K2—O3277.61 (13)K2—O11—K1viii105.17 (15)
O44ix—K2—O32123.41 (13)Cr2—O12—Cr1117.6 (2)
O13vi—K2—O32124.63 (13)Cr2—O12—K2v147.6 (2)
O31iv—K2—O3259.20 (12)Cr1—O12—K2v92.19 (17)
O44viii—K2—O32109.16 (12)Cr1—O13—K1x107.1 (2)
O14vii—K2—O42viii64.58 (13)Cr1—O13—K1viii103.41 (18)
O11—K2—O42viii111.80 (14)K1x—O13—K1viii119.91 (17)
O44ix—K2—O42viii87.29 (13)Cr1—O13—K2v106.2 (2)
O13vi—K2—O42viii64.01 (13)K1x—O13—K2v113.47 (14)
O31iv—K2—O42viii148.41 (13)K1viii—O13—K2v105.61 (15)
O44viii—K2—O42viii52.37 (12)Cr1—O14—K2iv146.8 (3)
O32—K2—O42viii149.29 (13)Cr1—O14—K1x91.3 (2)
O14vii—K2—O12vi62.66 (14)K2iv—O14—K1x100.22 (14)
O11—K2—O12vi138.75 (14)Cr2—O21—K1xii124.8 (2)
O44ix—K2—O12vi98.47 (12)Cr2—O21—K197.48 (18)
O13vi—K2—O12vi54.70 (12)K1xii—O21—K1104.25 (15)
O31iv—K2—O12vi59.62 (12)Cr2—O23—Cr3138.0 (2)
O44viii—K2—O12vi143.38 (12)Cr2—O23—K1100.39 (17)
O32—K2—O12vi70.00 (12)Cr3—O23—K1100.34 (16)
O42viii—K2—O12vi109.09 (12)Cr3—O31—K2vii158.1 (2)
O14vii—K2—O3179.51 (13)Cr3—O31—K295.33 (19)
O11—K2—O3166.67 (12)K2vii—O31—K2105.83 (13)
O44ix—K2—O31145.06 (12)Cr3—O32—K2106.0 (2)
O13vi—K2—O31147.53 (12)Cr4—O41—K1vii156.5 (3)
O31iv—K2—O31104.29 (12)Cr4—O42—K1vi137.8 (3)
O44viii—K2—O3161.42 (11)Cr4—O42—K2i98.1 (2)
O32—K2—O3147.89 (11)K1vi—O42—K2i104.07 (14)
O42viii—K2—O31107.26 (12)Cr3—O43—Cr4148.7 (2)
O12vi—K2—O31105.96 (11)Cr3—O43—K199.06 (16)
O14vii—K2—Cr4viii71.22 (11)Cr4—O43—K191.96 (15)
O11—K2—Cr4viii91.39 (11)Cr4—O44—K2xi114.7 (2)
O44ix—K2—Cr4viii99.26 (10)Cr4—O44—K1107.11 (19)
O13vi—K2—Cr4viii90.15 (10)K2xi—O44—K1111.53 (14)
O31iv—K2—Cr4viii165.94 (10)Cr4—O44—K2i100.44 (18)
O44viii—K2—Cr4viii26.19 (8)K2xi—O44—K2i116.64 (15)
O32—K2—Cr4viii131.67 (9)K1—O44—K2i105.31 (14)
O42viii—K2—Cr4viii26.19 (8)
Symmetry codes: (i) x1, y, z; (ii) x1, y+1, z+1/2; (iii) x, y+1, z+1/2; (iv) x, y, z1/2; (v) x, y+1, z; (vi) x, y1, z; (vii) x, y, z+1/2; (viii) x+1, y, z; (ix) x+1, y, z1/2; (x) x+1, y+1, z1/2; (xi) x1, y, z+1/2; (xii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaK2Cr4O13
Mr494.20
Crystal system, space groupMonoclinic, Pc
Temperature (K)173
a, b, c (Å)8.6165 (2), 7.4725 (1), 9.2811 (3)
β (°) 92.746 (2)
V3)596.89 (3)
Z2
Radiation typeMo Kα
µ (mm1)4.30
Crystal size (mm)0.06 × 0.06 × 0.04
Data collection
DiffractometerSiemens SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.782, 0.847
No. of measured, independent and
observed [I > 2σ(I)] reflections
7800, 4076, 3268
Rint0.045
(sin θ/λ)max1)0.766
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.105, 1.01
No. of reflections4076
No. of parameters173
No. of restraints2
Δρmax, Δρmin (e Å3)0.69, 0.84
Absolute structureFlack (1983), 1935 Friedel pairs
Absolute structure parameter0.64 (3)

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SAINT and SADABS (Sheldrick, 2002), SHELXTL (Bruker, 2001), SHELXTL, DIAMOND (Brandenburg, 2000).

Selected bond lengths (Å) top
Cr1—O111.596 (4)K1—O14ii3.189 (5)
Cr1—O121.835 (4)K1—O21iii2.884 (5)
Cr1—O131.605 (4)K1—O213.273 (5)
Cr1—O141.604 (5)K1—O233.094 (4)
Cr2—O121.719 (4)K1—O41iv2.768 (5)
Cr2—O211.594 (4)K1—O42v2.777 (5)
Cr2—O221.590 (5)K1—O433.188 (4)
Cr2—O231.753 (4)K1—O442.921 (4)
Cr3—O231.783 (4)K2—O112.751 (5)
Cr3—O311.582 (4)K2—O12vi3.116 (4)
Cr3—O321.572 (4)K2—O13vi2.892 (4)
Cr3—O431.694 (4)K2—O14vii2.740 (5)
Cr4—O411.607 (5)K2—O31iv2.896 (4)
Cr4—O421.604 (4)K2—O313.246 (5)
Cr4—O431.833 (4)K2—O322.988 (4)
Cr4—O441.615 (4)K2—O42viii3.003 (5)
K1—O11i3.106 (5)K2—O44ix2.825 (4)
K1—O13ii2.790 (5)K2—O44viii2.937 (5)
K1—O13i2.831 (5)
Symmetry codes: (i) x1, y, z; (ii) x1, y+1, z+1/2; (iii) x, y+1, z+1/2; (iv) x, y, z1/2; (v) x, y+1, z; (vi) x, y1, z; (vii) x, y, z+1/2; (viii) x+1, y, z; (ix) x+1, y, z1/2.
A comparison of intrapolyhedral angles (°) for the different conformations of the [Cr4O13]2−-units top
AngleK2Cr4O13aRb2Cr4O13bCs2Cr4O13cCr8O21d
Cr1—Cr2—Cr3—Cr4172.99 (3)172.30 (5)177.58 (2)180.0 (9)
Cr1—Cr2—Cr394.06 (3)96.05 (5)86.48 (2)117.5 (5)
Cr2—Cr3—Cr4121.45 (3)122.33 (5)127.29 (2)117.5 (5)
Cr2—O—Cr3138.0 (3)139.3 (4)131.6 (2)180.0 (7)
Notes: (a) this work; (b) Löfgren (1973); (c) Kolitsch (2004); (d) Norby et al. (1991).
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds