Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010702954X/bc3051sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S010827010702954X/bc3051Isup2.hkl |
For related literature, see: Brown (1996, 2002); Calin et al. (2003); Darriet (1973); Feger et al. (1999); Harrison & Buttrey (2000); Hung et al. (2002); Irvine et al. (2003); Kunz & Brown (1995); Wells (1962).
A mixture of V2O5 (0.7276 g, 4 mmol), TeO2 (0.3249 g, 3 mmol) and 1 M aqueous LiOH (7 ml) was placed in a 23 ml Teflon-lined hydrothermal bomb and heated at 438 K for 4 d, followed by cooling to room temperature over a few hours. Upon opening the bomb, the solids were recovered by vacuum filtration, resulting in orange plates and shards of the title compound, accompanied by an as-yet unidentified orange–brown powder, in about a 50:50 ratio.
The Uij values for Li1 were restrained to approximate isostropic behaviour. The highest difference peak is 0.95 Å from Te2 and the deepest difference hole is 0.87 Å from Te1.
Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO (Otwinowski & Minor 1997), SCALEPACK and SORTAV (Blessing 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXL97.
Li(VO2)3(TeO3)2 | Z = 2 |
Mr = 606.96 | F(000) = 544 |
Triclinic, P1 | Dx = 4.365 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.2370 (4) Å | Cell parameters from 5711 reflections |
b = 7.2005 (5) Å | θ = 2.9–27.5° |
c = 10.7066 (8) Å | µ = 9.23 mm−1 |
α = 92.868 (4)° | T = 120 K |
β = 92.743 (5)° | Shard, orange |
γ = 105.524 (4)° | 0.12 × 0.10 × 0.03 mm |
V = 461.77 (6) Å3 |
Nonius KappaCCD area-detector diffractometer | 1730 independent reflections |
Radiation source: fine-focus sealed tube | 1499 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
ω and ϕ scans | θmax = 26.0°, θmin = 2.9° |
Absorption correction: multi-scan SADABS (Bruker, 2003) | h = −7→7 |
Tmin = 0.404, Tmax = 0.769 | k = −8→8 |
3858 measured reflections | l = −13→11 |
Refinement on F2 | 18 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.036 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.089 | w = 1/[σ2(Fo2) + (0.0498P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.015 |
1730 reflections | Δρmax = 1.71 e Å−3 |
163 parameters | Δρmin = −1.93 e Å−3 |
Li(VO2)3(TeO3)2 | γ = 105.524 (4)° |
Mr = 606.96 | V = 461.77 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.2370 (4) Å | Mo Kα radiation |
b = 7.2005 (5) Å | µ = 9.23 mm−1 |
c = 10.7066 (8) Å | T = 120 K |
α = 92.868 (4)° | 0.12 × 0.10 × 0.03 mm |
β = 92.743 (5)° |
Nonius KappaCCD area-detector diffractometer | 1730 independent reflections |
Absorption correction: multi-scan SADABS (Bruker, 2003) | 1499 reflections with I > 2σ(I) |
Tmin = 0.404, Tmax = 0.769 | Rint = 0.050 |
3858 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 163 parameters |
wR(F2) = 0.089 | 18 restraints |
S = 1.02 | Δρmax = 1.71 e Å−3 |
1730 reflections | Δρmin = −1.93 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Li1 | 0.210 (2) | 0.2067 (17) | −0.1027 (11) | 0.012 (3) | |
V1 | 0.62115 (19) | 0.19341 (16) | 0.41698 (10) | 0.0064 (3) | |
V2 | 0.6617 (2) | 0.20350 (17) | 0.75112 (11) | 0.0070 (3) | |
V3 | 0.6156 (2) | 0.22364 (18) | 0.08061 (11) | 0.0090 (3) | |
Te1 | 0.17387 (7) | 0.21515 (6) | 0.59701 (4) | 0.00690 (16) | |
Te2 | 0.13180 (7) | 0.18355 (6) | 0.21170 (4) | 0.00772 (16) | |
O1 | 0.1459 (8) | −0.0551 (7) | 0.5944 (4) | 0.0084 (10) | |
O2 | 0.3658 (8) | 0.2691 (7) | 0.4643 (4) | 0.0084 (10) | |
O3 | 0.3794 (7) | 0.2694 (7) | 0.7386 (4) | 0.0092 (10) | |
O4 | −0.1411 (8) | 0.1208 (7) | 0.1142 (4) | 0.0108 (11) | |
O5 | 0.3000 (8) | 0.2305 (7) | 0.0707 (4) | 0.0098 (10) | |
O6 | 0.0930 (8) | −0.0875 (7) | 0.2115 (4) | 0.0087 (10) | |
O7 | 0.7975 (8) | 0.3982 (7) | 0.4247 (4) | 0.0117 (11) | |
O8 | 0.6218 (7) | 0.1153 (7) | 0.5929 (4) | 0.0094 (10) | |
O9 | 0.8241 (8) | 0.4144 (7) | 0.7561 (4) | 0.0139 (11) | |
O10 | 0.5791 (8) | 0.1493 (7) | 0.9206 (4) | 0.0109 (11) | |
O11 | 0.5282 (8) | 0.1550 (7) | 0.2546 (4) | 0.0095 (10) | |
O12 | 0.7362 (8) | 0.4485 (8) | 0.0910 (5) | 0.0158 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Li1 | 0.010 (3) | 0.014 (4) | 0.011 (3) | 0.000 (3) | −0.002 (3) | 0.001 (3) |
V1 | 0.0078 (6) | 0.0059 (6) | 0.0063 (6) | 0.0036 (5) | 0.0001 (5) | 0.0001 (5) |
V2 | 0.0075 (6) | 0.0079 (6) | 0.0070 (6) | 0.0046 (5) | 0.0011 (5) | 0.0004 (4) |
V3 | 0.0092 (6) | 0.0143 (7) | 0.0054 (6) | 0.0060 (5) | 0.0007 (5) | 0.0018 (5) |
Te1 | 0.0085 (3) | 0.0065 (3) | 0.0067 (3) | 0.00394 (19) | 0.00026 (18) | −0.00020 (18) |
Te2 | 0.0102 (3) | 0.0074 (3) | 0.0068 (3) | 0.00451 (19) | 0.00105 (18) | 0.00044 (18) |
O1 | 0.011 (2) | 0.007 (2) | 0.009 (2) | 0.005 (2) | −0.0018 (19) | −0.0024 (19) |
O2 | 0.0092 (17) | 0.0094 (18) | 0.0075 (17) | 0.0041 (14) | 0.0034 (14) | −0.0004 (14) |
O3 | 0.0098 (17) | 0.0115 (18) | 0.0068 (17) | 0.0046 (14) | −0.0011 (14) | −0.0025 (14) |
O4 | 0.012 (3) | 0.015 (3) | 0.007 (2) | 0.008 (2) | 0.000 (2) | −0.004 (2) |
O5 | 0.011 (2) | 0.012 (3) | 0.008 (2) | 0.007 (2) | 0.001 (2) | −0.002 (2) |
O6 | 0.011 (2) | 0.008 (2) | 0.008 (2) | 0.004 (2) | −0.0005 (19) | −0.0004 (19) |
O7 | 0.011 (2) | 0.010 (3) | 0.015 (3) | 0.004 (2) | 0.002 (2) | 0.000 (2) |
O8 | 0.010 (2) | 0.010 (3) | 0.009 (2) | 0.003 (2) | 0.000 (2) | 0.0011 (19) |
O9 | 0.014 (3) | 0.016 (3) | 0.013 (3) | 0.007 (2) | 0.000 (2) | −0.003 (2) |
O10 | 0.016 (3) | 0.014 (3) | 0.005 (2) | 0.009 (2) | 0.0010 (19) | 0.0029 (19) |
O11 | 0.010 (2) | 0.014 (3) | 0.005 (2) | 0.004 (2) | 0.0005 (19) | 0.002 (2) |
O12 | 0.016 (3) | 0.016 (3) | 0.017 (3) | 0.008 (2) | 0.003 (2) | 0.000 (2) |
Li1—O5 | 1.899 (12) | V3—O10iv | 2.634 (5) |
Li1—O3i | 2.049 (13) | Te1—O2 | 1.890 (5) |
Li1—O6ii | 2.119 (12) | Te1—O3 | 1.892 (5) |
Li1—O4ii | 2.277 (13) | Te1—O1 | 1.905 (5) |
Li1—O12iii | 2.411 (13) | Te1—O6vi | 2.741 (5) |
Li1—O10i | 2.447 (14) | Te1—O7vii | 2.764 (5) |
V1—O7 | 1.582 (5) | Te1—O1vi | 2.765 (5) |
V1—O11 | 1.790 (5) | Te2—O5 | 1.873 (5) |
V1—O2 | 1.899 (5) | Te2—O4 | 1.888 (5) |
V1—O1iv | 1.974 (5) | Te2—O6 | 1.901 (5) |
V1—O8 | 1.992 (5) | Te2—O11 | 2.557 (5) |
V1—O8iv | 2.325 (5) | Te2—O1vi | 2.801 (5) |
V2—O9 | 1.581 (5) | Te2—O9vii | 2.836 (5) |
V2—O8 | 1.762 (4) | O1—V1iv | 1.974 (5) |
V2—O10 | 1.940 (5) | O3—Li1viii | 2.049 (13) |
V2—O3 | 1.943 (5) | O4—V3ix | 1.885 (5) |
V2—O6iv | 1.964 (5) | O4—Li1ii | 2.277 (13) |
V2—O11iv | 2.532 (5) | O6—V2iv | 1.964 (5) |
V3—O12 | 1.588 (5) | O6—Li1ii | 2.119 (12) |
V3—O10i | 1.755 (4) | O8—V1iv | 2.325 (5) |
V3—O4v | 1.885 (5) | O10—V3viii | 1.755 (4) |
V3—O5 | 1.980 (5) | O10—Li1viii | 2.447 (14) |
V3—O11 | 2.014 (5) | O12—Li1iii | 2.411 (13) |
O5—Li1—O3i | 133.5 (7) | O10i—V3—O10iv | 76.6 (2) |
O5—Li1—O6ii | 135.4 (7) | O4v—V3—O10iv | 77.67 (18) |
O3i—Li1—O6ii | 91.0 (5) | O5—V3—O10iv | 80.76 (18) |
O5—Li1—O4ii | 93.2 (5) | O11—V3—O10iv | 70.51 (17) |
O3i—Li1—O4ii | 100.1 (5) | O2—Te1—O3 | 101.7 (2) |
O6ii—Li1—O4ii | 71.7 (4) | O2—Te1—O1 | 96.9 (2) |
O5—Li1—O12iii | 87.6 (5) | O3—Te1—O1 | 92.8 (2) |
O3i—Li1—O12iii | 81.3 (4) | O2—Te1—O6vi | 172.03 (17) |
O6ii—Li1—O12iii | 105.9 (5) | O3—Te1—O6vi | 77.42 (17) |
O4ii—Li1—O12iii | 177.2 (6) | O1—Te1—O6vi | 75.30 (18) |
O5—Li1—O10i | 71.7 (4) | O2—Te1—O7vii | 79.59 (17) |
O3i—Li1—O10i | 69.1 (4) | O3—Te1—O7vii | 92.36 (18) |
O6ii—Li1—O10i | 137.6 (6) | O1—Te1—O7vii | 174.23 (17) |
O4ii—Li1—O10i | 75.4 (4) | O6vi—Te1—O7vii | 108.32 (14) |
O12iii—Li1—O10i | 107.4 (5) | O2—Te1—O1vi | 83.50 (17) |
O7—V1—O11 | 103.4 (2) | O3—Te1—O1vi | 167.64 (18) |
O7—V1—O2 | 99.5 (2) | O1—Te1—O1vi | 75.32 (19) |
O11—V1—O2 | 93.5 (2) | O6vi—Te1—O1vi | 95.83 (14) |
O7—V1—O1iv | 92.7 (2) | O7vii—Te1—O1vi | 99.63 (14) |
O11—V1—O1iv | 96.1 (2) | O5—Te2—O4 | 92.7 (2) |
O2—V1—O1iv | 162.3 (2) | O5—Te2—O6 | 98.2 (2) |
O7—V1—O8 | 103.6 (2) | O4—Te2—O6 | 85.8 (2) |
O11—V1—O8 | 153.0 (2) | O5—Te2—O11 | 67.97 (17) |
O2—V1—O8 | 82.3 (2) | O4—Te2—O11 | 151.21 (18) |
O1iv—V1—O8 | 82.46 (19) | O6—Te2—O11 | 76.57 (17) |
O7—V1—O8iv | 176.8 (2) | O5—Te2—O1vi | 171.12 (17) |
O11—V1—O8iv | 77.58 (19) | O4—Te2—O1vi | 82.96 (17) |
O2—V1—O8iv | 83.38 (19) | O6—Te2—O1vi | 73.83 (17) |
O1iv—V1—O8iv | 84.18 (18) | O11—Te2—O1vi | 112.89 (14) |
O8—V1—O8iv | 75.46 (19) | O5—Te2—O9vii | 88.65 (18) |
O9—V2—O8 | 107.1 (2) | O4—Te2—O9vii | 96.25 (18) |
O9—V2—O10 | 107.6 (2) | O6—Te2—O9vii | 172.78 (16) |
O8—V2—O10 | 145.3 (2) | O11—Te2—O9vii | 104.10 (14) |
O9—V2—O3 | 98.7 (2) | O1vi—Te2—O9vii | 99.51 (13) |
O8—V2—O3 | 90.2 (2) | Te1—O1—V1iv | 129.4 (2) |
O10—V2—O3 | 82.9 (2) | Te1—O2—V1 | 134.9 (3) |
O9—V2—O6iv | 92.6 (2) | Te1—O3—V2 | 125.8 (2) |
O8—V2—O6iv | 94.2 (2) | Te1—O3—Li1viii | 109.4 (4) |
O10—V2—O6iv | 86.0 (2) | V2—O3—Li1viii | 111.0 (4) |
O3—V2—O6iv | 166.1 (2) | V3ix—O4—Te2 | 139.4 (3) |
O9—V2—O11iv | 168.7 (2) | V3ix—O4—Li1ii | 117.4 (4) |
O8—V2—O11iv | 72.41 (19) | Te2—O4—Li1ii | 98.6 (4) |
O10—V2—O11iv | 73.93 (18) | Te2—O5—Li1 | 130.9 (5) |
O3—V2—O11iv | 92.65 (18) | Te2—O5—V3 | 120.0 (2) |
O6iv—V2—O11iv | 76.17 (18) | Li1—O5—V3 | 105.9 (4) |
O12—V3—O10i | 107.0 (2) | Te2—O6—V2iv | 123.3 (2) |
O12—V3—O4v | 101.0 (2) | Te2—O6—Li1ii | 103.8 (4) |
O10i—V3—O4v | 95.5 (2) | V2iv—O6—Li1ii | 129.1 (4) |
O12—V3—O5 | 100.0 (2) | V2—O8—V1 | 143.9 (3) |
O10i—V3—O5 | 87.3 (2) | V2—O8—V1iv | 107.7 (2) |
O4v—V3—O5 | 156.9 (2) | V1—O8—V1iv | 104.54 (19) |
O12—V3—O11 | 106.0 (2) | V3viii—O10—V2 | 148.0 (3) |
O10i—V3—O11 | 146.0 (2) | V3viii—O10—Li1viii | 93.5 (3) |
O4v—V3—O11 | 86.2 (2) | V2—O10—Li1viii | 96.5 (3) |
O5—V3—O11 | 79.0 (2) | V1—O11—V3 | 143.9 (3) |
O12—V3—O10iv | 176.2 (2) | V3—O12—Li1iii | 160.6 (4) |
O2—Te1—O1—V1iv | 45.3 (3) | O3—V2—O8—V1 | 72.3 (5) |
O3—Te1—O1—V1iv | −56.9 (3) | O6iv—V2—O8—V1 | −120.9 (5) |
O3—Te1—O2—V1 | 51.2 (4) | O11iv—V2—O8—V1 | 165.0 (5) |
O1—Te1—O2—V1 | −43.2 (4) | O9—V2—O8—V1iv | −179.2 (2) |
O7—V1—O2—Te1 | −118.9 (4) | O10—V2—O8—V1iv | −2.2 (5) |
O11—V1—O2—Te1 | 136.9 (4) | O3—V2—O8—V1iv | −80.0 (2) |
O1iv—V1—O2—Te1 | 14.2 (9) | O6iv—V2—O8—V1iv | 86.8 (2) |
O8—V1—O2—Te1 | −16.3 (3) | O11iv—V2—O8—V1iv | 12.69 (18) |
O8iv—V1—O2—Te1 | 59.8 (3) | O7—V1—O8—V2 | 30.3 (5) |
O2—Te1—O3—V2 | −40.6 (3) | O11—V1—O8—V2 | −150.1 (4) |
O1—Te1—O3—V2 | 57.1 (3) | O2—V1—O8—V2 | −67.7 (5) |
Li1viii—Te1—O3—V2 | 136.3 (6) | O1iv—V1—O8—V2 | 121.3 (5) |
O2—Te1—O3—Li1viii | −176.9 (4) | O8iv—V1—O8—V2 | −152.8 (6) |
O1—Te1—O3—Li1viii | −79.2 (4) | O7—V1—O8—V1iv | −176.9 (2) |
O9—V2—O3—Te1 | 111.8 (3) | O11—V1—O8—V1iv | 2.7 (5) |
O8—V2—O3—Te1 | 4.4 (3) | O2—V1—O8—V1iv | 85.1 (2) |
O10—V2—O3—Te1 | −141.5 (3) | O1iv—V1—O8—V1iv | −85.9 (2) |
O6iv—V2—O3—Te1 | −104.2 (8) | O8iv—V1—O8—V1iv | 0.0 |
O11iv—V2—O3—Te1 | −68.0 (3) | O9—V2—O10—V3viii | −6.0 (6) |
O9—V2—O3—Li1viii | −112.5 (4) | O8—V2—O10—V3viii | 177.0 (4) |
O8—V2—O3—Li1viii | 140.1 (4) | O3—V2—O10—V3viii | −102.9 (6) |
O10—V2—O3—Li1viii | −5.8 (4) | O6iv—V2—O10—V3viii | 85.5 (6) |
O6iv—V2—O3—Li1viii | 31.5 (10) | O11iv—V2—O10—V3viii | 162.3 (6) |
O11iv—V2—O3—Li1viii | 67.7 (4) | O9—V2—O10—Li1viii | 101.4 (4) |
O5—Te2—O4—V3ix | −109.7 (4) | O8—V2—O10—Li1viii | −75.6 (5) |
O6—Te2—O4—V3ix | 152.3 (4) | O3—V2—O10—Li1viii | 4.5 (3) |
O5—Te2—O4—Li1ii | 97.3 (4) | O6iv—V2—O10—Li1viii | −167.1 (3) |
O6—Te2—O4—Li1ii | −0.7 (4) | O11iv—V2—O10—Li1viii | −90.3 (3) |
O4—Te2—O5—Li1 | −2.6 (6) | O9—V2—O10—V3iv | −167.7 (2) |
O6—Te2—O5—Li1 | 83.5 (6) | O8—V2—O10—V3iv | 15.3 (5) |
O4—Te2—O5—V3 | −159.5 (3) | O3—V2—O10—V3iv | 95.4 (2) |
O6—Te2—O5—V3 | −73.3 (3) | O6iv—V2—O10—V3iv | −76.2 (2) |
O3i—Li1—O5—Te2 | 175.7 (6) | O11iv—V2—O10—V3iv | 0.58 (17) |
O6ii—Li1—O5—Te2 | −10.1 (13) | O7—V1—O11—V3 | 26.0 (5) |
O4ii—Li1—O5—Te2 | −77.1 (6) | O2—V1—O11—V3 | 126.7 (5) |
O12iii—Li1—O5—Te2 | 100.2 (5) | O1iv—V1—O11—V3 | −68.2 (5) |
O10i—Li1—O5—Te2 | −150.6 (4) | O8—V1—O11—V3 | −153.6 (4) |
O3i—Li1—O5—V3 | −25.0 (10) | O8iv—V1—O11—V3 | −150.9 (5) |
O6ii—Li1—O5—V3 | 149.2 (8) | O7—V1—O11—V2iv | 165.2 (2) |
O4ii—Li1—O5—V3 | 82.2 (4) | O2—V1—O11—V2iv | −94.2 (2) |
O12iii—Li1—O5—V3 | −100.5 (4) | O1iv—V1—O11—V2iv | 70.9 (2) |
O10i—Li1—O5—V3 | 8.7 (3) | O8—V1—O11—V2iv | −14.4 (5) |
O12—V3—O5—Te2 | −102.7 (3) | O8iv—V1—O11—V2iv | −11.74 (17) |
O10i—V3—O5—Te2 | 150.5 (3) | O12—V3—O11—V1 | −42.2 (5) |
O4v—V3—O5—Te2 | 52.7 (6) | O10i—V3—O11—V1 | 152.4 (4) |
O11—V3—O5—Te2 | 1.8 (3) | O4v—V3—O11—V1 | 58.2 (5) |
O10iv—V3—O5—Te2 | 73.6 (3) | O5—V3—O11—V1 | −139.5 (5) |
O12—V3—O5—Li1 | 95.3 (5) | O10iv—V3—O11—V1 | 136.5 (5) |
O10i—V3—O5—Li1 | −11.5 (5) | O12—V3—O11—V2iv | −179.2 (2) |
O4v—V3—O5—Li1 | −109.3 (6) | O10i—V3—O11—V2iv | 15.4 (5) |
O11—V3—O5—Li1 | −160.2 (5) | O4v—V3—O11—V2iv | −78.8 (2) |
O10iv—V3—O5—Li1 | −88.4 (4) | O5—V3—O11—V2iv | 83.4 (2) |
O5—Te2—O6—V2iv | 68.4 (3) | O10iv—V3—O11—V2iv | −0.58 (17) |
O4—Te2—O6—V2iv | 160.5 (3) | O10i—V3—O12—Li1iii | 90.2 (12) |
O5—Te2—O6—Li1ii | −91.4 (4) | O4v—V3—O12—Li1iii | −170.4 (12) |
O4—Te2—O6—Li1ii | 0.8 (4) | O5—V3—O12—Li1iii | 0.0 (12) |
O9—V2—O8—V1 | −26.9 (5) | O11—V3—O12—Li1iii | −81.3 (12) |
O10—V2—O8—V1 | 150.1 (4) |
Symmetry codes: (i) x, y, z−1; (ii) −x, −y, −z; (iii) −x+1, −y+1, −z; (iv) −x+1, −y, −z+1; (v) x+1, y, z; (vi) −x, −y, −z+1; (vii) −x+1, −y+1, −z+1; (viii) x, y, z+1; (ix) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | Li(VO2)3(TeO3)2 |
Mr | 606.96 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 120 |
a, b, c (Å) | 6.2370 (4), 7.2005 (5), 10.7066 (8) |
α, β, γ (°) | 92.868 (4), 92.743 (5), 105.524 (4) |
V (Å3) | 461.77 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 9.23 |
Crystal size (mm) | 0.12 × 0.10 × 0.03 |
Data collection | |
Diffractometer | Nonius KappaCCD area-detector diffractometer |
Absorption correction | Multi-scan SADABS (Bruker, 2003) |
Tmin, Tmax | 0.404, 0.769 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3858, 1730, 1499 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.089, 1.02 |
No. of reflections | 1730 |
No. of parameters | 163 |
No. of restraints | 18 |
Δρmax, Δρmin (e Å−3) | 1.71, −1.93 |
Computer programs: COLLECT (Nonius, 1998), HKL SCALEPACK (Otwinowski & Minor 1997), HKL DENZO (Otwinowski & Minor 1997), SCALEPACK and SORTAV (Blessing 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and ATOMS (Dowty, 1999), SHELXL97.
Li1—O5 | 1.899 (12) | V3—O12 | 1.588 (5) |
Li1—O3i | 2.049 (13) | V3—O10i | 1.755 (4) |
Li1—O6ii | 2.119 (12) | V3—O4v | 1.885 (5) |
Li1—O4ii | 2.277 (13) | V3—O5 | 1.980 (5) |
Li1—O12iii | 2.411 (13) | V3—O11 | 2.014 (5) |
Li1—O10i | 2.447 (14) | V3—O10iv | 2.634 (5) |
V1—O7 | 1.582 (5) | Te1—O2 | 1.890 (5) |
V1—O11 | 1.790 (5) | Te1—O3 | 1.892 (5) |
V1—O2 | 1.899 (5) | Te1—O1 | 1.905 (5) |
V1—O1iv | 1.974 (5) | Te1—O6vi | 2.741 (5) |
V1—O8 | 1.992 (5) | Te1—O7vii | 2.764 (5) |
V1—O8iv | 2.325 (5) | Te1—O1vi | 2.765 (5) |
V2—O9 | 1.581 (5) | Te2—O5 | 1.873 (5) |
V2—O8 | 1.762 (4) | Te2—O4 | 1.888 (5) |
V2—O10 | 1.940 (5) | Te2—O6 | 1.901 (5) |
V2—O3 | 1.943 (5) | Te2—O11 | 2.557 (5) |
V2—O6iv | 1.964 (5) | Te2—O1vi | 2.801 (5) |
V2—O11iv | 2.532 (5) | Te2—O9vii | 2.836 (5) |
Symmetry codes: (i) x, y, z−1; (ii) −x, −y, −z; (iii) −x+1, −y+1, −z; (iv) −x+1, −y, −z+1; (v) x+1, y, z; (vi) −x, −y, −z+1; (vii) −x+1, −y+1, −z+1. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
The title compound, (I), is the second lithium vanadium tellurite to be characterized by single-crystal diffraction, complementing LiVO2(TeO3) (Darriet, 1973). Although vanadium can occur in the III, IV and V oxidation states in inorganic solids (see, for example, Hung et al., 2002; Calin et al., 2003), both these compounds contain only vanadium(V) ions.
The constituent polyhedra for (I) are shown in Fig. 1 and selected geometric data are listed in Table 1. Atom V1 adopts a distorted octahedral coordination with respect to its six O-atom neighbours, with one characteristic short formal double V═O `vanadyl' bond [V—O = 1.582 (5) Å], four V—O bonds of intermediate length, and one longer V—O bond [2.325 (5) Å] trans to the V═O bond. Atoms V2 and V3 also possess vanadyl links with V═O < 1.6 Å and four V—O bonds in the range 1.75–2.03 Å. The sixth bond, trans to the vanadyl link, which completes the distorted octahedron for these atoms (V—O > 2.5 Å), is substantially longer than the equivalent bond for V1.
These very distorted coordination polyhedra are highly characteristic of vanadium(V) and can be correlated theoretically with a second-order Jahn–Teller distortion (Kunz & Brown, 1995) for this d0 metal ion. The bond-valence sums (BVS), in valence units, for V1, V2 and V3, calculated by the Brown (1996) method, are 5.10, 5.10 and 5.02, respectively (expected 5.00).
Both TeIV atoms in (I) display pyramidal geometries with respect to their three closest O-atom neighbours, with Te—O < 2.00 Å, and it is usually assumed that an unseen stereochemically active lone pair of electrons occupies the fourth tetrahedral vertex about Te (Wells, 1962). Te1 is displaced from the plane of O1, O2 and O3 by 0.946 (3) Å, and Te2 is displaced from the O4/O5/O6 plane by 1.042 (3) Å. However, as is typical for tellurium(IV) (Feger et al., 1999; Irvine et al., 2003), there are further O atoms with Te···O < 3.00 Å in the coordination spheres of both Te1 and Te2. The shortest Te···O distance, Te2—O11 = 2.557 (5) Å, might justify describing the Te2 coordination as 3 + 1 (Feger et al., 1999). The BVS for Te1 are 3.74 (for the three close O atoms) and 4.10 (all O atoms within 3.0 Å). For Te2, BVS values of 3.83 (three Te—O bonds < 2.0 Å), 4.03 (four Te—O bonds < 2.6 Å) or 4.24 (six Te—O bonds < 3.0 Å) arise.
Atom Li1 is surrounded by six O atoms within 2.5 Å. If the LiO6 polyhedron is not simply regarded as irregular, then a possible description is a monocapped trigonal bipyramid (Fig. 2), with the longest bond to O10i capping through the O3i/O4ii/O5 face [symmetry codes: (i) x, y, z - 1; (ii) -x, -y, -z]. If the five O atoms forming the trigonal bipyramid are considered, a BVS of 0.88 arises for Li1 (expected = 1.00). If O10i is included in the calculation, BVS(Li1) rises to 0.95. Thus, the Brown (2002) criterion that a ligand should contribute 4% of the metal valence to be considered as bonded is fulfilled.
The polyhedral connectivity in (I) results in edge-sharing chains of VO6 octahedra propagating along [001] (Fig. 3). Crystal symmetry requires that the V1 and V3 octahedra form inversion dimers, while the V2 polyhedron shares an edge with one V1 and one V3 octahedron. The edge-sharing V···V separations are: V1···V1iv = 3.4207 (16) Å, V1···V2iv = 3.3169 (16) Å, V2···V3iv = 3.7016 (17) Å and V3···V3viii = 3.4858 (18) Å [symmetry codes: (iv) 1 - x, -y, 1 - z; (viii) 1 - x, -y, -z]. The O—V—O bond angles for the O atoms involved in the edge-shared links show substantial compression from 90°, falling in the range 70.51 (7)–77.58 (19)°.
When the Te atoms are considered as well as the V and O atoms, (010) sheets arise (Fig. 4) in the structure of (I). It is notable that Te1 bonds to, or caps, a triangle of three vanadium polyheda in the same edge-shared chain. A different triangular capping mode for a TeIV atom was observed in Cs(VO2)3(TeO3)2 (Harrison & Buttrey, 2000), in which the three VO6 groups share corners. Although the title compound and Cs(VO2)3(TeO3)2 share the same stoichiometry and a `capping' Te atom, they are otherwise structurally quite dissimilar.
Finally, when the Li atoms in (I) are also considered, a three-dimensional network arises (Fig. 5), with LiO6 groups bridging the (010) sheets, the key bond being Li1–O12iii [symmetry code: (iii) 1 - x, 1 - y, -z]. Significant [100] pseudo-channels in the structure are apparent, which probably accommodate the TeIV lone pairs. Thus, any free space accessible by other chemical species is limited.