Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures reported herein, viz. bis­(4-amino­naphthalene-1-sulfonato-κO)bis­(4,5-diaza­fluoren-9-one-κ2N,N′)copper(II), [Cu(C10H8NO3S)2(C11H6N2O)2], (I), and poly[[[diaqua­cadmium(II)]-bis­(μ-4-aminona­phthalene-1-sulfonato)-κ2O:N2N:O] dihydrate], {[Cd(C10H8NO3S)2(H2O)2]·2H2O}n, (II), are rare examples of sulfonate-containing complexes where the anion does not fulfill a passive charge-balancing role, but takes an active part in coordination as a monodentate and/or bridging ligand. Monomeric complex (I) possesses a crystallographic inversion center at the CuII atom, and the asymmetric unit contains one-half of a Cu atom, one complete 4-amino­naphthalene-1-sulfonate (ans) ligand and one 4,5-diaza­fluoren-9-one (DAFO) ligand. The CuII atom has an elongated distorted octa­hedral coordination geometry formed by two O atoms from two monodentate ans ligands and by four N atoms from two DAFO mol­ecules. Complex (II) is polymeric and its crystal structure is built up by one-dimensional chains and solvent water mol­ecules. Here also the cation (a CdII atom) lies on a crystallographic inversion center and adopts a slightly distorted octa­hedral geometry. Each ans anion serves as a bridging ligand linking two CdII atoms into one-dimensional infinite chains along the [010] direction, with each CdII center coordinated by four ans ligands via O and N atoms and by two aqua ligands. In both structures, there are significant π–π stacking inter­actions between adjacent ligands and hydrogen bonds contribute to the formation of two- and three-dimensional networks.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108016041/bg3074sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108016041/bg3074Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108016041/bg3074IIsup3.hkl
Contains datablock II

CCDC references: 697559; 697560

Comment top

Owing to their weak coordination abilities to transition metal atoms, most of the reported complexes containing organosulfonate ligands are aqua–metal salts and the sulfonate species only acts as a counter-anion to balance the charge within the complex (Kosnic et al., 1992; Shubnell et al., 1994; Gunderman et al., 1997). In some rare cases, however, the sulfonate ligand can also bind to the metal centers in the presence of ancillary ligands (Cai, Chen, Liao, Feng & Chen, 2001; Cai, Chen, Liao, Yao et al., 2001; Chen et al., 2002). It is well known that the coordination behavior of one ligand can be influenced by the others within a mixed-ligand complex.

In this respect, 4-aminonaphthalene-1-sulfonate could be a potential bridging ligand, since it contains sulfonate and NH2 groups located at opposite sides of a benzene ring, and could exhibit versatile coordination modes in the presence of adequate ancillary ligands. This behavior would be similar to that of p-aminobenzene sulfonate (Endres, 1984; Brodersen & Beck, 1987; Starynowicz, 1992; Shakri & Haussuhl, 1992a,b; Gunderman et al., 1996; Zhou et al., 2004). For p-aminobenzene sulfonate, it is common that the two functional groups simultaneously bind to metal ions; however, to our knowledge, no example of such behavior has been reported for 4-aminonaphthalene-1-sulfonate. As part of an investigation of the coordination behavior of sulfonates, a series of mixed-ligand complexes have been synthesized so far; in our previous work, the sulfonate group behaved only as a charge balance counter-anion (Li et al., 2005a,b, 2006, 2007). In order to obtain complexes in which the sulfonate group directly binds to the metal, ligands with a large conjugate plane, such as 2,2'-bipyridine, 1,10-phenanthroline and dipyridophenazine, were used as ancillary ligands. We present here two novel complexes in which the sulfonate group exhibits such behaviour, viz. [Cu(DAFO)2(ans)2], (I), and {[Cd(ans)2(H2O)2].2H2O}n, (II) [where ans is 4-aminonaphthalene-1-sulfonate and DAFO is 4,5-diazafluorene-9-one).

The asymmetric unit of (I) consists of half a Cu atom, one complete ans ion and one neutral DAFO ligand (Fig. 1). The CuII atom lies on a crystallographic inversion centre and has an elongated distorted octahedral coordination geometry, formed by two O atoms from two monodentate ans ligands and by four N atoms from two DAFO molecules; the manner of coordination is unusual in that the elongated Jahn–Teller (J–T) axis of the molecule lies along one of the N—Cu—N vectors [Cu1—N2 = 2.6231 (18) Å] and not on the O—Cu—O axis [Cu1—O2 = 1.9890</span><span style=" font-weight:600;">(14) Å and O2—Cu1—O2 = 180°], which is occupied by ans counter-ions. As far as we know, this is one of the few examples of N2O2N2' coordination to a CuII center with two anions bound trans in the equatorial plane and N atoms of the chelate directed along the J–T axis (Menon & Rajasekharan, 1998). This N2X2N2' geometry has been observed in other CuII complexes with the 4,5-diazafluorene template and simple anions such as Cl- or Br- (Menon & Rajasekharan, 1998), while complexes with transition metals other than CuII, such as ReI (Yam et al., 1998) and NiII (Xiong et al., 1996), typically exhibit a more symmetrical coordination.

Both ligands are planar within an r.m.s. deviation of 0.002 Å, with largest departures from the least-squares plane of 0.055 (2) Å for atom C9 in DAFO and 0.038 (2) Å for atom C13 in ans. Owing to the characteristic conjugated structures of both ligands there are not only intramolecular but also intermolecular ππ stacking interactions between adjacent planes. To describe the latter let us define Cg1 as the centroid of the C12–C17 benzene ring in ans and Cg2i as the centroid of the C4–C7/C11 ring in a symmetry related DAFO molecule [symmetry code (i): x + 2, -y + 1, -z], with α the dihedral angle between the two rings and β the angle between the intercentroid vector and the Cg1 plane. The values Cg1···Cg2i = 3.3570 (12) Å, α = 4.44° and β = 19.52° indicate that there is a significant intramolecular ππ aromatic stacking interaction (Evans & Boeyens, 1989). At the same time, there is a significant intermolecular ππ stacking interaction involving Cg1 and a neighbouring pyridine ring (Cg1···Cg3iii = 3.5232 (11) Å; Cg3 is the centroid of the C7—C11/N2 ring; symmetry code: (iii) x - 1/2, -y + 1/2, -z).

Hydrogen-bond interactions play a key role in the formation of two-dimensional sheets and three-dimensional networks and in the stabilization of the crystal structure of (I). As shown in Fig. 2, one neutral complex links four neighbouring ones via N—H···O(S) bonds, forming two-dimensional layers extending in the (100) plane. Nonclassical C—H···O and C—H···N hydrogen bonds as well as the previously discussed ππ stacking interactions take part in the formation of a three-dimensional network.

Complex (II) (Fig. 3) also possesses a crystallographic inversion centre, this time located at the CdII atom, which displays a distorted octahedral geometry. The Cd atom is coordinated by four O atoms from two ans ligands and two water molecules, and by two N atoms belonging to another two ans anions, a situation similar to that in complexes of p-aminobenzene sulfonate with ZnII, CoII and CdII (Shakeri & Haussuhl, 1992a,b; Zhou et al., 2004). The Cd—Owater distances (Table 2) are in agreement with that within the complex of [Cd(µ2-N,O-p-NH2C6H4SO3)2(H2O)2]n [2.303 (2) Å; Zhou et al., 2004], and the Cd—O(S) length (Table 2) is slightly longer than its counterpart in [Cd(µ2-N,O-p-NH2C6H4SO3)2(H2O)2]n (2.294 Å). The Cd—N distance is close to that in [Cd(µ2-N,O-p-NH2C6H4SO3)2(H2O)2]n [2.373 (3) Å] and longer than the equivalent Cd—N distances in [Cd(en)2(H2O)2](ans)2.2H2O [2.240 (2) and 2.280 (2) Å; Li et al., 2006].

Each ans ligand links two cadmium(II) cations though O and N atoms; there are two such centrosymmetric bridges per Cd pair, defining a dimeric unit with a Cd···Cd distance of 9.2553 (6) Å (Fig. 3). Concatenation of these dimers leads to a doubly bridged, one-dimensional polymeric chain extending along [010]. The centroid–centroid distance, Cg1···Cg2v, between phenyl rings in two symmetry related ans ligands is 3.5676 (9) Å [Cg1 and Cg2 are the centroids of the C1—C6 and C5—C10 rings, resepctively; symmetry code: (v) -x+1, -y + 2, -z+1), while α and β are 1.93 and 17.48°, respectively, indicating a significant ππ stacking interaction.

Hydrogen bonding plays a key role in the formation of a three-dimensional network through the linkage of chains and solvent water molecules. Fig. 4 shows the way in which this is achieved, with neighboring chains (pointing out of the projection plane in the [100] direction) linked through an extensive hydrogen-bond network involving all water molecules in a series of O—H···Owater, O—H···O(S) and N—H···O interactions (Table 4).

Related literature top

For related literature, see: Brodersen & Beck (1987); Cai et al. (2001a, 2001b); Chen et al. (2002); Endres (1984); Evans & Boeyens (1989); Gunderman et al. (1996, 1997); Kosnic et al. (1992); Li et al. (2005a, 2005b, 2006, 2007); Menon & Rajasekharan (1998); Shakeri & Haussuhl (1992a, 1992b); Shubnell et al. (1994); Starynowicz (1992); Xiong et al. (1996); Yam et al. (1998); Zhou et al. (2004).

Experimental top

For the preparation of complex (I), an acetonitrile solution (10 ml) of 4,5-diazafluorene-9-one (0.183 g, 1 mmol) was added to an aqueous solution (20 ml) of Cu(OAc)2.H2O (0.100 g, 0.5 mmol) under constant stirring. After the mixture had been stirred for 2 h at 298 K, the solution was treated with 4-aminonaphthalene-1-sulfonic acid sodium salt tetrahydrate (0.32 g, 1 mmol) in 10 ml of methanol. After filtration, the red solution was allowed to stand at room temperature. Well shaped red block-shaped crystals were obtained by slow evaporation of the solvent over a period of about one week. Complex (II) was obtained as a by-product of the reaction of dipyridophenazine (0.283 g, 1 mmol), Cd(OAc)2.2H2O (0.133 g, 0.5 mmol) and 4-aminonaphthalene-1-sulfonic acid sodium salt tetrahydrate (0.32 g, 1 mmol) within mixed a solvent of water and acetonitrile (quantity?).

Refinement top

H atoms of water molecules and amine groups were located in a difference Fourier map and refined with the restraints O—H = 0.77 (3)–0.82 (2) Å and N—H = 0.79 (2)–0.83 (2) Å for (II), and N—H = 0.86 (3)–0.87 (3) Å for (I) [please give the values of the actual restraints used rather than the final distances obtained]; their Uiso(H) values were refined freely. C-bound H atoms were placed in geometrically idealized positions and treated as riding [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)].

Computing details top

For both compounds, data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level. [Symmetry code: (i) -x + 2, -y + 1, -z.]
[Figure 2] Fig. 2. Hydrogen-bonded two-dimensional sheets in (I). Some atoms have been omitted for clarity; hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. The molecular structure of (II), showing displacement ellipsoids at the 30% probability level. [Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+2, -z+2; (iii) -x+2, -y+2, -z+ ; (vii) x-1, y, z
[Figure 4] Fig. 4. The molecular packing of (II), with hydrogen bonds shown as dashed lines; some atoms have been omitted for clarity.
(I) Bis(4-aminonaphthalene-1-sulfonato-κO)bis(4,5-diazafluorene-9- one-κ2N,N')copper(II) top
Crystal data top
[Cu(C10H8NO3S)2(C11H6N2O)2]F(000) = 1788
Mr = 872.36Dx = 1.617 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5691 reflections
a = 14.8903 (13) Åθ = 2.3–28.2°
b = 13.9907 (12) ŵ = 0.80 mm1
c = 17.1961 (15) ÅT = 273 K
V = 3582.4 (5) Å3Block, red
Z = 40.48 × 0.14 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4319 independent reflections
Radiation source: fine-focus sealed tube3396 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
phi and ω scansθmax = 28.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1919
Tmin = 0.701, Tmax = 0.925k = 189
22653 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.049P)2 + 1.8415P]
where P = (Fo2 + 2Fc2)/3
4319 reflections(Δ/σ)max = 0.001
276 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Cu(C10H8NO3S)2(C11H6N2O)2]V = 3582.4 (5) Å3
Mr = 872.36Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 14.8903 (13) ŵ = 0.80 mm1
b = 13.9907 (12) ÅT = 273 K
c = 17.1961 (15) Å0.48 × 0.14 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4319 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3396 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 0.925Rint = 0.028
22653 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.32 e Å3
4319 reflectionsΔρmin = 0.34 e Å3
276 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.00000.50000.00000.02860 (10)
O10.68925 (11)0.59330 (15)0.23206 (10)0.0629 (5)
N10.96807 (10)0.54735 (10)0.10539 (8)0.0276 (3)
O20.99739 (9)0.36895 (10)0.04478 (8)0.0406 (3)
S11.06197 (4)0.29337 (4)0.06827 (3)0.03833 (14)
O41.01341 (12)0.21419 (12)0.10155 (9)0.0542 (4)
O31.13417 (12)0.33040 (13)0.11557 (8)0.0579 (4)
C11.02248 (13)0.57913 (14)0.16263 (11)0.0326 (4)
H11.08420.57900.15420.039*
N20.82428 (12)0.48805 (12)0.00475 (9)0.0349 (4)
C20.99023 (13)0.61194 (15)0.23350 (11)0.0353 (4)
H21.03020.63350.27120.042*
C30.89890 (14)0.61275 (14)0.24836 (11)0.0360 (4)
H30.87600.63500.29530.043*
C40.84334 (12)0.57898 (14)0.19026 (11)0.0322 (4)
C50.88092 (12)0.54789 (12)0.12104 (10)0.0271 (4)
C60.74341 (14)0.57185 (15)0.18272 (12)0.0395 (5)
C70.72671 (13)0.53500 (15)0.10224 (12)0.0366 (4)
C80.65022 (15)0.51719 (17)0.05963 (15)0.0479 (5)
H80.59320.52730.08010.057*
C90.66251 (17)0.48351 (17)0.01527 (15)0.0511 (6)
H90.61280.46960.04600.061*
C100.74833 (16)0.47031 (16)0.04506 (13)0.0460 (5)
H100.75380.44790.09580.055*
C110.80964 (13)0.51960 (13)0.06691 (11)0.0307 (4)
C121.11201 (13)0.25238 (14)0.01876 (10)0.0322 (4)
C131.20308 (14)0.25618 (15)0.02659 (12)0.0377 (4)
H131.23750.27840.01470.045*
C141.24610 (14)0.22754 (15)0.09498 (13)0.0411 (5)
H141.30830.23140.09860.049*
C151.19700 (14)0.19366 (15)0.15707 (11)0.0385 (4)
C161.10140 (13)0.18284 (13)0.14930 (10)0.0332 (4)
C171.05776 (13)0.21383 (13)0.07998 (10)0.0310 (4)
C180.96347 (15)0.20465 (15)0.07562 (12)0.0398 (4)
H180.93360.22530.03120.048*
C190.91535 (15)0.16587 (17)0.13558 (13)0.0471 (5)
H190.85330.16060.13140.057*
C211.04882 (16)0.14207 (15)0.20935 (12)0.0435 (5)
H211.07690.12020.25430.052*
C200.95817 (16)0.13426 (16)0.20272 (13)0.0477 (5)
H200.92480.10780.24300.057*
N31.23830 (17)0.16708 (19)0.22550 (13)0.0567 (6)
H3A1.291 (2)0.191 (2)0.2297 (17)0.072 (10)*
H3B1.203 (2)0.162 (3)0.266 (2)0.101 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03120 (18)0.03328 (18)0.02132 (16)0.00381 (12)0.00276 (12)0.00374 (12)
O10.0393 (9)0.0925 (14)0.0568 (10)0.0050 (9)0.0213 (8)0.0047 (9)
N10.0274 (7)0.0307 (8)0.0246 (7)0.0032 (6)0.0004 (6)0.0014 (6)
O20.0520 (9)0.0354 (7)0.0343 (7)0.0071 (6)0.0098 (6)0.0002 (6)
S10.0532 (3)0.0400 (3)0.0218 (2)0.0030 (2)0.0010 (2)0.00122 (19)
O40.0783 (12)0.0497 (9)0.0345 (8)0.0012 (8)0.0085 (8)0.0149 (7)
O30.0688 (11)0.0770 (12)0.0278 (7)0.0027 (9)0.0082 (7)0.0097 (7)
C10.0282 (9)0.0397 (10)0.0298 (9)0.0032 (8)0.0020 (7)0.0013 (8)
N20.0361 (9)0.0372 (9)0.0314 (8)0.0017 (7)0.0045 (6)0.0005 (6)
C20.0388 (11)0.0406 (11)0.0264 (9)0.0023 (8)0.0061 (7)0.0026 (8)
C30.0429 (11)0.0416 (11)0.0235 (8)0.0045 (9)0.0042 (8)0.0015 (8)
C40.0315 (9)0.0347 (10)0.0304 (9)0.0031 (8)0.0054 (7)0.0011 (7)
C50.0270 (9)0.0276 (9)0.0268 (8)0.0007 (7)0.0016 (7)0.0000 (7)
C60.0331 (10)0.0452 (12)0.0402 (10)0.0021 (8)0.0088 (8)0.0040 (9)
C70.0290 (10)0.0371 (10)0.0435 (11)0.0027 (8)0.0021 (8)0.0056 (9)
C80.0305 (10)0.0500 (13)0.0630 (15)0.0049 (9)0.0030 (10)0.0104 (11)
C90.0420 (13)0.0527 (14)0.0586 (14)0.0100 (10)0.0197 (11)0.0084 (11)
C100.0506 (13)0.0471 (12)0.0403 (11)0.0055 (10)0.0139 (10)0.0002 (10)
C110.0299 (9)0.0295 (9)0.0326 (9)0.0022 (7)0.0005 (7)0.0026 (7)
C120.0391 (10)0.0312 (9)0.0261 (8)0.0055 (8)0.0016 (7)0.0008 (7)
C130.0416 (11)0.0363 (10)0.0352 (10)0.0040 (9)0.0085 (8)0.0015 (8)
C140.0341 (10)0.0431 (11)0.0460 (12)0.0052 (8)0.0019 (9)0.0039 (9)
C150.0421 (11)0.0371 (10)0.0362 (10)0.0097 (9)0.0051 (8)0.0014 (8)
C160.0411 (10)0.0302 (9)0.0282 (9)0.0050 (8)0.0008 (8)0.0011 (7)
C170.0381 (10)0.0287 (9)0.0262 (9)0.0034 (7)0.0009 (7)0.0034 (7)
C180.0399 (11)0.0446 (11)0.0348 (10)0.0002 (9)0.0019 (9)0.0014 (9)
C190.0408 (12)0.0518 (13)0.0487 (12)0.0074 (10)0.0045 (10)0.0029 (10)
C210.0577 (14)0.0401 (11)0.0328 (10)0.0049 (10)0.0024 (9)0.0069 (8)
C200.0523 (13)0.0469 (12)0.0440 (12)0.0036 (10)0.0123 (10)0.0081 (10)
N30.0491 (13)0.0760 (15)0.0451 (12)0.0077 (12)0.0129 (10)0.0122 (11)
Geometric parameters (Å, º) top
Cu1—N1i1.9872 (14)C7—C111.393 (3)
Cu1—N11.9872 (14)C8—C91.384 (4)
Cu1—O2i1.9890 (14)C8—H80.9300
Cu1—O21.9890 (14)C9—C101.389 (4)
Cu1—N22.6231 (18)C9—H90.9300
Cu1—N2i2.6231 (18)C10—H100.9300
O1—C61.209 (2)C12—C131.364 (3)
N1—C51.325 (2)C12—C171.432 (3)
N1—C11.350 (2)C13—C141.398 (3)
O2—S11.4853 (15)C13—H130.9300
S1—O41.4413 (16)C14—C151.378 (3)
S1—O31.4442 (17)C14—H140.9300
S1—C121.7674 (19)C15—N31.379 (3)
C1—C21.388 (3)C15—C161.438 (3)
C1—H10.9300C16—C211.416 (3)
N2—C111.327 (2)C16—C171.425 (2)
N2—C101.349 (3)C17—C181.412 (3)
C2—C31.384 (3)C18—C191.368 (3)
C2—H20.9300C18—H180.9300
C3—C41.380 (3)C19—C201.391 (3)
C3—H30.9300C19—H190.9300
C4—C51.385 (2)C21—C201.359 (3)
C4—C61.497 (3)C21—H210.9300
C5—C111.466 (2)C20—H200.9300
C6—C71.498 (3)N3—H3A0.86 (3)
C7—C81.377 (3)N3—H3B0.87 (4)
N1i—Cu1—N1180.00 (8)C8—C9—C10120.7 (2)
N1i—Cu1—O2i87.11 (6)C8—C9—H9119.7
N1—Cu1—O2i92.89 (6)C10—C9—H9119.7
N1i—Cu1—O292.89 (6)N2—C10—C9123.9 (2)
N1—Cu1—O287.11 (6)N2—C10—H10118.1
O2i—Cu1—O2180.00 (8)C9—C10—H10118.1
N2i—Cu1—O293.80 (8)N2—C11—C7127.03 (18)
N1i—Cu1—N1180.00 (8)N2—C11—C5124.08 (17)
C5—N1—C1115.95 (15)C7—C11—C5108.84 (17)
C5—N1—Cu1114.92 (12)C13—C12—C17120.19 (18)
C1—N1—Cu1129.13 (13)C13—C12—S1119.35 (15)
S1—O2—Cu1138.50 (9)C17—C12—S1120.45 (15)
O4—S1—O3115.18 (10)C12—C13—C14121.84 (19)
O4—S1—O2109.29 (10)C12—C13—H13119.1
O3—S1—O2112.32 (10)C14—C13—H13119.1
O4—S1—C12107.36 (10)C15—C14—C13120.49 (19)
O3—S1—C12106.23 (10)C15—C14—H14119.8
O2—S1—C12105.88 (8)C13—C14—H14119.8
N1—C1—C2122.78 (18)C14—C15—N3121.2 (2)
N1—C1—H1118.6C14—C15—C16119.29 (18)
C2—C1—H1118.6N3—C15—C16119.5 (2)
C11—N2—C10113.61 (18)C21—C16—C17118.71 (18)
C3—C2—C1120.32 (18)C21—C16—C15121.47 (18)
C3—C2—H2119.8C17—C16—C15119.82 (17)
C1—C2—H2119.8C18—C17—C16118.04 (17)
C4—C3—C2116.90 (17)C18—C17—C12123.79 (17)
C4—C3—H3121.6C16—C17—C12118.17 (17)
C2—C3—H3121.6C19—C18—C17121.13 (19)
C3—C4—C5119.17 (17)C19—C18—H18119.4
C3—C4—C6132.93 (18)C17—C18—H18119.4
C5—C4—C6107.82 (17)C18—C19—C20120.8 (2)
N1—C5—C4124.87 (17)C18—C19—H19119.6
N1—C5—C11125.33 (16)C20—C19—H19119.6
C4—C5—C11109.75 (16)C20—C21—C16121.36 (19)
O1—C6—C4125.9 (2)C20—C21—H21119.3
O1—C6—C7128.6 (2)C16—C21—H21119.3
C4—C6—C7105.55 (16)C21—C20—C19120.0 (2)
C8—C7—C11118.2 (2)C21—C20—H20120.0
C8—C7—C6133.7 (2)C19—C20—H20120.0
C11—C7—C6108.00 (17)C15—N3—H3A112 (2)
C7—C8—C9116.6 (2)C15—N3—H3B116 (2)
C7—C8—H8121.7H3A—N3—H3B121 (3)
C9—C8—H8121.7
O2i—Cu1—N1—C594.52 (13)C8—C7—C11—N20.7 (3)
O2—Cu1—N1—C585.48 (13)C6—C7—C11—N2179.29 (18)
O2i—Cu1—N1—C185.21 (16)C8—C7—C11—C5176.97 (18)
O2—Cu1—N1—C194.79 (16)C6—C7—C11—C51.6 (2)
N1i—Cu1—O2—S174.04 (14)N1—C5—C11—N21.3 (3)
N1—Cu1—O2—S1105.96 (14)C4—C5—C11—N2178.91 (17)
Cu1—O2—S1—O4176.95 (13)N1—C5—C11—C7176.49 (17)
Cu1—O2—S1—O347.83 (16)C4—C5—C11—C71.2 (2)
Cu1—O2—S1—C1267.70 (15)O4—S1—C12—C13120.46 (17)
C5—N1—C1—C20.9 (3)O3—S1—C12—C133.27 (19)
Cu1—N1—C1—C2178.80 (14)O2—S1—C12—C13122.88 (17)
N1—C1—C2—C30.3 (3)O4—S1—C12—C1758.35 (17)
C1—C2—C3—C40.6 (3)O3—S1—C12—C17177.92 (15)
C2—C3—C4—C50.9 (3)O2—S1—C12—C1758.31 (17)
C2—C3—C4—C6177.2 (2)C17—C12—C13—C143.2 (3)
C1—N1—C5—C40.6 (3)S1—C12—C13—C14177.99 (16)
Cu1—N1—C5—C4179.15 (14)C12—C13—C14—C150.4 (3)
C1—N1—C5—C11177.92 (17)C13—C14—C15—N3178.6 (2)
Cu1—N1—C5—C111.8 (2)C13—C14—C15—C163.5 (3)
C3—C4—C5—N10.3 (3)C14—C15—C16—C21175.49 (19)
C6—C4—C5—N1177.48 (17)N3—C15—C16—C212.4 (3)
C3—C4—C5—C11177.38 (16)C14—C15—C16—C174.7 (3)
C6—C4—C5—C110.2 (2)N3—C15—C16—C17177.40 (19)
C3—C4—C6—O13.2 (4)C21—C16—C17—C181.7 (3)
C5—C4—C6—O1179.8 (2)C15—C16—C17—C18178.08 (18)
C3—C4—C6—C7175.9 (2)C21—C16—C17—C12178.21 (17)
C5—C4—C6—C70.8 (2)C15—C16—C17—C122.0 (3)
O1—C6—C7—C82.2 (4)C13—C12—C17—C18178.02 (19)
C4—C6—C7—C8176.8 (2)S1—C12—C17—C180.8 (3)
O1—C6—C7—C11179.5 (2)C13—C12—C17—C161.9 (3)
C4—C6—C7—C111.5 (2)S1—C12—C17—C16179.28 (13)
C11—C7—C8—C91.1 (3)C16—C17—C18—C191.0 (3)
C6—C7—C8—C9179.2 (2)C12—C17—C18—C19179.0 (2)
C7—C8—C9—C101.0 (3)C17—C18—C19—C200.0 (3)
C11—N2—C10—C90.0 (3)C17—C16—C21—C201.6 (3)
C8—C9—C10—N20.4 (4)C15—C16—C21—C20178.2 (2)
C10—N2—C11—C70.1 (3)C16—C21—C20—C190.6 (3)
C10—N2—C11—C5177.22 (18)C18—C19—C20—C210.2 (4)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O3ii0.87 (4)2.28 (4)3.142 (3)168 (3)
Symmetry code: (ii) x, y+1/2, z1/2.
(II) Poly[[[Diaquacadmium(II)]-bis(µ-4-aminonaphthalene-1-sulfonato)- κ2O:N;κ2N:O] dihydrate] top
Crystal data top
[Cd(C10H8NO3S)2(H2O)2]·2H2OF(000) = 636
Mr = 628.93Dx = 1.840 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5932 reflections
a = 9.2553 (6) Åθ = 2.3–29.7°
b = 15.6133 (9) ŵ = 1.21 mm1
c = 8.1857 (5) ÅT = 273 K
β = 106.305 (1)°Block, colorless
V = 1135.31 (12) Å30.40 × 0.37 × 0.32 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2729 independent reflections
Radiation source: fine-focus sealed tube2613 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
phi and ω scansθmax = 28.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1212
Tmin = 0.62, Tmax = 0.68k = 2018
7462 measured reflectionsl = 710
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0267P)2 + 0.5509P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2729 reflectionsΔρmax = 0.56 e Å3
185 parametersΔρmin = 0.37 e Å3
2 restraintsExtinction correction: SHELXS97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0486 (13)
Crystal data top
[Cd(C10H8NO3S)2(H2O)2]·2H2OV = 1135.31 (12) Å3
Mr = 628.93Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.2553 (6) ŵ = 1.21 mm1
b = 15.6133 (9) ÅT = 273 K
c = 8.1857 (5) Å0.40 × 0.37 × 0.32 mm
β = 106.305 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2729 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2613 reflections with I > 2σ(I)
Tmin = 0.62, Tmax = 0.68Rint = 0.015
7462 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0202 restraints
wR(F2) = 0.052H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.56 e Å3
2729 reflectionsΔρmin = 0.37 e Å3
185 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd11.00001.00001.00000.02207 (7)
O10.11768 (15)0.97584 (11)0.79668 (18)0.0415 (3)
O41.10339 (17)1.13444 (9)1.0009 (2)0.0379 (3)
H4A1.090 (3)1.1596 (17)0.910 (4)0.055 (7)*
H4B1.103 (3)1.1670 (19)1.068 (4)0.057 (8)*
N10.80030 (15)1.05294 (10)0.7766 (2)0.0286 (3)
H1A0.824 (3)1.0477 (16)0.694 (3)0.041 (6)*
H1B0.802 (3)1.1043 (16)0.798 (3)0.044 (6)*
S10.18805 (4)0.91024 (3)0.71746 (5)0.02595 (10)
O20.10855 (13)0.90148 (9)0.53857 (16)0.0351 (3)
O30.20730 (16)0.83016 (10)0.8099 (2)0.0522 (4)
C10.36979 (16)0.94930 (10)0.72907 (19)0.0222 (3)
C20.41026 (18)1.02687 (11)0.8044 (2)0.0271 (3)
H20.34261.05720.84740.032*
C30.55322 (18)1.06131 (10)0.8177 (2)0.0273 (3)
H30.57971.11410.87020.033*
C40.65332 (17)1.01814 (10)0.7545 (2)0.0234 (3)
C50.61484 (16)0.93781 (10)0.67093 (19)0.0221 (3)
C60.47031 (16)0.90182 (9)0.65861 (18)0.0217 (3)
C70.43389 (19)0.82177 (10)0.5757 (2)0.0290 (3)
H70.34110.79670.56830.035*
C80.5334 (2)0.78091 (12)0.5063 (2)0.0359 (4)
H80.50750.72850.45200.043*
C90.6739 (2)0.81719 (12)0.5162 (2)0.0364 (4)
H90.73990.78920.46700.044*
C100.71453 (18)0.89329 (11)0.5975 (2)0.0305 (3)
H100.80880.91630.60490.037*
O50.02582 (17)0.72167 (9)0.80732 (19)0.0409 (3)
H5A0.011 (3)0.6882 (17)0.883 (3)0.056 (8)*
H5B0.049 (3)0.7475 (18)0.800 (4)0.064 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01691 (10)0.02913 (11)0.02169 (10)0.00119 (5)0.00793 (6)0.00074 (5)
O10.0283 (6)0.0642 (9)0.0390 (7)0.0027 (6)0.0210 (6)0.0131 (7)
O40.0495 (8)0.0310 (7)0.0333 (7)0.0112 (6)0.0119 (6)0.0024 (6)
N10.0214 (6)0.0365 (8)0.0276 (7)0.0054 (5)0.0061 (5)0.0043 (6)
S10.01784 (17)0.0376 (2)0.02425 (19)0.00268 (14)0.00888 (14)0.00240 (15)
O20.0251 (6)0.0503 (7)0.0292 (6)0.0060 (5)0.0063 (5)0.0076 (5)
O30.0342 (7)0.0552 (9)0.0673 (10)0.0061 (6)0.0147 (7)0.0302 (8)
C10.0161 (6)0.0307 (7)0.0208 (7)0.0009 (5)0.0067 (5)0.0022 (6)
C20.0242 (7)0.0329 (8)0.0255 (7)0.0030 (6)0.0093 (6)0.0024 (6)
C30.0266 (7)0.0282 (7)0.0263 (8)0.0023 (6)0.0061 (6)0.0025 (6)
C40.0185 (7)0.0295 (7)0.0205 (7)0.0023 (6)0.0025 (5)0.0048 (6)
C50.0174 (6)0.0286 (7)0.0203 (7)0.0025 (5)0.0052 (5)0.0046 (5)
C60.0201 (6)0.0253 (7)0.0200 (7)0.0016 (5)0.0060 (5)0.0034 (5)
C70.0294 (8)0.0269 (7)0.0318 (8)0.0019 (6)0.0103 (7)0.0000 (6)
C80.0449 (9)0.0267 (8)0.0377 (10)0.0048 (7)0.0141 (8)0.0018 (6)
C90.0361 (9)0.0392 (9)0.0382 (9)0.0153 (7)0.0175 (8)0.0008 (7)
C100.0206 (7)0.0406 (9)0.0323 (8)0.0067 (6)0.0104 (6)0.0047 (7)
O50.0427 (8)0.0370 (7)0.0400 (8)0.0030 (6)0.0067 (6)0.0081 (6)
Geometric parameters (Å, º) top
Cd1—O1i2.2620 (13)C2—C31.404 (2)
Cd1—O1ii2.2620 (13)C2—H20.9300
Cd1—O42.3060 (13)C3—C41.360 (2)
Cd1—O4iii2.3060 (13)C3—H30.9300
Cd1—N12.3549 (14)C4—C51.425 (2)
Cd1—N1iii2.3549 (14)C5—C101.417 (2)
O1—S11.4597 (14)C5—C61.428 (2)
O1—Cd1iv2.2620 (12)C6—C71.417 (2)
O4—H4A0.82 (3)C7—C81.368 (2)
O4—H4B0.75 (3)C7—H70.9300
N1—C41.428 (2)C8—C91.400 (3)
N1—H1A0.77 (3)C8—H80.9300
N1—H1B0.82 (3)C9—C101.362 (3)
S1—O31.4465 (14)C9—H90.9300
S1—O21.4490 (13)C10—H100.9300
S1—C11.7664 (15)O5—H5A0.81 (3)
C1—C21.363 (2)O5—H5B0.81 (3)
C1—C61.431 (2)
O1i—Cd1—O1ii180.000 (1)C2—C1—C6121.02 (13)
O1i—Cd1—O482.48 (6)C2—C1—S1117.89 (11)
O1ii—Cd1—O497.52 (6)C6—C1—S1121.09 (12)
O1i—Cd1—O4iii97.52 (6)C1—C2—C3120.58 (14)
O1ii—Cd1—O4iii82.48 (6)C1—C2—H2119.7
O4—Cd1—O4iii180.0C3—C2—H2119.7
O1i—Cd1—N185.54 (6)C4—C3—C2120.57 (15)
O1ii—Cd1—N194.46 (6)C4—C3—H3119.7
O4—Cd1—N185.27 (5)C2—C3—H3119.7
O4iii—Cd1—N194.73 (5)C3—C4—C5120.91 (14)
O1i—Cd1—N1iii94.46 (6)C3—C4—N1119.31 (15)
O1ii—Cd1—N1iii85.54 (6)C5—C4—N1119.76 (15)
O4—Cd1—N1iii94.73 (5)C10—C5—C4122.06 (14)
O4iii—Cd1—N1iii85.27 (5)C10—C5—C6119.05 (14)
N1—Cd1—N1iii180.0C4—C5—C6118.89 (13)
S1—O1—Cd1iv144.19 (10)C7—C6—C5118.23 (13)
Cd1—O4—H4A118.5 (18)C7—C6—C1123.75 (14)
Cd1—O4—H4B122 (2)C5—C6—C1118.01 (13)
H4A—O4—H4B108 (3)C8—C7—C6120.85 (16)
C4—N1—Cd1118.48 (10)C8—C7—H7119.6
C4—N1—H1A110.2 (18)C6—C7—H7119.6
Cd1—N1—H1A106.7 (18)C7—C8—C9120.67 (17)
C4—N1—H1B110.9 (17)C7—C8—H8119.7
Cd1—N1—H1B102.2 (17)C9—C8—H8119.7
H1A—N1—H1B108 (2)C10—C9—C8120.40 (16)
O3—S1—O2113.59 (9)C10—C9—H9119.8
O3—S1—O1112.26 (10)C8—C9—H9119.8
O2—S1—O1110.60 (8)C9—C10—C5120.79 (15)
O3—S1—C1107.14 (8)C9—C10—H10119.6
O2—S1—C1107.02 (7)C5—C10—H10119.6
O1—S1—C1105.71 (8)H5A—O5—H5B101 (3)
O1i—Cd1—N1—C4126.28 (14)C3—C4—C5—C10177.22 (15)
O1ii—Cd1—N1—C453.72 (14)N1—C4—C5—C104.5 (2)
O4—Cd1—N1—C4150.92 (14)C3—C4—C5—C61.8 (2)
O4iii—Cd1—N1—C429.08 (14)N1—C4—C5—C6176.50 (13)
Cd1iv—O1—S1—O39.53 (18)C10—C5—C6—C71.2 (2)
Cd1iv—O1—S1—O2118.49 (15)C4—C5—C6—C7179.78 (14)
Cd1iv—O1—S1—C1126.01 (14)C10—C5—C6—C1178.06 (14)
O3—S1—C1—C2119.48 (15)C4—C5—C6—C11.0 (2)
O2—S1—C1—C2118.35 (14)C2—C1—C6—C7178.67 (15)
O1—S1—C1—C20.42 (16)S1—C1—C6—C70.1 (2)
O3—S1—C1—C661.74 (15)C2—C1—C6—C50.5 (2)
O2—S1—C1—C660.43 (14)S1—C1—C6—C5179.28 (11)
O1—S1—C1—C6178.35 (13)C5—C6—C7—C81.3 (2)
C6—C1—C2—C31.3 (2)C1—C6—C7—C8177.93 (16)
S1—C1—C2—C3179.93 (12)C6—C7—C8—C90.2 (3)
C1—C2—C3—C40.5 (3)C7—C8—C9—C101.0 (3)
C2—C3—C4—C51.1 (2)C8—C9—C10—C51.0 (3)
C2—C3—C4—N1177.21 (15)C4—C5—C10—C9179.04 (16)
Cd1—N1—C4—C398.64 (16)C6—C5—C10—C90.1 (2)
Cd1—N1—C4—C579.66 (17)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+2; (iii) x+2, y+2, z+2; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O5v0.82 (3)1.96 (3)2.778 (2)171 (3)
O4—H4B···O5ii0.75 (3)2.23 (3)2.943 (2)159 (3)
N1—H1A···O2vi0.77 (3)2.31 (3)3.016 (2)154 (2)
O5—H5A···O2vii0.81 (3)1.94 (3)2.7394 (19)171 (3)
O5—H5B···O30.81 (3)1.94 (3)2.738 (2)167 (3)
Symmetry codes: (ii) x+1, y+2, z+2; (v) x+1, y+1/2, z+3/2; (vi) x+1, y+2, z+1; (vii) x, y+3/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu(C10H8NO3S)2(C11H6N2O)2][Cd(C10H8NO3S)2(H2O)2]·2H2O
Mr872.36628.93
Crystal system, space groupOrthorhombic, PbcaMonoclinic, P21/c
Temperature (K)273273
a, b, c (Å)14.8903 (13), 13.9907 (12), 17.1961 (15)9.2553 (6), 15.6133 (9), 8.1857 (5)
α, β, γ (°)90, 90, 9090, 106.305 (1), 90
V3)3582.4 (5)1135.31 (12)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.801.21
Crystal size (mm)0.48 × 0.14 × 0.100.40 × 0.37 × 0.32
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Multi-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.701, 0.9250.62, 0.68
No. of measured, independent and
observed [I > 2σ(I)] reflections
22653, 4319, 3396 7462, 2729, 2613
Rint0.0280.015
(sin θ/λ)max1)0.6610.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.098, 1.02 0.020, 0.052, 1.07
No. of reflections43192729
No. of parameters276185
No. of restraints02
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.340.56, 0.37

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) for (I) top
Cu1—N11.9872 (14)S1—O41.4413 (16)
Cu1—O21.9890 (14)S1—O31.4442 (17)
Cu1—N22.6231 (18)S1—C121.7674 (19)
Cu1—N2i2.6231 (18)C15—N31.379 (3)
O2—S11.4853 (15)
N1i—Cu1—O292.89 (6)N2i—Cu1—O293.80 (8)
N1—Cu1—O287.11 (6)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O3ii0.87 (4)2.28 (4)3.142 (3)168 (3)
Symmetry code: (ii) x, y+1/2, z1/2.
Selected geometric parameters (Å, º) for (II) top
Cd1—O1i2.2620 (13)N1—C41.428 (2)
Cd1—O42.3060 (13)S1—O31.4465 (14)
Cd1—N12.3549 (14)S1—O21.4490 (13)
O1—S11.4597 (14)
O1i—Cd1—O482.48 (6)O1ii—Cd1—N194.46 (6)
O1ii—Cd1—O497.52 (6)O4—Cd1—N185.27 (5)
O1i—Cd1—N185.54 (6)O4iii—Cd1—N194.73 (5)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+2; (iii) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O5iv0.82 (3)1.96 (3)2.778 (2)171 (3)
O4—H4B···O5ii0.75 (3)2.23 (3)2.943 (2)159 (3)
N1—H1A···O2v0.77 (3)2.31 (3)3.016 (2)154 (2)
O5—H5A···O2vi0.81 (3)1.94 (3)2.7394 (19)171 (3)
O5—H5B···O30.81 (3)1.94 (3)2.738 (2)167 (3)
Symmetry codes: (ii) x+1, y+2, z+2; (iv) x+1, y+1/2, z+3/2; (v) x+1, y+2, z+1; (vi) x, y+3/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds