Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of the title compound, triacetato-1κO;3κ4O,O′-(2,2′-imino­diethanol)-1κ3O,N,O′-bis­(μ-2,2′-iminodi­ethanol­ato)-1κ2O:2κ6O,N,O′:3κ2O′-cobalt(III)copper(II)zinc(II), [CoCuZn(C4H9NO2)2(C2H3O2)3(C4H11NO2)], shows a mol­ecule with a triangular three-metal core. The metal sites were refined with full occupancies, but the possibility that the Zn and Cu positions are actually mixed Cu/Zn sites cannot be excluded. The inter­metallic Cu...Co and Co...Zn distances are 2.924 (3) and 2.906 (3) Å, respectively. The neutral mol­ecules are held together by N—H...O hydrogen bonds involving amine groups from the 2,2′-iminodiethanol ligands and acetate groups to build two-dimensional layers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010601523X/bg1028sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010601523X/bg1028Isup2.hkl
Contains datablock I

CCDC reference: 612439

Comment top

The coordination chemistry of heterometallic complexes of transition metals is currently an active and rapidly expanding research area. Special effort has been focused on the preparation and characterization of heterotrimetallic complexes, for example Cu/Co/Ni (Nesterov et al., 2004), Cu/Fe/Gd (Gheorghe et al., 2003) or Co/Fe/Ni (Berlinguette & Dunbar, 2005). Such interest is a result of the many potential applications of these complexes as, for instance, molecular magnets (Liu et al., 2004; Verani et al., 2000) or catalysts (Becker et al., 2001). We have recently reported the first Cu/Co/Zn heterotrimetallic complexes, containing a trinuclear CuCoZnO4 core, which could be viewed as a distorted cube in which one corner site is vacant (Nesterov et al., 2005). We report here the preparation and crystal structure of the new heterotrimetallic complex [CuCoZn(L)2(H2L)(OAc)3], (I), of a different type; the trinuclear CuCoZnO11N3 core now represents a triangle with a Cu···Co···Zn angle of 107.6 (1)° (Fig. 1). The metal atoms are bridged through the O atoms from the deprotonated diethanolamine ligand (H2L). A similar molecular geometry was observed in the Cu/Co/Cd compound with the same ligand (Nesterov et al., 2004) but different anions.

Selected bond distances are given in Table 1. The Cu atom is in an O5N tetragonally distorted octahedral environment with axial lengths equal to 2.595 (15) and 2.345 (14) Å (atoms O5 and O6, respectively). One of the equatorial positions is occupied by the O atom of the acetate anion. The Co atom has an almost regular octahedral arrangement with Co—O(N) distances ranging from 1.884 (10) to 1.943 (15) Å and trans-angles from 167.5 (5) to 177.4 (5)°. Such geometry is typical of a six-coordinated low-spin cobalt(III) ion (Wells, 1986). The Zn atom displays a distorted tetrahedral environment with an O4 chromophore. The two acetate groups exhibit monodentate coordination. However, considering the Zn—O10 and Zn—O12 distances [2.491 (16) and 2.780 (17) Å, respectively], the presence of weak bonding between the metal atom and uncoordinated acetate O atoms can be presumed.

The molecules form a two-dimensional network involving H atoms from the aminoalcohol ligands (Fig. 2). Atom O8 participates in both inter- (O5—H5O···O8) and intramolecular (N3—H3···O8ii) hydrogen contacts (see Table 2). Two other intermolecular hydrogen bonds involve amine and acetate groups.

Experimental top

Copper powder (0.16 g, 2.5 mmol), Co(OAc)2·4H2O (0.62 g, 2.5 mmol), Zn(OAc)2·2H2O (0.55 g, 2.5 mmol), dimethylsulfoxide (20 ml) and diethanolamine (2 ml) were heated to 323–333 K and stirred magnetically until total dissolution of the copper was observed (1 h). Dark-green crystals suitable for X-ray analysis were obtained from the dark-green solution after successive addition of a PriOH/diethyl ether (1:3) mixture. The crystals were filtered off, washed with dry PriOH and finally dried in vacuo at room temperature. Yield 0.9 g, 53% (per copper). Analysis found: C 31.7, H 5.5, Co 8.6, Cu 9.0, N 6.2, Zn 9.9%; calculated: C 31.96, H 5.66, Co 8.71, Cu 9.39, N 6.21, Zn 9.67%. IR (KBr, cm−1): 1600 [νas(COO)], 1580 [νas(COO)], 1455 [νs(COO)].#######################

Refinement top

In general, the non-H atoms were refined anisotropically. The assignment of Cu and Co atoms was largely achieved on refinement and coordination geometry. The third metal atom was assigned as Zn from the analytical data. It has distorted tetrahedral environment with two longer bonds to the other two O atoms (O10 and O12) of the acetate groups. This geometry is unusual not only for zinc but also for copper. Although elemental analysis suggested the absence of metal scrambling within a molecule, taking into account the refinement the possibility that both the Zn and the Cu positions are mixed Cu/Zn cannot be excluded. Two diethanolamine ligands have both O atoms bridging and hence –OH groups were assigned as deprotonated. From the interatomic distances in the O6···O4 and O5···O8 atom pairs [2.631 (16) and 2.625 (18) Å, respectively], two strong intramolecular hydrogen bonds (O6—H6O···O4 and O5—H5O···O8) can be identified; the H atoms were located on atoms O5 and O6. Other H atoms were placed at idealized positions [C—H = 0.92–1.00 Å, Uiso(H) = 1.25Ueq(C) for CH2 and 1.5Ueq(C) for CH3] Please check and not refined. The C—O bonds of the acetates are indicative of carboxylate but not carboxylic acid groups [C—O bonds range from 1.21 (3)–1.30 (3) Å]. Acetate atom C18 was refined with isotropic displacement parameters. Attempts to refine this atom as disordered did not improve the model. All bond distances and angles within the aminoalcohol and acetate ligands are as expected.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: Xtal3.5 (Hall et al., 1995); program(s) used to refine structure: CRYLSQ in Xtal3.5; molecular graphics: Xtal3.5; software used to prepare material for publication: BONDLA and CIFIO in Xtal3.5.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with the numbering scheme (the non-H atoms are shown as 50% probability displacement ellipsoids).
[Figure 2] Fig. 2. The hydrogen-bonding scheme of (I). The H atoms of the CH2 groups have been omitted for clarity. [Symmetry codes: (i) −x + 1, y + 1/2, −z + 1; (ii) −x + 2, y − 1/2, −z + 2; (iii) −x + 1, y − 1/2, −z + 1; (iv) −x + 2, y + 1/2, −z + 2.]
triacetato-1κO,3κ4O,O'-(2,2'-iminodiethanol)-1κ2O,O'-bis(2,2'- iminodiethanolato)-1κ2O:2κ6O,N,O':3κ2O'-cobalt(III)copper(II)zinc(II) top
Crystal data top
[CuCoZn(C4H9NO2)2(C2H3O2)3(C4H11NO2)]F(000) = 698
Mr = 676.45Dx = 1.734 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: p 2ybCell parameters from 2451 reflections
a = 8.353 (3) Åθ = 2.3–26.1°
b = 12.357 (4) ŵ = 2.43 mm1
c = 12.934 (4) ÅT = 150 K
β = 103.916 (5)°Fragment, dark-green
V = 1295.8 (7) Å30.14 × 0.09 × 0.06 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
5068 independent reflections
Radiation source: sealed tube3927 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ω scansθmax = 26.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.62, Tmax = 0.86k = 1515
11690 measured reflectionsl = 1616
Refinement top
Refinement on F0 constraints
Least-squares matrix: fullH-atom parameters not refined
R[F2 > 2σ(F2)] = 0.065 w = 1/[σ2(F) + 0.001F2]
wR(F2) = 0.092(Δ/σ)max = 0.001
S = 1.33Δρmax = 1.07 e Å3
3927 reflectionsΔρmin = 0.74 e Å3
316 parametersAbsolute structure: Flack (1983), 3212 Friedel pairs
0 restraintsAbsolute structure parameter: 0.05 (5)
Crystal data top
[CuCoZn(C4H9NO2)2(C2H3O2)3(C4H11NO2)]V = 1295.8 (7) Å3
Mr = 676.45Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.353 (3) ŵ = 2.43 mm1
b = 12.357 (4) ÅT = 150 K
c = 12.934 (4) Å0.14 × 0.09 × 0.06 mm
β = 103.916 (5)°
Data collection top
Bruker SMART CCD
diffractometer
5068 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3927 reflections with I > 2σ(I)
Tmin = 0.62, Tmax = 0.86Rint = 0.062
11690 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.065H-atom parameters not refined
wR(F2) = 0.092Δρmax = 1.07 e Å3
S = 1.33Δρmin = 0.74 e Å3
3927 reflectionsAbsolute structure: Flack (1983), 3212 Friedel pairs
316 parametersAbsolute structure parameter: 0.05 (5)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.7775 (3)0.5000 (2)0.98433 (16)0.0251 (10)
Cu0.4964 (2)0.3611 (2)0.65139 (15)0.0171 (8)
Co0.7503 (2)0.3132 (2)0.84472 (16)0.0156 (10)
O10.7102 (12)0.4248 (9)0.7401 (9)0.017 (5)
O20.9158 (14)0.3839 (10)0.9509 (9)0.023 (6)
O30.5942 (12)0.2387 (11)0.7393 (7)0.018 (5)
O40.6012 (13)0.3837 (9)0.9148 (9)0.019 (5)
O50.5972 (15)0.3368 (10)0.4781 (11)0.033 (7)
O60.3502 (15)0.4469 (10)0.7619 (9)0.026 (6)
O70.2839 (14)0.2883 (9)0.5823 (9)0.024 (6)
O80.3635 (15)0.1906 (10)0.4568 (10)0.026 (6)
O90.6785 (17)0.6325 (12)0.9126 (11)0.035 (7)
O100.9371 (15)0.6352 (13)0.9071 (12)0.040 (7)
O110.7546 (16)0.4889 (13)1.1336 (11)0.040 (7)
O121.0163 (19)0.5344 (13)1.1721 (16)0.057 (10)
N10.9271 (15)0.2649 (13)0.7856 (10)0.019 (6)
N20.7423 (15)0.1900 (12)0.9367 (11)0.019 (6)
N30.4346 (16)0.5012 (13)0.5678 (10)0.021 (6)
C10.843 (2)0.4339 (14)0.6867 (14)0.023 (7)
C20.909 (2)0.3203 (17)0.6800 (13)0.026 (7)
C31.0900 (18)0.2885 (14)0.8631 (11)0.020 (7)
C41.0734 (19)0.3923 (14)0.9226 (14)0.022 (6)
C50.507 (2)0.1577 (14)0.7869 (15)0.028 (9)
C60.637 (2)0.1049 (16)0.8734 (16)0.029 (9)
C70.6846 (18)0.2301 (15)1.0298 (12)0.021 (8)
C80.551 (2)0.3163 (16)0.9930 (13)0.025 (8)
C90.538 (2)0.4311 (17)0.4209 (15)0.031 (10)
C100.395 (2)0.4818 (14)0.4515 (13)0.024 (8)
C110.298 (2)0.5527 (15)0.6027 (14)0.024 (8)
C120.336 (2)0.5573 (17)0.7247 (15)0.031 (9)
C130.257 (2)0.2238 (12)0.5030 (14)0.024 (8)
C140.078 (3)0.185 (2)0.4634 (19)0.049 (13)
C150.801 (3)0.6756 (16)0.8822 (15)0.034 (9)
C160.763 (3)0.7737 (19)0.8131 (17)0.047 (12)
C170.893 (2)0.5020 (19)1.1959 (15)0.034 (9)
C180.908 (5)0.485 (3)1.310 (3)0.090 (10)*
H5O0.563270.269010.449580.03900*
H6O0.408260.443980.832410.02800*
H10.916870.189740.775160.02800*
H20.847740.161770.960390.03000*
H30.522790.550050.584860.02900*
H1a0.798190.464690.616660.03200*
H1b0.923980.481720.725110.03200*
H2a1.012130.326110.661940.03500*
H2b0.833570.282110.624600.03500*
H3a1.119700.229630.912580.02200*
H3b1.173450.296060.824890.02200*
H4a1.076140.452310.878490.02600*
H4b1.162520.396980.984970.02600*
H5a0.422260.193670.817810.03700*
H5b0.448020.108000.735630.03700*
H6a0.697570.057060.841190.03600*
H6b0.582670.063240.919070.03600*
H7a0.640650.172331.061830.03000*
H7b0.774680.261901.081030.03000*
H8a0.538970.359131.051660.03500*
H8b0.449290.282620.961040.03500*
H9a0.629700.483650.431580.04000*
H9b0.510360.415610.345490.04000*
H10a0.304480.435480.432790.03700*
H10b0.369330.549920.414980.03700*
H11a0.275360.623090.574330.03400*
H11b0.198490.509170.577240.03400*
H12a0.247870.591760.748570.03800*
H12b0.434780.595250.752180.03800*
H14a0.005680.231040.492770.07400*
H14b0.063910.113840.479120.07400*
H14c0.044860.194870.386850.07400*
H16a0.755370.831570.861200.05300*
H16b0.652900.761620.769160.05300*
H16c0.838050.782790.772390.05300*
H18a0.915630.552421.346980.1200*
H18b1.001160.441831.341630.1200*
H18c0.811350.447801.320690.1200*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0191 (10)0.0265 (11)0.0287 (11)0.0009 (9)0.0036 (8)0.0055 (9)
Cu0.0122 (9)0.0186 (9)0.0188 (10)0.0005 (8)0.0004 (7)0.0016 (8)
Co0.0110 (10)0.0165 (11)0.0188 (11)0.0008 (8)0.0026 (8)0.0023 (9)
O10.004 (5)0.015 (6)0.027 (6)0.001 (4)0.002 (4)0.001 (5)
O20.017 (6)0.022 (7)0.030 (7)0.002 (5)0.006 (5)0.004 (5)
O30.011 (5)0.026 (6)0.017 (5)0.005 (5)0.003 (4)0.001 (5)
O40.015 (6)0.021 (6)0.019 (6)0.001 (5)0.001 (4)0.000 (5)
O50.019 (6)0.020 (7)0.052 (8)0.003 (5)0.007 (6)0.004 (6)
O60.027 (7)0.027 (7)0.023 (6)0.003 (5)0.004 (5)0.003 (5)
O70.014 (6)0.032 (7)0.027 (6)0.003 (5)0.007 (5)0.000 (5)
O80.022 (6)0.023 (6)0.030 (7)0.001 (5)0.002 (5)0.004 (5)
O90.035 (8)0.032 (8)0.038 (8)0.011 (6)0.010 (6)0.005 (6)
O100.017 (7)0.046 (9)0.051 (9)0.008 (6)0.004 (6)0.013 (7)
O110.030 (8)0.048 (9)0.037 (8)0.004 (7)0.000 (6)0.008 (7)
O120.027 (8)0.042 (10)0.108 (14)0.003 (7)0.033 (9)0.001 (9)
N10.013 (5)0.024 (8)0.018 (6)0.008 (4)0.001 (5)0.003 (6)
N20.007 (6)0.023 (7)0.024 (8)0.003 (5)0.001 (5)0.002 (6)
N30.011 (6)0.031 (8)0.018 (7)0.009 (6)0.004 (5)0.007 (6)
C10.012 (4)0.023 (9)0.033 (9)0.008 (4)0.007 (7)0.002 (7)
C20.009 (4)0.050 (11)0.021 (8)0.005 (8)0.007 (6)0.011 (8)
C30.010 (5)0.037 (10)0.011 (7)0.002 (6)0.003 (6)0.007 (6)
C40.008 (4)0.024 (9)0.029 (9)0.006 (6)0.003 (6)0.006 (7)
C50.028 (9)0.013 (9)0.040 (11)0.010 (7)0.003 (8)0.000 (7)
C60.020 (9)0.035 (10)0.035 (11)0.010 (8)0.010 (8)0.009 (8)
C70.012 (7)0.030 (10)0.019 (8)0.005 (7)0.000 (6)0.002 (7)
C80.024 (9)0.028 (9)0.023 (9)0.009 (8)0.005 (7)0.005 (8)
C90.022 (9)0.037 (11)0.034 (11)0.014 (9)0.005 (8)0.008 (9)
C100.023 (9)0.021 (9)0.026 (9)0.005 (7)0.002 (7)0.003 (7)
C110.010 (8)0.028 (9)0.033 (10)0.010 (7)0.006 (7)0.009 (8)
C120.015 (9)0.045 (12)0.030 (10)0.003 (8)0.001 (7)0.007 (9)
C130.024 (9)0.013 (9)0.033 (10)0.004 (7)0.004 (7)0.007 (7)
C140.032 (12)0.055 (15)0.064 (15)0.018 (11)0.017 (11)0.043 (13)
C150.047 (13)0.020 (9)0.027 (10)0.009 (9)0.001 (9)0.012 (8)
C160.065 (15)0.038 (14)0.038 (11)0.003 (11)0.011 (10)0.010 (10)
C170.027 (10)0.044 (11)0.032 (10)0.001 (9)0.009 (8)0.007 (9)
Bond lengths (Å) top
Zn—O21.954 (12)C1—H1a0.970
Zn—O42.099 (11)C1—H1b0.947
Zn—O91.964 (14)C2—H2a0.944
Zn—O102.491 (16)C2—H2b0.959
Zn—O111.990 (14)C3—C41.52 (2)
Zn—O122.780 (17)C3—H3a0.961
Cu—O12.034 (10)C3—H3b0.951
Cu—O31.950 (12)C4—H4a0.940
Cu—O52.595 (15)C4—H4b0.959
Cu—O62.345 (14)C5—C61.51 (2)
Cu—O72.000 (11)C5—H5a1.00
Cu—N32.041 (16)C5—H5b0.950
Co—O11.905 (11)C6—H6a0.94
Co—O21.910 (11)C6—H6b0.97
Co—O31.884 (10)C7—C81.53 (2)
Co—O41.917 (12)C7—H7a0.943
Co—N11.915 (14)C7—H7b0.959
Co—N21.943 (15)C8—H8a0.951
O1—C11.44 (2)C8—H8b0.947
O2—C41.45 (2)C9—C101.49 (3)
O3—C51.46 (2)C9—H9a0.99
O4—C81.45 (2)C9—H9b0.97
O5—C91.40 (2)C10—H10a0.934
O5—H5O0.931C10—H10b0.964
O6—C121.44 (2)C11—C121.53 (3)
O6—H6O0.925C11—H11a0.945
O7—C131.27 (2)C11—H11b0.975
O8—C131.25 (2)C12—H12a0.97
O9—C151.30 (3)C12—H12b0.940
O10—C151.21 (2)C13—C141.54 (3)
O11—C171.25 (2)C14—H14a0.97
O12—C171.21 (3)C14—H14b0.92
N1—C21.50 (2)C14—H14c0.97
N1—C31.512 (18)C15—C161.50 (3)
N1—H10.939C16—H16a0.96
N2—C61.49 (2)C16—H16b0.97
N2—C71.49 (2)C16—H16c0.92
N2—H20.928C17—C181.47 (4)
N3—C101.48 (2)C18—H18a0.96
N3—C111.47 (2)C18—H18b0.95
N3—H30.936C18—H18c0.96
C1—C21.52 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6O···O40.931.862.631 (16)139
O5—H5O···O80.931.952.625 (18)128
N1—H1···O12i0.942.072.92 (2)150
N2—H2···O10i0.932.193.02 (2)148
N3—H3···O8ii0.942.112.95 (2)148
Symmetry codes: (i) x+2, y1/2, z+2; (ii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[CuCoZn(C4H9NO2)2(C2H3O2)3(C4H11NO2)]
Mr676.45
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)8.353 (3), 12.357 (4), 12.934 (4)
β (°) 103.916 (5)
V3)1295.8 (7)
Z2
Radiation typeMo Kα
µ (mm1)2.43
Crystal size (mm)0.14 × 0.09 × 0.06
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.62, 0.86
No. of measured, independent and
observed [I > 2σ(I)] reflections
11690, 5068, 3927
Rint0.062
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.092, 1.33
No. of reflections3927
No. of parameters316
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)1.07, 0.74
Absolute structureFlack (1983), 3212 Friedel pairs
Absolute structure parameter0.05 (5)

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SAINT, Xtal3.5 (Hall et al., 1995), CRYLSQ in Xtal3.5, BONDLA and CIFIO in Xtal3.5.

Selected bond lengths (Å) top
Zn—O21.954 (12)Cu—O62.345 (14)
Zn—O42.099 (11)Cu—O72.000 (11)
Zn—O91.964 (14)Cu—N32.041 (16)
Zn—O102.491 (16)Co—O11.905 (11)
Zn—O111.990 (14)Co—O21.910 (11)
Zn—O122.780 (17)Co—O31.884 (10)
Cu—O12.034 (10)Co—O41.917 (12)
Cu—O31.950 (12)Co—N11.915 (14)
Cu—O52.595 (15)Co—N21.943 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6O···O40.9251.8612.631 (16)139.19
O5—H5O···O80.9311.9512.625 (18)127.58
N1—H1···O12i0.9392.0682.92 (2)149.55
N2—H2···O10i0.9282.1893.02 (2)148.2
N3—H3···O8ii0.9362.1112.95 (2)147.86
Symmetry codes: (i) x+2, y1/2, z+2; (ii) x+1, y+1/2, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds