Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Single crystals of a new rubdidium beryllium borate, RbBe4(BO3)3, have been obtained by spontaneous nucleation from a high-temperature melt. This new ortho­rhom­bic (Pnma) structure type contains [Be2BO4]- rings, made of two BeO4 tetra­hedra and one BO3 triangle, which constitute the basic structural units. The m plane runs through the B and one of the O atoms and intersects the ring. These rings form chains in the a direction, which are connected in the b and c directions to form zeolite-type cages in which the Rb+ cations are located, at sites of m symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106003131/bc1092sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106003131/bc1092Isup2.hkl
Contains datablock I

Comment top

Since the discovery of β-BaB2O4 (BBO) as a nonlinear optical (NLO) material about 20 years ago (Chen et al., 1985), several borate NLO crystals have been developed which can sustain high laser damage (Chen et al., 1989; Wu et al., 1993; Mori et al.,1995). Based on a theoretical study, one of the present authors has proposed that beryllium borates possess the largest energy gap among all alkaline and alkaline earth borates, and hence the shortest transmission cut-off wavelength (Li, 1989). Therefore, beryllium borates are good candidates for NLO applications in the ultraviolet (UV) region. In reality, two families of crystals, ABe2BO3F2 (A = Na, K, Rb and Cs) (Baydina et al., 1975; Mei et al., 1994, 1995) and M2Be2B2O7 (M = Sr and Ba) (Chen et al., 1995; Qi & Chen, 2001), have been found to crystallize in noncentrosymmetric space groups and to possess NLO properties. Among these, KBBF (KBe2BO3F2) has proved to be the best material for deep-UV (DUV) applications and is the only material that can generate coherent light down to 170 nm by direct second-harmonic generation (Lu et al., 2001). Apart from these two families of compounds, relatively few synthetic beryllium borate compounds are known. The compounds MBe2B2O6 (M = Sr and Ba) (Schaffers & Keszler, 1990, 1994), CaBeB2O5 (Schaffers & Keszler, 1993), and Li14Be5B(BO3)9 (Luce et al., 1994) have only been partially studied, because of the high toxicity of the Be compounds used as starting materials during their preparation. In this paper, we describe the crystal structure of a new rubidium beryllium borate, RbBe4(BO3)3.

A perspective view of the RbBe4(BO3)3 structure along the a direction is shown in Fig. 1. In the structure, both B atoms are coordinated to three O atoms to form planar BO3 groups, with a mean B—O bond length of 1.372 Å and O—B—O bond angles ranging from 115.9 (2) to 123.7 (2)°. The two Be atoms are bonded to four O atoms and the BeO4 tetrahedra are distorted, with Be—O bond lengths ranging from 1.585 (3) to 1.666 (3) Å and O—Be—O angles from 95.5 (2) to 116.3 (2)°. All O atoms except O3 are in threefold coordinated, as is typical for dense borate compounds (Parthé, 2004). Except for atom O3, the B—O bond lengths are close to their average value of 1.372 Å. The B2—O3 bond involving the two-coordinated atom O3 is the shortest [1.339 (3) Å] and is significantly shorter than the mean B—O length of 1.365 Å in the BO3 groups of most borate compounds (Wells, 1984). The same observation applies to the Be1—O3 bond. Even shorter B—O bonds have been found in other rubidium borate compounds, such as RbLi2Ga2(BO3)3 (Kissick et al., 2000) and LiRbB4O7 (Ono et al., 2000). The short B2—O3 and Be1—O3 bonds reflect not only strong Be1—O3 and B2—O3 bonding, but also underbonding between the Rb and O3 atoms. The small O5—Be2—O5 bond angle [95.5 (2)°] corresponds to edge-sharing between two very distorted Be2O4 tetrahedra.

In the RbBe4(BO3)3 structure, two BeO4 tetrahedra share one common O atom, and each of them also shares a different O atom with a BO3 group, to form a six-membered [Be2BO2x3/3O3/3O2/2]1− ring (hereinafter referred to as [Be2BO4]1−) (Fig. 2). These rings are repeated in the a direction to form a zigzag chain. The basic structural unit, [Be2BO4]1−, is similar to the [Be2BO3F2]1− unit in KBe2BO3F2. However, the [Be2BO3F2]1− rings in KBBF are coplanar with the Be—F bonds alternating up and down, whereas in the title compound, both Be—O bonds point in the same direction and bend the [Be2BO4]1− unit into a zigzag chain. From the study of KBBF and Sr2Be2B2O7, it is known that the [Be2BO4]1− unit can yield large NLO effects and short UV transmission cut-offs. If the [Be2BO4] chain can be arranged favourably, the resulting structure may be a good candidate for DUV NLO applications. Unfortunately, in the case of RbBe4(BO3)3, adjacent chains of [Be2BO4]1− rings in the b direction point in exactly opposite directions and, therefore, their contributions to the NLO effect cancel out.

The [Be2BO4] chains in RbBe4(BO3)3 are connected by O—Be2—O—Be2—O and O—B2—O bonds in the b direction, and by O—Be1—O—B2—O bonds in the c direction, to build three-dimensional zeolite-like cages 6 Å in diameter and tunnels of 5 and 4 Å along the a and b axes, respectively (Fig. 1). The Rb+ cations are located at the centres of the cages and are coordinated by ten O atoms with a bond valence sum (BVS; Brese & O'Keeffe, 1991) of 0.94. The BVS value for Rb and O3 (−1.94) show that they are slightly underbonded and may indicate a possible mobilization of the Rb+ cations in the tunnels at elevated temperature.

Experimental top

Single crystals of RbBe4(BO3)3 were obtained from a melt in a tightly covered Pt crucible with initial materials of BeF2 (0.14 mol), BeO (0.14 mol), Rb2CO3 (0.187 mol), NaF (0.3 mol) and B2O3 (0.4 mol). The melt was cooled slowly from 988 to 853 K at a rate of 3 K day−1 and then cooled down to room temperature at a rate of 20 K h−1. Block-shaped crystals of dimensions up to 8 × 4 × 4 mm3 were obtained after treating the contents of the crucible in hot dilute hydrochloric acid to remove the excess flux.

The title compound and its Cs analogue can also be synthesized by solid-state reaction, with the determined composition of RbBe4(BO3)3.

Refinement top

The positions of the Rb atom and some of the O atoms were found in the first round of direct-phase determination. The remaining O, B and Be atoms were located in the subsequent difference Fourier syntheses. The atomic and anisotropic displacement parameters of all atoms were subjected to least-squares refinement. The final difference electron-density map shows a highest peak of 2.01 e Å−3 located 0.64 Å from Rb, and a deepest hole of −1.46 e Å−3 located 1.11 Å from Rb.

Computing details top

Data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The crystal structure of RbBe4(BO3)3, viewed along the a axis.
[Figure 2] Fig. 2. The [Be2BO2x3/3O3/3O2/2]1− unit in RbBe4(BO3)3. [Symmetry codes: (vii) 1/2 + x, y, 1/2 − z; (viii) x, 1/2 − y, z; (ix) 3/2 − x, 1 − y, −1/2 + z; (xii) 3/2 − x, −1/2 + y, −1/2 + z.]
rubidium tetraberyllium tris(borate) top
Crystal data top
RbBe4(BO3)3F(000) = 560
Mr = 297.94Dx = 2.789 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 44 reflections
a = 8.496 (4) Åθ = 5.7–15.9°
b = 13.274 (6) ŵ = 7.01 mm1
c = 6.292 (4) ÅT = 295 K
V = 709.7 (6) Å3Block, colourless
Z = 40.4 × 0.4 × 0.2 mm
Data collection top
Bruker P4
diffractometer
1156 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 32.5°, θmin = 3.1°
ω scansh = 1212
Absorption correction: empirical (using intensity measurements)
ψ scan (Reference)
k = 2020
Tmin = 0.088, Tmax = 0.246l = 99
2586 measured reflections3 standard reflections every 97 reflections
1324 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0701P)2 + 0.2245P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.112(Δ/σ)max < 0.001
S = 1.06Δρmax = 2.01 e Å3
1324 reflectionsΔρmin = 1.46 e Å3
83 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.083 (6)
Crystal data top
RbBe4(BO3)3V = 709.7 (6) Å3
Mr = 297.94Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 8.496 (4) ŵ = 7.01 mm1
b = 13.274 (6) ÅT = 295 K
c = 6.292 (4) Å0.4 × 0.4 × 0.2 mm
Data collection top
Bruker P4
diffractometer
1156 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
ψ scan (Reference)
Rint = 0.043
Tmin = 0.088, Tmax = 0.2463 standard reflections every 97 reflections
2586 measured reflections intensity decay: none
1324 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04483 parameters
wR(F2) = 0.1120 restraints
S = 1.06Δρmax = 2.01 e Å3
1324 reflectionsΔρmin = 1.46 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb0.56713 (4)0.25000.67089 (5)0.02922 (18)
B10.4493 (4)0.25000.1890 (5)0.0159 (5)
B20.6761 (3)0.53556 (16)0.3063 (4)0.0171 (4)
Be10.7205 (3)0.35637 (19)0.1461 (4)0.0184 (5)
Be20.4369 (3)0.44254 (19)0.0938 (4)0.0176 (5)
O10.2972 (2)0.25000.2605 (3)0.0174 (4)
O20.52638 (19)0.33876 (11)0.1526 (2)0.0185 (3)
O30.71178 (18)0.61848 (11)0.4175 (2)0.0202 (3)
O40.76103 (19)0.44568 (11)0.3193 (2)0.0190 (3)
O50.55048 (18)0.53595 (12)0.1638 (2)0.0170 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb0.0289 (2)0.0342 (2)0.0246 (2)0.0000.00395 (11)0.000
B10.0157 (11)0.0191 (12)0.0129 (12)0.0000.0017 (10)0.000
B20.0173 (9)0.0200 (8)0.0140 (8)0.0006 (7)0.0001 (7)0.0004 (7)
Be10.0174 (10)0.0185 (10)0.0193 (11)0.0004 (8)0.0001 (9)0.0000 (8)
Be20.0180 (11)0.0190 (10)0.0157 (12)0.0000 (7)0.0005 (8)0.0008 (8)
O10.0161 (8)0.0179 (8)0.0183 (9)0.0000.0032 (7)0.000
O20.0159 (6)0.0179 (6)0.0216 (7)0.0000 (5)0.0002 (5)0.0009 (5)
O30.0219 (6)0.0194 (6)0.0193 (7)0.0006 (5)0.0038 (6)0.0025 (5)
O40.0179 (6)0.0191 (6)0.0201 (7)0.0016 (5)0.0032 (5)0.0018 (5)
O50.0175 (6)0.0198 (6)0.0136 (7)0.0001 (5)0.0017 (4)0.0001 (4)
Geometric parameters (Å, º) top
Rb—O3i2.9954 (18)Be1—O1vii1.662 (3)
Rb—O3ii2.9954 (17)Be1—O21.667 (3)
Rb—O3iii2.9974 (18)Be1—Be22.687 (4)
Rb—O3iv2.9974 (18)Be1—Be2vii2.715 (4)
Rb—O5ii3.187 (2)Be1—Rbix3.554 (3)
Rb—O5i3.187 (2)Be1—Rbvii3.827 (3)
Rb—B13.193 (4)Be2—O4xi1.592 (3)
Rb—O2v3.271 (2)Be2—O21.616 (3)
Rb—O2vi3.271 (2)Be2—O51.632 (3)
Rb—O1vii3.345 (3)Be2—O5xii1.649 (3)
Rb—B1v3.411 (4)Be2—Be2xii2.206 (5)
Rb—O13.454 (3)Be2—Be1xi2.715 (4)
B1—O21.367 (2)Be2—Rbix3.852 (3)
B1—O2viii1.367 (2)O1—Be1xiii1.662 (3)
B1—O11.369 (4)O1—Be1xi1.662 (3)
B1—Rbix3.411 (4)O1—Rbxi3.345 (3)
B2—O31.339 (3)O2—Rbix3.271 (2)
B2—O51.394 (3)O3—Be1iii1.585 (3)
B2—O41.397 (3)O3—Rbii2.9954 (18)
B2—Rbii3.520 (2)O3—Rbx2.9974 (18)
B2—Rbx3.686 (2)O4—Be2vii1.592 (3)
Be1—O3x1.585 (3)O5—Be2xii1.649 (3)
Be1—O41.647 (3)O5—Rbii3.187 (2)
O3i—Rb—O3ii71.30 (7)O4—Be1—Be287.83 (14)
O3i—Rb—O3iii158.65 (3)O1vii—Be1—Be2139.13 (17)
O3ii—Rb—O3iii104.62 (5)O2—Be1—Be234.45 (9)
O3i—Rb—O3iv104.62 (5)O3x—Be1—Be2vii102.28 (15)
O3ii—Rb—O3iv158.65 (3)O4—Be1—Be2vii32.43 (10)
O3iii—Rb—O3iv71.25 (6)O1vii—Be1—Be2vii83.07 (14)
O3i—Rb—O5ii109.41 (5)O2—Be1—Be2vii135.61 (16)
O3ii—Rb—O5ii44.99 (4)Be2—Be1—Be2vii120.12 (13)
O3iii—Rb—O5ii60.54 (5)O3x—Be1—Rbix56.85 (10)
O3iv—Rb—O5ii123.15 (5)O4—Be1—Rbix156.85 (14)
O3i—Rb—O5i44.99 (4)O1vii—Be1—Rbix95.94 (13)
O3ii—Rb—O5i109.41 (5)O2—Be1—Rbix66.55 (10)
O3iii—Rb—O5i123.15 (5)Be2—Be1—Rbix74.77 (8)
O3iv—Rb—O5i60.54 (5)Be2vii—Be1—Rbix157.38 (11)
O5ii—Rb—O5i126.17 (6)O3x—Be1—Rb170.47 (14)
O3i—Rb—B164.90 (5)O4—Be1—Rb76.42 (11)
O3ii—Rb—B164.90 (5)O1vii—Be1—Rb60.94 (11)
O3iii—Rb—B1133.47 (5)O2—Be1—Rb65.74 (10)
O3iv—Rb—B1133.47 (5)Be2—Be1—Rb87.56 (9)
O5ii—Rb—B1102.23 (4)Be2vii—Be1—Rb82.28 (9)
O5i—Rb—B1102.23 (4)Rbix—Be1—Rb117.08 (8)
O3i—Rb—O2v107.35 (4)O3x—Be1—Rbvii47.57 (9)
O3ii—Rb—O2v83.01 (4)O4—Be1—Rbvii116.73 (13)
O3iii—Rb—O2v51.44 (4)O1vii—Be1—Rbvii64.48 (11)
O3iv—Rb—O2v78.25 (5)O2—Be1—Rbvii136.29 (13)
O5ii—Rb—O2v48.93 (4)Be2—Be1—Rbvii141.55 (11)
O5i—Rb—O2v89.16 (5)Be2vii—Be1—Rbvii87.05 (9)
B1—Rb—O2v147.88 (5)Rbix—Be1—Rbvii72.37 (6)
O3i—Rb—O2vi83.01 (4)Rb—Be1—Rbvii125.21 (7)
O3ii—Rb—O2vi107.35 (4)O4xi—Be2—O2112.63 (17)
O3iii—Rb—O2vi78.25 (5)O4xi—Be2—O5116.26 (17)
O3iv—Rb—O2vi51.44 (4)O2—Be2—O5107.93 (16)
O5ii—Rb—O2vi89.16 (5)O4xi—Be2—O5xii113.20 (17)
O5i—Rb—O2vi48.93 (4)O2—Be2—O5xii110.03 (16)
B1—Rb—O2vi147.88 (5)O5—Be2—O5xii95.48 (15)
O2v—Rb—O2vi42.23 (6)O4xi—Be2—Be2xii128.4 (2)
O3i—Rb—O1vii108.16 (5)O2—Be2—Be2xii118.9 (2)
O3ii—Rb—O1vii108.16 (5)O5—Be2—Be2xii48.07 (11)
O3iii—Rb—O1vii93.09 (5)O5xii—Be2—Be2xii47.41 (12)
O3iv—Rb—O1vii93.09 (5)O4xi—Be2—Be1144.16 (17)
O5ii—Rb—O1vii116.63 (3)O2—Be2—Be135.67 (10)
O5i—Rb—O1vii116.63 (3)O5—Be2—Be176.13 (12)
B1—Rb—O1vii54.02 (7)O5xii—Be2—Be197.82 (13)
O2v—Rb—O1vii144.49 (4)Be2xii—Be2—Be185.66 (15)
O2vi—Rb—O1vii144.49 (4)O4xi—Be2—Be1xi33.69 (10)
O3i—Rb—B1v86.87 (6)O2—Be2—Be1xi79.69 (13)
O3ii—Rb—B1v86.87 (6)O5—Be2—Be1xi123.91 (15)
O3iii—Rb—B1v71.88 (6)O5xii—Be2—Be1xi135.19 (15)
O3iv—Rb—B1v71.88 (6)Be2xii—Be2—Be1xi160.53 (19)
O5ii—Rb—B1v66.16 (3)Be1—Be2—Be1xi110.73 (12)
O5i—Rb—B1v66.16 (3)O4xi—Be2—Rbix121.62 (13)
B1—Rb—B1v144.67 (10)O2—Be2—Rbix57.17 (10)
O2v—Rb—B1v23.49 (4)O5—Be2—Rbix121.40 (13)
O2vi—Rb—B1v23.49 (4)O5xii—Be2—Rbix54.37 (9)
O1vii—Rb—B1v161.31 (6)Be2xii—Be2—Rbix87.13 (14)
O3i—Rb—O148.38 (4)Be1—Be2—Rbix62.92 (8)
O3ii—Rb—O148.38 (4)Be1xi—Be2—Rbix109.36 (10)
O3iii—Rb—O1143.44 (3)B1—O1—Be1xiii119.09 (12)
O3iv—Rb—O1143.44 (3)B1—O1—Be1xi119.09 (12)
O5ii—Rb—O192.06 (4)Be1xiii—O1—Be1xi116.3 (2)
O5i—Rb—O192.06 (4)B1—O1—Rbxi106.57 (16)
B1—Rb—O123.35 (6)Be1xiii—O1—Rbxi93.32 (12)
O2v—Rb—O1128.51 (5)Be1xi—O1—Rbxi93.32 (12)
O2vi—Rb—O1128.51 (5)B1—O1—Rb67.57 (15)
O1vii—Rb—O177.37 (4)Be1xiii—O1—Rb89.77 (12)
B1v—Rb—O1121.33 (7)Be1xi—O1—Rb89.77 (12)
O2—B1—O2viii119.0 (3)Rbxi—O1—Rb174.14 (7)
O2—B1—O1120.48 (13)B1—O2—Be2123.22 (18)
O2viii—B1—O1120.48 (13)B1—O2—Be1126.79 (18)
O2—B1—Rb90.52 (15)Be2—O2—Be1109.88 (15)
O2viii—B1—Rb90.52 (15)B1—O2—Rbix84.00 (14)
O1—B1—Rb89.08 (16)Be2—O2—Rbix98.30 (11)
O2—B1—Rbix72.51 (14)Be1—O2—Rbix85.58 (11)
O2viii—B1—Rbix72.51 (14)B1—O2—Rb66.38 (14)
O1—B1—Rbix126.25 (18)Be2—O2—Rb123.33 (12)
Rb—B1—Rbix144.67 (10)Be1—O2—Rb88.41 (11)
O3—B2—O5120.43 (19)Rbix—O2—Rb137.31 (5)
O3—B2—O4123.68 (19)B2—O3—Be1iii136.84 (17)
O5—B2—O4115.87 (18)B2—O3—Rbii101.71 (12)
O3—B2—Rbii56.42 (11)Be1iii—O3—Rbii109.44 (12)
O5—B2—Rbii64.78 (11)B2—O3—Rbx110.51 (13)
O4—B2—Rbii172.56 (14)Be1iii—O3—Rbx96.88 (12)
O3—B2—Rbx49.60 (11)Rbii—O3—Rbx93.45 (5)
O5—B2—Rbx107.54 (12)B2—O4—Be2vii121.84 (17)
O4—B2—Rbx111.55 (13)B2—O4—Be1117.91 (16)
Rbii—B2—Rbx74.48 (5)Be2vii—O4—Be1113.88 (16)
O3x—Be1—O4111.92 (18)B2—O5—Be2128.57 (16)
O3x—Be1—O1vii110.95 (18)B2—O5—Be2xii125.69 (16)
O4—Be1—O1vii107.20 (18)Be2—O5—Be2xii84.52 (15)
O3x—Be1—O2114.28 (18)B2—O5—Rbii91.91 (11)
O4—Be1—O2106.95 (17)Be2—O5—Rbii125.48 (12)
O1vii—Be1—O2105.07 (17)Be2xii—O5—Rbii100.77 (11)
O3x—Be1—Be297.15 (15)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y+1, z+1; (iii) x+3/2, y+1, z+1/2; (iv) x+3/2, y1/2, z+1/2; (v) x, y, z+1; (vi) x, y+1/2, z+1; (vii) x+1/2, y, z+1/2; (viii) x, y+1/2, z; (ix) x, y, z1; (x) x+3/2, y+1, z1/2; (xi) x1/2, y, z+1/2; (xii) x+1, y+1, z; (xiii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaRbBe4(BO3)3
Mr297.94
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)295
a, b, c (Å)8.496 (4), 13.274 (6), 6.292 (4)
V3)709.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)7.01
Crystal size (mm)0.4 × 0.4 × 0.2
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
ψ scan (Reference)
Tmin, Tmax0.088, 0.246
No. of measured, independent and
observed [I > 2σ(I)] reflections
2586, 1324, 1156
Rint0.043
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.112, 1.06
No. of reflections1324
No. of parameters83
Δρmax, Δρmin (e Å3)2.01, 1.46

Computer programs: XSCANS (Bruker, 1997), XSCANS, SHELXTL (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), enCIFer (Allen et al., 2004).

Selected geometric parameters (Å, º) top
Rb—O3i2.9954 (18)B2—O41.397 (3)
Rb—O3ii2.9974 (18)Be1—O3vi1.585 (3)
Rb—O5iii3.187 (2)Be1—O41.647 (3)
Rb—O2iv3.271 (2)Be1—O1v1.662 (3)
Rb—O1v3.345 (3)Be1—O21.667 (3)
Rb—O13.454 (3)Be2—O4vii1.592 (3)
B1—O21.367 (2)Be2—O21.616 (3)
B1—O11.369 (4)Be2—O51.632 (3)
B2—O31.339 (3)Be2—O5viii1.649 (3)
B2—O51.394 (3)
O2—B1—O2ix119.0 (3)O4—Be1—O2106.95 (17)
O2—B1—O1120.48 (13)O1v—Be1—O2105.07 (17)
O3—B2—O5120.43 (19)O4vii—Be2—O2112.63 (17)
O3—B2—O4123.68 (19)O4vii—Be2—O5116.26 (17)
O5—B2—O4115.87 (18)O2—Be2—O5107.93 (16)
O3vi—Be1—O4111.92 (18)O4vii—Be2—O5viii113.20 (17)
O3vi—Be1—O1v110.95 (18)O2—Be2—O5viii110.03 (16)
O4—Be1—O1v107.20 (18)O5—Be2—O5viii95.48 (15)
O3vi—Be1—O2114.28 (18)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+3/2, y+1, z+1/2; (iii) x+1, y+1, z+1; (iv) x, y, z+1; (v) x+1/2, y, z+1/2; (vi) x+3/2, y+1, z1/2; (vii) x1/2, y, z+1/2; (viii) x+1, y+1, z; (ix) x, y+1/2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds