Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102009873/br1377sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270102009873/br1377Isup2.hkl |
CCDC reference: 195608
FeCl2 (0.8 g), H2O (6 ml) and ethylene glycol (EG; 11 ml), H3PO4 (0.8 ml, 85% wt), and imidazole (1.0 g) were placed, respectively, in a beaker with stirring; a homogeneous mixture was obtained. The mixture was hydrothermally treated in a Teflon-lined autoclave at 440 K for 6 d. The resulting single crystals were collected by filtration, washed with distilled water and dried in air at ambient temperature. Experiment proved that EG is necessary for the formation of crystals of good habit. EG has a higher viscosity than water, which may baffle the convection currents and help obtain a large good quality single-crystal (Lii et al., 1998).
The H atoms were placed in geometric positions, with O—H = 0.85 Å. Is this added text OK?
Data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
H4Fe7O24P6 | Z = 1 |
Mr = 964.80 | F(000) = 468 |
Triclinic, P1 | Dx = 3.723 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.528 (3) Å | Cell parameters from 25 reflections |
b = 7.956 (4) Å | θ = 5.9–11.4° |
c = 9.501 (4) Å | µ = 6.43 mm−1 |
α = 104.03 (4)° | T = 293 K |
β = 109.17 (2)° | Prism, black |
γ = 101.66 (3)° | 0.2 × 0.1 × 0.1 mm |
V = 430.3 (3) Å3 |
Bruker P4 diffractometer | 1537 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.040 |
Graphite monochromator | θmax = 27.5°, θmin = 2.4° |
ω scans | h = −1→8 |
Absorption correction: ψ scan (North et al., 1968) | k = −9→9 |
Tmin = 0.282, Tmax = 0.526 | l = −12→12 |
2420 measured reflections | 3 standard reflections every 100 reflections |
1921 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.106 | H-atom parameters not refined |
S = 1.03 | w = 1/[σ2(Fo2) + (0.001P)2 + 6.4359P] where P = (Fo2 + 2Fc2)/3 |
1849 reflections | (Δ/σ)max = 0.003 |
169 parameters | Δρmax = 1.22 e Å−3 |
0 restraints | Δρmin = −0.94 e Å−3 |
H4Fe7O24P6 | γ = 101.66 (3)° |
Mr = 964.80 | V = 430.3 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.528 (3) Å | Mo Kα radiation |
b = 7.956 (4) Å | µ = 6.43 mm−1 |
c = 9.501 (4) Å | T = 293 K |
α = 104.03 (4)° | 0.2 × 0.1 × 0.1 mm |
β = 109.17 (2)° |
Bruker P4 diffractometer | 1537 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.040 |
Tmin = 0.282, Tmax = 0.526 | 3 standard reflections every 100 reflections |
2420 measured reflections | intensity decay: none |
1921 independent reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.106 | H-atom parameters not refined |
S = 1.03 | Δρmax = 1.22 e Å−3 |
1849 reflections | Δρmin = −0.94 e Å−3 |
169 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.0000 | 0.0000 | 0.0000 | 0.0134 (3) | |
Fe2 | 0.38733 (15) | 0.45498 (11) | 0.11196 (10) | 0.0120 (2) | |
Fe3 | −0.27718 (15) | 0.18673 (11) | −0.28076 (11) | 0.0138 (2) | |
Fe4 | −0.04910 (15) | 0.28480 (12) | −0.51589 (11) | 0.0145 (2) | |
P1 | 0.2285 (3) | 0.1448 (2) | −0.22284 (18) | 0.0103 (3) | |
P2 | 0.0853 (3) | 0.5817 (2) | −0.17233 (18) | 0.0107 (3) | |
P3 | −0.5879 (3) | 0.2307 (2) | −0.62669 (19) | 0.0125 (3) | |
O1 | 0.0196 (7) | 0.1730 (6) | −0.3368 (5) | 0.0134 (9) | |
O2 | 0.2267 (7) | 0.1886 (5) | −0.0558 (5) | 0.0129 (8) | |
O3 | 0.5509 (7) | 0.7509 (6) | 0.2279 (5) | 0.0128 (8) | |
O4 | −0.2098 (8) | 0.0608 (6) | −0.7238 (5) | 0.0169 (9) | |
H4A | −0.1630 | 0.0984 | −0.7876 | 0.020* | |
O5 | 0.3000 (7) | 0.5378 (6) | −0.0860 (5) | 0.0136 (9) | |
O6 | 0.0557 (8) | 0.5458 (6) | −0.3451 (5) | 0.0153 (9) | |
O7 | 0.1098 (8) | −0.2181 (6) | −0.0941 (6) | 0.0196 (10) | |
O8 | 0.1257 (7) | 0.5392 (6) | 0.1668 (5) | 0.0143 (9) | |
O9 | −0.3767 (8) | 0.2100 (6) | −0.5082 (5) | 0.0173 (9) | |
O10 | 0.4774 (8) | 0.3805 (6) | 0.3099 (6) | 0.0233 (10) | |
O11 | 0.2701 (8) | 0.2904 (7) | −0.5300 (6) | 0.0234 (10) | |
H11A | 0.3285 | 0.2570 | −0.4515 | 0.028* | |
O12 | −0.2687 (7) | −0.0514 (6) | −0.2394 (5) | 0.0151 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0128 (6) | 0.0119 (6) | 0.0149 (6) | 0.0031 (5) | 0.0053 (5) | 0.0042 (5) |
Fe2 | 0.0128 (4) | 0.0119 (4) | 0.0110 (4) | 0.0043 (3) | 0.0046 (3) | 0.0032 (3) |
Fe3 | 0.0141 (4) | 0.0107 (4) | 0.0174 (5) | 0.0043 (3) | 0.0071 (4) | 0.0046 (3) |
Fe4 | 0.0150 (4) | 0.0137 (4) | 0.0129 (4) | 0.0031 (3) | 0.0037 (4) | 0.0050 (3) |
P1 | 0.0094 (7) | 0.0100 (7) | 0.0103 (7) | 0.0023 (5) | 0.0037 (6) | 0.0024 (5) |
P2 | 0.0104 (7) | 0.0108 (7) | 0.0121 (7) | 0.0038 (5) | 0.0053 (6) | 0.0043 (6) |
P3 | 0.0101 (7) | 0.0121 (7) | 0.0118 (7) | 0.0027 (5) | 0.0016 (6) | 0.0024 (6) |
O1 | 0.011 (2) | 0.016 (2) | 0.013 (2) | 0.0029 (16) | 0.0041 (17) | 0.0055 (17) |
O2 | 0.012 (2) | 0.0114 (19) | 0.016 (2) | −0.0001 (15) | 0.0089 (17) | 0.0026 (16) |
O3 | 0.010 (2) | 0.015 (2) | 0.013 (2) | 0.0037 (16) | 0.0048 (17) | 0.0041 (16) |
O4 | 0.019 (2) | 0.014 (2) | 0.018 (2) | 0.0048 (17) | 0.0089 (19) | 0.0040 (18) |
O5 | 0.015 (2) | 0.0128 (19) | 0.011 (2) | 0.0031 (16) | 0.0032 (17) | 0.0033 (16) |
O6 | 0.019 (2) | 0.015 (2) | 0.014 (2) | 0.0064 (17) | 0.0061 (18) | 0.0074 (17) |
O7 | 0.020 (2) | 0.012 (2) | 0.026 (3) | 0.0043 (17) | 0.011 (2) | 0.0016 (18) |
O8 | 0.012 (2) | 0.014 (2) | 0.015 (2) | 0.0020 (16) | 0.0054 (17) | 0.0037 (17) |
O9 | 0.016 (2) | 0.024 (2) | 0.011 (2) | 0.0095 (18) | 0.0035 (18) | 0.0039 (18) |
O10 | 0.020 (2) | 0.022 (2) | 0.025 (3) | 0.0034 (19) | 0.002 (2) | 0.014 (2) |
O11 | 0.019 (2) | 0.032 (3) | 0.017 (2) | 0.013 (2) | 0.004 (2) | 0.005 (2) |
O12 | 0.016 (2) | 0.014 (2) | 0.011 (2) | 0.0027 (17) | 0.0020 (17) | 0.0035 (16) |
Fe1—O7 | 2.121 (5) | P1—O2 | 1.545 (4) |
Fe1—O2 | 2.174 (4) | P1—O4iv | 1.557 (4) |
Fe1—O12 | 2.248 (4) | P2—O5 | 1.530 (4) |
Fe2—O10 | 2.047 (5) | P2—O6 | 1.535 (5) |
Fe2—O5 | 2.085 (4) | P2—O7v | 1.536 (5) |
Fe2—O2 | 2.121 (4) | P2—O8ii | 1.537 (4) |
Fe2—O8 | 2.125 (4) | P3—O10vi | 1.509 (5) |
Fe2—O5i | 2.126 (5) | P3—O12vii | 1.526 (4) |
Fe2—O3 | 2.202 (4) | P3—O9 | 1.536 (5) |
Fe3—O12 | 2.033 (4) | P3—O11viii | 1.567 (5) |
Fe3—O8ii | 2.046 (4) | O3—P1i | 1.532 (4) |
Fe3—O9 | 2.108 (5) | O3—Fe3ii | 2.126 (4) |
Fe3—O3ii | 2.126 (4) | O4—P1iv | 1.557 (4) |
Fe3—O1 | 2.187 (4) | O5—Fe2i | 2.126 (5) |
Fe4—O1 | 2.069 (4) | O6—Fe4iii | 2.100 (4) |
Fe4—O4 | 2.087 (5) | O7—P2ix | 1.536 (5) |
Fe4—O6iii | 2.100 (4) | O8—P2ii | 1.537 (4) |
Fe4—O6 | 2.115 (5) | O8—Fe3ii | 2.046 (4) |
Fe4—O11 | 2.124 (5) | O10—P3x | 1.509 (5) |
Fe4—O9 | 2.132 (5) | O11—P3xi | 1.567 (5) |
P1—O3i | 1.532 (4) | O12—P3vii | 1.526 (4) |
P1—O1 | 1.534 (4) | ||
O7xii—Fe1—O7 | 180.0 | O11—Fe4—O9 | 165.75 (19) |
O7—Fe1—O2 | 91.31 (17) | O3i—P1—O1 | 111.2 (2) |
O7—Fe1—O2xii | 88.69 (17) | O3i—P1—O2 | 114.2 (2) |
O2—Fe1—O2xii | 180.0 | O1—P1—O2 | 110.2 (2) |
O7—Fe1—O12 | 91.16 (18) | O3i—P1—O4iv | 106.9 (2) |
O2—Fe1—O12 | 87.35 (16) | O1—P1—O4iv | 108.8 (2) |
O7—Fe1—O12xii | 88.84 (18) | O2—P1—O4iv | 105.3 (2) |
O2—Fe1—O12xii | 92.65 (16) | O5—P2—O6 | 108.0 (2) |
O12—Fe1—O12xii | 180.0 | O5—P2—O7v | 109.9 (3) |
O10—Fe2—O5 | 178.53 (18) | O6—P2—O7v | 110.2 (3) |
O10—Fe2—O2 | 97.14 (19) | O5—P2—O8ii | 110.8 (2) |
O5—Fe2—O2 | 84.33 (17) | O6—P2—O8ii | 109.3 (2) |
O10—Fe2—O8 | 89.75 (19) | O7v—P2—O8ii | 108.6 (3) |
O5—Fe2—O8 | 89.95 (17) | O10vi—P3—O12vii | 111.2 (3) |
O2—Fe2—O8 | 105.93 (17) | O10vi—P3—O9 | 111.2 (3) |
O10—Fe2—O5i | 94.42 (19) | O12vii—P3—O9 | 111.6 (3) |
O5—Fe2—O5i | 85.42 (17) | O10vi—P3—O11viii | 107.4 (3) |
O2—Fe2—O5i | 91.33 (17) | O12vii—P3—O11viii | 109.5 (3) |
O8—Fe2—O5i | 161.61 (17) | O9—P3—O11viii | 105.7 (3) |
O10—Fe2—O3 | 98.10 (18) | P1—O1—Fe4 | 137.1 (3) |
O5—Fe2—O3 | 80.43 (17) | P1—O1—Fe3 | 121.6 (2) |
O2—Fe2—O3 | 164.22 (17) | Fe4—O1—Fe3 | 98.34 (18) |
O8—Fe2—O3 | 78.23 (16) | P1—O2—Fe2 | 121.2 (2) |
O5i—Fe2—O3 | 83.45 (16) | P1—O2—Fe1 | 121.3 (2) |
O12—Fe3—O8ii | 139.30 (18) | Fe2—O2—Fe1 | 116.2 (2) |
O12—Fe3—O9 | 123.63 (18) | P1i—O3—Fe3ii | 137.2 (3) |
O8ii—Fe3—O9 | 94.01 (18) | P1i—O3—Fe2 | 123.8 (2) |
O12—Fe3—O3ii | 105.10 (18) | Fe3ii—O3—Fe2 | 97.46 (17) |
O8ii—Fe3—O3ii | 81.74 (17) | P1iv—O4—Fe4 | 137.5 (3) |
O9—Fe3—O3ii | 98.00 (17) | P2—O5—Fe2 | 130.4 (3) |
O12—Fe3—O1 | 85.19 (17) | P2—O5—Fe2i | 135.0 (3) |
O8ii—Fe3—O1 | 89.19 (17) | Fe2—O5—Fe2i | 94.58 (17) |
O9—Fe3—O1 | 77.31 (17) | P2—O6—Fe4iii | 132.5 (3) |
O3ii—Fe3—O1 | 169.52 (16) | P2—O6—Fe4 | 124.9 (2) |
O1—Fe4—O4 | 104.60 (18) | Fe4iii—O6—Fe4 | 101.85 (19) |
O1—Fe4—O6iii | 166.02 (17) | P2ix—O7—Fe1 | 155.3 (3) |
O4—Fe4—O6iii | 88.49 (18) | P2ii—O8—Fe3ii | 127.3 (3) |
O1—Fe4—O6 | 89.64 (17) | P2ii—O8—Fe2 | 127.1 (3) |
O4—Fe4—O6 | 163.75 (18) | Fe3ii—O8—Fe2 | 102.52 (18) |
O6iii—Fe4—O6 | 78.15 (19) | P3—O9—Fe3 | 136.6 (3) |
O1—Fe4—O11 | 92.02 (19) | P3—O9—Fe4 | 122.3 (3) |
O4—Fe4—O11 | 89.63 (19) | Fe3—O9—Fe4 | 98.88 (18) |
O6iii—Fe4—O11 | 83.04 (19) | P3x—O10—Fe2 | 142.7 (3) |
O6—Fe4—O11 | 97.80 (18) | P3xi—O11—Fe4 | 150.2 (3) |
O1—Fe4—O9 | 79.42 (17) | P3vii—O12—Fe3 | 119.0 (3) |
O4—Fe4—O9 | 81.65 (18) | P3vii—O12—Fe1 | 129.7 (3) |
O6iii—Fe4—O9 | 107.82 (18) | Fe3—O12—Fe1 | 110.78 (19) |
O6—Fe4—O9 | 93.55 (18) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z; (iii) −x, −y+1, −z−1; (iv) −x, −y, −z−1; (v) x, y+1, z; (vi) x−1, y, z−1; (vii) −x−1, −y, −z−1; (viii) x−1, y, z; (ix) x, y−1, z; (x) x+1, y, z+1; (xi) x+1, y, z; (xii) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4A···O7iv | 0.85 | 1.71 | 2.539 (7) | 164 |
O11—H11A···O3i | 0.85 | 2.03 | 2.850 (7) | 162 |
Symmetry codes: (i) −x+1, −y+1, −z; (iv) −x, −y, −z−1. |
Experimental details
Crystal data | |
Chemical formula | H4Fe7O24P6 |
Mr | 964.80 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 6.528 (3), 7.956 (4), 9.501 (4) |
α, β, γ (°) | 104.03 (4), 109.17 (2), 101.66 (3) |
V (Å3) | 430.3 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 6.43 |
Crystal size (mm) | 0.2 × 0.1 × 0.1 |
Data collection | |
Diffractometer | Bruker P4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.282, 0.526 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2420, 1921, 1537 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.106, 1.03 |
No. of reflections | 1849 |
No. of parameters | 169 |
H-atom treatment | H-atom parameters not refined |
Δρmax, Δρmin (e Å−3) | 1.22, −0.94 |
Computer programs: XSCANS (Bruker, 1997), XSCANS, SHELXTL (Sheldrick, 1997), SHELXTL.
Fe1—O7 | 2.121 (5) | Fe3—O8ii | 2.046 (4) |
Fe1—O2 | 2.174 (4) | Fe3—O9 | 2.108 (5) |
Fe1—O12 | 2.248 (4) | Fe3—O3ii | 2.126 (4) |
Fe2—O10 | 2.047 (5) | Fe3—O1 | 2.187 (4) |
Fe2—O5 | 2.085 (4) | Fe4—O1 | 2.069 (4) |
Fe2—O2 | 2.121 (4) | Fe4—O4 | 2.087 (5) |
Fe2—O8 | 2.125 (4) | Fe4—O6iii | 2.100 (4) |
Fe2—O5i | 2.126 (5) | Fe4—O6 | 2.115 (5) |
Fe2—O3 | 2.202 (4) | Fe4—O11 | 2.124 (5) |
Fe3—O12 | 2.033 (4) | Fe4—O9 | 2.132 (5) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z; (iii) −x, −y+1, −z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4A···O7iv | 0.85 | 1.71 | 2.539 (7) | 163.5 |
O11—H11A···O3i | 0.85 | 2.03 | 2.850 (7) | 161.6 |
Symmetry codes: (i) −x+1, −y+1, −z; (iv) −x, −y, −z−1. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
Microporous materials containing transition metal elements are a focus of contemporary research due to their novel potential catalytic, electrical, optical and magnetic properties, which are not accessible to the main group elements (Cheetham et al., 1999). Hydrothermal and solvothermal methods have been used to synthesize many novel transition metal phosphates with open-framework structures, such as iron (Martin et al., 1994), cobalt (Cowley & Chipindale, 1999; Feng et al., 1997), nickel (Guillou et al., 1999; Escobal, Pizarro, Mesa, Arriotua & Rojo, 2000), manganese (Escobal, Pizarro, Mesa, Lezama et al., 2000; Fernandez et al., 2001) and molybdenum phosphates (Haushalter & Mundi, 1992). The frameworks of transition metal phosphates can be controlled by introducing organic templates to form one-dimensional (chain), two-dimensional (layered) and three-dimensional structures. Among these compounds, the iron phosphates are of interest because of their rich crystal chemistry and practical applications (Lii et al., 1998).
The title iron phosphate, Fe7(PO4)2(HPO4)4, was synthesized by the hydrothermal method in the presence of ethylene glycol and imidazole. It is isostructural with Mn7(PO4)2(HPO4)4 (Riou et al., 1987) and Co7(PO4)2(HPO4)4 (Lightfoot & Cheetham, 1988). However, the method used to synthesize Mn7(PO4)2(HPO4)4 and Co7(PO4)2(HPO4)4, carried out with iron-containing starting materials, gave Fe6IIFeIII(PO4)3(HPO4)3 instead of Fe7(PO4)2(HPO4)4 (Lightfoot & Cheetham, 1986).
As shown in Fig. 1, the crystal structure of the title compound consists of Fe—O polyhedra and PO4 tetrahedra sharing edges or corners to form a three-dimensional open-framework. Of the four independent Fe atoms (Fig. 2), Fe1 is located at a crystallographic inversion centre and has an almost regular octahedral coordination environment, while atoms Fe2 and Fe4 display distorted octahedral coordination environments. Atom Fe3 is surrounded by five O atoms, to give a geometry which is best described as distorted trigonal-bipyramidal. The results of a bond-strength bond-length calculation (Brown & Shannon, 1973) suggest that all Fe atoms should be divalant, the valence sums for the four metal sites being 1.89, 2.22, 1.94 and 2.28, respectively.
All the phosphate groups in the title compound are almost tetrahedral. The P—O bond lengths are distributed in the range 1.508–1.565 Å. The P1—O4 and P3—O11 bond lengths of 1.559 (4) and 1.565 (5) Å, respectively, are significantly longer than the remaining P—O bond, which involves bridging Fe—HO—P groups. Although the shortest distance between O atoms is 2.477 Å, between O10 and O11, hydrogen bonds are expected to be formed between O11—H···O3 and O4—H···O7, if the angles between the respective atoms are considered (Table 2).