Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A simple numerical approach for calculating the q-dependence of the scattering intensity in small-angle X-ray or neutron scattering (SAXS/SANS) is discussed. For a user-defined scattering density on a lattice, the scattering intensity I(q) (q is the modulus of the scattering vector) is calculated by three-dimensional (or two-dimensional) numerical Fourier transformation and spherical summation in q space, with a simple smoothing algorithm. An exact and simple correction for continuous rather than discrete (lattice-point) scattering density is described. Applications to relatively densely packed particles in solids (e.g. nanocomposites) are shown, where correlation effects make single-particle (pure form-factor) calculations invalid. The algorithm can be applied to particles of any shape that can be defined on the chosen cubic lattice and with any size distribution, while those features pose difficulties to a traditional treatment in terms of form and structure factors. For particles of identical but potentially complex shapes, numerical calculation of the form factor is described. Long parallel rods and platelets of various cross-section shapes are particularly convenient to treat, since the calculation is reduced to two dimensions. The method is used to demonstrate that the scattering intensity from `randomly' parallel-packed long cylinders is not described by simple 1/q and 1/q4 power laws, but at cylinder volume fractions of more than ∼25% includes a correlation peak. The simulations highlight that the traditional evaluation of the peak position overestimates the cylinder thickness by a factor of ∼1.5. It is also shown that a mix of various relatively densely packed long boards can produce I(q) ≃ 1/q, usually observed for rod-shaped particles, without a correlation peak.

Supporting information

doc

Microsoft Word (DOC) file https://doi.org/10.1107/S002188980604550X/ce5003sup1.doc
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S002188980604550X/ce5003sup2.pdf
Supplementary material


Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds