Buy article online - an online subscription or single-article purchase is required to access this article.
The structures reported herein, viz. bis(4-aminonaphthalene-1-sulfonato-κO)bis(4,5-diazafluoren-9-one-κ2N,N′)copper(II), [Cu(C10H8NO3S)2(C11H6N2O)2], (I), and poly[[[diaquacadmium(II)]-bis(μ-4-aminonaphthalene-1-sulfonato)-κ2O:N;κ2N:O] dihydrate], {[Cd(C10H8NO3S)2(H2O)2]·2H2O}n, (II), are rare examples of sulfonate-containing complexes where the anion does not fulfill a passive charge-balancing role, but takes an active part in coordination as a monodentate and/or bridging ligand. Monomeric complex (I) possesses a crystallographic inversion center at the CuII atom, and the asymmetric unit contains one-half of a Cu atom, one complete 4-aminonaphthalene-1-sulfonate (ans) ligand and one 4,5-diazafluoren-9-one (DAFO) ligand. The CuII atom has an elongated distorted octahedral coordination geometry formed by two O atoms from two monodentate ans ligands and by four N atoms from two DAFO molecules. Complex (II) is polymeric and its crystal structure is built up by one-dimensional chains and solvent water molecules. Here also the cation (a CdII atom) lies on a crystallographic inversion center and adopts a slightly distorted octahedral geometry. Each ans anion serves as a bridging ligand linking two CdII atoms into one-dimensional infinite chains along the [010] direction, with each CdII center coordinated by four ans ligands via O and N atoms and by two aqua ligands. In both structures, there are significant π–π stacking interactions between adjacent ligands and hydrogen bonds contribute to the formation of two- and three-dimensional networks.
Supporting information
CCDC references: 697559; 697560
For the preparation of complex (I), an acetonitrile solution (10 ml) of
4,5-diazafluorene-9-one (0.183 g, 1 mmol) was added to an aqueous solution (20 ml) of Cu(OAc)2.H2O (0.100 g, 0.5 mmol) under constant stirring. After the
mixture had been stirred for 2 h at 298 K, the solution was treated with
4-aminonaphthalene-1-sulfonic acid sodium salt tetrahydrate (0.32 g, 1 mmol)
in 10 ml of methanol. After filtration, the red solution was allowed to stand
at room temperature. Well shaped red block-shaped crystals were obtained by
slow evaporation of the solvent over a period of about one week. Complex (II)
was obtained as a by-product of the reaction of dipyridophenazine (0.283 g, 1 mmol), Cd(OAc)2.2H2O (0.133 g, 0.5 mmol) and 4-aminonaphthalene-1-sulfonic
acid sodium salt tetrahydrate (0.32 g, 1 mmol) within mixed a solvent of water
and acetonitrile (quantity?).
H atoms of water molecules and amine groups were located in a difference
Fourier map and refined with the restraints O—H = 0.77 (3)–0.82 (2) Å and
N—H = 0.79 (2)–0.83 (2) Å for (II), and N—H = 0.86 (3)–0.87 (3) Å for
(I) [please give the values of the actual restraints used rather than the
final distances obtained]; their Uiso(H) values
were refined freely. C-bound H atoms were placed in geometrically
idealized positions and treated as riding [C—H = 0.93 Å and
Uiso(H) = 1.2Ueq(C)].
For both compounds, data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
(I) Bis(4-aminonaphthalene-1-sulfonato-
κO)bis(4,5-diazafluorene-9-
one-
κ2N,N')copper(II)
top
Crystal data top
[Cu(C10H8NO3S)2(C11H6N2O)2] | F(000) = 1788 |
Mr = 872.36 | Dx = 1.617 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 5691 reflections |
a = 14.8903 (13) Å | θ = 2.3–28.2° |
b = 13.9907 (12) Å | µ = 0.80 mm−1 |
c = 17.1961 (15) Å | T = 273 K |
V = 3582.4 (5) Å3 | Block, red |
Z = 4 | 0.48 × 0.14 × 0.10 mm |
Data collection top
Bruker SMART CCD area-detector diffractometer | 4319 independent reflections |
Radiation source: fine-focus sealed tube | 3396 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
phi and ω scans | θmax = 28.0°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −19→19 |
Tmin = 0.701, Tmax = 0.925 | k = −18→9 |
22653 measured reflections | l = −22→22 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.098 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.049P)2 + 1.8415P] where P = (Fo2 + 2Fc2)/3 |
4319 reflections | (Δ/σ)max = 0.001 |
276 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
Crystal data top
[Cu(C10H8NO3S)2(C11H6N2O)2] | V = 3582.4 (5) Å3 |
Mr = 872.36 | Z = 4 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 14.8903 (13) Å | µ = 0.80 mm−1 |
b = 13.9907 (12) Å | T = 273 K |
c = 17.1961 (15) Å | 0.48 × 0.14 × 0.10 mm |
Data collection top
Bruker SMART CCD area-detector diffractometer | 4319 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 3396 reflections with I > 2σ(I) |
Tmin = 0.701, Tmax = 0.925 | Rint = 0.028 |
22653 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.098 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 0.32 e Å−3 |
4319 reflections | Δρmin = −0.34 e Å−3 |
276 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cu1 | 1.0000 | 0.5000 | 0.0000 | 0.02860 (10) | |
O1 | 0.68925 (11) | 0.59330 (15) | 0.23206 (10) | 0.0629 (5) | |
N1 | 0.96807 (10) | 0.54735 (10) | 0.10539 (8) | 0.0276 (3) | |
O2 | 0.99739 (9) | 0.36895 (10) | 0.04478 (8) | 0.0406 (3) | |
S1 | 1.06197 (4) | 0.29337 (4) | 0.06827 (3) | 0.03833 (14) | |
O4 | 1.01341 (12) | 0.21419 (12) | 0.10155 (9) | 0.0542 (4) | |
O3 | 1.13417 (12) | 0.33040 (13) | 0.11557 (8) | 0.0579 (4) | |
C1 | 1.02248 (13) | 0.57913 (14) | 0.16263 (11) | 0.0326 (4) | |
H1 | 1.0842 | 0.5790 | 0.1542 | 0.039* | |
N2 | 0.82428 (12) | 0.48805 (12) | −0.00475 (9) | 0.0349 (4) | |
C2 | 0.99023 (13) | 0.61194 (15) | 0.23350 (11) | 0.0353 (4) | |
H2 | 1.0302 | 0.6335 | 0.2712 | 0.042* | |
C3 | 0.89890 (14) | 0.61275 (14) | 0.24836 (11) | 0.0360 (4) | |
H3 | 0.8760 | 0.6350 | 0.2953 | 0.043* | |
C4 | 0.84334 (12) | 0.57898 (14) | 0.19026 (11) | 0.0322 (4) | |
C5 | 0.88092 (12) | 0.54789 (12) | 0.12104 (10) | 0.0271 (4) | |
C6 | 0.74341 (14) | 0.57185 (15) | 0.18272 (12) | 0.0395 (5) | |
C7 | 0.72671 (13) | 0.53500 (15) | 0.10224 (12) | 0.0366 (4) | |
C8 | 0.65022 (15) | 0.51719 (17) | 0.05963 (15) | 0.0479 (5) | |
H8 | 0.5932 | 0.5273 | 0.0801 | 0.057* | |
C9 | 0.66251 (17) | 0.48351 (17) | −0.01527 (15) | 0.0511 (6) | |
H9 | 0.6128 | 0.4696 | −0.0460 | 0.061* | |
C10 | 0.74833 (16) | 0.47031 (16) | −0.04506 (13) | 0.0460 (5) | |
H10 | 0.7538 | 0.4479 | −0.0958 | 0.055* | |
C11 | 0.80964 (13) | 0.51960 (13) | 0.06691 (11) | 0.0307 (4) | |
C12 | 1.11201 (13) | 0.25238 (14) | −0.01876 (10) | 0.0322 (4) | |
C13 | 1.20308 (14) | 0.25618 (15) | −0.02659 (12) | 0.0377 (4) | |
H13 | 1.2375 | 0.2784 | 0.0147 | 0.045* | |
C14 | 1.24610 (14) | 0.22754 (15) | −0.09498 (13) | 0.0411 (5) | |
H14 | 1.3083 | 0.2314 | −0.0986 | 0.049* | |
C15 | 1.19700 (14) | 0.19366 (15) | −0.15707 (11) | 0.0385 (4) | |
C16 | 1.10140 (13) | 0.18284 (13) | −0.14930 (10) | 0.0332 (4) | |
C17 | 1.05776 (13) | 0.21383 (13) | −0.07998 (10) | 0.0310 (4) | |
C18 | 0.96347 (15) | 0.20465 (15) | −0.07562 (12) | 0.0398 (4) | |
H18 | 0.9336 | 0.2253 | −0.0312 | 0.048* | |
C19 | 0.91535 (15) | 0.16587 (17) | −0.13558 (13) | 0.0471 (5) | |
H19 | 0.8533 | 0.1606 | −0.1314 | 0.057* | |
C21 | 1.04882 (16) | 0.14207 (15) | −0.20935 (12) | 0.0435 (5) | |
H21 | 1.0769 | 0.1202 | −0.2543 | 0.052* | |
C20 | 0.95817 (16) | 0.13426 (16) | −0.20272 (13) | 0.0477 (5) | |
H20 | 0.9248 | 0.1078 | −0.2430 | 0.057* | |
N3 | 1.23830 (17) | 0.16708 (19) | −0.22550 (13) | 0.0567 (6) | |
H3A | 1.291 (2) | 0.191 (2) | −0.2297 (17) | 0.072 (10)* | |
H3B | 1.203 (2) | 0.162 (3) | −0.266 (2) | 0.101 (12)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cu1 | 0.03120 (18) | 0.03328 (18) | 0.02132 (16) | 0.00381 (12) | 0.00276 (12) | −0.00374 (12) |
O1 | 0.0393 (9) | 0.0925 (14) | 0.0568 (10) | 0.0050 (9) | 0.0213 (8) | −0.0047 (9) |
N1 | 0.0274 (7) | 0.0307 (8) | 0.0246 (7) | 0.0032 (6) | 0.0004 (6) | −0.0014 (6) |
O2 | 0.0520 (9) | 0.0354 (7) | 0.0343 (7) | 0.0071 (6) | 0.0098 (6) | −0.0002 (6) |
S1 | 0.0532 (3) | 0.0400 (3) | 0.0218 (2) | 0.0030 (2) | 0.0010 (2) | 0.00122 (19) |
O4 | 0.0783 (12) | 0.0497 (9) | 0.0345 (8) | −0.0012 (8) | 0.0085 (8) | 0.0149 (7) |
O3 | 0.0688 (11) | 0.0770 (12) | 0.0278 (7) | −0.0027 (9) | −0.0082 (7) | −0.0097 (7) |
C1 | 0.0282 (9) | 0.0397 (10) | 0.0298 (9) | 0.0032 (8) | −0.0020 (7) | −0.0013 (8) |
N2 | 0.0361 (9) | 0.0372 (9) | 0.0314 (8) | −0.0017 (7) | −0.0045 (6) | −0.0005 (6) |
C2 | 0.0388 (11) | 0.0406 (11) | 0.0264 (9) | 0.0023 (8) | −0.0061 (7) | −0.0026 (8) |
C3 | 0.0429 (11) | 0.0416 (11) | 0.0235 (8) | 0.0045 (9) | 0.0042 (8) | −0.0015 (8) |
C4 | 0.0315 (9) | 0.0347 (10) | 0.0304 (9) | 0.0031 (8) | 0.0054 (7) | 0.0011 (7) |
C5 | 0.0270 (9) | 0.0276 (9) | 0.0268 (8) | 0.0007 (7) | 0.0016 (7) | 0.0000 (7) |
C6 | 0.0331 (10) | 0.0452 (12) | 0.0402 (10) | 0.0021 (8) | 0.0088 (8) | 0.0040 (9) |
C7 | 0.0290 (10) | 0.0371 (10) | 0.0435 (11) | −0.0027 (8) | 0.0021 (8) | 0.0056 (9) |
C8 | 0.0305 (10) | 0.0500 (13) | 0.0630 (15) | −0.0049 (9) | −0.0030 (10) | 0.0104 (11) |
C9 | 0.0420 (13) | 0.0527 (14) | 0.0586 (14) | −0.0100 (10) | −0.0197 (11) | 0.0084 (11) |
C10 | 0.0506 (13) | 0.0471 (12) | 0.0403 (11) | −0.0055 (10) | −0.0139 (10) | 0.0002 (10) |
C11 | 0.0299 (9) | 0.0295 (9) | 0.0326 (9) | −0.0022 (7) | −0.0005 (7) | 0.0026 (7) |
C12 | 0.0391 (10) | 0.0312 (9) | 0.0261 (8) | 0.0055 (8) | −0.0016 (7) | 0.0008 (7) |
C13 | 0.0416 (11) | 0.0363 (10) | 0.0352 (10) | 0.0040 (9) | −0.0085 (8) | 0.0015 (8) |
C14 | 0.0341 (10) | 0.0431 (11) | 0.0460 (12) | 0.0052 (8) | 0.0019 (9) | 0.0039 (9) |
C15 | 0.0421 (11) | 0.0371 (10) | 0.0362 (10) | 0.0097 (9) | 0.0051 (8) | 0.0014 (8) |
C16 | 0.0411 (10) | 0.0302 (9) | 0.0282 (9) | 0.0050 (8) | 0.0008 (8) | 0.0011 (7) |
C17 | 0.0381 (10) | 0.0287 (9) | 0.0262 (9) | 0.0034 (7) | −0.0009 (7) | 0.0034 (7) |
C18 | 0.0399 (11) | 0.0446 (11) | 0.0348 (10) | −0.0002 (9) | 0.0019 (9) | 0.0014 (9) |
C19 | 0.0408 (12) | 0.0518 (13) | 0.0487 (12) | −0.0074 (10) | −0.0045 (10) | 0.0029 (10) |
C21 | 0.0577 (14) | 0.0401 (11) | 0.0328 (10) | 0.0049 (10) | −0.0024 (9) | −0.0069 (8) |
C20 | 0.0523 (13) | 0.0469 (12) | 0.0440 (12) | −0.0036 (10) | −0.0123 (10) | −0.0081 (10) |
N3 | 0.0491 (13) | 0.0760 (15) | 0.0451 (12) | 0.0077 (12) | 0.0129 (10) | −0.0122 (11) |
Geometric parameters (Å, º) top
Cu1—N1i | 1.9872 (14) | C7—C11 | 1.393 (3) |
Cu1—N1 | 1.9872 (14) | C8—C9 | 1.384 (4) |
Cu1—O2i | 1.9890 (14) | C8—H8 | 0.9300 |
Cu1—O2 | 1.9890 (14) | C9—C10 | 1.389 (4) |
Cu1—N2 | 2.6231 (18) | C9—H9 | 0.9300 |
Cu1—N2i | 2.6231 (18) | C10—H10 | 0.9300 |
O1—C6 | 1.209 (2) | C12—C13 | 1.364 (3) |
N1—C5 | 1.325 (2) | C12—C17 | 1.432 (3) |
N1—C1 | 1.350 (2) | C13—C14 | 1.398 (3) |
O2—S1 | 1.4853 (15) | C13—H13 | 0.9300 |
S1—O4 | 1.4413 (16) | C14—C15 | 1.378 (3) |
S1—O3 | 1.4442 (17) | C14—H14 | 0.9300 |
S1—C12 | 1.7674 (19) | C15—N3 | 1.379 (3) |
C1—C2 | 1.388 (3) | C15—C16 | 1.438 (3) |
C1—H1 | 0.9300 | C16—C21 | 1.416 (3) |
N2—C11 | 1.327 (2) | C16—C17 | 1.425 (2) |
N2—C10 | 1.349 (3) | C17—C18 | 1.412 (3) |
C2—C3 | 1.384 (3) | C18—C19 | 1.368 (3) |
C2—H2 | 0.9300 | C18—H18 | 0.9300 |
C3—C4 | 1.380 (3) | C19—C20 | 1.391 (3) |
C3—H3 | 0.9300 | C19—H19 | 0.9300 |
C4—C5 | 1.385 (2) | C21—C20 | 1.359 (3) |
C4—C6 | 1.497 (3) | C21—H21 | 0.9300 |
C5—C11 | 1.466 (2) | C20—H20 | 0.9300 |
C6—C7 | 1.498 (3) | N3—H3A | 0.86 (3) |
C7—C8 | 1.377 (3) | N3—H3B | 0.87 (4) |
| | | |
N1i—Cu1—N1 | 180.00 (8) | C8—C9—C10 | 120.7 (2) |
N1i—Cu1—O2i | 87.11 (6) | C8—C9—H9 | 119.7 |
N1—Cu1—O2i | 92.89 (6) | C10—C9—H9 | 119.7 |
N1i—Cu1—O2 | 92.89 (6) | N2—C10—C9 | 123.9 (2) |
N1—Cu1—O2 | 87.11 (6) | N2—C10—H10 | 118.1 |
O2i—Cu1—O2 | 180.00 (8) | C9—C10—H10 | 118.1 |
N2i—Cu1—O2 | 93.80 (8) | N2—C11—C7 | 127.03 (18) |
N1i—Cu1—N1 | 180.00 (8) | N2—C11—C5 | 124.08 (17) |
C5—N1—C1 | 115.95 (15) | C7—C11—C5 | 108.84 (17) |
C5—N1—Cu1 | 114.92 (12) | C13—C12—C17 | 120.19 (18) |
C1—N1—Cu1 | 129.13 (13) | C13—C12—S1 | 119.35 (15) |
S1—O2—Cu1 | 138.50 (9) | C17—C12—S1 | 120.45 (15) |
O4—S1—O3 | 115.18 (10) | C12—C13—C14 | 121.84 (19) |
O4—S1—O2 | 109.29 (10) | C12—C13—H13 | 119.1 |
O3—S1—O2 | 112.32 (10) | C14—C13—H13 | 119.1 |
O4—S1—C12 | 107.36 (10) | C15—C14—C13 | 120.49 (19) |
O3—S1—C12 | 106.23 (10) | C15—C14—H14 | 119.8 |
O2—S1—C12 | 105.88 (8) | C13—C14—H14 | 119.8 |
N1—C1—C2 | 122.78 (18) | C14—C15—N3 | 121.2 (2) |
N1—C1—H1 | 118.6 | C14—C15—C16 | 119.29 (18) |
C2—C1—H1 | 118.6 | N3—C15—C16 | 119.5 (2) |
C11—N2—C10 | 113.61 (18) | C21—C16—C17 | 118.71 (18) |
C3—C2—C1 | 120.32 (18) | C21—C16—C15 | 121.47 (18) |
C3—C2—H2 | 119.8 | C17—C16—C15 | 119.82 (17) |
C1—C2—H2 | 119.8 | C18—C17—C16 | 118.04 (17) |
C4—C3—C2 | 116.90 (17) | C18—C17—C12 | 123.79 (17) |
C4—C3—H3 | 121.6 | C16—C17—C12 | 118.17 (17) |
C2—C3—H3 | 121.6 | C19—C18—C17 | 121.13 (19) |
C3—C4—C5 | 119.17 (17) | C19—C18—H18 | 119.4 |
C3—C4—C6 | 132.93 (18) | C17—C18—H18 | 119.4 |
C5—C4—C6 | 107.82 (17) | C18—C19—C20 | 120.8 (2) |
N1—C5—C4 | 124.87 (17) | C18—C19—H19 | 119.6 |
N1—C5—C11 | 125.33 (16) | C20—C19—H19 | 119.6 |
C4—C5—C11 | 109.75 (16) | C20—C21—C16 | 121.36 (19) |
O1—C6—C4 | 125.9 (2) | C20—C21—H21 | 119.3 |
O1—C6—C7 | 128.6 (2) | C16—C21—H21 | 119.3 |
C4—C6—C7 | 105.55 (16) | C21—C20—C19 | 120.0 (2) |
C8—C7—C11 | 118.2 (2) | C21—C20—H20 | 120.0 |
C8—C7—C6 | 133.7 (2) | C19—C20—H20 | 120.0 |
C11—C7—C6 | 108.00 (17) | C15—N3—H3A | 112 (2) |
C7—C8—C9 | 116.6 (2) | C15—N3—H3B | 116 (2) |
C7—C8—H8 | 121.7 | H3A—N3—H3B | 121 (3) |
C9—C8—H8 | 121.7 | | |
| | | |
O2i—Cu1—N1—C5 | 94.52 (13) | C8—C7—C11—N2 | −0.7 (3) |
O2—Cu1—N1—C5 | −85.48 (13) | C6—C7—C11—N2 | −179.29 (18) |
O2i—Cu1—N1—C1 | −85.21 (16) | C8—C7—C11—C5 | 176.97 (18) |
O2—Cu1—N1—C1 | 94.79 (16) | C6—C7—C11—C5 | −1.6 (2) |
N1i—Cu1—O2—S1 | 74.04 (14) | N1—C5—C11—N2 | 1.3 (3) |
N1—Cu1—O2—S1 | −105.96 (14) | C4—C5—C11—N2 | 178.91 (17) |
Cu1—O2—S1—O4 | 176.95 (13) | N1—C5—C11—C7 | −176.49 (17) |
Cu1—O2—S1—O3 | 47.83 (16) | C4—C5—C11—C7 | 1.2 (2) |
Cu1—O2—S1—C12 | −67.70 (15) | O4—S1—C12—C13 | −120.46 (17) |
C5—N1—C1—C2 | −0.9 (3) | O3—S1—C12—C13 | 3.27 (19) |
Cu1—N1—C1—C2 | 178.80 (14) | O2—S1—C12—C13 | 122.88 (17) |
N1—C1—C2—C3 | 0.3 (3) | O4—S1—C12—C17 | 58.35 (17) |
C1—C2—C3—C4 | 0.6 (3) | O3—S1—C12—C17 | −177.92 (15) |
C2—C3—C4—C5 | −0.9 (3) | O2—S1—C12—C17 | −58.31 (17) |
C2—C3—C4—C6 | −177.2 (2) | C17—C12—C13—C14 | 3.2 (3) |
C1—N1—C5—C4 | 0.6 (3) | S1—C12—C13—C14 | −177.99 (16) |
Cu1—N1—C5—C4 | −179.15 (14) | C12—C13—C14—C15 | −0.4 (3) |
C1—N1—C5—C11 | 177.92 (17) | C13—C14—C15—N3 | 178.6 (2) |
Cu1—N1—C5—C11 | −1.8 (2) | C13—C14—C15—C16 | −3.5 (3) |
C3—C4—C5—N1 | 0.3 (3) | C14—C15—C16—C21 | −175.49 (19) |
C6—C4—C5—N1 | 177.48 (17) | N3—C15—C16—C21 | 2.4 (3) |
C3—C4—C5—C11 | −177.38 (16) | C14—C15—C16—C17 | 4.7 (3) |
C6—C4—C5—C11 | −0.2 (2) | N3—C15—C16—C17 | −177.40 (19) |
C3—C4—C6—O1 | −3.2 (4) | C21—C16—C17—C18 | −1.7 (3) |
C5—C4—C6—O1 | −179.8 (2) | C15—C16—C17—C18 | 178.08 (18) |
C3—C4—C6—C7 | 175.9 (2) | C21—C16—C17—C12 | 178.21 (17) |
C5—C4—C6—C7 | −0.8 (2) | C15—C16—C17—C12 | −2.0 (3) |
O1—C6—C7—C8 | 2.2 (4) | C13—C12—C17—C18 | 178.02 (19) |
C4—C6—C7—C8 | −176.8 (2) | S1—C12—C17—C18 | −0.8 (3) |
O1—C6—C7—C11 | −179.5 (2) | C13—C12—C17—C16 | −1.9 (3) |
C4—C6—C7—C11 | 1.5 (2) | S1—C12—C17—C16 | 179.28 (13) |
C11—C7—C8—C9 | 1.1 (3) | C16—C17—C18—C19 | 1.0 (3) |
C6—C7—C8—C9 | 179.2 (2) | C12—C17—C18—C19 | −179.0 (2) |
C7—C8—C9—C10 | −1.0 (3) | C17—C18—C19—C20 | 0.0 (3) |
C11—N2—C10—C9 | 0.0 (3) | C17—C16—C21—C20 | 1.6 (3) |
C8—C9—C10—N2 | 0.4 (4) | C15—C16—C21—C20 | −178.2 (2) |
C10—N2—C11—C7 | 0.1 (3) | C16—C21—C20—C19 | −0.6 (3) |
C10—N2—C11—C5 | −177.22 (18) | C18—C19—C20—C21 | −0.2 (4) |
Symmetry code: (i) −x+2, −y+1, −z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3B···O3ii | 0.87 (4) | 2.28 (4) | 3.142 (3) | 168 (3) |
Symmetry code: (ii) x, −y+1/2, z−1/2. |
(II) Poly[[[Diaquacadmium(II)]-bis(µ-4-aminonaphthalene-1-sulfonato)-
κ2O:
N;
κ2N:
O] dihydrate]
top
Crystal data top
[Cd(C10H8NO3S)2(H2O)2]·2H2O | F(000) = 636 |
Mr = 628.93 | Dx = 1.840 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5932 reflections |
a = 9.2553 (6) Å | θ = 2.3–29.7° |
b = 15.6133 (9) Å | µ = 1.21 mm−1 |
c = 8.1857 (5) Å | T = 273 K |
β = 106.305 (1)° | Block, colorless |
V = 1135.31 (12) Å3 | 0.40 × 0.37 × 0.32 mm |
Z = 2 | |
Data collection top
Bruker SMART CCD area-detector diffractometer | 2729 independent reflections |
Radiation source: fine-focus sealed tube | 2613 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.015 |
phi and ω scans | θmax = 28.0°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −12→12 |
Tmin = 0.62, Tmax = 0.68 | k = −20→18 |
7462 measured reflections | l = −7→10 |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.020 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.052 | w = 1/[σ2(Fo2) + (0.0267P)2 + 0.5509P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
2729 reflections | Δρmax = 0.56 e Å−3 |
185 parameters | Δρmin = −0.37 e Å−3 |
2 restraints | Extinction correction: SHELXS97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0486 (13) |
Crystal data top
[Cd(C10H8NO3S)2(H2O)2]·2H2O | V = 1135.31 (12) Å3 |
Mr = 628.93 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.2553 (6) Å | µ = 1.21 mm−1 |
b = 15.6133 (9) Å | T = 273 K |
c = 8.1857 (5) Å | 0.40 × 0.37 × 0.32 mm |
β = 106.305 (1)° | |
Data collection top
Bruker SMART CCD area-detector diffractometer | 2729 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 2613 reflections with I > 2σ(I) |
Tmin = 0.62, Tmax = 0.68 | Rint = 0.015 |
7462 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.020 | 2 restraints |
wR(F2) = 0.052 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.56 e Å−3 |
2729 reflections | Δρmin = −0.37 e Å−3 |
185 parameters | |
Special details top
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cd1 | 1.0000 | 1.0000 | 1.0000 | 0.02207 (7) | |
O1 | 0.11768 (15) | 0.97584 (11) | 0.79668 (18) | 0.0415 (3) | |
O4 | 1.10339 (17) | 1.13444 (9) | 1.0009 (2) | 0.0379 (3) | |
H4A | 1.090 (3) | 1.1596 (17) | 0.910 (4) | 0.055 (7)* | |
H4B | 1.103 (3) | 1.1670 (19) | 1.068 (4) | 0.057 (8)* | |
N1 | 0.80030 (15) | 1.05294 (10) | 0.7766 (2) | 0.0286 (3) | |
H1A | 0.824 (3) | 1.0477 (16) | 0.694 (3) | 0.041 (6)* | |
H1B | 0.802 (3) | 1.1043 (16) | 0.798 (3) | 0.044 (6)* | |
S1 | 0.18805 (4) | 0.91024 (3) | 0.71746 (5) | 0.02595 (10) | |
O2 | 0.10855 (13) | 0.90148 (9) | 0.53857 (16) | 0.0351 (3) | |
O3 | 0.20730 (16) | 0.83016 (10) | 0.8099 (2) | 0.0522 (4) | |
C1 | 0.36979 (16) | 0.94930 (10) | 0.72907 (19) | 0.0222 (3) | |
C2 | 0.41026 (18) | 1.02687 (11) | 0.8044 (2) | 0.0271 (3) | |
H2 | 0.3426 | 1.0572 | 0.8474 | 0.032* | |
C3 | 0.55322 (18) | 1.06131 (10) | 0.8177 (2) | 0.0273 (3) | |
H3 | 0.5797 | 1.1141 | 0.8702 | 0.033* | |
C4 | 0.65332 (17) | 1.01814 (10) | 0.7545 (2) | 0.0234 (3) | |
C5 | 0.61484 (16) | 0.93781 (10) | 0.67093 (19) | 0.0221 (3) | |
C6 | 0.47031 (16) | 0.90182 (9) | 0.65861 (18) | 0.0217 (3) | |
C7 | 0.43389 (19) | 0.82177 (10) | 0.5757 (2) | 0.0290 (3) | |
H7 | 0.3411 | 0.7967 | 0.5683 | 0.035* | |
C8 | 0.5334 (2) | 0.78091 (12) | 0.5063 (2) | 0.0359 (4) | |
H8 | 0.5075 | 0.7285 | 0.4520 | 0.043* | |
C9 | 0.6739 (2) | 0.81719 (12) | 0.5162 (2) | 0.0364 (4) | |
H9 | 0.7399 | 0.7892 | 0.4670 | 0.044* | |
C10 | 0.71453 (18) | 0.89329 (11) | 0.5975 (2) | 0.0305 (3) | |
H10 | 0.8088 | 0.9163 | 0.6049 | 0.037* | |
O5 | −0.02582 (17) | 0.72167 (9) | 0.80732 (19) | 0.0409 (3) | |
H5A | 0.011 (3) | 0.6882 (17) | 0.883 (3) | 0.056 (8)* | |
H5B | 0.049 (3) | 0.7475 (18) | 0.800 (4) | 0.064 (9)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cd1 | 0.01691 (10) | 0.02913 (11) | 0.02169 (10) | −0.00119 (5) | 0.00793 (6) | −0.00074 (5) |
O1 | 0.0283 (6) | 0.0642 (9) | 0.0390 (7) | −0.0027 (6) | 0.0210 (6) | −0.0131 (7) |
O4 | 0.0495 (8) | 0.0310 (7) | 0.0333 (7) | −0.0112 (6) | 0.0119 (6) | −0.0024 (6) |
N1 | 0.0214 (6) | 0.0365 (8) | 0.0276 (7) | −0.0054 (5) | 0.0061 (5) | 0.0043 (6) |
S1 | 0.01784 (17) | 0.0376 (2) | 0.02425 (19) | −0.00268 (14) | 0.00888 (14) | 0.00240 (15) |
O2 | 0.0251 (6) | 0.0503 (7) | 0.0292 (6) | −0.0060 (5) | 0.0063 (5) | −0.0076 (5) |
O3 | 0.0342 (7) | 0.0552 (9) | 0.0673 (10) | −0.0061 (6) | 0.0147 (7) | 0.0302 (8) |
C1 | 0.0161 (6) | 0.0307 (7) | 0.0208 (7) | −0.0009 (5) | 0.0067 (5) | 0.0022 (6) |
C2 | 0.0242 (7) | 0.0329 (8) | 0.0255 (7) | 0.0030 (6) | 0.0093 (6) | −0.0024 (6) |
C3 | 0.0266 (7) | 0.0282 (7) | 0.0263 (8) | −0.0023 (6) | 0.0061 (6) | −0.0025 (6) |
C4 | 0.0185 (7) | 0.0295 (7) | 0.0205 (7) | −0.0023 (6) | 0.0025 (5) | 0.0048 (6) |
C5 | 0.0174 (6) | 0.0286 (7) | 0.0203 (7) | 0.0025 (5) | 0.0052 (5) | 0.0046 (5) |
C6 | 0.0201 (6) | 0.0253 (7) | 0.0200 (7) | 0.0016 (5) | 0.0060 (5) | 0.0034 (5) |
C7 | 0.0294 (8) | 0.0269 (7) | 0.0318 (8) | −0.0019 (6) | 0.0103 (7) | 0.0000 (6) |
C8 | 0.0449 (9) | 0.0267 (8) | 0.0377 (10) | 0.0048 (7) | 0.0141 (8) | −0.0018 (6) |
C9 | 0.0361 (9) | 0.0392 (9) | 0.0382 (9) | 0.0153 (7) | 0.0175 (8) | 0.0008 (7) |
C10 | 0.0206 (7) | 0.0406 (9) | 0.0323 (8) | 0.0067 (6) | 0.0104 (6) | 0.0047 (7) |
O5 | 0.0427 (8) | 0.0370 (7) | 0.0400 (8) | −0.0030 (6) | 0.0067 (6) | 0.0081 (6) |
Geometric parameters (Å, º) top
Cd1—O1i | 2.2620 (13) | C2—C3 | 1.404 (2) |
Cd1—O1ii | 2.2620 (13) | C2—H2 | 0.9300 |
Cd1—O4 | 2.3060 (13) | C3—C4 | 1.360 (2) |
Cd1—O4iii | 2.3060 (13) | C3—H3 | 0.9300 |
Cd1—N1 | 2.3549 (14) | C4—C5 | 1.425 (2) |
Cd1—N1iii | 2.3549 (14) | C5—C10 | 1.417 (2) |
O1—S1 | 1.4597 (14) | C5—C6 | 1.428 (2) |
O1—Cd1iv | 2.2620 (12) | C6—C7 | 1.417 (2) |
O4—H4A | 0.82 (3) | C7—C8 | 1.368 (2) |
O4—H4B | 0.75 (3) | C7—H7 | 0.9300 |
N1—C4 | 1.428 (2) | C8—C9 | 1.400 (3) |
N1—H1A | 0.77 (3) | C8—H8 | 0.9300 |
N1—H1B | 0.82 (3) | C9—C10 | 1.362 (3) |
S1—O3 | 1.4465 (14) | C9—H9 | 0.9300 |
S1—O2 | 1.4490 (13) | C10—H10 | 0.9300 |
S1—C1 | 1.7664 (15) | O5—H5A | 0.81 (3) |
C1—C2 | 1.363 (2) | O5—H5B | 0.81 (3) |
C1—C6 | 1.431 (2) | | |
| | | |
O1i—Cd1—O1ii | 180.000 (1) | C2—C1—C6 | 121.02 (13) |
O1i—Cd1—O4 | 82.48 (6) | C2—C1—S1 | 117.89 (11) |
O1ii—Cd1—O4 | 97.52 (6) | C6—C1—S1 | 121.09 (12) |
O1i—Cd1—O4iii | 97.52 (6) | C1—C2—C3 | 120.58 (14) |
O1ii—Cd1—O4iii | 82.48 (6) | C1—C2—H2 | 119.7 |
O4—Cd1—O4iii | 180.0 | C3—C2—H2 | 119.7 |
O1i—Cd1—N1 | 85.54 (6) | C4—C3—C2 | 120.57 (15) |
O1ii—Cd1—N1 | 94.46 (6) | C4—C3—H3 | 119.7 |
O4—Cd1—N1 | 85.27 (5) | C2—C3—H3 | 119.7 |
O4iii—Cd1—N1 | 94.73 (5) | C3—C4—C5 | 120.91 (14) |
O1i—Cd1—N1iii | 94.46 (6) | C3—C4—N1 | 119.31 (15) |
O1ii—Cd1—N1iii | 85.54 (6) | C5—C4—N1 | 119.76 (15) |
O4—Cd1—N1iii | 94.73 (5) | C10—C5—C4 | 122.06 (14) |
O4iii—Cd1—N1iii | 85.27 (5) | C10—C5—C6 | 119.05 (14) |
N1—Cd1—N1iii | 180.0 | C4—C5—C6 | 118.89 (13) |
S1—O1—Cd1iv | 144.19 (10) | C7—C6—C5 | 118.23 (13) |
Cd1—O4—H4A | 118.5 (18) | C7—C6—C1 | 123.75 (14) |
Cd1—O4—H4B | 122 (2) | C5—C6—C1 | 118.01 (13) |
H4A—O4—H4B | 108 (3) | C8—C7—C6 | 120.85 (16) |
C4—N1—Cd1 | 118.48 (10) | C8—C7—H7 | 119.6 |
C4—N1—H1A | 110.2 (18) | C6—C7—H7 | 119.6 |
Cd1—N1—H1A | 106.7 (18) | C7—C8—C9 | 120.67 (17) |
C4—N1—H1B | 110.9 (17) | C7—C8—H8 | 119.7 |
Cd1—N1—H1B | 102.2 (17) | C9—C8—H8 | 119.7 |
H1A—N1—H1B | 108 (2) | C10—C9—C8 | 120.40 (16) |
O3—S1—O2 | 113.59 (9) | C10—C9—H9 | 119.8 |
O3—S1—O1 | 112.26 (10) | C8—C9—H9 | 119.8 |
O2—S1—O1 | 110.60 (8) | C9—C10—C5 | 120.79 (15) |
O3—S1—C1 | 107.14 (8) | C9—C10—H10 | 119.6 |
O2—S1—C1 | 107.02 (7) | C5—C10—H10 | 119.6 |
O1—S1—C1 | 105.71 (8) | H5A—O5—H5B | 101 (3) |
| | | |
O1i—Cd1—N1—C4 | 126.28 (14) | C3—C4—C5—C10 | 177.22 (15) |
O1ii—Cd1—N1—C4 | −53.72 (14) | N1—C4—C5—C10 | −4.5 (2) |
O4—Cd1—N1—C4 | −150.92 (14) | C3—C4—C5—C6 | −1.8 (2) |
O4iii—Cd1—N1—C4 | 29.08 (14) | N1—C4—C5—C6 | 176.50 (13) |
Cd1iv—O1—S1—O3 | −9.53 (18) | C10—C5—C6—C7 | 1.2 (2) |
Cd1iv—O1—S1—O2 | 118.49 (15) | C4—C5—C6—C7 | −179.78 (14) |
Cd1iv—O1—S1—C1 | −126.01 (14) | C10—C5—C6—C1 | −178.06 (14) |
O3—S1—C1—C2 | −119.48 (15) | C4—C5—C6—C1 | 1.0 (2) |
O2—S1—C1—C2 | 118.35 (14) | C2—C1—C6—C7 | −178.67 (15) |
O1—S1—C1—C2 | 0.42 (16) | S1—C1—C6—C7 | 0.1 (2) |
O3—S1—C1—C6 | 61.74 (15) | C2—C1—C6—C5 | 0.5 (2) |
O2—S1—C1—C6 | −60.43 (14) | S1—C1—C6—C5 | 179.28 (11) |
O1—S1—C1—C6 | −178.35 (13) | C5—C6—C7—C8 | −1.3 (2) |
C6—C1—C2—C3 | −1.3 (2) | C1—C6—C7—C8 | 177.93 (16) |
S1—C1—C2—C3 | 179.93 (12) | C6—C7—C8—C9 | 0.2 (3) |
C1—C2—C3—C4 | 0.5 (3) | C7—C8—C9—C10 | 1.0 (3) |
C2—C3—C4—C5 | 1.1 (2) | C8—C9—C10—C5 | −1.0 (3) |
C2—C3—C4—N1 | −177.21 (15) | C4—C5—C10—C9 | −179.04 (16) |
Cd1—N1—C4—C3 | 98.64 (16) | C6—C5—C10—C9 | −0.1 (2) |
Cd1—N1—C4—C5 | −79.66 (17) | | |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+2, −z+2; (iii) −x+2, −y+2, −z+2; (iv) x−1, y, z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4A···O5v | 0.82 (3) | 1.96 (3) | 2.778 (2) | 171 (3) |
O4—H4B···O5ii | 0.75 (3) | 2.23 (3) | 2.943 (2) | 159 (3) |
N1—H1A···O2vi | 0.77 (3) | 2.31 (3) | 3.016 (2) | 154 (2) |
O5—H5A···O2vii | 0.81 (3) | 1.94 (3) | 2.7394 (19) | 171 (3) |
O5—H5B···O3 | 0.81 (3) | 1.94 (3) | 2.738 (2) | 167 (3) |
Symmetry codes: (ii) −x+1, −y+2, −z+2; (v) −x+1, y+1/2, −z+3/2; (vi) −x+1, −y+2, −z+1; (vii) x, −y+3/2, z+1/2. |
Experimental details
| (I) | (II) |
Crystal data |
Chemical formula | [Cu(C10H8NO3S)2(C11H6N2O)2] | [Cd(C10H8NO3S)2(H2O)2]·2H2O |
Mr | 872.36 | 628.93 |
Crystal system, space group | Orthorhombic, Pbca | Monoclinic, P21/c |
Temperature (K) | 273 | 273 |
a, b, c (Å) | 14.8903 (13), 13.9907 (12), 17.1961 (15) | 9.2553 (6), 15.6133 (9), 8.1857 (5) |
α, β, γ (°) | 90, 90, 90 | 90, 106.305 (1), 90 |
V (Å3) | 3582.4 (5) | 1135.31 (12) |
Z | 4 | 2 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 0.80 | 1.21 |
Crystal size (mm) | 0.48 × 0.14 × 0.10 | 0.40 × 0.37 × 0.32 |
|
Data collection |
Diffractometer | Bruker SMART CCD area-detector diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.701, 0.925 | 0.62, 0.68 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22653, 4319, 3396 | 7462, 2729, 2613 |
Rint | 0.028 | 0.015 |
(sin θ/λ)max (Å−1) | 0.661 | 0.661 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.098, 1.02 | 0.020, 0.052, 1.07 |
No. of reflections | 4319 | 2729 |
No. of parameters | 276 | 185 |
No. of restraints | 0 | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.32, −0.34 | 0.56, −0.37 |
Selected geometric parameters (Å, º) for (I) topCu1—N1 | 1.9872 (14) | S1—O4 | 1.4413 (16) |
Cu1—O2 | 1.9890 (14) | S1—O3 | 1.4442 (17) |
Cu1—N2 | 2.6231 (18) | S1—C12 | 1.7674 (19) |
Cu1—N2i | 2.6231 (18) | C15—N3 | 1.379 (3) |
O2—S1 | 1.4853 (15) | | |
| | | |
N1i—Cu1—O2 | 92.89 (6) | N2i—Cu1—O2 | 93.80 (8) |
N1—Cu1—O2 | 87.11 (6) | | |
Symmetry code: (i) −x+2, −y+1, −z. |
Hydrogen-bond geometry (Å, º) for (I) top
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3B···O3ii | 0.87 (4) | 2.28 (4) | 3.142 (3) | 168 (3) |
Symmetry code: (ii) x, −y+1/2, z−1/2. |
Selected geometric parameters (Å, º) for (II) topCd1—O1i | 2.2620 (13) | N1—C4 | 1.428 (2) |
Cd1—O4 | 2.3060 (13) | S1—O3 | 1.4465 (14) |
Cd1—N1 | 2.3549 (14) | S1—O2 | 1.4490 (13) |
O1—S1 | 1.4597 (14) | | |
| | | |
O1i—Cd1—O4 | 82.48 (6) | O1ii—Cd1—N1 | 94.46 (6) |
O1ii—Cd1—O4 | 97.52 (6) | O4—Cd1—N1 | 85.27 (5) |
O1i—Cd1—N1 | 85.54 (6) | O4iii—Cd1—N1 | 94.73 (5) |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+2, −z+2; (iii) −x+2, −y+2, −z+2. |
Hydrogen-bond geometry (Å, º) for (II) top
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4A···O5iv | 0.82 (3) | 1.96 (3) | 2.778 (2) | 171 (3) |
O4—H4B···O5ii | 0.75 (3) | 2.23 (3) | 2.943 (2) | 159 (3) |
N1—H1A···O2v | 0.77 (3) | 2.31 (3) | 3.016 (2) | 154 (2) |
O5—H5A···O2vi | 0.81 (3) | 1.94 (3) | 2.7394 (19) | 171 (3) |
O5—H5B···O3 | 0.81 (3) | 1.94 (3) | 2.738 (2) | 167 (3) |
Symmetry codes: (ii) −x+1, −y+2, −z+2; (iv) −x+1, y+1/2, −z+3/2; (v) −x+1, −y+2, −z+1; (vi) x, −y+3/2, z+1/2. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.
Owing to their weak coordination abilities to transition metal atoms, most of the reported complexes containing organosulfonate ligands are aqua–metal salts and the sulfonate species only acts as a counter-anion to balance the charge within the complex (Kosnic et al., 1992; Shubnell et al., 1994; Gunderman et al., 1997). In some rare cases, however, the sulfonate ligand can also bind to the metal centers in the presence of ancillary ligands (Cai, Chen, Liao, Feng & Chen, 2001; Cai, Chen, Liao, Yao et al., 2001; Chen et al., 2002). It is well known that the coordination behavior of one ligand can be influenced by the others within a mixed-ligand complex.
In this respect, 4-aminonaphthalene-1-sulfonate could be a potential bridging ligand, since it contains sulfonate and NH2 groups located at opposite sides of a benzene ring, and could exhibit versatile coordination modes in the presence of adequate ancillary ligands. This behavior would be similar to that of p-aminobenzene sulfonate (Endres, 1984; Brodersen & Beck, 1987; Starynowicz, 1992; Shakri & Haussuhl, 1992a,b; Gunderman et al., 1996; Zhou et al., 2004). For p-aminobenzene sulfonate, it is common that the two functional groups simultaneously bind to metal ions; however, to our knowledge, no example of such behavior has been reported for 4-aminonaphthalene-1-sulfonate. As part of an investigation of the coordination behavior of sulfonates, a series of mixed-ligand complexes have been synthesized so far; in our previous work, the sulfonate group behaved only as a charge balance counter-anion (Li et al., 2005a,b, 2006, 2007). In order to obtain complexes in which the sulfonate group directly binds to the metal, ligands with a large conjugate plane, such as 2,2'-bipyridine, 1,10-phenanthroline and dipyridophenazine, were used as ancillary ligands. We present here two novel complexes in which the sulfonate group exhibits such behaviour, viz. [Cu(DAFO)2(ans)2], (I), and {[Cd(ans)2(H2O)2].2H2O}n, (II) [where ans is 4-aminonaphthalene-1-sulfonate and DAFO is 4,5-diazafluorene-9-one).
The asymmetric unit of (I) consists of half a Cu atom, one complete ans ion and one neutral DAFO ligand (Fig. 1). The CuII atom lies on a crystallographic inversion centre and has an elongated distorted octahedral coordination geometry, formed by two O atoms from two monodentate ans ligands and by four N atoms from two DAFO molecules; the manner of coordination is unusual in that the elongated Jahn–Teller (J–T) axis of the molecule lies along one of the N—Cu—N vectors [Cu1—N2 = 2.6231 (18) Å] and not on the O—Cu—O axis [Cu1—O2 = 1.9890</span><span style=" font-weight:600;">(14) Å and O2—Cu1—O2 = 180°], which is occupied by ans counter-ions. As far as we know, this is one of the few examples of N2O2N2' coordination to a CuII center with two anions bound trans in the equatorial plane and N atoms of the chelate directed along the J–T axis (Menon & Rajasekharan, 1998). This N2X2N2' geometry has been observed in other CuII complexes with the 4,5-diazafluorene template and simple anions such as Cl- or Br- (Menon & Rajasekharan, 1998), while complexes with transition metals other than CuII, such as ReI (Yam et al., 1998) and NiII (Xiong et al., 1996), typically exhibit a more symmetrical coordination.
Both ligands are planar within an r.m.s. deviation of 0.002 Å, with largest departures from the least-squares plane of 0.055 (2) Å for atom C9 in DAFO and 0.038 (2) Å for atom C13 in ans. Owing to the characteristic conjugated structures of both ligands there are not only intramolecular but also intermolecular π–π stacking interactions between adjacent planes. To describe the latter let us define Cg1 as the centroid of the C12–C17 benzene ring in ans and Cg2i as the centroid of the C4–C7/C11 ring in a symmetry related DAFO molecule [symmetry code (i): x + 2, -y + 1, -z], with α the dihedral angle between the two rings and β the angle between the intercentroid vector and the Cg1 plane. The values Cg1···Cg2i = 3.3570 (12) Å, α = 4.44° and β = 19.52° indicate that there is a significant intramolecular π–π aromatic stacking interaction (Evans & Boeyens, 1989). At the same time, there is a significant intermolecular π–π stacking interaction involving Cg1 and a neighbouring pyridine ring (Cg1···Cg3iii = 3.5232 (11) Å; Cg3 is the centroid of the C7—C11/N2 ring; symmetry code: (iii) x - 1/2, -y + 1/2, -z).
Hydrogen-bond interactions play a key role in the formation of two-dimensional sheets and three-dimensional networks and in the stabilization of the crystal structure of (I). As shown in Fig. 2, one neutral complex links four neighbouring ones via N—H···O(S) bonds, forming two-dimensional layers extending in the (100) plane. Nonclassical C—H···O and C—H···N hydrogen bonds as well as the previously discussed π–π stacking interactions take part in the formation of a three-dimensional network.
Complex (II) (Fig. 3) also possesses a crystallographic inversion centre, this time located at the CdII atom, which displays a distorted octahedral geometry. The Cd atom is coordinated by four O atoms from two ans ligands and two water molecules, and by two N atoms belonging to another two ans anions, a situation similar to that in complexes of p-aminobenzene sulfonate with ZnII, CoII and CdII (Shakeri & Haussuhl, 1992a,b; Zhou et al., 2004). The Cd—Owater distances (Table 2) are in agreement with that within the complex of [Cd(µ2-N,O-p-NH2C6H4SO3)2(H2O)2]n [2.303 (2) Å; Zhou et al., 2004], and the Cd—O(S) length (Table 2) is slightly longer than its counterpart in [Cd(µ2-N,O-p-NH2C6H4SO3)2(H2O)2]n (2.294 Å). The Cd—N distance is close to that in [Cd(µ2-N,O-p-NH2C6H4SO3)2(H2O)2]n [2.373 (3) Å] and longer than the equivalent Cd—N distances in [Cd(en)2(H2O)2](ans)2.2H2O [2.240 (2) and 2.280 (2) Å; Li et al., 2006].
Each ans ligand links two cadmium(II) cations though O and N atoms; there are two such centrosymmetric bridges per Cd pair, defining a dimeric unit with a Cd···Cd distance of 9.2553 (6) Å (Fig. 3). Concatenation of these dimers leads to a doubly bridged, one-dimensional polymeric chain extending along [010]. The centroid–centroid distance, Cg1···Cg2v, between phenyl rings in two symmetry related ans ligands is 3.5676 (9) Å [Cg1 and Cg2 are the centroids of the C1—C6 and C5—C10 rings, resepctively; symmetry code: (v) -x+1, -y + 2, -z+1), while α and β are 1.93 and 17.48°, respectively, indicating a significant π–π stacking interaction.
Hydrogen bonding plays a key role in the formation of a three-dimensional network through the linkage of chains and solvent water molecules. Fig. 4 shows the way in which this is achieved, with neighboring chains (pointing out of the projection plane in the [100] direction) linked through an extensive hydrogen-bond network involving all water molecules in a series of O—H···Owater, O—H···O(S) and N—H···O interactions (Table 4).