Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Fe(C7H5O2)2(CH4O)4], is a centrosymmetric six-coordinate FeII complex coordinated by two axial monodentate benzoate ligands and four methanol ligands in the equatorial plane [Fe-Obenzoate 2.0935 (7) Å, and Fe-Omethanol 2.1310 (7) and 2.1290 (7) Å]. The benzoate ligands adopt monodentate ligation, rather than a bridged polymeric structure, because of strong intra- and intermolecular hydrogen bonds to the methanol ligands. This structure is nearly identical to that obtained with a much bulkier carboxyl­ate ligand [Chavez, Que & Tolman (2001). Chem. Commun. pp. 111-112].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010101873X/bk1620sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010101873X/bk1620Isup2.hkl
Contains datablock I

CCDC reference: 180143

Comment top

A recent report of an FeII complex having the same core structure as the title compound, but with a bulky trisubstituted benzoate, attributed the atypical structure to the extreme steric bulk of the carboxylate (Chavez et al., 2001). We demonstrate here that the structure can also be obtained using unsubstituted benzoic acid (Fig. 1).

The core geometry in the title complex, (I), is very similar to that in the complex [FeII(HOMe)4] Query abbreviation, (III), where HOMe is 4-tert-butyl-2,6-bis[2,2'',6,6''-tetramethyl-m-terphenyl-2'-yl)methyl]phenyl carboxylate, (II). The Fe-carboxylate bonds are slightly shorter in (I) [Fe—O1 2.0935 (7) Å] than in (III) [2.13 (2) Å], while the Fe-methanol bonds are comparable [Fe—O3 2.1310 (7) and Fe—O4 2.1290 (7) Å in (I), and 2.162 (2) and 2.091 (2) Å in (III)]. The charge on the benzoate ligand is delocalized over the carboxylate group [C1—O1 1.260 (1) and C1—O2 1.266 (1) Å]. Both methanol ligands in (I) are hydrogen bonded to the uncoordinated O atom of the benzoate [intramolecular O2···O3 2.623 (1) Å and intermolecular O4···O2i 2.634 (1) Å; Table 1; symmetry code: (i) x, 1/2 - y, 1/2 + z]. These intermolecular hydrogen bonds link the molecules into layers parallel to the bc plane, and the phenyl rings in adjacent layers interleave. The short Fe—O bond in (III) involves the methanol that forms a strong hydrogen bond to the uncoordinated carboxylate O atom [O···O 2.582 (3) Å], whereas the longer bond involves a methanol that forms a weaker hydrogen bond to a solvate methanol [intramolecular O···O 3.199 (3) Å]. This difference can be attributed to the bulky carboxylate in (III). \sch

The most closely related metal carboxylate complexes with four additional coordinated alcohol ligands are the isomorphous Ca2+ and Cd2+ complexes of a natural product, Griseocheline, from Streptomyces griseus (Scharfenberg-Pfeiffer & Czugler, 1991). Each of two tridentate ligands are coordinated to the metal through one carboxylate and two alcohols. However, the complexes have pseudo twofold symmetry with a cis arrangement of the two carboxylates. More common structures with simpler ligands are generally centrosymmetric with amine donors in the equatorial plane. A related structure is trans-[bis(4-bromobenzoato-O)(2-dimethylaminoethanol-N,O)]copper(II), in which the free O atom on the benzoate forms a hydrogen bond to the coordinated alcohol (Turpeinen et al. 1996). The centrosymmetric structures are also preferred with the FeII and CoII acetate and trifluoroacetate complexes, [M(RCOO)2(NH2CH2py)2], with the diamine 2-aminomethylpyridine (Payne, 1998).

Experimental top

Compound (I) was crystallized from a methanol solution containing Fe(BPh4)2 (0.25 mmol), benzoic acid (1.0 mmol) and triethylamine (1 mmol). Crystals of triethylammonium tetraphenylborate, (Et3NH)(BPh4), were also isolated from this solution.

Refinement top

The H-atom parameters were freely refined, giving C—H = 0.86 (3)–0.98 (2) Å and Uiso = 0.029 (4)–0.10 (1) Å2.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART and SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) with 50% probability displacement ellipsoids. H atoms are drawn as small spheres of arbitrary radii and intra- and intermolecular hydrogen bonds are indicated by dotted lines.
trans-Bis(benzoato-O)tetrakis(methanol-O)iron(II) top
Crystal data top
[Fe(C7H5O2)2(CH4O)4]F(000) = 448
Mr = 426.24Dx = 1.411 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.863 (1) ÅCell parameters from 9801 reflections
b = 12.065 (2) Åθ = 2.7–32.9°
c = 8.605 (1) ŵ = 0.79 mm1
β = 101.45 (1)°T = 100 K
V = 1003.5 (3) Å3Block, colourless
Z = 20.40 × 0.25 × 0.15 mm
Data collection top
Bruker SMART-APEX CCD on D8
diffractometer
2922 independent reflections
Radiation source: fine-focus sealed tube2731 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 8.333 pixels mm-1θmax = 30.0°, θmin = 2.1°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Blessing, 1995; Sheldrick, 2001)
k = 1616
Tmin = 0.79, Tmax = 0.89l = 1212
11390 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.2157P]
where P = (Fo2 + 2Fc2)/3
2922 reflections(Δ/σ)max = 0.001
176 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
[Fe(C7H5O2)2(CH4O)4]V = 1003.5 (3) Å3
Mr = 426.24Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.863 (1) ŵ = 0.79 mm1
b = 12.065 (2) ÅT = 100 K
c = 8.605 (1) Å0.40 × 0.25 × 0.15 mm
β = 101.45 (1)°
Data collection top
Bruker SMART-APEX CCD on D8
diffractometer
2922 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995; Sheldrick, 2001)
2731 reflections with I > 2σ(I)
Tmin = 0.79, Tmax = 0.89Rint = 0.022
11390 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.078All H-atom parameters refined
S = 1.08Δρmax = 0.58 e Å3
2922 reflectionsΔρmin = 0.21 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.50000.00000.50000.01320 (7)
O10.67049 (7)0.04085 (6)0.40014 (9)0.01874 (15)
O20.60217 (8)0.19438 (6)0.26267 (9)0.02054 (15)
O30.39268 (8)0.14316 (6)0.39495 (9)0.01811 (15)
H10.4489 (18)0.1732 (14)0.349 (2)0.034 (4)*
O40.59133 (8)0.09086 (6)0.70638 (8)0.02078 (16)
H20.5979 (17)0.1587 (15)0.7091 (19)0.031 (4)*
C10.68961 (10)0.11862 (8)0.30922 (11)0.01524 (17)
C20.82386 (10)0.11968 (8)0.25182 (11)0.01584 (17)
C30.92079 (11)0.03605 (10)0.29936 (13)0.0228 (2)
H30.9015 (19)0.0227 (14)0.366 (2)0.030 (4)*
C41.04542 (12)0.03587 (12)0.24770 (16)0.0305 (3)
H41.113 (2)0.0209 (16)0.279 (2)0.041 (5)*
C51.07343 (12)0.11922 (11)0.14676 (15)0.0296 (2)
H51.1585 (18)0.1194 (15)0.111 (2)0.038 (4)*
C60.97772 (11)0.20244 (10)0.09859 (13)0.0254 (2)
H60.9944 (16)0.2597 (17)0.032 (2)0.037 (5)*
C70.85335 (10)0.20335 (9)0.15155 (12)0.02016 (19)
H70.7864 (16)0.2600 (14)0.1187 (18)0.029 (4)*
C80.31935 (11)0.22182 (9)0.47091 (14)0.0230 (2)
H8B0.3826 (18)0.2680 (14)0.5435 (19)0.033 (4)*
H8A0.2596 (17)0.2673 (15)0.3905 (19)0.034 (4)*
H8C0.2617 (18)0.1824 (15)0.533 (2)0.039 (4)*
C90.59115 (19)0.05311 (10)0.86254 (14)0.0345 (3)
H9B0.525 (3)0.083 (3)0.898 (4)0.102 (10)*
H9A0.656 (3)0.081 (2)0.933 (3)0.074 (7)*
H9C0.586 (2)0.0266 (18)0.864 (2)0.040 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01604 (11)0.00979 (11)0.01447 (11)0.00015 (6)0.00472 (7)0.00021 (5)
O10.0199 (3)0.0169 (3)0.0207 (3)0.0017 (3)0.0073 (3)0.0052 (3)
O20.0214 (3)0.0155 (3)0.0263 (4)0.0029 (3)0.0086 (3)0.0057 (3)
O30.0208 (3)0.0136 (3)0.0215 (3)0.0028 (2)0.0080 (3)0.0016 (2)
O40.0326 (4)0.0135 (3)0.0164 (3)0.0041 (3)0.0054 (3)0.0015 (2)
C10.0175 (4)0.0134 (4)0.0149 (4)0.0016 (3)0.0036 (3)0.0009 (3)
C20.0159 (4)0.0166 (4)0.0149 (4)0.0020 (3)0.0029 (3)0.0002 (3)
C30.0206 (5)0.0231 (5)0.0259 (5)0.0024 (4)0.0072 (4)0.0082 (4)
C40.0208 (5)0.0343 (6)0.0385 (6)0.0078 (5)0.0108 (4)0.0142 (5)
C50.0190 (5)0.0377 (6)0.0342 (6)0.0007 (4)0.0101 (4)0.0104 (5)
C60.0212 (5)0.0298 (6)0.0260 (5)0.0035 (4)0.0072 (4)0.0097 (4)
C70.0185 (4)0.0201 (5)0.0219 (4)0.0013 (3)0.0038 (3)0.0050 (3)
C80.0240 (5)0.0178 (5)0.0284 (5)0.0051 (4)0.0082 (4)0.0021 (4)
C90.0677 (9)0.0194 (5)0.0161 (5)0.0048 (5)0.0077 (5)0.0009 (4)
Geometric parameters (Å, º) top
Fe1—O12.0933 (7)C3—C41.388 (2)
Fe1—O1i2.0933 (7)C3—H30.95 (2)
Fe1—O42.1288 (8)C4—C51.392 (2)
Fe1—O4i2.1288 (8)C4—H40.95 (2)
Fe1—O3i2.1310 (7)C5—C61.384 (2)
Fe1—O32.1310 (7)C5—H50.95 (2)
O1—C11.260 (1)C6—C71.391 (2)
O2—C11.266 (1)C6—H60.93 (2)
O3—C81.428 (1)C7—H70.95 (2)
O3—H10.82 (2)C8—H8B0.97 (2)
O4—C91.419 (1)C8—H8A0.98 (2)
O4—H20.82 (2)C8—H8C0.98 (2)
C1—C21.502 (1)C9—H9B0.86 (3)
C2—C31.394 (1)C9—H9A0.86 (3)
C2—C71.396 (1)C9—H9C0.96 (2)
O1—Fe1—O1i180.00 (2)C4—C3—C2120.4 (1)
O1—Fe1—O488.84 (3)C4—C3—H3119 (1)
O1i—Fe1—O491.16 (3)C2—C3—H3121 (1)
O1—Fe1—O4i91.16 (3)C3—C4—C5119.8 (1)
O1i—Fe1—O4i88.84 (3)C3—C4—H4121 (1)
O4—Fe1—O4i180.0C5—C4—H4119 (1)
O1—Fe1—O3i89.61 (3)C6—C5—C4120.2 (1)
O1i—Fe1—O3i90.39 (3)C6—C5—H5120 (1)
O4—Fe1—O3i88.35 (3)C4—C5—H5120 (1)
O4i—Fe1—O3i91.65 (3)C5—C6—C7120.1 (1)
O1—Fe1—O390.39 (3)C5—C6—H6122 (1)
O1i—Fe1—O389.61 (3)C7—C6—H6118 (1)
O4—Fe1—O391.65 (3)C6—C7—C2120.2 (1)
O4i—Fe1—O388.35 (3)C6—C7—H7120.8 (9)
O3i—Fe1—O3180.0C2—C7—H7119.0 (9)
C1—O1—Fe1131.44 (6)O3—C8—H8B111 (1)
C8—O3—Fe1126.78 (6)O3—C8—H8A110 (1)
C8—O3—H1112 (1)H8B—C8—H8A111 (1)
Fe1—O3—H1104 (1)O3—C8—H8C109 (1)
C9—O4—Fe1123.01 (7)H8B—C8—H8C107 (1)
C9—O4—H2108 (1)H8A—C8—H8C109 (1)
Fe1—O4—H2124 (1)O4—C9—H9B110 (2)
O1—C1—O2123.91 (9)O4—C9—H9A114 (2)
O1—C1—C2117.44 (8)H9B—C9—H9A96 (2)
O2—C1—C2118.65 (8)O4—C9—H9C110 (1)
C3—C2—C7119.34 (9)H9B—C9—H9C112 (2)
C3—C2—C1119.68 (9)H9A—C9—H9C115 (2)
C7—C2—C1120.99 (9)
O4—Fe1—O1—C194.37 (9)Fe1—O1—C1—C2176.55 (6)
O4i—Fe1—O1—C185.63 (9)O1—C1—C2—C30.3 (1)
O3i—Fe1—O1—C1177.27 (9)O2—C1—C2—C3178.92 (9)
O3—Fe1—O1—C12.73 (9)O1—C1—C2—C7179.62 (9)
O1—Fe1—O3—C8133.21 (8)O2—C1—C2—C71.2 (1)
O1i—Fe1—O3—C846.79 (8)C7—C2—C3—C40.0 (2)
O4—Fe1—O3—C844.36 (8)C1—C2—C3—C4179.9 (1)
O4i—Fe1—O3—C8135.64 (8)C2—C3—C4—C50.5 (2)
O1—Fe1—O4—C9138.4 (1)C3—C4—C5—C60.3 (2)
O1i—Fe1—O4—C941.6 (1)C4—C5—C6—C70.3 (2)
O3i—Fe1—O4—C948.8 (1)C5—C6—C7—C20.8 (2)
O3—Fe1—O4—C9131.2 (1)C3—C2—C7—C60.6 (2)
Fe1—O1—C1—O22.6 (2)C1—C2—C7—C6179.47 (9)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O20.82 (2)1.83 (2)2.623 (1)161 (2)
O4—H2···O2ii0.82 (2)1.83 (2)2.634 (1)166 (2)
Symmetry code: (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe(C7H5O2)2(CH4O)4]
Mr426.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.863 (1), 12.065 (2), 8.605 (1)
β (°) 101.45 (1)
V3)1003.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.40 × 0.25 × 0.15
Data collection
DiffractometerBruker SMART-APEX CCD on D8
diffractometer
Absorption correctionMulti-scan
(SADABS; Blessing, 1995; Sheldrick, 2001)
Tmin, Tmax0.79, 0.89
No. of measured, independent and
observed [I > 2σ(I)] reflections
11390, 2922, 2731
Rint0.022
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.078, 1.08
No. of reflections2922
No. of parameters176
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.58, 0.21

Computer programs: SMART (Bruker, 2001), SMART and SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O20.82 (2)1.83 (2)2.623 (1)161 (2)
O4—H2···O2i0.82 (2)1.83 (2)2.634 (1)166 (2)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds