Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Six ammonium carboxylate salts are synthesized and reported, namely 2-propyl­ammonium benzoate, C3H10N+·C7H5O2, (I), benzyl­ammonium (R)-2-phenyl­propion­ate, C6H10N+·C9H9O2, (II), (RS)-1-phenyl­ethyl­ammonium naphthalene-1-car­box­yl­ate, C8H12N+·C11H7O2, (III), benzyl­ammonium–benzoate–benzoic acid (1/1/1), C6H10N+·C7H5O2·C7H6O2, (IV), cyclo­propyl­ammonium–benzoate–benzoic acid (1/1/1), C3H8N+·C7H5O2·C7H6O2, (V), and cyclo­propyl­ammonium–ea-cis-cyclo­hexane-1,4-dicarboxyl­ate–ee-trans-cyclo­hexane-1,4-dicarb­oxy­lic acid (2/1/1), 2C3H8N+·C8H10O42−·C8H12O4, (VI). Salts (I)–(III) all have a 1:1 ratio of cation to anion and feature three N+—H...O hydrogen bonds which form one-dimensional hydrogen-bonded ladders. Salts (I) and (II) have type II ladders, consisting of repeating R43(10) rings, while (III) has type III ladders, in this case consisting of alternating R42(8) and R44(12) rings. Salts (IV) and (V) have a 1:1:1 ratio of cation to anion to benzoic acid. They have type III ladders formed by three N+—H...O hydrogen bonds, while the benzoic acid mol­ecules are pendant to the ladders and hydrogen bond to them via O—H...O hydrogen bonds. Salt (VI) has a 2:1:1 ratio of cation to anion to acid and does not feature any hydrogen-bonded ladders; instead, the ionized and un-ionized components form a three-dimensional network of hydrogen-bonded rings. The two-component 1:1 salts are formed from a 1:1 ratio of amine to acid. To create the three-component salts (IV)–(VI), the ratio of amine to acid was reduced so as to deprotonate only half of the acid mol­ecules, and then to observe how the un-ionized acid mol­ecules are incorporated into the ladder motif. For (IV) and (V), the ratio of amine to acid was reduced to 1:2, while for (VI) the ratio of amine to acid required to deprotonate only half the diacid mol­ecules was 1:1.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111003714/bm3101sup1.cif
Contains datablocks global, I, II, III, IV, V, VI

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111003714/bm3101Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111003714/bm3101IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111003714/bm3101IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111003714/bm3101IVsup5.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111003714/bm3101Vsup6.hkl
Contains datablock V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111003714/bm3101VIsup7.hkl
Contains datablock VI

CCDC references: 819296; 819297; 819298; 819299; 819300; 819301

Comment top

Ammonium carboxylate salts of the general formula (R-NH3+).(R'-COO-) are known to form hydrogen-bonded one-dimensional ladders in the solid state, among other motifs (Lemmerer et al., 2008a, 2010). The ladders are formed by hydrogen-bonded rings formed from four N—H···O hydrogen bonds and consist of two cation–anion pairs (Odendal et al., 2010). The ladders are predominantly of two types, as classified by Nagahama et al. (2003): type II consists of repeating hydrogen-bonded rings, described using graph-set notation (Bernstein et al., 1995) as R43(10), and type III consists of the repetition of two differently sized rings, described as R42(8) and R44(12) (Fig. 1). Together with the ladder concept used to describe the hydrogen-bonded pattern of ammonium carboxylate salts, the four hydrogen bonds forming the rings can be divided into legs and rungs (Fig. 1). These two ladders have also been described as robust heterosynthons (Lemmerer et al., 2008b), as they form even in the presence of other hydrogen-bonding functional groups. The type of ladder observed is also dependent on the presence of a chiral ion. If either of the ions is present as the optically active enantiomer only (either R or S), then a type II ladder is formed almost exclusively, while if the ion is present as the racemate (RS), type III ladders form (with a minority of type II) (Lemmerer et al., 2008a).

When combining an amine and an acid, the difference in pKa can be indicative of whether a salt or a neutral complex is formed. Generally, a difference of 3 units should result in a salt (Bhogala et al., 2005). However, it has been observed that salts formed with succinic and fumaric acids often include un-ionized acid molecules, even with large differences in pKa (Haynes & Pietersen, 2008). We have observed the inclusion of un-ionized acid molecules together with ionized acid and amine molecules in the salt (4-pyridylmethyl)ammonium.m-iodobenzoate.m-iodobenzoic acid (Lemmerer et al., 2008c). In this salt, the peripheral un-ionized m-iodobenzoic acid molecule forms hydrogen bonds to the pyridine N atom of the (4-pyridylmethyl)ammonium cation, thus forming a type II salt. This 1:1:1 salt was synthesized from a 1:1 ratio of amine to acid (with a large difference in pKa), and the 1:1 salt (containing no un-ionized acid) was not obtained. The 1:1:1 salt was successfully synthesized using a ratio of amine to acid of 1:2, by having an excess of acid available which is then unable to undergo proton transfer to the amine. This had led us to believe that we might selectively prepare these three-component salts by controlling the molecular ratio in the crystallization synthesis. In this study, we wished to include un-ionized acid molecules into the salt structure, in order to observe if the ladders are still formed and how the un-ionized acid molecule becomes incorporated. In addition, three related 1:1 salts have been synthesized that illustrate the different types of ladders and how their formation is controlled. The six salts synthesized and reported here are 2-propylammonium benzoate, (I), benzylammonium (R)-2-phenylpropyl-1-carboxylate, (II), (RS)-1-phenylethylammonium naphthalene-1-carboxylate, (III), benzylammonium benzoate–benzoic acid (1/1), (IV), cyclopropylammonium benzoate–benzoic acid (1/1), (V), and bis(cyclopropylammonium) ea-cis-cyclohexane-1,4-dicarboxylate–ee-trans-cyclohexane-1,4-dicarboxylic acid (1/1), (VI).

The molecular structure and atomic numbering scheme of the asymmetric unit of the 1:1 salt (I) are shown in Fig. 2. The asymmetric unit consists of one disordered 2-propylammonium cation and one benzoate anion, both on general positions. The ammonium group forms three charge-assisted hydrogen bonds to form a ring, graph-set notation R43(10), consisting of two ammonium cations and two carboxylate anions, one involving both atoms O1 and O2 and the second involving only atom O1 (see Fig. 3). This hydrogen-bonded pattern has translational symmetry via a twofold screw axis along the crystallographic a axis inherent in the space group P212121. All three ammonium H atoms are used to form the ring and atom O1 acts as a bifurcated hydrogen-bond acceptor. Salt (I) thus forms a type II hydrogen-bonded ladder.

The molecular structure and atomic numbering scheme of the asymmetric unit of the 1:1 salt (II) are shown in Fig. 4. The asymmetric unit consists of one benzylammonium cation and one (R)-2-phenyl-propane-1-carboxylate anion, both on general positions. The salt crystallizes in the chiral space group C2 and features a type II ladder, extending along the twofold rotation axis in the direction of the b axis (Fig. 5).

The molecular structure and atomic numbering scheme of the asymmetric unit of the 1:1 salt (III) are shown in Fig. 6. The asymmetric unit consists of one (S)-1-phenylethylammonium cation (labelled N1), one (R)-1-phenylethylammonium cation (N2) and two naphthalene-1-carboxylate anions, labelled O1/O2 and O3/O4, all on general positions. Both N1 and N2 cations form two charge-assisted hydrogen bonds to form a ring, graph-set notation R42(8), consisting of the two ammonium cations and the two carboxylate anions, involving atoms O1 and O3 (see Fig. 7). A second type of ring is formed by two N1 cations and two O3/O4 anions, again using four N+—H···O- hydrogen bonds, to generate an R44(12) ring. Another similar R44(12) ring is present, this time involving two N2 cations and two O1/O2 anions. The sequence of these three unique rings generates a type III hydrogen-bonded ladder along the a axis.

The molecular structure and atomic numbering scheme of the asymmetric unit of the 1:1:1 salt (IV) are shown in Fig. 8. The asymmetric unit consists of one (un-ionized) benzoic acid molecule, one benzylammonium cation and one benzoate anion, all on general positions. The cation and anion form a type III ladder via N+—H···O- hydrogen bonds along the b axis. The benzoic acid molecule forms O—H···O- hydrogen bonds to one of the carboxylate O atoms of the ladder (Fig. 9).

The molecular structure and atomic numbering scheme of the asymmetric unit of the 1:1:1 salt (V) are shown in Fig. 10. The asymmetric unit consists of one neutral benzoic acid molecule, one cyclopropylammonium cation and one benzoate anion, all on general positions. The cation and anion form a type III ladder via N+—H···O- hydrogen bonds along the b axis. The benzoic acid molecule forms O—H···O- hydrogen bonds to one of the carboxylate O atoms of the ladder (Fig. 11).

The molecular structure and atomic numbering scheme of the asymmetric unit of the 1:2:1 salt (VI) are shown in Fig. 12. The asymmetric unit consists of one neutral ee-trans-1,4-cyclohexanedicarboxylic acid molecule, two cyclopropylammonium cations and one ea-cis-1,4-cyclohexanedicarboxylate anion, all on general positions. The hydrogen-bonding pattern does not correspond to any of the three rings described above. Each of the two cyclopentylammonium cations forms hydrogen bonds to two separate cations (to one of their O atoms). The third hydrogen bond from the cations is to the carbonyl O atom of the neutral dicarboxylic acid molecule. In addition, the neutral dicarboxylic acid molecule forms hydrogen bonds to the carboxylate anion via an O—H···O- hydrogen bond. A number of larger hydrogen-bonded rings are formed through this combination of un-ionized and ionized species (Fig. 13). The two rings R46(16) and R55(21) are formed using all three species, whereas the R44(22) ring is formed using only the ionized species.

The 1:1 salts (I)–(III) form type II and III ladders in accordance with previous studies (Lemmerer, 2008). The type II ladder was found to be the most common motif observed in general ammonium carboxylate salts deposited in the Cambridge Structural Database (CSD; Version ?; Allen, 2002). According to a detailed CSD analysis of 317 primary ammonium carboxylate salts performed by Yuge et al. (2008), 185 of the salts have a type II ladder (58%). Type II ladders are helical in nature and frequently crystallize in space groups with twofold screw axes. This is also observed for (I). If any of the ions are chiral in nature, and only the optically active enantiomer is present, then the chance of forming a type II ladder increases considerably (Lemmerer et al., 2010, and references therein), and hence a type II ladder is again observed in salt (II), which has the R enantiomer of the 2-phenylpropyl-1-carboxylate cation. In salt (III), which contains the racemate of the 1-phenthylammonium cation, a type III ladder forms, and the hydrogen-bonded rings are all centrosymmetric. It was observed previously that the racemate of the 1-phenylethylammonium cation often produces a type III ladder (Lemmerer et al., 2008a).

The 1:1:1 salts (IV)–(VI) were prepared by including un-ionized acid molecules in the crystallization solution. This does not necessarily guarantee that they will be incorporated into the crystallized salts, but nonetheless they were incorporated in all three. A reason for this is the increased acceptor potential of the O atoms on the carboxylate anions. As they are now negatively charged, the electrostatic interaction is stronger between the un-ionized acid molecules and the ionized anions hydrogen-bonding to each other. In salts (IV) and (V), the ladder motif is still observed, in this case a type III ladder. The benzoic acid molecules form hydrogen bonds to the O atoms of the carboxylate anions, as they are the only acceptor atoms available, and they are arranged as pendant molecules to the ladders. In the 1:2:1 salt (VI), the un-ionized and ionized acid molecules have different conformations. The 1,4-cyclohexanedicarboxylic acid used consisted of a cis/trans mixture. In (VI), while the cis conformer underwent proton transfer to the two cyclopropylamine molecules, the trans conformer remained un-ionized. It is not clear at this stage why the cis conformer underwent proton transfer and the trans isomer did not. In contrast with the 1:1:1 salts of (IV) and (V), no ladder motif is formed in (VI) and the un-ionized acid molecules are incorporated into the rings formed by the ionized species. Previous work has shown that ammonium carboxylate salts that have two carboxylate functional groups on one ion form two-dimensional networks by joining two ladders together (Lemmerer et al., 2008a; Lemmerer, 2011). It was hoped that the two-dimensional network would be retained and that the un-ionized diacid species would connect the two-dimensional networks into three-dimensional networks.

In conclusion, we have shown that is it possible to create three-component salt structures with a ladder motif by reducing the ratio of amine to acid in the synthesis.

Related literature top

For related literature, see: Allen (2002); Bernstein et al. (1995); Bhogala et al. (2005); Haynes & Pietersen (2008); Lemmerer (2008, 2011); Lemmerer et al. (2008a, 2008b, 2008c, 2010); Nagahama et al. (2003); Odendal et al. (2010); Yuge et al. (2008).

Experimental top

All chemicals were purchased from commercial sources and used as received. Crystals were grown by slow evaporation, under ambient conditions, of methanol solutions containing a 1:1 ratio of amine and acid for (I)–(III) and (VI), and a ratio of 1:2 for (IV) and (V). Detailed masses and volumes are as follows. For (I): 2-propylamine (0.050 g, 0.85 mmol) and benzoic acid (0.103 g, 0.846 mmol) in methanol (5 ml); for (II): benzylamine (0.050 g, 0.47 mmol) and 2-phenylpropionic acid (0.070 g, 0.47 mmol) in methanol (5 ml); for (III): (RS)-1-phenylethylamine (0.050 g, 0.41 mmol) and 1-naphthalenecarboxylic acid (0.085 g, 0.41 mmol) in methanol (10 ml); for (IV): benzylamine (0.050 g, 0.047 mmol) and benzoic acid (0.114 g, 0.92 mmol) in methanol (10 ml); for (V): cyclopropylamine (0.050 g, 0.088 mmol) and benzoic acid (0.214 g, 0.18 mmol) in methanol (15 ml); and for (VI): cyclopropylamine (0.050 g, 0.088 mmol) and (cis/trans)-1,4-cyclohexanedicarboxylic acid (0.151 g, 0.088 mmol) in methanol (10 ml).

Refinement top

For compound (I), the C-bound H atoms were positioned geometrically, with C—H = 0.99 (methine CH), 0.97 (methylene CH3) or 0.94 Å (Ar—H), and refined as riding, with Uiso(H) = 1.2 or 1.5Ueq(C). The N-bound H atoms were positioned geometrically, with N—H = 0.91 Å, and refined as riding, with Uiso(H) = 1.5Ueq(N). The disorder of the 2-propylammonium cation was resolved by finding alternate positions for atom C9 in the difference Fourier map. These two atoms, C9A and C9B, were then refined anisotropically together with their site occupancy, such that the sum of the occupancies equalled one.

For compounds (II)–(VI), the C-bound H atoms were positioned geometrically, with C—H = 1.00 (methine CH), 0.99 (ethylene CH2), 0.98 (methylene CH3) or 0.95 Å (Ar—H), and refined as riding, with Uiso(H) = 1.2 or 1.5Ueq(C). The N-bound H atoms were positioned geometrically, with N—H = 0.91 Å, and refined as riding, with Uiso(H) = 1.5Ueq(N).

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004) and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The two types of ladder formed by ammonium carboxylate salts. Type II has repeating R43(10) rings, whereas type III has alternating R42(8) and R44(12) rings. The three hydrogen bonds from the –NH3+ cation consist of two legs and one rung.
[Figure 2] Fig. 2. A perspective view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The 2-propylammonium cation is disordered and both occupied sites are shown. The dashed line indicates the symmetry-independent N+—H···O- hydrogen bond.
[Figure 3] Fig. 3. A partial packing diagram of the type II ladder for (I). N+—H···O- hydrogen bonds are shown as dashed lines. The 2-propylammonium cation is disordered and only the major occupied site is shown. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (i) x + 1/2, -y + 3/2, -z + 1.]
[Figure 4] Fig. 4. A perspective view of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates the symmetry-independent N+—H···O- hydrogen bond.
[Figure 5] Fig. 5. A partial packing diagram of the type II ladder for (II). N+—H···O- hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 6] Fig. 6. A perspective view of (III), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed lines indicate the symmetry-independent N+—H···O- hydrogen bonds.
[Figure 7] Fig. 7. A partial packing diagram of the type III ladder for (III). N+—H···O- hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y + 2, -z + 1; (iii) x, y + 1, z; (iv) -x + 2, -y + 1, -z + 1; (v) x + 1, y, z.]
[Figure 8] Fig. 8. A perspective view of (IV), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed lines indicate the symmetry-independent O—H···O- and N+—H···O- hydrogen bonds.
[Figure 9] Fig. 9. A partial packing diagram of the type III ladder for (IV). N+—H···O- and O—H···O- hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity, together with the hydrocarbon part of the ammonium cation.
[Figure 10] Fig. 10. A perspective view of (V), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed lines indicate the symmetry-independent O—H···O- and N+—H···O- hydrogen bonds.
[Figure 11] Fig. 11. A partial packing diagram of the type III ladder for (V). N+—H···O- and O—H···O- hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity, together with the hydrocarbon part of the ammonium cation.
[Figure 12] Fig. 12. A perspective view of (VI), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed lines indicate the symmetry-independent O—H···O- and N+—H···O- hydrogen bonds.
[Figure 13] Fig. 13. A partial packing diagram of the hydrogen-bonded interactions for (VI). N+—H···O- and O—H···O- hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity, together with the hydrocarbon part of the ammonium cation. [Symmetry codes: (i) x + 1/2, -y + 3/2, z; (ii) -x + 1, -y + 1, z - 1/2.]
(I) 2-propylammonium benzoate top
Crystal data top
C3H10N+·C7H5O2F(000) = 392
Mr = 181.23Dx = 1.065 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1643 reflections
a = 6.3823 (7) Åθ = 0.4–27.5°
b = 9.0629 (5) ŵ = 0.07 mm1
c = 19.5457 (13) ÅT = 243 K
V = 1130.57 (16) Å3Needle, colourless
Z = 40.26 × 0.16 × 0.1 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
869 reflections with I > 2σ(I)
ω scansRint = 0.081
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 25.5°, θmin = 3.1°
Tmin = 0.981, Tmax = 0.993h = 77
9482 measured reflectionsk = 108
1232 independent reflectionsl = 2322
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.1081P)2 + 0.123P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.061(Δ/σ)max < 0.001
wR(F2) = 0.181Δρmax = 0.20 e Å3
S = 1.04Δρmin = 0.19 e Å3
1232 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
133 parametersExtinction coefficient: 0.043 (12)
23 restraintsAbsolute structure: Flack (1983), with 854 Friedel pairs
Crystal data top
C3H10N+·C7H5O2V = 1130.57 (16) Å3
Mr = 181.23Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.3823 (7) ŵ = 0.07 mm1
b = 9.0629 (5) ÅT = 243 K
c = 19.5457 (13) Å0.26 × 0.16 × 0.1 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1232 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
869 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.993Rint = 0.081
9482 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06123 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
1232 reflectionsΔρmin = 0.19 e Å3
133 parametersAbsolute structure: Flack (1983), with 854 Friedel pairs
Special details top

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.8635 (5)0.4588 (3)0.34254 (15)0.0535 (8)
C20.6604 (6)0.4581 (6)0.3213 (2)0.0861 (13)
H20.56140.51820.34350.103*
C30.5987 (8)0.3692 (9)0.2671 (3)0.131 (3)
H30.45840.36860.25250.157*
C40.7434 (12)0.2829 (8)0.2353 (3)0.141 (3)
H40.70210.22230.19870.169*
C50.9443 (11)0.2832 (7)0.2556 (3)0.131 (2)
H51.04350.22370.23320.158*
C61.0036 (6)0.3716 (5)0.3095 (2)0.0854 (12)
H61.14420.37150.32380.103*
C70.9392 (6)0.5571 (4)0.39933 (17)0.0629 (9)
O10.8073 (5)0.6296 (4)0.43234 (16)0.1001 (11)
O21.1284 (4)0.5656 (4)0.40924 (15)0.1023 (11)
C80.4373 (9)0.4896 (6)0.5529 (2)0.1035 (15)
H8A0.55020.51040.58630.124*0.654 (12)
H8B0.44860.3970.52630.124*0.346 (12)
C9A0.490 (2)0.3545 (9)0.5162 (5)0.160 (5)0.654 (12)
H9A0.62350.36720.49310.24*0.654 (12)
H9B0.38210.33330.48280.24*0.654 (12)
H9C0.50030.27330.54840.24*0.654 (12)
C9B0.633 (3)0.503 (2)0.5926 (10)0.145 (7)0.346 (12)
H9D0.7520.4940.56210.218*0.346 (12)
H9E0.63840.42520.62670.218*0.346 (12)
H9F0.63660.59820.61520.218*0.346 (12)
C100.2311 (13)0.4831 (9)0.5910 (3)0.146 (2)
H10A0.23730.4060.62540.219*
H10B0.11880.46190.5590.219*
H10C0.2050.57730.6130.219*
N10.4289 (4)0.6138 (3)0.50249 (14)0.0686 (9)
H1A0.54940.61690.47860.103*
H1B0.41120.69960.52490.103*
H1C0.3210.59960.47360.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0547 (18)0.0550 (16)0.0509 (16)0.0060 (13)0.0076 (14)0.0036 (14)
C20.065 (2)0.127 (3)0.066 (2)0.005 (2)0.0018 (18)0.019 (2)
C30.088 (3)0.219 (7)0.087 (3)0.044 (4)0.000 (3)0.051 (4)
C40.139 (5)0.180 (6)0.105 (4)0.071 (5)0.027 (4)0.077 (4)
C50.133 (5)0.122 (4)0.139 (5)0.021 (4)0.051 (4)0.081 (4)
C60.074 (3)0.093 (3)0.090 (3)0.004 (2)0.015 (2)0.027 (2)
C70.064 (2)0.0684 (19)0.0562 (17)0.0085 (18)0.0081 (16)0.0026 (17)
O10.0820 (19)0.107 (2)0.111 (2)0.0111 (16)0.0232 (17)0.0544 (19)
O20.0666 (17)0.152 (3)0.088 (2)0.0107 (17)0.0149 (15)0.031 (2)
C80.118 (3)0.106 (3)0.086 (3)0.020 (3)0.005 (3)0.019 (2)
C9A0.250 (12)0.080 (4)0.151 (7)0.046 (6)0.060 (8)0.034 (4)
C9B0.162 (7)0.145 (14)0.128 (14)0.026 (12)0.049 (8)0.023 (12)
C100.161 (5)0.159 (5)0.118 (4)0.002 (5)0.044 (4)0.028 (4)
N10.0621 (16)0.0755 (18)0.0683 (17)0.0024 (14)0.0043 (14)0.0155 (14)
Geometric parameters (Å, º) top
C1—C61.357 (5)C8—C101.513 (9)
C1—C21.361 (5)C8—H8A0.99
C1—C71.503 (5)C8—H8B0.99
C2—C31.388 (6)C9A—H8B0.5074
C2—H20.94C9A—H9A0.97
C3—C41.361 (9)C9A—H9B0.97
C3—H30.94C9A—H9C0.97
C4—C51.342 (10)C9B—H9D0.97
C4—H40.94C9B—H9E0.97
C5—C61.377 (7)C9B—H9F0.97
C5—H50.94C10—H10A0.97
C6—H60.94C10—H10B0.97
C7—O21.226 (4)C10—H10C0.97
C7—O11.247 (4)N1—H1A0.9
C8—C9A1.458 (10)N1—H1B0.9
C8—C9B1.474 (18)N1—H1C0.9
C8—N11.497 (5)
C6—C1—C2118.7 (4)C9B—C8—H8B106.6
C6—C1—C7119.0 (3)N1—C8—H8B107.1
C2—C1—C7122.3 (3)C10—C8—H8B106.8
C1—C2—C3120.4 (4)H8A—C8—H8B117.1
C1—C2—H2119.8C8—C9A—H9A109.5
C3—C2—H2119.8H8B—C9A—H9A123.4
C4—C3—C2119.3 (5)C8—C9A—H9B109.5
C4—C3—H3120.3H8B—C9A—H9B92.2
C2—C3—H3120.3C8—C9A—H9C109.5
C5—C4—C3120.8 (5)H8B—C9A—H9C111
C5—C4—H4119.6C8—C9B—H9D109.5
C3—C4—H4119.6C8—C9B—H9E109.5
C4—C5—C6119.3 (5)H9D—C9B—H9E109.5
C4—C5—H5120.3C8—C9B—H9F109.5
C6—C5—H5120.3H9D—C9B—H9F109.5
C1—C6—C5121.5 (4)H9E—C9B—H9F109.5
C1—C6—H6119.3C8—C10—H10A109.5
C5—C6—H6119.3C8—C10—H10B109.5
O2—C7—O1123.4 (4)H10A—C10—H10B109.5
O2—C7—C1118.1 (3)C8—C10—H10C109.5
O1—C7—C1118.5 (3)H10A—C10—H10C109.5
C9A—C8—N1108.4 (4)H10B—C10—H10C109.5
C9B—C8—N1108.4 (10)C8—N1—H1A109.5
C9A—C8—C10114.3 (7)C8—N1—H1B109.5
C9B—C8—C10118.7 (8)H1A—N1—H1B109.5
N1—C8—C10108.8 (4)C8—N1—H1C109.5
C9A—C8—H8A108.4H1A—N1—H1C109.5
N1—C8—H8A108.4H1B—N1—H1C109.5
C10—C8—H8A108.4
C6—C1—C2—C30.3 (7)C7—C1—C6—C5177.7 (4)
C7—C1—C2—C3177.8 (4)C4—C5—C6—C10.2 (9)
C1—C2—C3—C40.1 (9)C6—C1—C7—O27.1 (5)
C2—C3—C4—C50.2 (11)C2—C1—C7—O2170.5 (4)
C3—C4—C5—C60.4 (11)C6—C1—C7—O1175.3 (4)
C2—C1—C6—C50.1 (7)C2—C1—C7—O17.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.91.882.781 (4)177
N1—H1B···O1i0.91.882.763 (4)167
N1—H1C···O2ii0.91.792.681 (4)174
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x1, y, z.
(II) benzylammonium (R)-2-phenylpropyl-1-carboxylate top
Crystal data top
C7H10N+·C9H9O2F(000) = 552
Mr = 257.32Dx = 1.217 Mg m3
Dm = 0 Mg m3
Dm measured by not measured
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 4876 reflections
a = 30.970 (2) Åθ = 2.7–28.1°
b = 5.8832 (4) ŵ = 0.08 mm1
c = 7.8239 (5) ÅT = 173 K
β = 99.825 (2)°Plate, colourless
V = 1404.63 (16) Å30.63 × 0.26 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1660 reflections with I > 2σ(I)
ω scansRint = 0.068
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 28°, θmin = 1.3°
Tmin = 0.951, Tmax = 0.993h = 4040
16064 measured reflectionsk = 77
1863 independent reflectionsl = 1010
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0504P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.21 e Å3
1863 reflectionsΔρmin = 0.15 e Å3
174 parametersAbsolute structure: Flack (1983), with 1534 Friedel pairs
Crystal data top
C7H10N+·C9H9O2V = 1404.63 (16) Å3
Mr = 257.32Z = 4
Monoclinic, C2Mo Kα radiation
a = 30.970 (2) ŵ = 0.08 mm1
b = 5.8832 (4) ÅT = 173 K
c = 7.8239 (5) Å0.63 × 0.26 × 0.09 mm
β = 99.825 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1863 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1660 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.993Rint = 0.068
16064 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.086H-atom parameters constrained
S = 1.09Δρmax = 0.21 e Å3
1863 reflectionsΔρmin = 0.15 e Å3
174 parametersAbsolute structure: Flack (1983), with 1534 Friedel pairs
Special details top

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.30330 (5)0.6853 (3)0.7906 (2)0.0261 (3)
C20.31586 (5)0.5265 (3)0.9455 (2)0.0299 (4)
H20.30850.36720.90620.036*
C30.28863 (6)0.5874 (4)1.0844 (2)0.0392 (4)
H3A0.2980.49381.18770.059*
H3B0.25760.55911.03960.059*
H3C0.29290.74841.11490.059*
C40.36465 (5)0.5402 (3)1.01108 (19)0.0292 (4)
C50.38331 (6)0.7262 (3)1.1045 (2)0.0366 (4)
H50.36520.84961.12640.044*
C60.42782 (6)0.7347 (4)1.1664 (2)0.0448 (5)
H60.440.86271.23120.054*
C70.45445 (6)0.5584 (4)1.1342 (2)0.0494 (5)
H70.48510.5641.17660.059*
C80.43641 (6)0.3738 (4)1.0402 (2)0.0482 (5)
H80.45480.25251.01670.058*
C90.39188 (6)0.3632 (3)0.9796 (2)0.0386 (4)
H90.37980.23390.9160.046*
O10.29267 (4)0.5987 (2)0.64142 (14)0.0328 (3)
O20.30422 (4)0.8926 (2)0.82038 (14)0.0339 (3)
C100.12920 (5)0.5775 (3)0.49970 (19)0.0321 (4)
C110.10961 (6)0.4026 (4)0.3950 (2)0.0392 (4)
H110.12630.2730.37450.047*
C120.06590 (7)0.4164 (4)0.3205 (2)0.0477 (5)
H120.05270.29750.24770.057*
C130.04147 (6)0.6034 (4)0.3522 (2)0.0491 (5)
H130.01130.61240.30190.059*
C140.06063 (7)0.7761 (4)0.4559 (3)0.0492 (5)
H140.04380.90460.47730.059*
C150.10445 (6)0.7636 (4)0.5296 (2)0.0403 (4)
H150.11760.88390.60120.048*
C160.17665 (6)0.5610 (3)0.5796 (2)0.0351 (4)
H16A0.18170.64740.68980.042*
H16B0.18410.39990.60710.042*
N10.20620 (4)0.6503 (2)0.46383 (17)0.0294 (3)
H1A0.23440.64470.520.044*
H1B0.19890.79680.43480.044*
H1C0.20330.56410.3660.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0210 (7)0.0288 (9)0.0277 (8)0.0001 (6)0.0018 (6)0.0004 (6)
C20.0338 (8)0.0256 (8)0.0286 (8)0.0023 (7)0.0009 (6)0.0018 (7)
C30.0379 (9)0.0444 (11)0.0361 (9)0.0017 (9)0.0088 (7)0.0086 (8)
C40.0343 (9)0.0295 (9)0.0228 (7)0.0022 (7)0.0021 (6)0.0043 (7)
C50.0394 (10)0.0338 (10)0.0351 (9)0.0020 (8)0.0023 (7)0.0002 (8)
C60.0422 (11)0.0472 (12)0.0418 (10)0.0100 (9)0.0023 (8)0.0024 (9)
C70.0311 (9)0.0718 (16)0.0425 (10)0.0001 (10)0.0017 (7)0.0110 (11)
C80.0415 (10)0.0611 (14)0.0414 (10)0.0183 (10)0.0050 (8)0.0042 (10)
C90.0438 (10)0.0402 (11)0.0294 (8)0.0095 (8)0.0005 (7)0.0016 (8)
O10.0366 (6)0.0306 (6)0.0277 (5)0.0007 (5)0.0049 (4)0.0027 (5)
O20.0474 (7)0.0244 (6)0.0302 (6)0.0039 (6)0.0072 (5)0.0007 (5)
C100.0396 (9)0.0342 (9)0.0229 (7)0.0021 (8)0.0067 (6)0.0022 (7)
C110.0437 (10)0.0368 (9)0.0391 (9)0.0053 (9)0.0130 (8)0.0037 (9)
C120.0448 (11)0.0553 (13)0.0432 (10)0.0156 (11)0.0083 (8)0.0090 (10)
C130.0336 (10)0.0679 (15)0.0455 (10)0.0025 (11)0.0063 (8)0.0066 (11)
C140.0473 (12)0.0536 (13)0.0484 (11)0.0098 (10)0.0127 (9)0.0010 (11)
C150.0503 (11)0.0368 (11)0.0342 (9)0.0007 (9)0.0087 (8)0.0042 (8)
C160.0441 (10)0.0339 (10)0.0257 (7)0.0007 (8)0.0014 (6)0.0023 (7)
N10.0317 (7)0.0249 (7)0.0282 (6)0.0003 (6)0.0041 (5)0.0005 (6)
Geometric parameters (Å, º) top
C1—O21.241 (2)C9—H90.95
C1—O11.2644 (19)C10—C151.379 (3)
C1—C21.527 (2)C10—C111.389 (3)
C2—C41.513 (2)C10—C161.499 (2)
C2—C31.527 (2)C11—C121.382 (3)
C2—H21C11—H110.95
C3—H3A0.98C12—C131.381 (3)
C3—H3B0.98C12—H120.95
C3—H3C0.98C13—C141.371 (3)
C4—C51.386 (2)C13—H130.95
C4—C91.388 (3)C14—C151.383 (3)
C5—C61.381 (3)C14—H140.95
C5—H50.95C15—H150.95
C6—C71.375 (3)C16—N11.489 (2)
C6—H60.95C16—H16A0.99
C7—C81.376 (3)C16—H16B0.99
C7—H70.95N1—H1A0.91
C8—C91.381 (3)N1—H1B0.91
C8—H80.95N1—H1C0.91
O2—C1—O1124.28 (15)C4—C9—H9119.8
O2—C1—C2117.23 (14)C15—C10—C11119.26 (17)
O1—C1—C2118.49 (15)C15—C10—C16120.96 (16)
C4—C2—C3112.77 (13)C11—C10—C16119.79 (16)
C4—C2—C1109.92 (13)C12—C11—C10120.21 (19)
C3—C2—C1108.91 (14)C12—C11—H11119.9
C4—C2—H2108.4C10—C11—H11119.9
C3—C2—H2108.4C13—C12—C11119.90 (19)
C1—C2—H2108.4C13—C12—H12120.1
C2—C3—H3A109.5C11—C12—H12120.1
C2—C3—H3B109.5C14—C13—C12120.10 (18)
H3A—C3—H3B109.5C14—C13—H13119.9
C2—C3—H3C109.5C12—C13—H13119.9
H3A—C3—H3C109.5C13—C14—C15120.2 (2)
H3B—C3—H3C109.5C13—C14—H14119.9
C5—C4—C9118.33 (16)C15—C14—H14119.9
C5—C4—C2121.57 (15)C10—C15—C14120.38 (18)
C9—C4—C2120.09 (15)C10—C15—H15119.8
C6—C5—C4120.97 (18)C14—C15—H15119.8
C6—C5—H5119.5N1—C16—C10112.59 (12)
C4—C5—H5119.5N1—C16—H16A109.1
C7—C6—C5120.16 (19)C10—C16—H16A109.1
C7—C6—H6119.9N1—C16—H16B109.1
C5—C6—H6119.9C10—C16—H16B109.1
C6—C7—C8119.47 (17)H16A—C16—H16B107.8
C6—C7—H7120.3C16—N1—H1A109.5
C8—C7—H7120.3C16—N1—H1B109.5
C7—C8—C9120.66 (19)H1A—N1—H1B109.5
C7—C8—H8119.7C16—N1—H1C109.5
C9—C8—H8119.7H1A—N1—H1C109.5
C8—C9—C4120.41 (18)H1B—N1—H1C109.5
C8—C9—H9119.8
O2—C1—C2—C471.75 (18)C7—C8—C9—C40.7 (3)
O1—C1—C2—C4108.31 (16)C5—C4—C9—C80.1 (3)
O2—C1—C2—C352.26 (19)C2—C4—C9—C8179.50 (16)
O1—C1—C2—C3127.67 (16)C15—C10—C11—C120.6 (3)
C3—C2—C4—C547.4 (2)C16—C10—C11—C12179.88 (16)
C1—C2—C4—C574.37 (18)C10—C11—C12—C130.9 (3)
C3—C2—C4—C9132.03 (17)C11—C12—C13—C140.6 (3)
C1—C2—C4—C9106.23 (17)C12—C13—C14—C150.1 (3)
C9—C4—C5—C60.6 (2)C11—C10—C15—C140.1 (3)
C2—C4—C5—C6178.81 (16)C16—C10—C15—C14179.60 (16)
C4—C5—C6—C70.7 (3)C13—C14—C15—C100.2 (3)
C5—C6—C7—C80.0 (3)C15—C10—C16—N193.06 (18)
C6—C7—C8—C90.7 (3)C11—C10—C16—N187.43 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.911.912.8152 (16)174
N1—H1B···O1i0.911.912.7652 (18)157
N1—H1C···O2ii0.911.762.6651 (18)178
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y1/2, z+1.
(III) (RS)-1-phenylethylammonium naphthalene-1-carboxylate top
Crystal data top
C8H12N+·C11H7O2Z = 4
Mr = 293.35F(000) = 624
Triclinic, P1Dx = 1.188 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8979 (9) ÅCell parameters from 12505 reflections
b = 12.0013 (8) Åθ = 0.4–27.1°
c = 16.0498 (15) ŵ = 0.08 mm1
α = 100.213 (5)°T = 173 K
β = 103.102 (3)°Needle, colourless
γ = 90.652 (5)°0.51 × 0.35 × 0.12 mm
V = 1640.5 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3917 reflections with I > 2σ(I)
ω scansRint = 0.075
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 27.1°, θmin = 2.4°
Tmin = 0.962, Tmax = 0.991h = 1111
27233 measured reflectionsk = 1514
7082 independent reflectionsl = 1920
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.068P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.135(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.22 e Å3
7082 reflectionsΔρmin = 0.25 e Å3
401 parameters
Crystal data top
C8H12N+·C11H7O2γ = 90.652 (5)°
Mr = 293.35V = 1640.5 (3) Å3
Triclinic, P1Z = 4
a = 8.8979 (9) ÅMo Kα radiation
b = 12.0013 (8) ŵ = 0.08 mm1
c = 16.0498 (15) ÅT = 173 K
α = 100.213 (5)°0.51 × 0.35 × 0.12 mm
β = 103.102 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7082 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3917 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.991Rint = 0.075
27233 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.00Δρmax = 0.22 e Å3
7082 reflectionsΔρmin = 0.25 e Å3
401 parameters
Special details top

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0372 (2)0.66878 (13)0.33043 (11)0.0291 (4)
C20.0736 (2)0.60999 (15)0.37703 (12)0.0379 (4)
H20.13060.64570.43310.046*
C30.1044 (2)0.49875 (16)0.34374 (13)0.0478 (5)
H30.17990.45930.37750.057*
C40.0254 (2)0.44756 (16)0.26283 (13)0.0465 (5)
H40.04830.37280.240.056*
C50.0896 (2)0.50338 (14)0.21235 (11)0.0368 (4)
C60.1722 (3)0.45001 (16)0.12847 (13)0.0502 (5)
H60.15050.37470.10610.06*
C70.2815 (3)0.50399 (17)0.07935 (13)0.0540 (6)
H70.33580.46660.02310.065*
C80.3144 (3)0.61509 (17)0.11169 (13)0.0481 (5)
H80.39060.65280.07680.058*
C90.2385 (2)0.66975 (15)0.19248 (11)0.0363 (4)
H90.2630.74490.21310.044*
C100.1238 (2)0.61658 (14)0.24634 (11)0.0304 (4)
C110.0576 (2)0.78893 (14)0.37164 (11)0.0300 (4)
O10.06319 (14)0.84530 (10)0.41804 (8)0.0357 (3)
O20.18822 (14)0.82804 (10)0.35959 (8)0.0419 (3)
C130.5803 (2)0.32449 (14)0.37054 (12)0.0378 (4)
H130.64080.31520.42550.045*
C140.6114 (2)0.41975 (16)0.33680 (13)0.0475 (5)
H140.69140.47430.36870.057*
C150.5263 (3)0.43367 (16)0.25806 (13)0.0476 (5)
H150.54810.49810.23510.057*
C160.4062 (2)0.35450 (15)0.20974 (12)0.0369 (4)
C170.3170 (3)0.36900 (18)0.12836 (13)0.0531 (6)
H170.3380.43390.10560.064*
C180.2017 (3)0.29252 (19)0.08146 (13)0.0569 (6)
H180.1430.30420.02670.068*
C190.1693 (2)0.19631 (17)0.11410 (12)0.0473 (5)
H190.08890.14280.0810.057*
C200.2525 (2)0.17877 (15)0.19322 (11)0.0360 (4)
H200.22910.1130.21420.043*
C210.3727 (2)0.25709 (13)0.24417 (11)0.0296 (4)
C220.4653 (2)0.24406 (13)0.32678 (11)0.0296 (4)
C230.4452 (2)0.14361 (14)0.36902 (11)0.0296 (4)
O30.56591 (14)0.11208 (10)0.41573 (7)0.0365 (3)
O40.31428 (15)0.09705 (10)0.35766 (8)0.0425 (3)
C240.3880 (2)0.80597 (15)0.26047 (12)0.0365 (4)
C250.2674 (3)0.72691 (19)0.22057 (14)0.0538 (6)
H250.22980.68020.25420.065*
C260.2003 (3)0.7146 (2)0.13242 (15)0.0641 (6)
H260.11780.65970.10590.077*
C270.2540 (3)0.7824 (2)0.08352 (14)0.0620 (7)
H270.20760.77540.02320.074*
C280.3747 (3)0.8602 (2)0.12225 (14)0.0617 (6)
H280.41290.90640.08850.074*
C290.4402 (3)0.87160 (17)0.20931 (13)0.0484 (5)
H290.52370.9260.23510.058*
C300.4621 (2)0.82355 (15)0.35694 (12)0.0371 (4)
H300.56030.87060.36760.045*
C310.5024 (2)0.71338 (16)0.39042 (13)0.0478 (5)
H31A0.55070.7310.45280.072*
H31B0.57450.67330.35920.072*
H31C0.4080.66530.38070.072*
N10.35936 (17)0.88833 (11)0.40702 (9)0.0329 (4)
H1A0.26580.85010.39470.049*
H1B0.34680.95790.3920.049*
H1C0.40270.89670.4650.049*
C320.8890 (2)0.06757 (15)0.25853 (12)0.0379 (4)
C330.7690 (3)0.12616 (19)0.21794 (14)0.0541 (6)
H330.73290.18950.2510.065*
C340.7008 (3)0.0942 (2)0.13029 (14)0.0644 (7)
H340.6190.13550.10350.077*
C350.7522 (3)0.0019 (2)0.08197 (14)0.0636 (7)
H350.70530.02120.02180.076*
C360.8722 (3)0.05630 (19)0.12179 (14)0.0623 (7)
H360.90870.11930.08860.075*
C370.9394 (3)0.02401 (16)0.20894 (13)0.0479 (5)
H371.02150.06530.23540.057*
C380.9640 (2)0.09944 (15)0.35446 (12)0.0366 (4)
H381.06060.05730.36570.044*
C391.0088 (2)0.22533 (16)0.38598 (13)0.0465 (5)
H39A0.91680.26920.37360.07*
H39B1.08490.24820.35580.07*
H39C1.05360.23960.44880.07*
N20.85974 (17)0.06125 (12)0.40619 (9)0.0321 (3)
H2A0.76630.09190.39230.048*
H2B0.90250.08430.4640.048*
H2C0.8470.01570.39380.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0311 (10)0.0265 (9)0.0283 (9)0.0055 (7)0.0058 (8)0.0034 (7)
C20.0418 (11)0.0334 (10)0.0344 (11)0.0009 (9)0.0009 (9)0.0054 (8)
C30.0545 (13)0.0336 (11)0.0508 (13)0.0079 (10)0.0004 (11)0.0121 (9)
C40.0624 (14)0.0280 (10)0.0481 (13)0.0072 (10)0.0126 (11)0.0045 (9)
C50.0502 (12)0.0263 (9)0.0326 (10)0.0027 (8)0.0092 (9)0.0028 (8)
C60.0738 (16)0.0339 (11)0.0370 (12)0.0036 (10)0.0095 (11)0.0041 (9)
C70.0752 (16)0.0483 (13)0.0286 (11)0.0095 (11)0.0005 (11)0.0022 (9)
C80.0576 (14)0.0457 (12)0.0358 (11)0.0043 (10)0.0033 (10)0.0126 (9)
C90.0400 (11)0.0325 (10)0.0348 (11)0.0022 (8)0.0054 (9)0.0070 (8)
C100.0348 (10)0.0274 (9)0.0300 (10)0.0052 (8)0.0089 (8)0.0066 (7)
C110.0320 (11)0.0295 (9)0.0280 (10)0.0043 (8)0.0064 (8)0.0050 (7)
O10.0326 (7)0.0340 (7)0.0344 (7)0.0077 (6)0.0036 (6)0.0036 (5)
O20.0316 (8)0.0329 (7)0.0551 (9)0.0002 (6)0.0065 (6)0.0036 (6)
C130.0392 (11)0.0325 (10)0.0375 (11)0.0003 (8)0.0012 (9)0.0053 (8)
C140.0525 (13)0.0327 (10)0.0519 (13)0.0092 (9)0.0044 (11)0.0043 (9)
C150.0643 (14)0.0305 (10)0.0510 (13)0.0030 (10)0.0157 (11)0.0133 (9)
C160.0491 (12)0.0309 (10)0.0334 (10)0.0046 (9)0.0123 (9)0.0091 (8)
C170.0782 (17)0.0481 (12)0.0370 (12)0.0041 (12)0.0128 (12)0.0191 (10)
C180.0752 (17)0.0649 (15)0.0285 (11)0.0063 (13)0.0020 (11)0.0161 (11)
C190.0561 (14)0.0489 (12)0.0303 (11)0.0007 (10)0.0012 (10)0.0011 (9)
C200.0411 (11)0.0338 (10)0.0322 (10)0.0034 (9)0.0068 (9)0.0059 (8)
C210.0351 (10)0.0263 (9)0.0285 (9)0.0078 (8)0.0096 (8)0.0044 (7)
C220.0306 (10)0.0279 (9)0.0315 (10)0.0053 (8)0.0089 (8)0.0062 (7)
C230.0304 (11)0.0293 (9)0.0283 (10)0.0056 (8)0.0067 (8)0.0033 (7)
O30.0327 (7)0.0436 (7)0.0344 (7)0.0092 (6)0.0035 (6)0.0157 (6)
O40.0320 (8)0.0436 (7)0.0555 (9)0.0014 (6)0.0051 (6)0.0250 (6)
C240.0367 (11)0.0374 (10)0.0341 (10)0.0067 (9)0.0087 (9)0.0026 (8)
C250.0539 (14)0.0634 (14)0.0452 (13)0.0040 (11)0.0127 (11)0.0119 (11)
C260.0639 (16)0.0702 (16)0.0459 (14)0.0107 (12)0.0003 (12)0.0046 (12)
C270.0839 (19)0.0654 (15)0.0312 (12)0.0110 (14)0.0061 (12)0.0032 (11)
C280.0879 (19)0.0596 (14)0.0384 (13)0.0029 (13)0.0130 (13)0.0136 (11)
C290.0611 (14)0.0427 (11)0.0399 (12)0.0026 (10)0.0089 (11)0.0075 (9)
C300.0331 (10)0.0404 (10)0.0399 (11)0.0073 (8)0.0089 (9)0.0122 (8)
C310.0519 (13)0.0446 (12)0.0488 (13)0.0137 (10)0.0106 (10)0.0140 (10)
N10.0347 (9)0.0316 (8)0.0316 (8)0.0002 (7)0.0045 (7)0.0077 (6)
C320.0429 (11)0.0397 (11)0.0343 (10)0.0025 (9)0.0135 (9)0.0095 (8)
C330.0570 (14)0.0657 (14)0.0412 (13)0.0139 (11)0.0157 (11)0.0076 (10)
C340.0635 (16)0.0844 (18)0.0469 (15)0.0144 (13)0.0080 (12)0.0213 (13)
C350.0820 (18)0.0738 (16)0.0304 (12)0.0061 (14)0.0030 (12)0.0111 (11)
C360.097 (2)0.0521 (13)0.0370 (13)0.0069 (13)0.0177 (13)0.0042 (10)
C370.0673 (15)0.0396 (11)0.0380 (12)0.0044 (10)0.0138 (11)0.0080 (9)
C380.0346 (11)0.0358 (10)0.0408 (11)0.0023 (8)0.0119 (9)0.0065 (8)
C390.0528 (13)0.0383 (11)0.0480 (13)0.0077 (9)0.0142 (10)0.0041 (9)
N20.0341 (8)0.0298 (8)0.0305 (8)0.0014 (6)0.0050 (7)0.0040 (6)
Geometric parameters (Å, º) top
C1—C21.378 (2)C24—C291.380 (3)
C1—C101.423 (2)C24—C251.383 (3)
C1—C111.507 (2)C24—C301.515 (2)
C2—C31.402 (3)C25—C261.386 (3)
C2—H20.95C25—H250.95
C3—C41.361 (3)C26—C271.376 (3)
C3—H30.95C26—H260.95
C4—C51.409 (3)C27—C281.371 (3)
C4—H40.95C27—H270.95
C5—C61.413 (3)C28—C291.368 (3)
C5—C101.434 (2)C28—H280.95
C6—C71.355 (3)C29—H290.95
C6—H60.95C30—N11.488 (2)
C7—C81.402 (3)C30—C311.530 (2)
C7—H70.95C30—H301
C8—C91.364 (3)C31—H31A0.98
C8—H80.95C31—H31B0.98
C9—C101.416 (2)C31—H31C0.98
C9—H90.95N1—H1A0.91
C11—O21.245 (2)N1—H1B0.91
C11—O11.269 (2)N1—H1C0.91
C13—C221.373 (2)C32—C371.380 (3)
C13—C141.399 (3)C32—C331.387 (3)
C13—H130.95C32—C381.510 (3)
C14—C151.357 (3)C33—C341.382 (3)
C14—H140.95C33—H330.95
C15—C161.409 (3)C34—C351.379 (3)
C15—H150.95C34—H340.95
C16—C171.407 (3)C35—C361.380 (3)
C16—C211.434 (2)C35—H350.95
C17—C181.359 (3)C36—C371.374 (3)
C17—H170.95C36—H360.95
C18—C191.402 (3)C37—H370.95
C18—H180.95C38—N21.494 (2)
C19—C201.370 (3)C38—C391.524 (3)
C19—H190.95C38—H381
C20—C211.416 (2)C39—H39A0.98
C20—H200.95C39—H39B0.98
C21—C221.429 (2)C39—H39C0.98
C22—C231.511 (2)N2—H2A0.91
C23—O41.247 (2)N2—H2B0.91
C23—O31.2666 (19)N2—H2C0.91
C2—C1—C10119.99 (15)C24—C25—C26121.2 (2)
C2—C1—C11117.08 (15)C24—C25—H25119.4
C10—C1—C11122.91 (15)C26—C25—H25119.4
C1—C2—C3121.62 (17)C27—C26—C25119.6 (2)
C1—C2—H2119.2C27—C26—H26120.2
C3—C2—H2119.2C25—C26—H26120.2
C4—C3—C2119.64 (18)C28—C27—C26119.7 (2)
C4—C3—H3120.2C28—C27—H27120.2
C2—C3—H3120.2C26—C27—H27120.2
C3—C4—C5121.22 (17)C29—C28—C27120.3 (2)
C3—C4—H4119.4C29—C28—H28119.9
C5—C4—H4119.4C27—C28—H28119.9
C4—C5—C6121.23 (17)C28—C29—C24121.6 (2)
C4—C5—C10119.61 (16)C28—C29—H29119.2
C6—C5—C10119.16 (17)C24—C29—H29119.2
C7—C6—C5121.36 (18)N1—C30—C24109.71 (14)
C7—C6—H6119.3N1—C30—C31110.06 (14)
C5—C6—H6119.3C24—C30—C31113.80 (16)
C6—C7—C8119.84 (19)N1—C30—H30107.7
C6—C7—H7120.1C24—C30—H30107.7
C8—C7—H7120.1C31—C30—H30107.7
C9—C8—C7120.90 (19)C30—C31—H31A109.5
C9—C8—H8119.5C30—C31—H31B109.5
C7—C8—H8119.5H31A—C31—H31B109.5
C8—C9—C10121.28 (17)C30—C31—H31C109.5
C8—C9—H9119.4H31A—C31—H31C109.5
C10—C9—H9119.4H31B—C31—H31C109.5
C9—C10—C1124.62 (15)C30—N1—H1A109.5
C9—C10—C5117.45 (16)C30—N1—H1B109.5
C1—C10—C5117.90 (15)H1A—N1—H1B109.5
O2—C11—O1123.32 (15)C30—N1—H1C109.5
O2—C11—C1120.10 (15)H1A—N1—H1C109.5
O1—C11—C1116.58 (15)H1B—N1—H1C109.5
C22—C13—C14122.15 (17)C37—C32—C33118.18 (18)
C22—C13—H13118.9C37—C32—C38119.39 (17)
C14—C13—H13118.9C33—C32—C38122.43 (17)
C15—C14—C13119.46 (18)C34—C33—C32121.3 (2)
C15—C14—H14120.3C34—C33—H33119.4
C13—C14—H14120.3C32—C33—H33119.4
C14—C15—C16121.35 (17)C35—C34—C33119.7 (2)
C14—C15—H15119.3C35—C34—H34120.2
C16—C15—H15119.3C33—C34—H34120.2
C17—C16—C15121.55 (17)C34—C35—C36119.4 (2)
C17—C16—C21118.89 (18)C34—C35—H35120.3
C15—C16—C21119.57 (16)C36—C35—H35120.3
C18—C17—C16121.66 (18)C37—C36—C35120.6 (2)
C18—C17—H17119.2C37—C36—H36119.7
C16—C17—H17119.2C35—C36—H36119.7
C17—C18—C19119.86 (19)C36—C37—C32120.9 (2)
C17—C18—H18120.1C36—C37—H37119.6
C19—C18—H18120.1C32—C37—H37119.6
C20—C19—C18120.64 (19)N2—C38—C32109.65 (14)
C20—C19—H19119.7N2—C38—C39109.90 (14)
C18—C19—H19119.7C32—C38—C39114.30 (15)
C19—C20—C21121.05 (17)N2—C38—H38107.6
C19—C20—H20119.5C32—C38—H38107.6
C21—C20—H20119.5C39—C38—H38107.6
C20—C21—C22124.26 (15)C38—C39—H39A109.5
C20—C21—C16117.90 (15)C38—C39—H39B109.5
C22—C21—C16117.83 (16)H39A—C39—H39B109.5
C13—C22—C21119.63 (15)C38—C39—H39C109.5
C13—C22—C23117.23 (15)H39A—C39—H39C109.5
C21—C22—C23123.13 (15)H39B—C39—H39C109.5
O4—C23—O3123.43 (15)C38—N2—H2A109.5
O4—C23—C22119.95 (15)C38—N2—H2B109.5
O3—C23—C22116.61 (16)H2A—N2—H2B109.5
C29—C24—C25117.69 (18)C38—N2—H2C109.5
C29—C24—C30119.59 (17)H2A—N2—H2C109.5
C25—C24—C30122.72 (17)H2B—N2—H2C109.5
C10—C1—C2—C30.1 (3)C15—C16—C21—C20179.26 (16)
C11—C1—C2—C3178.48 (17)C17—C16—C21—C22179.79 (17)
C1—C2—C3—C41.2 (3)C15—C16—C21—C220.7 (2)
C2—C3—C4—C51.4 (3)C14—C13—C22—C210.3 (3)
C3—C4—C5—C6179.69 (19)C14—C13—C22—C23178.68 (17)
C3—C4—C5—C100.4 (3)C20—C21—C22—C13179.28 (16)
C4—C5—C6—C7179.2 (2)C16—C21—C22—C130.8 (2)
C10—C5—C6—C70.7 (3)C20—C21—C22—C230.4 (2)
C5—C6—C7—C80.0 (3)C16—C21—C22—C23178.09 (15)
C6—C7—C8—C90.5 (3)C13—C22—C23—O4148.21 (17)
C7—C8—C9—C100.2 (3)C21—C22—C23—O432.8 (2)
C8—C9—C10—C1178.48 (17)C13—C22—C23—O331.1 (2)
C8—C9—C10—C50.5 (3)C21—C22—C23—O3147.86 (16)
C2—C1—C10—C9179.02 (17)C29—C24—C25—C260.5 (3)
C11—C1—C10—C90.5 (3)C30—C24—C25—C26178.71 (19)
C2—C1—C10—C51.1 (2)C24—C25—C26—C270.3 (3)
C11—C1—C10—C5177.40 (15)C25—C26—C27—C281.0 (4)
C4—C5—C10—C9178.92 (17)C26—C27—C28—C290.9 (4)
C6—C5—C10—C91.0 (2)C27—C28—C29—C240.1 (3)
C4—C5—C10—C10.8 (2)C25—C24—C29—C280.6 (3)
C6—C5—C10—C1179.05 (17)C30—C24—C29—C28178.65 (19)
C2—C1—C11—O2145.61 (17)C29—C24—C30—N1103.07 (19)
C10—C1—C11—O235.9 (2)C25—C24—C30—N176.1 (2)
C2—C1—C11—O134.2 (2)C29—C24—C30—C31133.13 (19)
C10—C1—C11—O1144.34 (16)C25—C24—C30—C3147.6 (2)
C22—C13—C14—C150.4 (3)C37—C32—C33—C340.1 (3)
C13—C14—C15—C160.5 (3)C38—C32—C33—C34179.00 (19)
C14—C15—C16—C17179.5 (2)C32—C33—C34—C350.3 (3)
C14—C15—C16—C210.1 (3)C33—C34—C35—C360.7 (4)
C15—C16—C17—C18179.7 (2)C34—C35—C36—C370.7 (4)
C21—C16—C17—C180.8 (3)C35—C36—C37—C320.3 (3)
C16—C17—C18—C190.0 (3)C33—C32—C37—C360.1 (3)
C17—C18—C19—C200.3 (3)C38—C32—C37—C36179.04 (18)
C18—C19—C20—C210.1 (3)C37—C32—C38—N2103.52 (19)
C19—C20—C21—C22179.38 (17)C33—C32—C38—N275.6 (2)
C19—C20—C21—C160.9 (3)C37—C32—C38—C39132.58 (19)
C17—C16—C21—C201.2 (2)C33—C32—C38—C3948.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.911.922.7305 (19)147
N1—H1B···O4i0.911.862.7650 (17)178
N1—H1C···O3ii0.911.892.7716 (18)162
N2—H2A···O30.911.912.7232 (18)147
N2—H2B···O1ii0.911.892.7695 (19)163
N2—H2C···O2iii0.911.862.7678 (18)175
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y1, z.
(IV) benzylammonium benzoate–benzoic acid (1/1) top
Crystal data top
C7H10N+·C7H5O2·C7H6O2F(000) = 744
Mr = 351.39Dx = 1.263 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 24815 reflections
a = 12.3249 (11) Åθ = 0.4–27.1°
b = 6.0804 (6) ŵ = 0.09 mm1
c = 24.7669 (17) ÅT = 173 K
β = 95.526 (5)°Block, colourless
V = 1847.4 (3) Å30.5 × 0.08 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4004 independent reflections
Radiation source: fine-focus sealed tube2214 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.094
ω scansθmax = 27°, θmin = 3.1°
Absorption correction: integration
(XPREP; Bruker, 2004)
h = 1515
Tmin = 0.957, Tmax = 0.995k = 77
22843 measured reflectionsl = 3130
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0545P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.114(Δ/σ)max = 0.002
S = 0.96Δρmax = 0.21 e Å3
4004 reflectionsΔρmin = 0.22 e Å3
237 parameters
Crystal data top
C7H10N+·C7H5O2·C7H6O2V = 1847.4 (3) Å3
Mr = 351.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.3249 (11) ŵ = 0.09 mm1
b = 6.0804 (6) ÅT = 173 K
c = 24.7669 (17) Å0.5 × 0.08 × 0.06 mm
β = 95.526 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4004 independent reflections
Absorption correction: integration
(XPREP; Bruker, 2004)
2214 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.995Rint = 0.094
22843 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 0.96Δρmax = 0.21 e Å3
4004 reflectionsΔρmin = 0.22 e Å3
237 parameters
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2004)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.72097 (13)0.1218 (3)0.39195 (6)0.0243 (4)
C20.77136 (13)0.0759 (3)0.40748 (7)0.0301 (4)
H20.76540.1320.44290.036*
C30.83019 (14)0.1920 (3)0.37203 (7)0.0382 (5)
H3A0.86340.32780.3830.046*
C40.84071 (15)0.1112 (4)0.32093 (8)0.0436 (6)
H40.88170.19020.29670.052*
C50.79147 (16)0.0850 (4)0.30498 (8)0.0472 (6)
H50.79830.14090.26970.057*
C60.73197 (14)0.2009 (3)0.34033 (7)0.0365 (5)
H60.69840.33610.3290.044*
C70.65643 (13)0.2460 (3)0.43049 (7)0.0236 (4)
O10.63819 (9)0.15715 (19)0.47483 (4)0.0261 (3)
O20.62322 (9)0.4378 (2)0.41757 (4)0.0305 (3)
C80.44262 (14)0.9390 (3)0.29160 (6)0.0282 (4)
C90.45026 (15)0.8606 (3)0.23976 (7)0.0402 (5)
H90.48510.72390.23460.048*
C100.40736 (18)0.9804 (4)0.19535 (7)0.0535 (6)
H100.4120.92480.15980.064*
C110.35791 (17)1.1800 (4)0.20240 (8)0.0468 (6)
H110.32931.26240.17170.056*
C120.34980 (16)1.2598 (4)0.25331 (8)0.0456 (6)
H120.31581.39770.25810.055*
C130.39134 (17)1.1390 (3)0.29801 (7)0.0415 (5)
H130.38461.19370.33350.05*
C140.48561 (14)0.8134 (3)0.34045 (7)0.0305 (5)
O30.54779 (11)0.6453 (2)0.32883 (4)0.0401 (4)
H30.5730.58360.35770.048*
O40.46587 (10)0.8575 (2)0.38636 (4)0.0421 (4)
C150.25443 (13)0.2956 (3)0.44232 (6)0.0234 (4)
C160.18925 (14)0.4720 (3)0.45402 (6)0.0284 (4)
H160.22170.60880.46480.034*
C170.07698 (15)0.4491 (4)0.45003 (7)0.0346 (5)
H170.03250.57050.45790.042*
C180.02966 (15)0.2506 (4)0.43475 (7)0.0407 (5)
H180.04730.23460.43250.049*
C190.09366 (16)0.0757 (3)0.42269 (7)0.0407 (5)
H190.06080.06070.41190.049*
C200.20618 (15)0.0977 (3)0.42617 (7)0.0321 (5)
H200.25010.02310.41740.039*
C210.37664 (13)0.3184 (3)0.44681 (6)0.0280 (4)
H21A0.40680.21820.42050.034*
H21B0.3960.47080.43750.034*
N10.42661 (11)0.2654 (2)0.50288 (5)0.0249 (4)
H1A0.50030.25550.50280.037*
H1B0.39980.13490.51380.037*
H1C0.41010.37360.52610.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0201 (9)0.0252 (11)0.0272 (9)0.0020 (8)0.0001 (7)0.0032 (8)
C20.0240 (10)0.0296 (12)0.0364 (10)0.0010 (9)0.0020 (8)0.0002 (9)
C30.0275 (11)0.0332 (13)0.0536 (13)0.0059 (9)0.0022 (9)0.0062 (11)
C40.0324 (11)0.0545 (16)0.0438 (13)0.0082 (11)0.0035 (9)0.0173 (11)
C50.0445 (13)0.0664 (17)0.0318 (11)0.0133 (12)0.0094 (9)0.0005 (11)
C60.0361 (11)0.0419 (13)0.0317 (10)0.0103 (10)0.0039 (8)0.0027 (10)
C70.0208 (9)0.0240 (11)0.0248 (9)0.0034 (8)0.0047 (7)0.0023 (9)
O10.0289 (7)0.0262 (7)0.0232 (6)0.0005 (6)0.0024 (5)0.0016 (6)
O20.0397 (8)0.0239 (8)0.0280 (7)0.0066 (6)0.0040 (5)0.0019 (6)
C80.0299 (10)0.0310 (12)0.0232 (9)0.0003 (9)0.0003 (7)0.0002 (9)
C90.0478 (13)0.0445 (13)0.0282 (10)0.0112 (11)0.0039 (9)0.0007 (10)
C100.0722 (16)0.0654 (18)0.0230 (11)0.0152 (14)0.0054 (10)0.0040 (11)
C110.0496 (13)0.0572 (16)0.0328 (11)0.0062 (12)0.0002 (9)0.0162 (11)
C120.0564 (14)0.0371 (13)0.0420 (12)0.0125 (11)0.0023 (10)0.0052 (10)
C130.0593 (14)0.0358 (13)0.0281 (10)0.0092 (11)0.0034 (9)0.0033 (10)
C140.0309 (11)0.0304 (12)0.0293 (10)0.0012 (9)0.0021 (8)0.0035 (9)
O30.0528 (9)0.0408 (9)0.0257 (7)0.0187 (7)0.0005 (6)0.0019 (7)
O40.0572 (9)0.0486 (9)0.0202 (7)0.0161 (7)0.0017 (6)0.0010 (6)
C150.0263 (10)0.0276 (11)0.0156 (8)0.0027 (9)0.0019 (7)0.0015 (8)
C160.0346 (11)0.0279 (11)0.0223 (9)0.0019 (9)0.0011 (8)0.0005 (8)
C170.0323 (11)0.0425 (13)0.0299 (10)0.0051 (10)0.0072 (8)0.0028 (10)
C180.0249 (11)0.0558 (16)0.0411 (11)0.0071 (11)0.0010 (9)0.0111 (11)
C190.0383 (13)0.0335 (13)0.0479 (12)0.0137 (11)0.0073 (10)0.0023 (10)
C200.0347 (11)0.0277 (12)0.0323 (10)0.0001 (9)0.0054 (8)0.0010 (9)
C210.0294 (10)0.0352 (12)0.0192 (9)0.0027 (9)0.0011 (7)0.0004 (8)
N10.0251 (8)0.0251 (9)0.0239 (7)0.0011 (7)0.0001 (6)0.0000 (7)
Geometric parameters (Å, º) top
C1—C61.385 (2)C12—H120.95
C1—C21.390 (2)C13—H130.95
C1—C71.504 (2)C14—O41.2152 (19)
C2—C31.385 (2)C14—O31.326 (2)
C2—H20.95O3—H30.84
C3—C41.375 (2)C15—C201.384 (2)
C3—H3A0.95C15—C161.387 (2)
C4—C51.379 (3)C15—C211.506 (2)
C4—H40.95C16—C171.385 (2)
C5—C61.388 (3)C16—H160.95
C5—H50.95C17—C181.378 (3)
C6—H60.95C17—H170.95
C7—O11.2633 (19)C18—C191.374 (3)
C7—O21.267 (2)C18—H180.95
C8—C91.381 (2)C19—C201.388 (3)
C8—C131.386 (3)C19—H190.95
C8—C141.485 (2)C20—H200.95
C9—C101.381 (3)C21—N11.4989 (19)
C9—H90.95C21—H21A0.99
C10—C111.377 (3)C21—H21B0.99
C10—H100.95N1—H1A0.91
C11—C121.364 (3)N1—H1B0.91
C11—H110.95N1—H1C0.91
C12—C131.385 (3)
C6—C1—C2118.37 (16)C12—C13—H13119.6
C6—C1—C7121.07 (16)C8—C13—H13119.6
C2—C1—C7120.56 (15)O4—C14—O3123.03 (16)
C3—C2—C1120.83 (17)O4—C14—C8124.13 (17)
C3—C2—H2119.6O3—C14—C8112.83 (15)
C1—C2—H2119.6C14—O3—H3109.5
C4—C3—C2120.20 (19)C20—C15—C16119.41 (16)
C4—C3—H3A119.9C20—C15—C21120.01 (16)
C2—C3—H3A119.9C16—C15—C21120.58 (16)
C3—C4—C5119.64 (18)C17—C16—C15120.16 (17)
C3—C4—H4120.2C17—C16—H16119.9
C5—C4—H4120.2C15—C16—H16119.9
C4—C5—C6120.24 (19)C18—C17—C16120.08 (18)
C4—C5—H5119.9C18—C17—H17120
C6—C5—H5119.9C16—C17—H17120
C1—C6—C5120.70 (19)C19—C18—C17120.07 (17)
C1—C6—H6119.6C19—C18—H18120
C5—C6—H6119.6C17—C18—H18120
O1—C7—O2122.22 (16)C18—C19—C20120.21 (18)
O1—C7—C1119.09 (16)C18—C19—H19119.9
O2—C7—C1118.69 (15)C20—C19—H19119.9
C9—C8—C13118.80 (17)C15—C20—C19120.05 (18)
C9—C8—C14121.93 (17)C15—C20—H20120
C13—C8—C14119.26 (15)C19—C20—H20120
C10—C9—C8120.22 (19)N1—C21—C15111.56 (13)
C10—C9—H9119.9N1—C21—H21A109.3
C8—C9—H9119.9C15—C21—H21A109.3
C11—C10—C9120.25 (18)N1—C21—H21B109.3
C11—C10—H10119.9C15—C21—H21B109.3
C9—C10—H10119.9H21A—C21—H21B108
C12—C11—C10120.24 (18)C21—N1—H1A109.5
C12—C11—H11119.9C21—N1—H1B109.5
C10—C11—H11119.9H1A—N1—H1B109.5
C11—C12—C13119.7 (2)C21—N1—H1C109.5
C11—C12—H12120.1H1A—N1—H1C109.5
C13—C12—H12120.1H1B—N1—H1C109.5
C12—C13—C8120.74 (17)
C6—C1—C2—C30.7 (2)C11—C12—C13—C81.0 (3)
C7—C1—C2—C3179.48 (15)C9—C8—C13—C120.9 (3)
C1—C2—C3—C40.8 (3)C14—C8—C13—C12179.64 (18)
C2—C3—C4—C50.6 (3)C9—C8—C14—O4167.81 (18)
C3—C4—C5—C60.3 (3)C13—C8—C14—O410.9 (3)
C2—C1—C6—C50.3 (3)C9—C8—C14—O311.7 (2)
C7—C1—C6—C5179.85 (16)C13—C8—C14—O3169.57 (17)
C4—C5—C6—C10.1 (3)C20—C15—C16—C170.6 (2)
C6—C1—C7—O1172.24 (15)C21—C15—C16—C17179.68 (15)
C2—C1—C7—O17.9 (2)C15—C16—C17—C180.4 (2)
C6—C1—C7—O28.6 (2)C16—C17—C18—C190.9 (3)
C2—C1—C7—O2171.30 (15)C17—C18—C19—C200.4 (3)
C13—C8—C9—C100.0 (3)C16—C15—C20—C191.1 (2)
C14—C8—C9—C10178.72 (18)C21—C15—C20—C19179.17 (15)
C8—C9—C10—C110.8 (3)C18—C19—C20—C150.6 (3)
C9—C10—C11—C120.8 (3)C20—C15—C21—N191.71 (18)
C10—C11—C12—C130.1 (3)C16—C15—C21—N188.60 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.841.792.6255 (16)177
N1—H1A···O10.911.992.8399 (18)155
N1—H1B···O1i0.911.872.7620 (18)168
N1—H1C···O2ii0.911.882.7835 (17)171
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
(V) cyclopropylammonium benzoate–benzoic acid (1/1) top
Crystal data top
C3H8N+·C7H5O2·C7H6O2F(000) = 640
Mr = 301.33Dx = 1.248 Mg m3
Dm = 0 Mg m3
Dm measured by not measured
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1969 reflections
a = 15.3307 (10) Åθ = 2.9–27.6°
b = 6.3703 (3) ŵ = 0.09 mm1
c = 17.9989 (11) ÅT = 173 K
β = 114.199 (2)°Block, colourless
V = 1603.33 (16) Å30.34 × 0.2 × 0.1 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2461 reflections with I > 2σ(I)
ω scansRint = 0.028
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 28.0°, θmin = 1.5°
Tmin = 0.970, Tmax = 0.991h = 1420
9730 measured reflectionsk = 78
3876 independent reflectionsl = 2321
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.2204P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.11(Δ/σ)max = 0.006
S = 1.00Δρmax = 0.19 e Å3
3876 reflectionsΔρmin = 0.19 e Å3
200 parameters
Crystal data top
C3H8N+·C7H5O2·C7H6O2V = 1603.33 (16) Å3
Mr = 301.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.3307 (10) ŵ = 0.09 mm1
b = 6.3703 (3) ÅT = 173 K
c = 17.9989 (11) Å0.34 × 0.2 × 0.1 mm
β = 114.199 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3876 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2461 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.991Rint = 0.028
9730 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.11H-atom parameters constrained
S = 1.00Δρmax = 0.19 e Å3
3876 reflectionsΔρmin = 0.19 e Å3
200 parameters
Special details top

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.78280 (10)0.1676 (2)0.57876 (9)0.0314 (3)
C20.86076 (12)0.2719 (3)0.63506 (11)0.0472 (4)
H20.85280.40850.65250.057*
C30.95012 (14)0.1798 (3)0.66630 (12)0.0609 (5)
H3A1.00310.25350.7050.073*
C40.96290 (14)0.0170 (3)0.64184 (12)0.0581 (5)
H41.02460.07950.66310.07*
C50.88607 (14)0.1231 (3)0.58644 (14)0.0562 (5)
H50.89430.26040.56980.067*
C60.79663 (12)0.0313 (2)0.55471 (12)0.0448 (4)
H60.74390.10560.51590.054*
C70.68468 (11)0.2651 (2)0.54413 (9)0.0311 (3)
O10.67544 (8)0.45045 (15)0.56561 (7)0.0443 (3)
O20.61583 (7)0.16305 (15)0.49517 (7)0.0365 (3)
C80.76369 (10)0.9573 (2)0.77606 (9)0.0323 (3)
C90.83615 (12)0.8712 (3)0.84356 (11)0.0450 (4)
H90.85640.73120.84160.054*
C100.87921 (14)0.9873 (3)0.91361 (12)0.0588 (5)
H100.92930.92730.95970.071*
C110.85028 (14)1.1892 (3)0.91732 (12)0.0566 (5)
H110.881.26860.96590.068*
C120.77849 (14)1.2758 (3)0.85077 (12)0.0522 (5)
H120.75841.41560.85340.063*
C130.73478 (12)1.1614 (2)0.77958 (10)0.0400 (4)
H130.68521.22270.73340.048*
C140.71382 (11)0.8330 (2)0.70051 (10)0.0334 (3)
O30.75692 (9)0.65301 (16)0.70143 (7)0.0496 (3)
H30.72650.58790.65780.074*
O40.64141 (8)0.88983 (16)0.64465 (7)0.0418 (3)
C150.52382 (12)0.7411 (2)0.38333 (10)0.0389 (4)
H150.48690.8620.34970.047*
C160.59417 (14)0.6443 (3)0.35686 (12)0.0518 (5)
H16A0.65390.58790.39950.062*
H16B0.60120.7060.30910.062*
C170.50236 (13)0.5329 (3)0.34255 (11)0.0509 (5)
H17A0.45280.52630.2860.061*
H17B0.50560.40820.37640.061*
N10.54718 (9)0.75446 (18)0.47059 (8)0.0335 (3)
H1A0.58320.64150.49650.05*
H1B0.49220.75580.47850.05*
H1C0.58070.87440.49110.05*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0332 (8)0.0275 (7)0.0386 (8)0.0015 (6)0.0199 (7)0.0018 (6)
C20.0374 (10)0.0518 (10)0.0524 (11)0.0007 (8)0.0183 (9)0.0137 (9)
C30.0375 (11)0.0867 (15)0.0537 (12)0.0043 (10)0.0138 (9)0.0147 (11)
C40.0419 (11)0.0736 (13)0.0646 (13)0.0224 (10)0.0276 (10)0.0162 (11)
C50.0542 (12)0.0368 (9)0.0930 (16)0.0112 (8)0.0458 (12)0.0070 (10)
C60.0400 (10)0.0290 (8)0.0731 (13)0.0017 (7)0.0309 (9)0.0052 (8)
C70.0362 (9)0.0238 (7)0.0372 (8)0.0000 (6)0.0191 (7)0.0016 (6)
O10.0470 (7)0.0273 (5)0.0518 (7)0.0073 (5)0.0135 (6)0.0102 (5)
O20.0338 (6)0.0269 (5)0.0474 (7)0.0024 (4)0.0153 (5)0.0058 (5)
C80.0319 (8)0.0314 (7)0.0367 (8)0.0034 (6)0.0173 (7)0.0025 (6)
C90.0403 (10)0.0418 (9)0.0465 (11)0.0012 (7)0.0111 (8)0.0013 (8)
C100.0504 (12)0.0685 (13)0.0426 (11)0.0042 (10)0.0039 (9)0.0027 (10)
C110.0583 (13)0.0671 (13)0.0436 (11)0.0208 (10)0.0202 (10)0.0218 (10)
C120.0608 (13)0.0410 (9)0.0587 (12)0.0085 (9)0.0286 (11)0.0171 (9)
C130.0437 (10)0.0332 (8)0.0418 (9)0.0020 (7)0.0161 (8)0.0042 (7)
C140.0373 (9)0.0284 (7)0.0375 (9)0.0006 (6)0.0185 (8)0.0003 (7)
O30.0580 (8)0.0351 (6)0.0466 (7)0.0120 (5)0.0122 (6)0.0084 (5)
O40.0403 (7)0.0395 (6)0.0402 (7)0.0038 (5)0.0111 (6)0.0062 (5)
C150.0409 (10)0.0313 (8)0.0432 (9)0.0071 (7)0.0157 (8)0.0023 (7)
C160.0576 (12)0.0535 (11)0.0557 (12)0.0132 (9)0.0349 (10)0.0058 (9)
C170.0601 (12)0.0408 (9)0.0470 (10)0.0037 (8)0.0171 (9)0.0121 (8)
N10.0292 (7)0.0244 (6)0.0470 (8)0.0014 (5)0.0158 (6)0.0084 (6)
Geometric parameters (Å, º) top
C1—C21.380 (2)C11—C121.367 (3)
C1—C61.383 (2)C11—H110.95
C1—C71.506 (2)C12—C131.385 (2)
C2—C31.380 (2)C12—H120.95
C2—H20.95C13—H130.95
C3—C41.369 (3)C14—O41.2081 (18)
C3—H3A0.95C14—O31.3200 (17)
C4—C51.369 (3)O3—H30.84
C4—H40.95C15—N11.463 (2)
C5—C61.381 (2)C15—C161.480 (2)
C5—H50.95C15—C171.486 (2)
C6—H60.95C15—H151
C7—O21.2454 (17)C16—C171.501 (3)
C7—O11.2682 (16)C16—H16A0.99
C8—C91.380 (2)C16—H16B0.99
C8—C131.383 (2)C17—H17A0.99
C8—C141.486 (2)C17—H17B0.99
C9—C101.375 (2)N1—H1A0.91
C9—H90.95N1—H1B0.91
C10—C111.371 (3)N1—H1C0.91
C10—H100.95
C2—C1—C6118.24 (15)C11—C12—H12119.7
C2—C1—C7121.51 (13)C13—C12—H12119.7
C6—C1—C7120.24 (14)C12—C13—C8119.62 (17)
C1—C2—C3120.72 (16)C12—C13—H13120.2
C1—C2—H2119.6C8—C13—H13120.2
C3—C2—H2119.6O4—C14—O3123.73 (14)
C4—C3—C2120.46 (19)O4—C14—C8123.66 (13)
C4—C3—H3A119.8O3—C14—C8112.61 (14)
C2—C3—H3A119.8C14—O3—H3109.5
C3—C4—C5119.49 (17)N1—C15—C16118.66 (14)
C3—C4—H4120.3N1—C15—C17119.31 (14)
C5—C4—H4120.3C16—C15—C1760.80 (11)
C4—C5—C6120.27 (17)N1—C15—H15115.7
C4—C5—H5119.9C16—C15—H15115.7
C6—C5—H5119.9C17—C15—H15115.7
C5—C6—C1120.81 (17)C15—C16—C1759.78 (11)
C5—C6—H6119.6C15—C16—H16A117.8
C1—C6—H6119.6C17—C16—H16A117.8
O2—C7—O1122.25 (14)C15—C16—H16B117.8
O2—C7—C1119.36 (12)C17—C16—H16B117.8
O1—C7—C1118.39 (13)H16A—C16—H16B114.9
C9—C8—C13119.39 (15)C15—C17—C1659.42 (11)
C9—C8—C14121.35 (14)C15—C17—H17A117.8
C13—C8—C14119.24 (14)C16—C17—H17A117.8
C10—C9—C8120.29 (16)C15—C17—H17B117.8
C10—C9—H9119.9C16—C17—H17B117.8
C8—C9—H9119.9H17A—C17—H17B115
C11—C10—C9120.39 (18)C15—N1—H1A109.5
C11—C10—H10119.8C15—N1—H1B109.5
C9—C10—H10119.8H1A—N1—H1B109.5
C12—C11—C10119.75 (17)C15—N1—H1C109.5
C12—C11—H11120.1H1A—N1—H1C109.5
C10—C11—H11120.1H1B—N1—H1C109.5
C11—C12—C13120.57 (17)
C6—C1—C2—C30.1 (3)C14—C8—C9—C10177.98 (16)
C7—C1—C2—C3179.85 (16)C8—C9—C10—C110.4 (3)
C1—C2—C3—C40.0 (3)C9—C10—C11—C120.3 (3)
C2—C3—C4—C50.5 (3)C10—C11—C12—C130.1 (3)
C3—C4—C5—C60.8 (3)C11—C12—C13—C80.4 (3)
C4—C5—C6—C10.7 (3)C9—C8—C13—C120.3 (2)
C2—C1—C6—C50.2 (2)C14—C8—C13—C12177.63 (15)
C7—C1—C6—C5179.53 (15)C9—C8—C14—O4168.67 (15)
C2—C1—C7—O2178.00 (15)C13—C8—C14—O49.3 (2)
C6—C1—C7—O21.7 (2)C9—C8—C14—O310.8 (2)
C2—C1—C7—O12.6 (2)C13—C8—C14—O3171.22 (14)
C6—C1—C7—O1177.69 (14)N1—C15—C16—C17109.49 (16)
C13—C8—C9—C100.0 (2)N1—C15—C17—C16108.45 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.841.752.5881 (16)173
N1—H1A···O10.911.892.7901 (16)168
N1—H1B···O2i0.911.972.8573 (16)165
N1—H1C···O2ii0.911.912.7743 (15)158
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
(VI) bis(cyclopropylammonium) ea-cis-cyclohexane-1,4-dicarboxylate– ee-trans-cyclohexane-1,4-dicarboxylic acid (1/1) top
Crystal data top
2C3H8N+·C8H10O42·C8H12O4F(000) = 992
Mr = 458.54Dx = 1.297 Mg m3
Dm = 0 Mg m3
Dm measured by not measured
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 8893 reflections
a = 10.2478 (4) Åθ = 2.3–28.1°
b = 9.6134 (4) ŵ = 0.10 mm1
c = 23.8354 (9) ÅT = 173 K
V = 2348.17 (16) Å3Triangle, colourless
Z = 40.56 × 0.4 × 0.07 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2735 reflections with I > 2σ(I)
ω scansRint = 0.037
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 28.0°, θmin = 1.7°
Tmin = 0.947, Tmax = 0.993h = 1313
27099 measured reflectionsk = 1211
2909 independent reflectionsl = 2631
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.3462P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.33 e Å3
2909 reflectionsΔρmin = 0.18 e Å3
293 parametersAbsolute structure: Flack (1983), with 2122 Friedel pairs
Crystal data top
2C3H8N+·C8H10O42·C8H12O4V = 2348.17 (16) Å3
Mr = 458.54Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 10.2478 (4) ŵ = 0.10 mm1
b = 9.6134 (4) ÅT = 173 K
c = 23.8354 (9) Å0.56 × 0.4 × 0.07 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2909 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2735 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.993Rint = 0.037
27099 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.094H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
2909 reflectionsΔρmin = 0.18 e Å3
293 parametersAbsolute structure: Flack (1983), with 2122 Friedel pairs
Special details top

Experimental. Absorption corrections were made using the program SADABS (Sheldrick, 1996)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.53031 (18)0.8886 (2)0.61593 (8)0.0159 (4)
H10.4590.92430.64070.019*
C20.47606 (19)0.76215 (19)0.58481 (8)0.0170 (4)
H2D0.44490.69280.61240.02*
H2E0.54670.71860.56250.02*
C30.36322 (19)0.8022 (2)0.54561 (8)0.0184 (4)
H3A0.33410.71890.52470.022*
H3B0.28870.8360.56830.022*
C40.40401 (18)0.9149 (2)0.50418 (8)0.0172 (4)
H40.32450.94340.48270.021*
C50.4519 (2)1.0418 (2)0.53664 (9)0.0226 (4)
H5A0.37921.080.55930.027*
H5B0.47991.11460.50980.027*
C60.5656 (2)1.0056 (2)0.57531 (8)0.0212 (4)
H6A0.5911.08930.59690.025*
H6B0.64150.97690.55240.025*
C70.64613 (18)0.8536 (2)0.65394 (8)0.0161 (4)
C80.50671 (18)0.8663 (2)0.46154 (8)0.0170 (4)
O10.65311 (14)0.72828 (15)0.67225 (6)0.0213 (3)
O20.72535 (16)0.94572 (16)0.66630 (7)0.0276 (3)
O30.50529 (14)0.73805 (15)0.44698 (6)0.0217 (3)
O40.58416 (15)0.95240 (16)0.44247 (6)0.0261 (3)
C90.78798 (18)0.5424 (2)0.31075 (8)0.0171 (4)
H90.76240.51840.27140.021*
C100.83307 (18)0.4084 (2)0.34001 (9)0.0195 (4)
H10A0.85680.42920.37940.023*
H10B0.76090.340.34030.023*
C110.95106 (19)0.3465 (2)0.30950 (9)0.0193 (4)
H11A0.98130.26250.32970.023*
H11B0.92530.31850.27110.023*
C121.06206 (18)0.4521 (2)0.30630 (8)0.0161 (4)
H121.08860.47610.34550.019*
C131.01603 (19)0.5862 (2)0.27744 (9)0.0197 (4)
H13A1.08820.65470.27690.024*
H13B0.99160.56570.23810.024*
C140.89913 (19)0.6479 (2)0.30821 (9)0.0193 (4)
H14A0.86920.73280.28850.023*
H14B0.92510.67450.34670.023*
C151.18106 (18)0.4006 (2)0.27562 (8)0.0168 (4)
C160.66857 (18)0.5964 (2)0.34083 (8)0.0173 (4)
O50.69379 (14)0.67242 (17)0.38507 (7)0.0270 (3)
H50.62390.69010.40210.04*
O60.55794 (14)0.56647 (16)0.32570 (6)0.0227 (3)
O71.15657 (15)0.31369 (17)0.23494 (7)0.0261 (3)
H71.22590.29640.21740.039*
O81.29028 (14)0.44374 (16)0.28676 (6)0.0227 (3)
C170.5095 (2)0.3923 (2)0.67976 (11)0.0304 (5)
H170.44430.31550.68350.036*
C180.5772 (4)0.4002 (3)0.62473 (11)0.0460 (8)
H18A0.60130.49340.61040.055*
H18B0.55230.33190.59550.055*
C190.6470 (3)0.3474 (3)0.67527 (12)0.0398 (6)
H19A0.66560.24650.67730.048*
H19B0.71450.40790.69220.048*
N10.47602 (17)0.52266 (19)0.70892 (8)0.0223 (4)
H1B0.4790.50870.74670.033*
H1C0.39420.54970.69890.033*
H1A0.53420.590.69930.033*
C200.3644 (2)0.4084 (2)0.43062 (10)0.0277 (5)
H200.31040.32680.4190.033*
C210.4022 (3)0.4101 (3)0.48986 (12)0.0447 (7)
H21A0.37050.33350.5140.054*
H21B0.40950.50160.50870.054*
C220.4998 (3)0.3756 (3)0.44567 (14)0.0451 (7)
H22A0.56770.44580.4370.054*
H22B0.52860.27770.44240.054*
N20.33162 (17)0.54013 (18)0.40263 (7)0.0216 (4)
H2A0.38630.60820.41490.032*
H2B0.24780.56370.41080.032*
H2C0.34050.52990.36490.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0178 (8)0.0186 (9)0.0112 (8)0.0024 (7)0.0012 (7)0.0022 (7)
C20.0209 (8)0.0167 (8)0.0136 (8)0.0001 (7)0.0020 (7)0.0041 (7)
C30.0165 (8)0.0264 (9)0.0124 (8)0.0005 (7)0.0014 (7)0.0015 (7)
C40.0172 (8)0.0234 (9)0.0109 (8)0.0058 (7)0.0001 (7)0.0021 (7)
C50.0344 (11)0.0177 (9)0.0157 (9)0.0088 (8)0.0005 (9)0.0036 (8)
C60.0316 (10)0.0151 (8)0.0171 (9)0.0031 (8)0.0037 (8)0.0011 (7)
C70.0170 (8)0.0215 (9)0.0099 (8)0.0019 (7)0.0008 (7)0.0011 (7)
C80.0164 (8)0.0261 (9)0.0084 (8)0.0036 (7)0.0015 (6)0.0008 (7)
O10.0204 (7)0.0243 (7)0.0191 (7)0.0006 (5)0.0048 (6)0.0071 (6)
O20.0270 (8)0.0271 (8)0.0287 (8)0.0032 (6)0.0097 (7)0.0009 (7)
O30.0216 (7)0.0254 (7)0.0181 (7)0.0008 (6)0.0038 (6)0.0058 (6)
O40.0266 (8)0.0290 (8)0.0227 (7)0.0031 (6)0.0082 (6)0.0024 (6)
C90.0154 (8)0.0228 (9)0.0132 (8)0.0014 (7)0.0008 (7)0.0041 (7)
C100.0183 (9)0.0179 (9)0.0223 (10)0.0015 (7)0.0065 (8)0.0011 (8)
C110.0190 (9)0.0159 (9)0.0229 (9)0.0004 (7)0.0057 (8)0.0017 (7)
C120.0149 (8)0.0208 (9)0.0127 (8)0.0007 (7)0.0011 (7)0.0036 (7)
C130.0191 (9)0.0185 (9)0.0214 (10)0.0007 (7)0.0053 (8)0.0001 (8)
C140.0205 (9)0.0164 (9)0.0210 (9)0.0016 (7)0.0045 (8)0.0000 (7)
C150.0169 (8)0.0204 (9)0.0132 (8)0.0018 (7)0.0017 (7)0.0001 (7)
C160.0176 (9)0.0188 (9)0.0157 (9)0.0017 (7)0.0017 (7)0.0019 (7)
O50.0182 (7)0.0388 (9)0.0239 (8)0.0000 (6)0.0036 (6)0.0160 (7)
O60.0162 (6)0.0304 (8)0.0214 (7)0.0012 (6)0.0004 (6)0.0065 (6)
O70.0188 (7)0.0370 (8)0.0225 (7)0.0000 (6)0.0044 (6)0.0125 (7)
O80.0172 (7)0.0297 (8)0.0212 (7)0.0006 (6)0.0013 (6)0.0065 (6)
C170.0320 (11)0.0210 (10)0.0381 (13)0.0020 (9)0.0056 (10)0.0058 (10)
C180.083 (2)0.0281 (12)0.0274 (13)0.0166 (13)0.0013 (14)0.0006 (10)
C190.0429 (14)0.0381 (13)0.0385 (15)0.0114 (11)0.0079 (12)0.0103 (12)
N10.0186 (8)0.0280 (9)0.0203 (8)0.0000 (7)0.0017 (7)0.0063 (7)
C200.0342 (11)0.0180 (9)0.0310 (11)0.0006 (8)0.0078 (9)0.0012 (9)
C210.073 (2)0.0315 (12)0.0298 (13)0.0163 (13)0.0050 (13)0.0104 (11)
C220.0383 (13)0.0430 (15)0.0540 (18)0.0129 (12)0.0069 (13)0.0234 (14)
N20.0208 (8)0.0242 (8)0.0198 (8)0.0003 (7)0.0024 (7)0.0000 (7)
Geometric parameters (Å, º) top
C1—C61.528 (3)C13—C141.525 (3)
C1—C21.528 (3)C13—H13A0.99
C1—C71.530 (3)C13—H13B0.99
C1—H11C14—H14A0.99
C2—C31.536 (3)C14—H14B0.99
C2—H2D0.99C15—O81.223 (2)
C2—H2E0.99C15—O71.305 (2)
C3—C41.525 (3)C16—O61.224 (2)
C3—H3A0.99C16—O51.309 (2)
C3—H3B0.99O5—H50.84
C4—C51.526 (3)O7—H70.84
C4—C81.536 (3)C17—N11.474 (3)
C4—H41C17—C191.477 (4)
C5—C61.526 (3)C17—C181.485 (4)
C5—H5A0.99C17—H171
C5—H5B0.99C18—C191.490 (4)
C6—H6A0.99C18—H18A0.99
C6—H6B0.99C18—H18B0.99
C7—O21.237 (3)C19—H19A0.99
C7—O11.283 (2)C19—H19B0.99
C8—O41.234 (3)N1—H1B0.91
C8—O31.281 (2)N1—H1C0.91
C9—C161.510 (3)N1—H1A0.91
C9—C141.527 (3)C20—C211.464 (4)
C9—C101.535 (3)C20—C221.468 (4)
C9—H91C20—N21.470 (3)
C10—C111.531 (3)C20—H201
C10—H10A0.99C21—C221.490 (4)
C10—H10B0.99C21—H21A0.99
C11—C121.527 (3)C21—H21B0.99
C11—H11A0.99C22—H22A0.99
C11—H11B0.99C22—H22B0.99
C12—C151.506 (2)N2—H2A0.91
C12—C131.535 (3)N2—H2B0.91
C12—H121N2—H2C0.91
C6—C1—C2111.36 (15)C14—C13—H13A109.5
C6—C1—C7110.68 (16)C12—C13—H13A109.5
C2—C1—C7113.25 (15)C14—C13—H13B109.5
C6—C1—H1107.1C12—C13—H13B109.5
C2—C1—H1107.1H13A—C13—H13B108.1
C7—C1—H1107.1C13—C14—C9110.28 (16)
C1—C2—C3111.71 (15)C13—C14—H14A109.6
C1—C2—H2D109.3C9—C14—H14A109.6
C3—C2—H2D109.3C13—C14—H14B109.6
C1—C2—H2E109.3C9—C14—H14B109.6
C3—C2—H2E109.3H14A—C14—H14B108.1
H2D—C2—H2E107.9O8—C15—O7123.68 (18)
C4—C3—C2111.46 (15)O8—C15—C12121.63 (18)
C4—C3—H3A109.3O7—C15—C12114.58 (16)
C2—C3—H3A109.3O6—C16—O5123.47 (18)
C4—C3—H3B109.3O6—C16—C9121.99 (18)
C2—C3—H3B109.3O5—C16—C9114.49 (16)
H3A—C3—H3B108C16—O5—H5109.5
C3—C4—C5109.15 (16)C15—O7—H7109.5
C3—C4—C8113.59 (16)N1—C17—C19120.3 (2)
C5—C4—C8111.00 (17)N1—C17—C18118.8 (2)
C3—C4—H4107.6C19—C17—C1860.4 (2)
C5—C4—H4107.6N1—C17—H17115.4
C8—C4—H4107.6C19—C17—H17115.4
C4—C5—C6111.69 (15)C18—C17—H17115.4
C4—C5—H5A109.3C17—C18—C1959.53 (18)
C6—C5—H5A109.3C17—C18—H18A117.8
C4—C5—H5B109.3C19—C18—H18A117.8
C6—C5—H5B109.3C17—C18—H18B117.8
H5A—C5—H5B107.9C19—C18—H18B117.8
C5—C6—C1111.70 (16)H18A—C18—H18B115
C5—C6—H6A109.3C17—C19—C1860.08 (19)
C1—C6—H6A109.3C17—C19—H19A117.8
C5—C6—H6B109.3C18—C19—H19A117.8
C1—C6—H6B109.3C17—C19—H19B117.8
H6A—C6—H6B107.9C18—C19—H19B117.8
O2—C7—O1123.67 (18)H19A—C19—H19B114.9
O2—C7—C1119.52 (18)C17—N1—H1B109.5
O1—C7—C1116.79 (17)C17—N1—H1C109.5
O4—C8—O3123.59 (18)H1B—N1—H1C109.5
O4—C8—C4118.72 (18)C17—N1—H1A109.5
O3—C8—C4117.68 (17)H1B—N1—H1A109.5
C16—C9—C14113.25 (16)H1C—N1—H1A109.5
C16—C9—C10108.45 (16)C21—C20—C2261.1 (2)
C14—C9—C10110.54 (16)C21—C20—N2119.2 (2)
C16—C9—H9108.2C22—C20—N2120.8 (2)
C14—C9—H9108.2C21—C20—H20115
C10—C9—H9108.2C22—C20—H20115
C11—C10—C9110.36 (16)N2—C20—H20115
C11—C10—H10A109.6C20—C21—C2259.57 (18)
C9—C10—H10A109.6C20—C21—H21A117.8
C11—C10—H10B109.6C22—C21—H21A117.8
C9—C10—H10B109.6C20—C21—H21B117.8
H10A—C10—H10B108.1C22—C21—H21B117.8
C12—C11—C10110.70 (16)H21A—C21—H21B115
C12—C11—H11A109.5C20—C22—C2159.33 (18)
C10—C11—H11A109.5C20—C22—H22A117.8
C12—C11—H11B109.5C21—C22—H22A117.8
C10—C11—H11B109.5C20—C22—H22B117.8
H11A—C11—H11B108.1C21—C22—H22B117.8
C15—C12—C11114.14 (16)H22A—C22—H22B115
C15—C12—C13107.90 (16)C20—N2—H2A109.5
C11—C12—C13110.60 (16)C20—N2—H2B109.5
C15—C12—H12108H2A—N2—H2B109.5
C11—C12—H12108C20—N2—H2C109.5
C13—C12—H12108H2A—N2—H2C109.5
C14—C13—C12110.64 (16)H2B—N2—H2C109.5
C6—C1—C2—C352.5 (2)C9—C10—C11—C1256.9 (2)
C7—C1—C2—C3178.03 (15)C10—C11—C12—C15178.60 (17)
C1—C2—C3—C455.8 (2)C10—C11—C12—C1356.7 (2)
C2—C3—C4—C557.7 (2)C15—C12—C13—C14177.33 (16)
C2—C3—C4—C866.8 (2)C11—C12—C13—C1457.2 (2)
C3—C4—C5—C658.0 (2)C12—C13—C14—C957.7 (2)
C8—C4—C5—C668.0 (2)C16—C9—C14—C13179.89 (17)
C4—C5—C6—C156.2 (2)C10—C9—C14—C1358.0 (2)
C2—C1—C6—C552.7 (2)C11—C12—C15—O8151.41 (19)
C7—C1—C6—C5179.63 (16)C13—C12—C15—O885.2 (2)
C6—C1—C7—O229.9 (2)C11—C12—C15—O732.2 (2)
C2—C1—C7—O2155.77 (18)C13—C12—C15—O791.2 (2)
C6—C1—C7—O1151.58 (17)C14—C9—C16—O6143.5 (2)
C2—C1—C7—O125.7 (2)C10—C9—C16—O693.4 (2)
C3—C4—C8—O4150.54 (18)C14—C9—C16—O538.9 (2)
C5—C4—C8—O427.1 (2)C10—C9—C16—O584.1 (2)
C3—C4—C8—O330.7 (2)N1—C17—C18—C19110.5 (2)
C5—C4—C8—O3154.18 (17)N1—C17—C19—C18108.0 (3)
C16—C9—C10—C11177.79 (16)N2—C20—C21—C22111.2 (3)
C14—C9—C10—C1157.5 (2)N2—C20—C22—C21108.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O30.841.682.511 (2)168
O7—H7···O1i0.841.662.490 (2)169
N1—H1A···O10.911.912.822 (2)175
N1—H1B···O6ii0.912.052.933 (2)162
N1—H1C···O2iii0.911.92.779 (2)163
N2—H2A···O30.911.912.812 (2)174
N2—H2B···O4iii0.911.852.709 (2)158
N2—H2C···O8iv0.912.12.944 (2)153
Symmetry codes: (i) x+2, y+1, z1/2; (ii) x+1, y+1, z+1/2; (iii) x1/2, y+3/2, z; (iv) x1, y, z.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC3H10N+·C7H5O2C7H10N+·C9H9O2C8H12N+·C11H7O2C7H10N+·C7H5O2·C7H6O2
Mr181.23257.32293.35351.39
Crystal system, space groupOrthorhombic, P212121Monoclinic, C2Triclinic, P1Monoclinic, P21/n
Temperature (K)243173173173
a, b, c (Å)6.3823 (7), 9.0629 (5), 19.5457 (13)30.970 (2), 5.8832 (4), 7.8239 (5)8.8979 (9), 12.0013 (8), 16.0498 (15)12.3249 (11), 6.0804 (6), 24.7669 (17)
α, β, γ (°)90, 90, 9090, 99.825 (2), 90100.213 (5), 103.102 (3), 90.652 (5)90, 95.526 (5), 90
V3)1130.57 (16)1404.63 (16)1640.5 (3)1847.4 (3)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.070.080.080.09
Crystal size (mm)0.26 × 0.16 × 0.10.63 × 0.26 × 0.090.51 × 0.35 × 0.120.5 × 0.08 × 0.06
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Bruker APEXII CCD area-detector
diffractometer
Bruker APEXII CCD area-detector
diffractometer
Bruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Integration
(XPREP; Bruker, 2004)
Tmin, Tmax0.981, 0.9930.951, 0.9930.962, 0.9910.957, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
9482, 1232, 869 16064, 1863, 1660 27233, 7082, 3917 22843, 4004, 2214
Rint0.0810.0680.0750.094
(sin θ/λ)max1)0.6060.6610.6400.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.181, 1.04 0.035, 0.086, 1.09 0.050, 0.135, 1.00 0.045, 0.114, 0.96
No. of reflections1232186370824004
No. of parameters133174401237
No. of restraints23100
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.190.21, 0.150.22, 0.250.21, 0.22
Absolute structureFlack (1983), with 854 Friedel pairsFlack (1983), with 1534 Friedel pairs??


(V)(VI)
Crystal data
Chemical formulaC3H8N+·C7H5O2·C7H6O22C3H8N+·C8H10O42·C8H12O4
Mr301.33458.54
Crystal system, space groupMonoclinic, P21/cOrthorhombic, Pna21
Temperature (K)173173
a, b, c (Å)15.3307 (10), 6.3703 (3), 17.9989 (11)10.2478 (4), 9.6134 (4), 23.8354 (9)
α, β, γ (°)90, 114.199 (2), 9090, 90, 90
V3)1603.33 (16)2348.17 (16)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.090.10
Crystal size (mm)0.34 × 0.2 × 0.10.56 × 0.4 × 0.07
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Bruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.9910.947, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
9730, 3876, 2461 27099, 2909, 2735
Rint0.0280.037
(sin θ/λ)max1)0.6600.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.11, 1.00 0.035, 0.094, 1.04
No. of reflections38762909
No. of parameters200293
No. of restraints01
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.190.33, 0.18
Absolute structure?Flack (1983), with 2122 Friedel pairs

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004) and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.91.882.781 (4)177
N1—H1B···O1i0.91.882.763 (4)167
N1—H1C···O2ii0.91.792.681 (4)174
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.911.912.8152 (16)174
N1—H1B···O1i0.911.912.7652 (18)157
N1—H1C···O2ii0.911.762.6651 (18)178
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y1/2, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.911.922.7305 (19)147
N1—H1B···O4i0.911.862.7650 (17)178
N1—H1C···O3ii0.911.892.7716 (18)162
N2—H2A···O30.911.912.7232 (18)147
N2—H2B···O1ii0.911.892.7695 (19)163
N2—H2C···O2iii0.911.862.7678 (18)175
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y1, z.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.841.792.6255 (16)177
N1—H1A···O10.911.992.8399 (18)155
N1—H1B···O1i0.911.872.7620 (18)168
N1—H1C···O2ii0.911.882.7835 (17)171
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (V) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.841.752.5881 (16)173
N1—H1A···O10.911.892.7901 (16)168
N1—H1B···O2i0.911.972.8573 (16)165
N1—H1C···O2ii0.911.912.7743 (15)158
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) for (VI) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O30.841.682.511 (2)168
O7—H7···O1i0.841.662.490 (2)169
N1—H1A···O10.911.912.822 (2)175
N1—H1B···O6ii0.912.052.933 (2)162
N1—H1C···O2iii0.911.92.779 (2)163
N2—H2A···O30.911.912.812 (2)174
N2—H2B···O4iii0.911.852.709 (2)158
N2—H2C···O8iv0.912.12.944 (2)153
Symmetry codes: (i) x+2, y+1, z1/2; (ii) x+1, y+1, z+1/2; (iii) x1/2, y+3/2, z; (iv) x1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds