Buy article online - an online subscription or single-article purchase is required to access this article.
The unusual methylene aziridine 6-tert-butyl-3-oxa-2-thia-1-azabicyclo[5.1.0]oct-6-ene 2,2-dioxide, C9H15NO3S, was found to crystallize with two molecules in the asymmetric unit. The structure was solved in both the approximately orthogonal and the oblique settings of space group No. 14, viz. P21/n and P21/c, respectively. A comparison of these results clearly displayed an increase in the correlation between coordinates in the ac plane for the oblique cell. The increase in the corresponding covariances makes a significant contribution to the standard uncertainties of derived parameters, e.g. bond lengths. Since there is yet no CIF definition for the full variance-covariance matrix, there are clear advantages to reporting the structure in the nonstandard space-group setting.
Supporting information
CCDC references: 757480; 763606
The title compound was crystallized by evaporation from a saturated solution in
diethyl ether. NMR (100 MHz, CDCl3): δC 27.9 [C(CH3)3], 28.0 (═
CCH2), 35.3 (C(CH3)3), 40.2 (NCH2), 75.3 (OCH2), 114.9 (NC═C),
126.4 (NC═C). In the 1H NMR at room temperature, very broad peaks are
found for the C5 methylene H atoms and a broad peak contains the signals for
both the C9 methylene H atoms [δH (400 MHz, CDCl3, 298 K) 2.45 and 2.88
(2 × 1H, 2 × br s, OCH2CH2), 3.44 (2H, br s,
NCH2)]. Once the temperature was reduced to 228 K four distinct signals
resolved, indicating that conformational change at room temperature is slow on
an NMR timescale. Complete data at 228 K: δH (500 MHz, CD2Cl2) 1.11
[9H, s, (CH3)3], 2.39 and 2.90 (1H, d, J = 14.3 Hz
and 1H, app. t. J = 14.3 Hz, OCH2CH2), 3.45 and 3.53 (2 × 1H,
2 × br s, NCH2), 4.48–4.57 (2H, m, OCH2). IR (thin
film): νmax 3075 (m), 2968 (s), 1468 (m), 1359
(s), 1296 (w), 1261 (w), 1183 (s) cm-1. High
resolution mass spectrometry (ESI+): found 240.0670; C9H15NNaO3S
(MNa+) requires 240.0665.
The H atoms were all located in a difference map, but were repositioned
geometrically. The H atoms were initially refined with soft restraints on the
bond lengths and angles to regularize their geometry (C—H in the range
0.93–0.98 Å) and Uiso(H) values (in the range 1.2–1.5 times
Ueq of the parent atom), after which the positions were refined with
riding constraints. For both (I) and (II), a Chebychev polynomial weighting
scheme was applied (Watkin, 1994; Prince, 1982).
For both compounds, data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997). Program(s) used to solve structure: SIR92 (Altomare et al., 1994) for (I); Structure transformed from solution to I for (II). For both compounds, program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).
(I) 6-
tert-butyl-3-oxa-2-thia-1-azabicyclo[5.1.0]oct-6-ene 2,2-dioxide
top
Crystal data top
C9H15NO3S | F(000) = 928 |
Mr = 217.29 | Dx = 1.338 Mg m−3 |
Monoclinic, P21/n | Melting point: 331 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 13.8593 (3) Å | Cell parameters from 4693 reflections |
b = 10.5242 (2) Å | θ = 5–27° |
c = 14.8044 (4) Å | µ = 0.28 mm−1 |
β = 92.0014 (7)° | T = 150 K |
V = 2158.02 (9) Å3 | Block, colourless |
Z = 8 | 0.32 × 0.26 × 0.16 mm |
Data collection top
Nonius KappaCCD diffractometer | 3768 reflections with I > 2.0σ(I) |
Graphite monochromator | Rint = 0.041 |
ω scans | θmax = 27.5°, θmin = 5.4° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −17→17 |
Tmin = 0.81, Tmax = 0.96 | k = −13→13 |
19529 measured reflections | l = −19→19 |
4913 independent reflections | |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.123 | Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982)
[weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax
Method = Robust Weighting (Prince, 1982)
W = [weight] * [1-(deltaF/6*sigmaF)2]2
Ai are:
27.2 43.7 25.5 10.4 2.31 |
S = 0.94 | (Δ/σ)max = 0.000257 |
4913 reflections | Δρmax = 0.43 e Å−3 |
253 parameters | Δρmin = −0.44 e Å−3 |
0 restraints | |
Crystal data top
C9H15NO3S | V = 2158.02 (9) Å3 |
Mr = 217.29 | Z = 8 |
Monoclinic, P21/n | Mo Kα radiation |
a = 13.8593 (3) Å | µ = 0.28 mm−1 |
b = 10.5242 (2) Å | T = 150 K |
c = 14.8044 (4) Å | 0.32 × 0.26 × 0.16 mm |
β = 92.0014 (7)° | |
Data collection top
Nonius KappaCCD diffractometer | 4913 independent reflections |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | 3768 reflections with I > 2.0σ(I) |
Tmin = 0.81, Tmax = 0.96 | Rint = 0.041 |
19529 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.123 | H-atom parameters constrained |
S = 0.94 | Δρmax = 0.43 e Å−3 |
4913 reflections | Δρmin = −0.44 e Å−3 |
253 parameters | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
S1 | 0.39121 (4) | 0.61526 (5) | 0.63002 (4) | 0.0303 | |
O2 | 0.47797 (11) | 0.58690 (16) | 0.58492 (11) | 0.0367 | |
O3 | 0.40023 (11) | 0.57263 (15) | 0.73067 (10) | 0.0325 | |
C4 | 0.44292 (18) | 0.4484 (2) | 0.75537 (15) | 0.0371 | |
C5 | 0.37343 (17) | 0.3388 (2) | 0.73970 (14) | 0.0342 | |
C6 | 0.35709 (14) | 0.3028 (2) | 0.64083 (14) | 0.0267 | |
C7 | 0.32528 (14) | 0.3925 (2) | 0.58528 (13) | 0.0265 | |
N8 | 0.30018 (12) | 0.52508 (17) | 0.59397 (12) | 0.0292 | |
C9 | 0.30911 (15) | 0.4599 (2) | 0.50154 (14) | 0.0308 | |
C10 | 0.37851 (15) | 0.1678 (2) | 0.60990 (14) | 0.0290 | |
C11 | 0.35496 (18) | 0.1517 (2) | 0.50870 (15) | 0.0377 | |
C12 | 0.31541 (19) | 0.0755 (2) | 0.66261 (19) | 0.0428 | |
C13 | 0.48513 (17) | 0.1370 (3) | 0.62839 (19) | 0.0441 | |
O14 | 0.35905 (13) | 0.74312 (15) | 0.63205 (13) | 0.0436 | |
S101 | 0.05457 (4) | 0.23211 (5) | 0.47800 (4) | 0.0319 | |
O102 | 0.05996 (12) | 0.11981 (16) | 0.53174 (12) | 0.0408 | |
O103 | 0.09829 (11) | 0.34692 (15) | 0.53243 (10) | 0.0339 | |
C104 | 0.08001 (15) | 0.3584 (2) | 0.62967 (15) | 0.0339 | |
C105 | −0.01681 (16) | 0.4187 (2) | 0.64730 (15) | 0.0319 | |
C106 | −0.10419 (14) | 0.33485 (18) | 0.62502 (13) | 0.0245 | |
C107 | −0.11226 (14) | 0.2848 (2) | 0.54353 (14) | 0.0267 | |
N108 | −0.05752 (13) | 0.28465 (18) | 0.46234 (12) | 0.0309 | |
C109 | −0.14131 (15) | 0.1921 (2) | 0.47596 (15) | 0.0335 | |
C110 | −0.17700 (14) | 0.3077 (2) | 0.69683 (14) | 0.0274 | |
C113 | −0.12924 (17) | 0.2231 (2) | 0.76997 (15) | 0.0357 | |
C111 | −0.26600 (15) | 0.2393 (2) | 0.65641 (16) | 0.0367 | |
C112 | −0.20972 (18) | 0.4317 (2) | 0.74049 (17) | 0.0394 | |
O114 | 0.09861 (13) | 0.2345 (2) | 0.39283 (12) | 0.0495 | |
H41 | 0.4605 | 0.4538 | 0.8197 | 0.0451* | |
H42 | 0.5007 | 0.4351 | 0.7187 | 0.0452* | |
H52 | 0.4032 | 0.2652 | 0.7713 | 0.0405* | |
H51 | 0.3102 | 0.3618 | 0.7663 | 0.0406* | |
H92 | 0.3651 | 0.4803 | 0.4653 | 0.0363* | |
H91 | 0.2483 | 0.4509 | 0.4663 | 0.0376* | |
H111 | 0.3663 | 0.0629 | 0.4932 | 0.0578* | |
H112 | 0.3957 | 0.2086 | 0.4743 | 0.0581* | |
H113 | 0.2869 | 0.1724 | 0.4972 | 0.0580* | |
H122 | 0.3327 | −0.0091 | 0.6442 | 0.0638* | |
H121 | 0.3291 | 0.0859 | 0.7282 | 0.0643* | |
H123 | 0.2475 | 0.0902 | 0.6465 | 0.0645* | |
H132 | 0.4952 | 0.0491 | 0.6123 | 0.0671* | |
H131 | 0.5016 | 0.1505 | 0.6932 | 0.0669* | |
H133 | 0.5234 | 0.1910 | 0.5911 | 0.0673* | |
H1041 | 0.1315 | 0.4128 | 0.6537 | 0.0414* | |
H1042 | 0.0837 | 0.2726 | 0.6566 | 0.0409* | |
H1052 | −0.0175 | 0.4379 | 0.7133 | 0.0398* | |
H1051 | −0.0216 | 0.4980 | 0.6111 | 0.0398* | |
H1092 | −0.1273 | 0.1027 | 0.4861 | 0.0425* | |
H1091 | −0.1971 | 0.2047 | 0.4353 | 0.0421* | |
H1131 | −0.1735 | 0.2076 | 0.8185 | 0.0526* | |
H1132 | −0.0720 | 0.2647 | 0.7961 | 0.0533* | |
H1133 | −0.1102 | 0.1411 | 0.7449 | 0.0526* | |
H1112 | −0.3119 | 0.2243 | 0.7041 | 0.0555* | |
H1111 | −0.2969 | 0.2911 | 0.6078 | 0.0562* | |
H1113 | −0.2481 | 0.1560 | 0.6315 | 0.0557* | |
H1122 | −0.2579 | 0.4118 | 0.7853 | 0.0602* | |
H1121 | −0.1544 | 0.4766 | 0.7703 | 0.0604* | |
H1123 | −0.2397 | 0.4865 | 0.6946 | 0.0600* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
S1 | 0.0305 (3) | 0.0260 (3) | 0.0341 (3) | −0.0011 (2) | −0.0012 (2) | −0.0003 (2) |
O2 | 0.0288 (7) | 0.0444 (9) | 0.0370 (8) | −0.0075 (7) | 0.0039 (6) | −0.0043 (7) |
O3 | 0.0367 (8) | 0.0315 (8) | 0.0294 (7) | 0.0022 (6) | 0.0006 (6) | −0.0052 (6) |
C4 | 0.0453 (13) | 0.0374 (12) | 0.0278 (10) | 0.0030 (10) | −0.0094 (9) | 0.0001 (9) |
C5 | 0.0425 (12) | 0.0343 (11) | 0.0258 (10) | 0.0025 (9) | 0.0008 (9) | 0.0036 (8) |
C6 | 0.0241 (9) | 0.0284 (10) | 0.0278 (9) | −0.0015 (7) | 0.0007 (7) | 0.0022 (8) |
C7 | 0.0225 (9) | 0.0285 (10) | 0.0284 (10) | −0.0018 (7) | 0.0010 (7) | 0.0001 (8) |
N8 | 0.0266 (8) | 0.0287 (9) | 0.0320 (9) | −0.0002 (7) | −0.0015 (7) | 0.0018 (7) |
C9 | 0.0308 (10) | 0.0301 (10) | 0.0310 (10) | −0.0025 (8) | −0.0045 (8) | 0.0036 (8) |
C10 | 0.0262 (9) | 0.0264 (10) | 0.0344 (11) | 0.0012 (8) | 0.0013 (8) | 0.0028 (8) |
C11 | 0.0420 (12) | 0.0351 (12) | 0.0360 (12) | 0.0011 (10) | 0.0002 (9) | −0.0069 (9) |
C12 | 0.0451 (13) | 0.0302 (11) | 0.0537 (15) | 0.0003 (10) | 0.0086 (11) | 0.0065 (10) |
C13 | 0.0307 (11) | 0.0468 (14) | 0.0545 (15) | 0.0074 (10) | 0.0008 (10) | 0.0029 (12) |
O14 | 0.0467 (10) | 0.0231 (8) | 0.0602 (11) | 0.0025 (7) | −0.0077 (8) | −0.0017 (7) |
S101 | 0.0276 (2) | 0.0362 (3) | 0.0321 (3) | 0.0008 (2) | 0.00173 (19) | −0.0057 (2) |
O102 | 0.0390 (9) | 0.0307 (8) | 0.0523 (10) | 0.0043 (7) | −0.0044 (7) | −0.0036 (7) |
O103 | 0.0308 (8) | 0.0368 (8) | 0.0343 (8) | −0.0081 (6) | 0.0046 (6) | −0.0033 (7) |
C104 | 0.0300 (10) | 0.0401 (12) | 0.0316 (11) | −0.0086 (9) | 0.0006 (8) | −0.0069 (9) |
C105 | 0.0345 (11) | 0.0289 (10) | 0.0324 (10) | −0.0073 (9) | 0.0031 (8) | −0.0044 (8) |
C106 | 0.0256 (9) | 0.0221 (9) | 0.0257 (9) | 0.0021 (7) | −0.0012 (7) | 0.0012 (7) |
C107 | 0.0244 (9) | 0.0275 (10) | 0.0282 (9) | 0.0003 (8) | −0.0001 (7) | 0.0014 (8) |
N108 | 0.0290 (9) | 0.0380 (10) | 0.0255 (8) | −0.0012 (7) | −0.0002 (7) | 0.0005 (7) |
C109 | 0.0286 (10) | 0.0412 (12) | 0.0305 (10) | −0.0037 (9) | −0.0020 (8) | −0.0089 (9) |
C110 | 0.0255 (9) | 0.0290 (10) | 0.0277 (9) | 0.0032 (8) | 0.0005 (7) | 0.0038 (8) |
C113 | 0.0354 (11) | 0.0377 (12) | 0.0338 (11) | 0.0018 (9) | −0.0013 (9) | 0.0085 (9) |
C111 | 0.0274 (10) | 0.0457 (13) | 0.0368 (11) | −0.0068 (9) | −0.0010 (8) | 0.0060 (10) |
C112 | 0.0415 (12) | 0.0369 (12) | 0.0403 (12) | 0.0082 (10) | 0.0082 (10) | −0.0013 (10) |
O114 | 0.0394 (9) | 0.0711 (13) | 0.0386 (9) | 0.0018 (9) | 0.0110 (7) | −0.0121 (9) |
Geometric parameters (Å, º) top
S1—O2 | 1.4271 (16) | S101—O103 | 1.5628 (16) |
S1—O3 | 1.5569 (16) | S101—N108 | 1.6577 (18) |
S1—N8 | 1.6524 (18) | S101—O114 | 1.4200 (18) |
S1—O14 | 1.4182 (16) | S101—O102 | 1.4252 (18) |
O3—C4 | 1.476 (3) | O103—C104 | 1.475 (3) |
C4—C5 | 1.515 (3) | C104—C105 | 1.515 (3) |
C4—H41 | 0.976 | C104—H1041 | 0.972 |
C4—H42 | 0.993 | C104—H1042 | 0.988 |
C5—C6 | 1.521 (3) | C105—C106 | 1.525 (3) |
C5—H52 | 0.988 | C105—H1052 | 0.997 |
C5—H51 | 1.003 | C105—H1051 | 0.994 |
C6—C7 | 1.317 (3) | C106—C107 | 1.317 (3) |
C6—C10 | 1.525 (3) | C106—C110 | 1.518 (3) |
C7—N8 | 1.445 (3) | C107—N108 | 1.444 (3) |
C7—C9 | 1.439 (3) | C107—C109 | 1.445 (3) |
N8—C9 | 1.540 (3) | N108—C109 | 1.535 (3) |
C9—H92 | 0.982 | C109—H1092 | 0.972 |
C9—H91 | 0.981 | C109—H1091 | 0.972 |
C10—C11 | 1.532 (3) | C110—C113 | 1.534 (3) |
C10—C12 | 1.538 (3) | C110—C111 | 1.532 (3) |
C10—C13 | 1.528 (3) | C110—C112 | 1.533 (3) |
C11—H111 | 0.977 | C113—H1131 | 0.975 |
C11—H112 | 0.978 | C113—H1132 | 0.975 |
C11—H113 | 0.977 | C113—H1133 | 0.979 |
C12—H122 | 0.964 | C111—H1112 | 0.979 |
C12—H121 | 0.989 | C111—H1111 | 0.989 |
C12—H123 | 0.976 | C111—H1113 | 0.986 |
C13—H132 | 0.967 | C112—H1122 | 0.980 |
C13—H131 | 0.989 | C112—H1121 | 0.992 |
C13—H133 | 0.964 | C112—H1123 | 0.973 |
| | | |
O2—S1—O3 | 110.29 (9) | O103—S101—N108 | 99.14 (9) |
O2—S1—N8 | 112.02 (9) | O103—S101—O114 | 105.86 (10) |
O3—S1—N8 | 100.28 (9) | N108—S101—O114 | 107.45 (10) |
O2—S1—O14 | 118.62 (11) | O103—S101—O102 | 109.97 (10) |
O3—S1—O14 | 105.55 (10) | N108—S101—O102 | 112.65 (10) |
N8—S1—O14 | 108.34 (10) | O114—S101—O102 | 119.63 (12) |
S1—O3—C4 | 120.70 (13) | S101—O103—C104 | 119.32 (13) |
O3—C4—C5 | 112.90 (18) | O103—C104—C105 | 112.69 (18) |
O3—C4—H41 | 105.9 | O103—C104—H1041 | 104.8 |
C5—C4—H41 | 109.2 | C105—C104—H1041 | 109.5 |
O3—C4—H42 | 108.3 | O103—C104—H1042 | 108.1 |
C5—C4—H42 | 109.3 | C105—C104—H1042 | 110.3 |
H41—C4—H42 | 111.3 | H1041—C104—H1042 | 111.3 |
C4—C5—C6 | 114.16 (18) | C104—C105—C106 | 114.97 (17) |
C4—C5—H52 | 105.8 | C104—C105—H1052 | 107.0 |
C6—C5—H52 | 107.8 | C106—C105—H1052 | 107.1 |
C4—C5—H51 | 108.4 | C104—C105—H1051 | 107.5 |
C6—C5—H51 | 109.5 | C106—C105—H1051 | 109.4 |
H52—C5—H51 | 111.1 | H1052—C105—H1051 | 110.8 |
C5—C6—C7 | 117.23 (19) | C105—C106—C107 | 118.07 (18) |
C5—C6—C10 | 119.80 (18) | C105—C106—C110 | 119.98 (17) |
C7—C6—C10 | 122.97 (19) | C107—C106—C110 | 121.91 (18) |
C6—C7—N8 | 135.43 (19) | C106—C107—N108 | 137.12 (19) |
C6—C7—C9 | 158.3 (2) | C106—C107—C109 | 156.4 (2) |
N8—C7—C9 | 64.54 (14) | N108—C107—C109 | 64.18 (14) |
C7—N8—S1 | 113.58 (13) | C107—N108—S101 | 113.66 (13) |
C7—N8—C9 | 57.54 (13) | C107—N108—C109 | 57.95 (13) |
S1—N8—C9 | 117.31 (13) | S101—N108—C109 | 118.67 (15) |
N8—C9—C7 | 57.92 (13) | N108—C109—C107 | 57.86 (13) |
N8—C9—H92 | 118.5 | N108—C109—H1092 | 119.1 |
C7—C9—H92 | 118.5 | C107—C109—H1092 | 119.9 |
N8—C9—H91 | 114.9 | N108—C109—H1091 | 114.9 |
C7—C9—H91 | 121.1 | C107—C109—H1091 | 122.2 |
H92—C9—H91 | 114.3 | H1092—C109—H1091 | 112.3 |
C6—C10—C11 | 111.09 (17) | C106—C110—C113 | 108.82 (17) |
C6—C10—C12 | 108.42 (18) | C106—C110—C111 | 111.15 (17) |
C11—C10—C12 | 108.72 (19) | C113—C110—C111 | 108.95 (18) |
C6—C10—C13 | 109.94 (18) | C106—C110—C112 | 110.38 (17) |
C11—C10—C13 | 108.87 (19) | C113—C110—C112 | 108.88 (18) |
C12—C10—C13 | 109.79 (19) | C111—C110—C112 | 108.61 (18) |
C10—C11—H111 | 107.8 | C110—C113—H1131 | 110.5 |
C10—C11—H112 | 109.5 | C110—C113—H1132 | 110.2 |
H111—C11—H112 | 111.3 | H1131—C113—H1132 | 107.9 |
C10—C11—H113 | 108.5 | C110—C113—H1133 | 111.0 |
H111—C11—H113 | 109.5 | H1131—C113—H1133 | 108.5 |
H112—C11—H113 | 110.2 | H1132—C113—H1133 | 108.7 |
C10—C12—H122 | 106.8 | C110—C111—H1112 | 109.2 |
C10—C12—H121 | 109.6 | C110—C111—H1111 | 110.3 |
H122—C12—H121 | 109.8 | H1112—C111—H1111 | 109.7 |
C10—C12—H123 | 109.7 | C110—C111—H1113 | 110.7 |
H122—C12—H123 | 108.9 | H1112—C111—H1113 | 107.7 |
H121—C12—H123 | 111.9 | H1111—C111—H1113 | 109.1 |
C10—C13—H132 | 107.8 | C110—C112—H1122 | 108.7 |
C10—C13—H131 | 109.4 | C110—C112—H1121 | 111.0 |
H132—C13—H131 | 110.2 | H1122—C112—H1121 | 109.6 |
C10—C13—H133 | 108.7 | C110—C112—H1123 | 109.6 |
H132—C13—H133 | 109.7 | H1122—C112—H1123 | 108.4 |
H131—C13—H133 | 111.0 | H1121—C112—H1123 | 109.4 |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H92···O2i | 0.98 | 2.43 | 3.294 (3) | 147 |
C9—H91···O103 | 0.98 | 2.57 | 3.202 (3) | 122 |
C109—H1092···O102ii | 0.97 | 2.54 | 3.474 (3) | 162 |
C109—H1091···O14iii | 0.97 | 2.49 | 3.434 (3) | 165 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y, −z+1; (iii) −x, −y+1, −z+1. |
Crystal data top
C9H15NO3S | F(000) = 928 |
Mr = 217.29 | Dx = 1.337 Mg m−3 |
Monoclinic, P21/c | Melting point: 331 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 13.8594 (2) Å | Cell parameters from 4694 reflections |
b = 10.5243 (2) Å | θ = 5–27° |
c = 19.9230 (3) Å | µ = 0.28 mm−1 |
β = 132.0439 (7)° | T = 150 K |
V = 2158.07 (7) Å3 | Block, colourless |
Z = 8 | 0.32 × 0.26 × 0.16 mm |
Data collection top
Nonius KappaCCD diffractometer | 3769 reflections with I > 2.0σ(I) |
Graphite monochromator | Rint = 0.026 |
ω scans | θmax = 27.5°, θmin = 5.4° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −17→17 |
Tmin = 0.81, Tmax = 0.96 | k = −13→13 |
9037 measured reflections | l = −25→25 |
4913 independent reflections | |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.120 | Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982)
[weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax
Method = Robust Weighting (Prince, 1982)
W = [weight] * [1-(deltaF/6*sigmaF)2]2
Ai are:
18.1 26.7 12.7 3.26 |
S = 0.94 | (Δ/σ)max = 0.001 |
4913 reflections | Δρmax = 0.44 e Å−3 |
253 parameters | Δρmin = −0.45 e Å−3 |
0 restraints | |
Crystal data top
C9H15NO3S | V = 2158.07 (7) Å3 |
Mr = 217.29 | Z = 8 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.8594 (2) Å | µ = 0.28 mm−1 |
b = 10.5243 (2) Å | T = 150 K |
c = 19.9230 (3) Å | 0.32 × 0.26 × 0.16 mm |
β = 132.0439 (7)° | |
Data collection top
Nonius KappaCCD diffractometer | 4913 independent reflections |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | 3769 reflections with I > 2.0σ(I) |
Tmin = 0.81, Tmax = 0.96 | Rint = 0.026 |
9037 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.120 | H-atom parameters constrained |
S = 0.94 | Δρmax = 0.44 e Å−3 |
4913 reflections | Δρmin = −0.45 e Å−3 |
253 parameters | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
S1 | 0.76119 (5) | 0.38474 (5) | 0.36998 (4) | 0.0300 | |
O2 | 0.89308 (15) | 0.41318 (17) | 0.41507 (11) | 0.0364 | |
O3 | 0.66953 (15) | 0.42735 (15) | 0.26930 (10) | 0.0323 | |
C4 | 0.6878 (3) | 0.5516 (2) | 0.24470 (16) | 0.0367 | |
C5 | 0.6338 (2) | 0.6612 (2) | 0.26038 (15) | 0.0339 | |
C6 | 0.7163 (2) | 0.6973 (2) | 0.35921 (14) | 0.0264 | |
C7 | 0.7400 (2) | 0.6076 (2) | 0.41473 (14) | 0.0263 | |
N8 | 0.70607 (18) | 0.47484 (18) | 0.40600 (12) | 0.0290 | |
C9 | 0.8076 (2) | 0.5400 (2) | 0.49846 (15) | 0.0304 | |
C10 | 0.7686 (2) | 0.8320 (2) | 0.39004 (15) | 0.0287 | |
C11 | 0.8463 (2) | 0.8483 (2) | 0.49132 (16) | 0.0375 | |
C12 | 0.6527 (3) | 0.9245 (2) | 0.33738 (19) | 0.0422 | |
C13 | 0.8567 (3) | 0.8629 (3) | 0.37153 (19) | 0.0437 | |
O14 | 0.7270 (2) | 0.25681 (15) | 0.36795 (13) | 0.0432 | |
S101 | 0.57657 (5) | 0.76790 (6) | 0.52200 (4) | 0.0317 | |
O102 | 0.52818 (18) | 0.88029 (16) | 0.46823 (13) | 0.0406 | |
O103 | 0.56585 (15) | 0.65307 (16) | 0.46757 (11) | 0.0336 | |
C104 | 0.4504 (2) | 0.6417 (2) | 0.37043 (15) | 0.0337 | |
C105 | 0.3360 (2) | 0.5815 (2) | 0.35276 (15) | 0.0315 | |
C106 | 0.2709 (2) | 0.66518 (19) | 0.37506 (13) | 0.0242 | |
C107 | 0.3442 (2) | 0.7152 (2) | 0.45643 (14) | 0.0267 | |
N108 | 0.48021 (18) | 0.71538 (19) | 0.53769 (12) | 0.0306 | |
C109 | 0.3827 (2) | 0.8079 (2) | 0.52405 (15) | 0.0333 | |
C110 | 0.1261 (2) | 0.6922 (2) | 0.30314 (14) | 0.0272 | |
C113 | 0.1009 (2) | 0.7770 (2) | 0.23011 (16) | 0.0355 | |
C111 | 0.0776 (2) | 0.7607 (2) | 0.34358 (16) | 0.0366 | |
C112 | 0.0498 (2) | 0.5682 (2) | 0.25950 (17) | 0.0392 | |
O114 | 0.70583 (17) | 0.7655 (2) | 0.60715 (12) | 0.0490 | |
H41 | 0.6410 | 0.5462 | 0.1804 | 0.0451* | |
H42 | 0.7822 | 0.5649 | 0.2814 | 0.0452* | |
H52 | 0.6319 | 0.7348 | 0.2288 | 0.0405* | |
H51 | 0.5439 | 0.6382 | 0.2338 | 0.0406* | |
H92 | 0.8998 | 0.5196 | 0.5347 | 0.0363* | |
H91 | 0.7820 | 0.5490 | 0.5337 | 0.0376* | |
H111 | 0.8731 | 0.9371 | 0.5069 | 0.0578* | |
H112 | 0.9214 | 0.7914 | 0.5257 | 0.0581* | |
H113 | 0.7897 | 0.8276 | 0.5028 | 0.0580* | |
H122 | 0.6884 | 1.0092 | 0.3558 | 0.0638* | |
H121 | 0.6007 | 0.9142 | 0.2717 | 0.0643* | |
H123 | 0.6009 | 0.9099 | 0.3535 | 0.0645* | |
H132 | 0.8828 | 0.9509 | 0.3876 | 0.0671* | |
H131 | 0.8083 | 0.8494 | 0.3067 | 0.0669* | |
H133 | 0.9323 | 0.8090 | 0.4088 | 0.0673* | |
H1041 | 0.4779 | 0.5873 | 0.3464 | 0.0414* | |
H1042 | 0.4272 | 0.7275 | 0.3435 | 0.0409* | |
H1052 | 0.2694 | 0.5622 | 0.2868 | 0.0398* | |
H1051 | 0.3675 | 0.5021 | 0.3890 | 0.0398* | |
H1092 | 0.3866 | 0.8973 | 0.5139 | 0.0425* | |
H1091 | 0.3677 | 0.7953 | 0.5647 | 0.0421* | |
H1131 | 0.0080 | 0.7924 | 0.1816 | 0.0526* | |
H1132 | 0.1320 | 0.7354 | 0.2039 | 0.0533* | |
H1133 | 0.1450 | 0.8590 | 0.2552 | 0.0526* | |
H1112 | −0.0160 | 0.7757 | 0.2959 | 0.0555* | |
H1111 | 0.0953 | 0.7089 | 0.3922 | 0.0562* | |
H1113 | 0.1204 | 0.8440 | 0.3685 | 0.0557* | |
H1122 | −0.0432 | 0.5882 | 0.2147 | 0.0602* | |
H1121 | 0.0753 | 0.5233 | 0.2297 | 0.0604* | |
H1123 | 0.0657 | 0.5134 | 0.3054 | 0.0600* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
S1 | 0.0344 (3) | 0.0258 (3) | 0.0339 (3) | 0.0005 (2) | 0.0245 (2) | −0.0004 (2) |
O2 | 0.0295 (8) | 0.0442 (10) | 0.0366 (8) | 0.0026 (7) | 0.0226 (7) | −0.0043 (7) |
O3 | 0.0338 (8) | 0.0312 (8) | 0.0287 (8) | −0.0050 (6) | 0.0196 (7) | −0.0047 (6) |
C4 | 0.0477 (13) | 0.0368 (12) | 0.0275 (11) | −0.0023 (10) | 0.0259 (11) | −0.0002 (9) |
C5 | 0.0352 (11) | 0.0339 (12) | 0.0255 (10) | 0.0003 (9) | 0.0174 (9) | 0.0031 (9) |
C6 | 0.0259 (10) | 0.0280 (10) | 0.0271 (10) | 0.0025 (8) | 0.0185 (9) | 0.0022 (8) |
C7 | 0.0255 (9) | 0.0282 (10) | 0.0282 (10) | 0.0013 (8) | 0.0191 (9) | 0.0001 (8) |
N8 | 0.0317 (9) | 0.0281 (9) | 0.0323 (9) | 0.0014 (7) | 0.0235 (8) | 0.0015 (7) |
C9 | 0.0365 (11) | 0.0299 (11) | 0.0301 (10) | 0.0051 (9) | 0.0244 (10) | 0.0043 (9) |
C10 | 0.0294 (10) | 0.0260 (10) | 0.0345 (11) | 0.0013 (8) | 0.0229 (9) | 0.0029 (8) |
C11 | 0.0402 (12) | 0.0351 (12) | 0.0351 (12) | −0.0055 (10) | 0.0243 (11) | −0.0069 (10) |
C12 | 0.0413 (13) | 0.0300 (12) | 0.0523 (15) | 0.0042 (10) | 0.0301 (12) | 0.0063 (11) |
C13 | 0.0421 (14) | 0.0467 (15) | 0.0539 (15) | −0.0037 (11) | 0.0369 (13) | 0.0027 (12) |
O14 | 0.0624 (12) | 0.0229 (8) | 0.0595 (12) | −0.0032 (8) | 0.0470 (11) | −0.0015 (7) |
S101 | 0.0287 (3) | 0.0360 (3) | 0.0318 (3) | −0.0046 (2) | 0.0209 (2) | −0.0057 (2) |
O102 | 0.0512 (10) | 0.0306 (9) | 0.0519 (10) | −0.0060 (7) | 0.0395 (9) | −0.0037 (8) |
O103 | 0.0288 (8) | 0.0365 (9) | 0.0336 (8) | 0.0039 (7) | 0.0201 (7) | −0.0035 (7) |
C104 | 0.0307 (11) | 0.0400 (12) | 0.0316 (11) | 0.0011 (9) | 0.0214 (10) | −0.0073 (9) |
C105 | 0.0312 (11) | 0.0285 (11) | 0.0322 (11) | 0.0022 (9) | 0.020 (1) | −0.0043 (9) |
C106 | 0.0280 (10) | 0.0218 (9) | 0.0255 (9) | −0.0009 (8) | 0.0190 (8) | 0.0008 (7) |
C107 | 0.0270 (10) | 0.0277 (10) | 0.0279 (10) | 0.0007 (8) | 0.0194 (9) | 0.0014 (8) |
N108 | 0.0279 (9) | 0.0381 (10) | 0.0254 (8) | 0.0011 (8) | 0.0177 (8) | 0.0005 (8) |
C109 | 0.0326 (11) | 0.0410 (13) | 0.0298 (11) | −0.0034 (9) | 0.0224 (10) | −0.0089 (9) |
C110 | 0.0267 (10) | 0.0287 (10) | 0.0275 (10) | 0.0006 (8) | 0.0187 (9) | 0.0042 (8) |
C113 | 0.0371 (12) | 0.0375 (12) | 0.0331 (11) | 0.0044 (10) | 0.0240 (10) | 0.0084 (10) |
C111 | 0.0341 (12) | 0.0457 (14) | 0.0366 (12) | 0.0093 (10) | 0.0264 (11) | 0.0061 (10) |
C112 | 0.0340 (12) | 0.0365 (13) | 0.0407 (13) | −0.0070 (10) | 0.0223 (11) | −0.0011 (10) |
O114 | 0.0285 (9) | 0.0710 (14) | 0.0377 (9) | −0.0099 (8) | 0.0181 (8) | −0.0121 (9) |
Geometric parameters (Å, º) top
S1—O2 | 1.4278 (17) | S101—O103 | 1.5628 (16) |
S1—O3 | 1.5573 (16) | S101—N108 | 1.6571 (19) |
S1—N8 | 1.6527 (18) | S101—O114 | 1.4204 (18) |
S1—O14 | 1.4189 (17) | S101—O102 | 1.4262 (19) |
O3—C4 | 1.476 (3) | O103—C104 | 1.474 (3) |
C4—C5 | 1.517 (3) | C104—C105 | 1.514 (3) |
C4—H41 | 0.976 | C104—H1041 | 0.972 |
C4—H42 | 0.993 | C104—H1042 | 0.988 |
C5—C6 | 1.521 (3) | C105—C106 | 1.525 (3) |
C5—H52 | 0.988 | C105—H1052 | 0.998 |
C5—H51 | 1.003 | C105—H1051 | 0.994 |
C6—C7 | 1.318 (3) | C106—C107 | 1.316 (3) |
C6—C10 | 1.522 (3) | C106—C110 | 1.519 (3) |
C7—N8 | 1.447 (3) | C107—N108 | 1.445 (3) |
C7—C9 | 1.440 (3) | C107—C109 | 1.445 (3) |
N8—C9 | 1.540 (3) | N108—C109 | 1.535 (3) |
C9—H92 | 0.982 | C109—H1092 | 0.972 |
C9—H91 | 0.981 | C109—H1091 | 0.972 |
C10—C11 | 1.533 (3) | C110—C113 | 1.535 (3) |
C10—C12 | 1.540 (3) | C110—C111 | 1.532 (3) |
C10—C13 | 1.529 (3) | C110—C112 | 1.532 (3) |
C11—H111 | 0.977 | C113—H1131 | 0.975 |
C11—H112 | 0.978 | C113—H1132 | 0.975 |
C11—H113 | 0.977 | C113—H1133 | 0.979 |
C12—H122 | 0.964 | C111—H1112 | 0.979 |
C12—H121 | 0.989 | C111—H1111 | 0.989 |
C12—H123 | 0.976 | C111—H1113 | 0.986 |
C13—H132 | 0.967 | C112—H1122 | 0.980 |
C13—H131 | 0.989 | C112—H1121 | 0.992 |
C13—H133 | 0.964 | C112—H1123 | 0.973 |
| | | |
O2—S1—O3 | 110.26 (10) | O103—S101—N108 | 99.14 (10) |
O2—S1—N8 | 112.07 (10) | O103—S101—O114 | 105.83 (11) |
O3—S1—N8 | 100.28 (9) | N108—S101—O114 | 107.45 (11) |
O2—S1—O14 | 118.64 (11) | O103—S101—O102 | 109.99 (10) |
O3—S1—O14 | 105.53 (11) | N108—S101—O102 | 112.66 (10) |
N8—S1—O14 | 108.31 (10) | O114—S101—O102 | 119.62 (12) |
S1—O3—C4 | 120.62 (14) | S101—O103—C104 | 119.29 (14) |
O3—C4—C5 | 112.78 (19) | O103—C104—C105 | 112.71 (18) |
O3—C4—H41 | 105.9 | O103—C104—H1041 | 104.8 |
C5—C4—H41 | 109.3 | C105—C104—H1041 | 109.5 |
O3—C4—H42 | 108.3 | O103—C104—H1042 | 108.2 |
C5—C4—H42 | 109.3 | C105—C104—H1042 | 110.3 |
H41—C4—H42 | 111.3 | H1041—C104—H1042 | 111.3 |
C4—C5—C6 | 114.16 (19) | C104—C105—C106 | 115.00 (18) |
C4—C5—H52 | 105.7 | C104—C105—H1052 | 107.0 |
C6—C5—H52 | 107.8 | C106—C105—H1052 | 107.1 |
C4—C5—H51 | 108.5 | C104—C105—H1051 | 107.5 |
C6—C5—H51 | 109.6 | C106—C105—H1051 | 109.4 |
H52—C5—H51 | 111.1 | H1052—C105—H1051 | 110.8 |
C5—C6—C7 | 117.2 (2) | C105—C106—C107 | 118.06 (19) |
C5—C6—C10 | 119.81 (18) | C105—C106—C110 | 119.92 (18) |
C7—C6—C10 | 123.01 (19) | C107—C106—C110 | 121.99 (19) |
C6—C7—N8 | 135.4 (2) | C106—C107—N108 | 137.1 (2) |
C6—C7—C9 | 158.4 (2) | C106—C107—C109 | 156.5 (2) |
N8—C7—C9 | 64.49 (15) | N108—C107—C109 | 64.17 (15) |
C7—N8—S1 | 113.52 (14) | C107—N108—S101 | 113.62 (14) |
C7—N8—C9 | 57.53 (13) | C107—N108—C109 | 57.94 (13) |
S1—N8—C9 | 117.21 (14) | S101—N108—C109 | 118.68 (15) |
N8—C9—C7 | 57.98 (13) | N108—C109—C107 | 57.89 (13) |
N8—C9—H92 | 118.6 | N108—C109—H1092 | 119.1 |
C7—C9—H92 | 118.5 | C107—C109—H1092 | 119.8 |
N8—C9—H91 | 114.9 | N108—C109—H1091 | 114.9 |
C7—C9—H91 | 121.0 | C107—C109—H1091 | 122.2 |
H92—C9—H91 | 114.3 | H1092—C109—H1091 | 112.3 |
C6—C10—C11 | 111.09 (18) | C106—C110—C113 | 108.76 (17) |
C6—C10—C12 | 108.48 (18) | C106—C110—C111 | 111.08 (18) |
C11—C10—C12 | 108.6 (2) | C113—C110—C111 | 108.86 (18) |
C6—C10—C13 | 110.01 (19) | C106—C110—C112 | 110.47 (18) |
C11—C10—C13 | 108.9 (2) | C113—C110—C112 | 108.97 (19) |
C12—C10—C13 | 109.8 (2) | C111—C110—C112 | 108.66 (19) |
C10—C11—H111 | 107.8 | C110—C113—H1131 | 110.4 |
C10—C11—H112 | 109.5 | C110—C113—H1132 | 110.1 |
H111—C11—H112 | 111.3 | H1131—C113—H1132 | 107.9 |
C10—C11—H113 | 108.5 | C110—C113—H1133 | 111.2 |
H111—C11—H113 | 109.5 | H1131—C113—H1133 | 108.5 |
H112—C11—H113 | 110.2 | H1132—C113—H1133 | 108.7 |
C10—C12—H122 | 106.9 | C110—C111—H1112 | 109.2 |
C10—C12—H121 | 109.6 | C110—C111—H1111 | 110.3 |
H122—C12—H121 | 109.8 | H1112—C111—H1111 | 109.7 |
C10—C12—H123 | 109.7 | C110—C111—H1113 | 110.8 |
H122—C12—H123 | 108.9 | H1112—C111—H1113 | 107.7 |
H121—C12—H123 | 111.9 | H1111—C111—H1113 | 109.1 |
C10—C13—H132 | 107.8 | C110—C112—H1122 | 108.8 |
C10—C13—H131 | 109.4 | C110—C112—H1121 | 111.0 |
H132—C13—H131 | 110.2 | H1122—C112—H1121 | 109.6 |
C10—C13—H133 | 108.7 | C110—C112—H1123 | 109.6 |
H132—C13—H133 | 109.7 | H1122—C112—H1123 | 108.4 |
H131—C13—H133 | 111.0 | H1121—C112—H1123 | 109.4 |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H92···O2i | 0.98 | 2.43 | 3.294 (4) | 147 |
C9—H91···O103 | 0.98 | 2.57 | 3.203 (4) | 122 |
C109—H1092···O102ii | 0.97 | 2.54 | 3.473 (4) | 162 |
C109—H1091···O14iii | 0.97 | 2.49 | 3.433 (4) | 165 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) −x+1, −y+1, −z+1. |
Experimental details
| (I) | (II) |
Crystal data |
Chemical formula | C9H15NO3S | C9H15NO3S |
Mr | 217.29 | 217.29 |
Crystal system, space group | Monoclinic, P21/n | Monoclinic, P21/c |
Temperature (K) | 150 | 150 |
a, b, c (Å) | 13.8593 (3), 10.5242 (2), 14.8044 (4) | 13.8594 (2), 10.5243 (2), 19.9230 (3) |
α, β, γ (°) | 90, 92.0014 (7), 90 | 90, 132.0439 (7), 90 |
V (Å3) | 2158.02 (9) | 2158.07 (7) |
Z | 8 | 8 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 0.28 | 0.28 |
Crystal size (mm) | 0.32 × 0.26 × 0.16 | 0.32 × 0.26 × 0.16 |
|
Data collection |
Diffractometer | Nonius KappaCCD diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | Multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.81, 0.96 | 0.81, 0.96 |
No. of measured, independent and observed [I > 2.0σ(I)] reflections | 19529, 4913, 3768 | 9037, 4913, 3769 |
Rint | 0.041 | 0.026 |
(sin θ/λ)max (Å−1) | 0.649 | 0.649 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.123, 0.94 | 0.043, 0.120, 0.94 |
No. of reflections | 4913 | 4913 |
No. of parameters | 253 | 253 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.43, −0.44 | 0.44, −0.45 |
Hydrogen-bond geometry (Å, °). The values from the refinement in
P21/n are given first, followed by the values from the
P21/c refinement. topD—H···A | D—H | H···A | D···A | D—H···A |
C9—H92···O2i | 0.98/0.98 | 2.43/2.43 | 3.294 (3)/3.294 (3) | 147/147 |
C9—H91···O103 | 0.98/0.98 | 2.57/2.57 | 3.202 (3)/3.203 (3) | 122/122 |
C109—H1092···O102ii | 0.97/0.97 | 2.54/2.54 | 3.474 (3)/3.473 (3) | 162/162 |
C109—H1091···O14iii | 0.97/0.97 | 2.49/2.49 | 3.434 (3)/3.433 (3) | 165/165 |
C104—H1042···O3iv | 0.99/0.99 | 2.69/2.69 | 3.654 (3)/3.654 (3) | 165/165 |
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y, -z+1; (iii) -x, -y+1, -z+1;
(iv) -x+1/2, y-1/2, -z+3/2. |
Bond lengths for the methylene aziridine refined in P21/n
and P21/c calculated with CRYSTALS and with PLATON topBond | (I) | (II) | (I), excluding covariances | (II), excluding covariances |
S1—O2 | 1.4271 (16) | 1.4278 (17) | 1.4272 (17) | 1.428 (2) |
S1—O3 | 1.5569 (16) | 1.5573 (16) | 1.5570 (16) | 1.5574 (16) |
S1—N8 | 1.6524 (18) | 1.6527 (18) | 1.6523 (18) | 1.653 (3) |
S1—O14 | 1.4182 (16) | 1.4189 (17) | 1.4182 (17) | 1.4189 (19) |
O3—C4 | 1.476 (3) | 1.476 (3) | 1.476 (3) | 1.477 (3) |
C4—C5 | 1.515 (3) | 1.517 (3) | 1.515 (3) | 1.517 (4) |
C5—C6 | 1.521 (3) | 1.521 (3) | 1.521 (3) | 1.521 (3) |
C6—C7 | 1.317 (3) | 1.318 (3) | 1.318 (3) | 1.318 (3) |
C6—C10 | 1.525 (3) | 1.522 (3) | 1.525 (3) | 1.522 (3) |
C7—N8 | 1.445 (3) | 1.447 (3) | 1.445 (3) | 1.447 (3) |
C7—C9 | 1.439 (3) | 1.440 (3) | 1.439 (3) | 1.440 (3) |
N8—C9 | 1.540 (3) | 1.540 (3) | 1.540 (3) | 1.540 (3) |
C10—C11 | 1.532 (3) | 1.533 (3) | 1.532 (3) | 1.533 (3) |
C10—C12 | 1.538 (3) | 1.540 (3) | 1.538 (3) | 1.540 (4) |
C10—C13 | 1.528 (3) | 1.529 (3) | 1.528 (3) | 1.528 (6) |
S101—O103 | 1.5628 (16) | 1.5628 (16) | 1.5628 (16) | 1.5629 (19) |
S101—N108 | 1.6577 (18) | 1.6571 (19) | 1.6576 (19) | 1.657 (3) |
S101—O114 | 1.4200 (18) | 1.4204 (18) | 1.4201 (19) | 1.420 (2) |
S101—O102 | 1.4252 (18) | 1.4262 (19) | 1.4252 (18) | 1.4262 (19) |
O103—C104 | 1.475 (3) | 1.474 (3) | 1.475 (3) | 1.474 (3) |
C104—C105 | 1.515 (3) | 1.514 (3) | 1.515 (3) | 1.514 (5) |
C105—C106 | 1.525 (3) | 1.525 (3) | 1.525 (3) | 1.524 (4) |
C106—C107 | 1.317 (3) | 1.316 (3) | 1.318 (3) | 1.316 (3) |
C106—C110 | 1.518 (3) | 1.519 (3) | 1.518 (3) | 1.520 (4) |
C107—N108 | 1.444 (3) | 1.445 (3) | 1.444 (3) | 1.445 (3) |
C107—C109 | 1.445 (3) | 1.445 (3) | 1.444 (3) | 1.445 (3) |
N108—C109 | 1.535 (3) | 1.535 (3) | 1.534 (3) | 1.535 (4) |
C110—C113 | 1.534 (3) | 1.535 (3) | 1.532 (3) | 1.535 (3) |
C110—C111 | 1.532 (3) | 1.532 (3) | 1.532 (3) | 1.532 (4) |
C110—C112 | 1.533 (3) | 1.532 (3) | 1.534 (3) | 1.532 (3) |
Largest correlations in I and II. topParameters | Correlation in I | Correlation in II |
Largest correlations in I | | |
OSF U11(S1) | 0.365 | 0.317 |
OSF U22(S1) | 0.361 | 0.310 |
OSF U33(S1) | 0.353 | 0.312 |
OSF U11(S10) | 0.357 | 0.307 |
OSF U22(S10) | 0.343 | 0.297 |
OSF U33(S10) | 0.354 | 0.307 |
Largest correlations in II | | |
U11(C13) U13(C13) | 0.010 | 0.801 |
U33(C13) U13(C13) | 0.023 | 0.805 |
U11(O14) U13(O14) | -0.091 | 0.804 |
U33(O14) U13(O14) | -0.080 | 0.809 |
U11(C111) U13(C111) | 0.004 | 0.781 |
U33(C111) U13(C111) | 0.002 | 0.782 |
U11(O102) U13(O102) | -0.042 | 0.795 |
U33(O102) U13(O102) | -0.034 | 0.797 |
OSF = Overall scale factor. |
![](https://journals.iucr.org/logos/arrows/smarrr.png)
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.
The title compound, 6-tert-butyl-3-oxa-2-thia-1-azabicyclo[5.1.0]oct-6-ene 2,2-dioxide, and related methylene aziridines (Feast et al. 2009) were prepared during our ongoing study of nitrogen-containing 1,3-dipoles (Robertson et al., 2005; White, 2007) in order to probe their potential as 2-aminoallyl cation precursors (Prié et al., 2004).
The structure of the methylene aziridine was initially determined in the monoclinic space group P21/n, (I), with a cell of a = 13.8593 (3) Å, b = 10.5242 (2) Å, c = 14.8044 (4) Å and β = 92.0014 (7)° and two molecules in the asymmetric unit (Fig. 1).
The unusual bond angles at C7/C107 suggested it would be advisable to carry out a comparison with the structures in the Cambridge Structural Database (CSD; Version ?; Allen, 2002) using Mogul (Bruno et al., 2004). For comparison, Mogul uses a figure of merit Z (defined as the difference between observed value and the median divided by the standard deviation of the Mogul distribution). Typically, Z values greater than about 2–3 indicate that a bond length or angle are sufficiently unusual to warrant further investigation. Although (I) gave a Z value greater than 100 for the top eight queries, each of these had only one match in the CSD and the obvious C6—C7—C9/C106—C107—C109 angle had no hits at all. Indeed, more than one-third of the queries generated by CRYSTALS (Betteridge et al., 2003) had fewer than six hits in the CSD, suggesting the structure has little precedence in the literature. Examination of the molecular structure showed why this is the case, with the particularly unusual seven-membered ring (comprising three hetero-atoms and a double bond), fused with a three-membered ring, leading to an extremely strained geometry at atoms S1, C7 and N8 (and the analogous atoms S101,C107 and N108).
The two equivalent molecules have very similar conformations when overlayed (positional, bond and torsion r.m.s. deviations of 0.166, 0.007 Å and 3.542°). Both symmetry equivalents (referred to by the first atom in the residue, S1 and S101) form dimers around an inversion centre. These are held together by C—H···O interactions between chemically equivalent atoms (C9/C109 and O2/O102; Table 1). The dimers form layers parallel to the [101] plane containing exclusively either S1 or S101; in turn, these layers are connected together by further C—H···O interactions (Fig. 2).
Prior to publication, the CIF was verified with the online checking facility checkCIF, which gave the following alert:
PLAT128_ALERT_4_G Non-standard setting of Space-group P21/c···. P21/n
`The reported monoclinic space-group is in a non-standard setting. Transformation to the conventional setting is indicated unless there is a good (scientific) reason not to do so.'
The cell obtained from the initial indexing was then transformed using the matrix A (Eqn. 1) and reprocessed (including integration, scaling and cell final refinement) to give the data in the space group P21/c, with a cell of a = 13.8594 (2) Å, b = 10.5243 (2) Å, c = 19.9230 (3) Å and β = 132.0439 (7)°, (II). The atomic coordinates from the original structure were transformed using (AT)-1 given in equation (2) and the structure re-refined:
A= (1 0 0, 0 1 0, 1 0 1), (1)
(A-1)T= (1 0 1, 0 1 0, 0 0 1). (2)
Comparison of (I) and (II) demonstrated that the bond lengths (and angles) were the same allowing for rounding error. This is as expected, since the structures are the same, merely in a different cell setting. However, it has long been known that refinements in oblique cells have increased correlation between selected parameters, potentially making refinements less stable (Dunitz, 1979). Thus, a large β value, would be expected to give increased correlation between parameters with respect to the a and c axes. In (I), the largest correlations are between the sulfur anisotropic displacement parameters (ADPs) and the scale factor (Table 2). However, although the correlations between the sulfur ADPs and the scale factor in (II) are a similar size, correlations between individual components of the ADPs are increased, for example, the largest correlation is 0.809 between U33(O14) and U13(O14), increased from -0.080. Correlations between the positional parameters are also affected; though the changes are smaller, the effects are visible by comparing the s.u. values calculated with and without covariances. Since only the variances are included in the CIF, this was easily achieved using PLATON (Spek, 2009). Table 3 shows the bond lengths with s.u. values for (I) and (II), and it is clear that the bond lengths are very similar in both cell settings whether determined by PLATON or CRYSTALS. [Unit cell and atomic parameters are held to full machine precision by the refinement software (CRYSTALS). Some of this precision is inevitably lost when these numbers are rounded by the `rule of 19' during the generation of the CIF.] The s.u. values for all the C—C and C—O bonds are also consistent for (I) and (II) calculated from the full variance–covariance matrix, and calculations using only the variances give a good estimate of the s.u. values for (I). However, the corresponding s.u. calculations for (II) are less reliable when the covariances are excluded. This effect is most apparent where the bond is predominantly parallel to the a axis (e.g. S101—N108, C104—C105 and C10—C13) and the s.u. values are nearly doubled.
In conclusion, analysis of this unusual methylene aziridine has demonstrated the effect of excluding the covariances from calculations of the s.u. values and shown how this effect is enhanced for monoclinic structures in a cell setting where β deviates significantly from 90°. Additionally, the increase in the correlation due to the oblique cell setting is apparent, and although there are no obvious consequences in this case, this could give rise to refinement difficulties for more complex structures.