Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Cu(C15H11N3)2](ClO4)2·0.5H2O, the 2,2':6',2''-ter­pyridine (terpy) ligand coordinates to the CuII ion as a terdentate chelating ligand, giving a complex cation with compressed octahedral geometry. The [Cu(terpy)2]2+ cations have crystallographically imposed C2 symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680100900X/cf6064sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680100900X/cf6064Isup2.hkl
Contains datablock I

CCDC reference: 170860

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.009 Å
  • Disorder in solvent or counterion
  • R factor = 0.063
  • wR factor = 0.191
  • Data-to-parameter ratio = 11.6

checkCIF results

No syntax errors found


Amber Alert Alert Level B:
PLAT_112 Alert B ADDSYM Detects Additional (Pseudo) Symm. Elem. C
Yellow Alert Alert Level C:
PLAT_302 Alert C Anion/Solvent Disorder ....................... 31.00 Perc. General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C30 H24 Cl2 Cu1 N6 O9 Atom count from _chemical_formula_moiety:C30 H23 Cl2 Cu1 N6 O8.5
0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Several studies have been carried out on the structures and magnetic properties of copper(II) complexes with 2,2':6',2''-terpyridine (terpy) (Allmann et al., 1978; Folgado et al., 1990). In one of these studies (Folgado et al., 1990), the crystal structures and/or magnetic properties of some [Cu(terpy)2]2+ salts were determined. Although the X-ray and EPR study revealed that the high-temperature phase of [Cu(terpy)2](PF6)2, (II), was compressed octahedral, at low temperature, the structure contains elongated CuN6 octahedra with an orthorhombic component. The EPR powder data for [Cu(terpy)2](ClO4)2, (I), show the same magnetic behavior as (II), but the crystal structure of the former was not determined. In this paper, we report the crystal structure of [Cu(terpy)2]2+(ClO4)2. 0.5 H2O, (I), at 273 K.

Compound (I) consists of octahedral [Cu(terpy)2]2+, with Cu, N1', C4', H4', N11', C14' and H14' in sites with a twofold symmetry axis, two [ClO4]- anions in general positions, and a water molecule with half occupancy. The terpy ligand coordinates to the metal ion as a meriodonal terdentate ligand. As a consequence of the rigid structure of the terpy ligand the Cu—N distances with the central pyridine ring are significantly shorter giving a compressed octahedral geometry in agreement with the high-temperature structure expected by the previous EPR study.

Experimental top

1.0 mmol of [Cu(H2O)6](ClO4)2 was dissolved in distilled H2O and added to a solution of 1.0 mmoles of 2,2':6',2''-terpyridine in 25 ml of DMSO. The mixture was stirred for 1 h and left to evaporate until blue crystals were obtained.

Refinement top

H atoms were located in a difference Fourier map and made to ride on C or O atoms (C—H = 0.96 Å and O—H = 0.85 Å) with a fixed isotropic displacement parameter 1.2 times that of the parent atom. The perchlorate anion is disordered over at least two orientations, related approximately by twofold rotation about the Cl1—O1 bond. Half-occupancy sites were refined for two positions of O3 and O4, without geometrical constraints. A broad range of Cl—O distances was obtained, with average close to accepted values; angles at Cl are not all close to normal tetrahedral values, but no further disorder was resolved. Refinement of the site-occupation factor for the water O atom revealed a partial occupation close to 1/2, which was then kept fixed to this value in the final refinement.

Computing details top

Data collection: XSCANS (Siemens, 1993); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
Bis(2,2:6,2-terpyridine)copper(II) diperchlorate monohydrated top
Crystal data top
[Cu(C15H11N3)2](ClO4)2·0.5H2ODx = 1.559 Mg m3
Mr = 746.99Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 30 reflections
a = 12.551 (2) Åθ = 3.5–12.5°
c = 40.418 (5) ŵ = 0.92 mm1
V = 6367.0 (16) Å3T = 293 K
Z = 8Prism, green
F(000) = 30480.6 × 0.5 × 0.4 mm
Data collection top
Siemens P4/PC
diffractometer
1368 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
Graphite monochromatorθmax = 25.0°, θmin = 1.5°
ω/2θ scansh = 014
Absorption correction: ψ scan
(North et al., 1968)
k = 014
Tmin = 0.637, Tmax = 0.693l = 048
3081 measured reflections3 standard reflections every 97 reflections
2808 independent reflections intensity decay: <3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters not refined
wR(F2) = 0.191 w = 1/[σ2(Fo2) + (0.1064P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.88(Δ/σ)max = 0.019
2808 reflectionsΔρmax = 0.36 e Å3
243 parametersΔρmin = 0.43 e Å3
18 restraintsExtinction correction: SHELXL
Primary atom site location: structure-invariant direct methodsExtinction coefficient: none
Crystal data top
[Cu(C15H11N3)2](ClO4)2·0.5H2OZ = 8
Mr = 746.99Mo Kα radiation
Tetragonal, I41/aµ = 0.92 mm1
a = 12.551 (2) ÅT = 293 K
c = 40.418 (5) Å0.6 × 0.5 × 0.4 mm
V = 6367.0 (16) Å3
Data collection top
Siemens P4/PC
diffractometer
1368 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.062
Tmin = 0.637, Tmax = 0.6933 standard reflections every 97 reflections
3081 measured reflections intensity decay: <3%
2808 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06318 restraints
wR(F2) = 0.191H-atom parameters not refined
S = 0.88Δρmax = 0.36 e Å3
2808 reflectionsΔρmin = 0.43 e Å3
243 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu0.50000.25000.12793 (3)0.0473 (4)
N10.4331 (4)0.0944 (4)0.11615 (12)0.0527 (13)
C20.4293 (4)0.0748 (4)0.08399 (16)0.0489 (14)
C30.3963 (5)0.0221 (6)0.07150 (18)0.0635 (18)
H30.39600.03470.04810.076*
C40.3635 (6)0.0995 (6)0.0938 (2)0.076 (2)
H40.33890.16740.08600.091*
C50.3664 (6)0.0794 (6)0.1265 (2)0.072 (2)
H50.34510.13330.14200.086*
C60.4002 (5)0.0180 (5)0.13738 (17)0.0593 (17)
H60.40060.03280.16070.071*
N1'0.50000.25000.07860 (17)0.0499 (17)
C2'0.4650 (4)0.1631 (5)0.06249 (15)0.0489 (15)
C3'0.4618 (6)0.1623 (6)0.02858 (18)0.071 (2)
H3'0.43340.10180.01710.085*
C4'0.50000.25000.0113 (2)0.080 (3)
H4'0.50000.25000.01250.096*
N110.6585 (4)0.1849 (4)0.14048 (12)0.0501 (12)
C120.6767 (5)0.1818 (4)0.17290 (15)0.0483 (14)
C130.7747 (5)0.1474 (5)0.18539 (18)0.0635 (18)
H130.78720.14630.20880.076*
C140.8521 (5)0.1151 (6)0.1636 (2)0.073 (2)
H140.91940.08980.17170.088*
C150.8334 (6)0.1184 (6)0.1302 (2)0.072 (2)
H150.88750.09750.11480.086*
C160.7354 (5)0.1532 (5)0.11942 (17)0.0583 (17)
H160.72100.15500.09610.070*
N11'0.50000.25000.17764 (15)0.0445 (16)
C12'0.5865 (5)0.2169 (5)0.19417 (15)0.0492 (15)
C13'0.5893 (5)0.2164 (5)0.22814 (16)0.0628 (18)
H13'0.65220.19430.23970.075*
C14'0.50000.25000.2455 (2)0.074 (3)
H14'0.50000.25000.26920.089*
Cl10.74847 (18)0.0418 (2)0.03063 (6)0.0864 (7)
O10.6623 (5)0.0005 (6)0.04936 (18)0.131 (3)
O20.7261 (7)0.0500 (11)0.0015 (2)0.185 (4)
O30.832 (2)0.048 (3)0.0496 (4)0.184 (11)0.50
O40.7575 (15)0.1563 (9)0.0376 (3)0.126 (6)0.50
O3B0.767 (2)0.053 (3)0.0194 (8)0.240 (10)0.50
O4B0.8400 (11)0.0177 (18)0.0345 (6)0.144 (8)0.50
O50.7081 (13)0.2616 (11)0.0373 (3)0.142 (6)0.50
H5A0.74280.31860.03380.080*0.50
H5B0.74430.21260.02810.080*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0340 (6)0.0339 (6)0.0739 (7)0.0008 (5)0.0000.000
N10.035 (3)0.053 (3)0.070 (3)0.003 (2)0.008 (2)0.008 (3)
C20.034 (3)0.036 (3)0.076 (4)0.001 (3)0.000 (3)0.006 (3)
C30.054 (4)0.059 (5)0.078 (4)0.009 (3)0.003 (3)0.016 (3)
C40.061 (5)0.047 (4)0.119 (7)0.015 (4)0.004 (4)0.009 (4)
C50.057 (5)0.047 (4)0.111 (6)0.009 (3)0.004 (4)0.013 (4)
C60.042 (4)0.055 (4)0.082 (4)0.002 (3)0.007 (3)0.002 (3)
N1'0.039 (4)0.040 (4)0.072 (4)0.001 (3)0.0000.000
C2'0.036 (3)0.044 (4)0.067 (4)0.000 (3)0.005 (3)0.006 (3)
C3'0.073 (5)0.056 (5)0.084 (5)0.004 (4)0.012 (4)0.010 (4)
C4'0.110 (10)0.075 (8)0.055 (5)0.000 (7)0.0000.000
N110.043 (3)0.033 (3)0.075 (3)0.003 (2)0.005 (2)0.001 (2)
C120.044 (4)0.033 (3)0.068 (4)0.003 (3)0.005 (3)0.002 (3)
C130.043 (4)0.063 (5)0.085 (5)0.005 (3)0.012 (3)0.002 (4)
C140.040 (4)0.073 (5)0.107 (6)0.011 (4)0.010 (4)0.000 (4)
C150.058 (5)0.057 (5)0.101 (6)0.005 (4)0.020 (4)0.006 (4)
C160.052 (4)0.048 (4)0.075 (4)0.002 (3)0.008 (3)0.006 (3)
N11'0.038 (4)0.039 (4)0.057 (4)0.000 (3)0.0000.000
C12'0.045 (4)0.038 (3)0.065 (4)0.002 (3)0.002 (3)0.001 (3)
C13'0.054 (4)0.062 (5)0.073 (5)0.001 (3)0.011 (3)0.006 (3)
C14'0.081 (8)0.088 (8)0.055 (5)0.013 (7)0.0000.000
Cl10.0682 (14)0.1097 (17)0.0812 (14)0.0108 (13)0.0044 (11)0.0031 (12)
O10.089 (5)0.153 (7)0.151 (6)0.020 (5)0.045 (4)0.062 (5)
O20.156 (8)0.304 (13)0.095 (5)0.056 (8)0.026 (5)0.035 (6)
O30.138 (17)0.32 (3)0.092 (10)0.063 (18)0.037 (11)0.019 (15)
O40.218 (17)0.042 (6)0.118 (10)0.039 (8)0.065 (10)0.028 (6)
O3B0.19 (2)0.25 (2)0.28 (2)0.003 (19)0.096 (17)0.067 (19)
O4B0.028 (7)0.174 (18)0.23 (2)0.046 (9)0.014 (10)0.079 (15)
O50.189 (17)0.087 (10)0.152 (12)0.007 (10)0.000 (12)0.017 (9)
Geometric parameters (Å, º) top
Cu—N1'1.994 (7)N11—C121.331 (7)
Cu—N11'2.009 (6)N11—C161.347 (8)
Cu—N12.178 (5)C12—C131.398 (8)
Cu—N1i2.178 (5)C12—C12'1.489 (8)
Cu—N112.210 (5)C13—C141.373 (9)
Cu—N11i2.210 (5)C14—C151.367 (10)
N1—C21.324 (7)C15—C161.376 (10)
N1—C61.351 (8)N11'—C12'i1.341 (6)
C2—C31.380 (8)N11'—C12'1.341 (6)
C2—C2'1.478 (8)C12'—C13'1.373 (9)
C3—C41.388 (10)C13'—C14'1.387 (8)
C4—C51.346 (10)C14'—C13'i1.387 (8)
C5—C61.368 (10)Cl1—O3B1.29 (3)
N1'—C2'1.344 (6)Cl1—O31.30 (2)
N1'—C2'i1.344 (6)Cl1—O21.333 (8)
C2'—C3'1.371 (9)Cl1—O4B1.378 (12)
C3'—C4'1.389 (8)Cl1—O11.418 (6)
C4'—C3'i1.389 (8)Cl1—O41.468 (10)
N1'—Cu—N11'180.0C3'—C2'—C2125.0 (6)
N1'—Cu—N177.37 (14)C2'—C3'—C4'119.2 (7)
N11'—Cu—N1102.63 (14)C3'i—C4'—C3'119.5 (9)
N1'—Cu—N1i77.37 (14)C12—N11—C16119.4 (6)
N11'—Cu—N1i102.63 (14)C12—N11—Cu113.0 (4)
N1—Cu—N1i154.7 (3)C16—N11—Cu127.5 (4)
N1'—Cu—N11103.26 (14)N11—C12—C13121.0 (6)
N11'—Cu—N1176.74 (14)N11—C12—C12'115.5 (5)
N1—Cu—N1193.78 (18)C13—C12—C12'123.5 (6)
N1i—Cu—N1191.97 (18)C14—C13—C12118.8 (6)
N1'—Cu—N11i103.26 (14)C15—C14—C13120.2 (7)
N11'—Cu—N11i76.74 (14)C14—C15—C16118.5 (6)
N1—Cu—N11i91.97 (18)N11—C16—C15122.2 (6)
N1i—Cu—N11i93.78 (18)C12'i—N11'—C12'120.2 (7)
N11—Cu—N11i153.5 (3)C12'i—N11'—Cu119.9 (3)
C2—N1—C6118.7 (6)C12'—N11'—Cu119.9 (3)
C2—N1—Cu113.3 (4)N11'—C12'—C13'121.3 (6)
C6—N1—Cu127.9 (4)N11'—C12'—C12114.8 (5)
N1—C2—C3122.3 (6)C13'—C12'—C12123.8 (6)
N1—C2—C2'115.3 (5)C12'—C13'—C14'118.9 (7)
C3—C2—C2'122.5 (6)C13'—C14'—C13'i119.3 (9)
C2—C3—C4117.9 (7)O3B—Cl1—O396.9 (16)
C5—C4—C3119.9 (7)O2—Cl1—O4B109.1 (12)
C4—C5—C6119.4 (7)O3B—Cl1—O189.2 (16)
N1—C6—C5121.7 (7)O3—Cl1—O1108.8 (11)
C2'—N1'—C2'i122.1 (7)O2—Cl1—O1112.8 (5)
C2'—N1'—Cu119.0 (4)O4B—Cl1—O1112.2 (8)
C2'i—N1'—Cu119.0 (4)O2—Cl1—O497.3 (8)
N1'—C2'—C3'119.9 (6)O4B—Cl1—O4116.4 (12)
N1'—C2'—C2115.0 (5)O1—Cl1—O4108.3 (6)
N1'—Cu—N1—C22.6 (4)N1'—Cu—N11—C12177.6 (3)
N11'—Cu—N1—C2177.4 (4)N11'—Cu—N11—C122.4 (3)
N1i—Cu—N1—C22.6 (4)N1—Cu—N11—C12104.5 (4)
N11—Cu—N1—C2100.2 (4)N1i—Cu—N11—C12100.1 (4)
N11i—Cu—N1—C2105.7 (4)N1'—Cu—N11—C160.1 (5)
N1'—Cu—N1—C6180.0 (5)N11'—Cu—N11—C16179.9 (5)
N11'—Cu—N1—C60.0 (5)N1—Cu—N11—C1677.8 (5)
N1i—Cu—N1—C6180.0 (5)N1i—Cu—N11—C1677.5 (5)
N11—Cu—N1—C677.2 (5)N11i—Cu—N11—C16179.9 (5)
N11i—Cu—N1—C676.9 (5)C16—N11—C12—C130.8 (9)
C6—N1—C2—C32.1 (9)Cu—N11—C12—C13177.1 (5)
Cu—N1—C2—C3175.6 (5)C16—N11—C12—C12'179.2 (5)
C6—N1—C2—C2'179.0 (5)Cu—N11—C12—C12'2.9 (6)
Cu—N1—C2—C2'3.3 (6)N11—C12—C13—C140.9 (10)
N1—C2—C3—C41.7 (10)C12'—C12—C13—C14179.0 (6)
C2'—C2—C3—C4179.5 (6)C12—C13—C14—C151.0 (11)
C2—C3—C4—C51.1 (11)C13—C14—C15—C160.9 (11)
C3—C4—C5—C61.0 (11)C12—N11—C16—C150.7 (9)
C2—N1—C6—C51.9 (9)Cu—N11—C16—C15176.9 (5)
Cu—N1—C6—C5175.4 (5)C14—C15—C16—N110.8 (10)
C4—C5—C6—N11.3 (10)N1—Cu—N11'—C12'i87.6 (3)
N1—Cu—N1'—C2'1.3 (3)N1i—Cu—N11'—C12'i92.4 (3)
N1i—Cu—N1'—C2'178.7 (3)N11—Cu—N11'—C12'i178.6 (3)
N11—Cu—N1'—C2'89.6 (3)N11i—Cu—N11'—C12'i1.4 (3)
N11i—Cu—N1'—C2'90.4 (3)N1—Cu—N11'—C12'92.4 (3)
N1—Cu—N1'—C2'i178.7 (3)N1i—Cu—N11'—C12'87.6 (3)
N1i—Cu—N1'—C2'i1.3 (3)N11—Cu—N11'—C12'1.4 (3)
N11—Cu—N1'—C2'i90.4 (3)N11i—Cu—N11'—C12'178.6 (3)
N11i—Cu—N1'—C2'i89.6 (3)C12'i—N11'—C12'—C13'0.3 (4)
C2'i—N1'—C2'—C3'1.6 (4)Cu—N11'—C12'—C13'179.7 (4)
Cu—N1'—C2'—C3'178.4 (4)C12'i—N11'—C12'—C12179.7 (6)
C2'i—N1'—C2'—C2180.0 (6)Cu—N11'—C12'—C120.3 (6)
Cu—N1'—C2'—C20.0 (6)N11—C12—C12'—N11'1.9 (7)
N1—C2—C2'—N1'2.3 (7)C13—C12—C12'—N11'178.1 (5)
C3—C2—C2'—N1'176.6 (5)N11—C12—C12'—C13'178.1 (5)
N1—C2—C2'—C3'176.0 (6)C13—C12—C12'—C13'1.8 (10)
C3—C2—C2'—C3'5.1 (10)N11'—C12'—C13'—C14'0.7 (9)
N1'—C2'—C3'—C4'3.1 (9)C12—C12'—C13'—C14'179.3 (5)
C2—C2'—C3'—C4'178.7 (5)C12'—C13'—C14'—C13'i0.3 (4)
C2'—C3'—C4'—C3'i1.5 (4)
Symmetry code: (i) x+1, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3Bii0.851.742.55 (4)158
O5—H5B···O20.852.323.032 (19)142
Symmetry code: (ii) x, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Cu(C15H11N3)2](ClO4)2·0.5H2O
Mr746.99
Crystal system, space groupTetragonal, I41/a
Temperature (K)293
a, c (Å)12.551 (2), 40.418 (5)
V3)6367.0 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.6 × 0.5 × 0.4
Data collection
DiffractometerSiemens P4/PC
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.637, 0.693
No. of measured, independent and
observed [I > 2σ(I)] reflections
3081, 2808, 1368
Rint0.062
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.191, 0.88
No. of reflections2808
No. of parameters243
No. of restraints18
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.36, 0.43

Computer programs: XSCANS (Siemens, 1993), XSCANS, SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1990), SHELXL97.

Selected geometric parameters (Å, º) top
Cu—N1'1.994 (7)Cu—N12.178 (5)
Cu—N11'2.009 (6)Cu—N112.210 (5)
N1'—Cu—N11'180.0N1—Cu—N1193.78 (18)
N1'—Cu—N177.37 (14)N11—Cu—N11i153.5 (3)
N11'—Cu—N1102.63 (14)N1—C2—C2'115.3 (5)
N1—Cu—N1i154.7 (3)N1'—C2'—C2115.0 (5)
N1'—Cu—N11103.26 (14)N11—C12—C12'115.5 (5)
N11'—Cu—N1176.74 (14)N11'—C12'—C12114.8 (5)
N1—C2—C2'—N1'2.3 (7)N11—C12—C12'—N11'1.9 (7)
Symmetry code: (i) x+1, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3Bii0.851.742.55 (4)157.5
O5—H5B···O20.852.323.032 (19)141.9
Symmetry code: (ii) x, y+1/2, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds