Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The twofold symmetry of the title compound, C32H46O19, coincides with a crystallographic twofold axis. Weak C—H...O hydrogen bonding and a disordered isobutyroyl group are present.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803010729/cm6042sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803010729/cm6042Isup2.hkl
Contains datablock I

CCDC reference: 214844

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.053
  • wR factor = 0.154
  • Data-to-parameter ratio = 7.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
RINTA_01 Alert C The value of Rint is greater than 0.10 Rint given 0.132 PLAT_213 Alert C Atom O6 has ADP max/min Ratio ........... 3.10 prolate PLAT_601 Alert C Structure Contains Solvent Accessible VOIDS of 31.00 A   3 General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 25.67 From the CIF: _reflns_number_total 2206 Count of symmetry unique reflns 2206 Completeness (_total/calc) 100.00% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
3 Alert Level C = Please check

Comment top

Recently we have determined the structures of a number of substituted trehalose derivatives. These have included hydrated or solvated forms, such as 2,2',3,3',4,4'-hexa-O-acetato-6,6'-bis-O-isobutanoyl-α,α'-trehalose 0.7-hydrate (Clow et al., 2001), 2,2',3,3',4,6,6'-hepta-O-pivaloyl-α,α'-trehalose (Baddeley et al., 2003) and 2,2',3,3',4,4',6,6'-hexa-O-acetato-α,α'-trehalose EtOAc solvate (Baddeley et al., 2001). The anyhdrous symmetrically substituted 2,2',3,3',4,4'-hexa-O-acetato-6,6'-bis-O-trityl-α,α'-trehalose (Baddeley et al., 2002) possesses molecular twofold symmetry that corresponds to a crystallographic twofold axis.

The disordered structure reported here, 2,2',3,3',4,6,6'-hepta-O-pivaloyl-α,α'-trehalose, (I), also possesses molecular twofold symmetry corresponding to a crystallographic twofold axis. As this axis passes through the bridging oxygen at (-x + 0.5, X+0.5, 1/4), the molecular geometry shown in Table 1 applies to both halves of the molecule. As expected, the pyranose ring has a 4C1 conformation, as indicated by the puckering parameters (Cremer & Pople, 1975) calculated with PLATON (Spek, 2001) Q = 0.556 (4) Å, θ = 1.5 (4)° and ø = 52 (8)°.

The pseudo-torsion angle H1—C1···C1'-H1' of the glycosidic linkage is −89.1°. In the ditrityl hexaacetate derivative of α,α'-trehalose, where the bridging oxygen also lies on a twofold axis, the pseudo-torsion angle is −104.7° (Baddeley et al., 2002).

The substitution at C1,C1' is α,α' with C1—O1 = 1.417 (4) Å and the angle subtended at O1 = 113.1 (4)°. The absolute configuration adopted, see below, is R at C1, C2, C3, C4 and C5. Disorder is present in the isobutyroyl group with atoms O8, C13, C14, C15 and C16 disordered over two sites with fixed occupancies of 0.5. There are no O—H···O hydrogen bonds but there are weak C—H···O hydrogen bonds which are shown in Table 2 (disordered atoms excluded). The disordered structure of 2,2',3,3'4,6,6'-hepta-O-pivaloyl-α,α'-trehalose (Baddeley et al., 2003) also possesses C—H···O hydrogen bonds.

Experimental top

2,2',3,3',4,4'-Hexaacetyl-α,α'-trehalose, prepared according to the method of Bredereck (1930), was dissolved in 1:1 pyridine–water and stirred at room temperature for 48 h. At this time, thin-layer chromatography (EtOAc) showed the acyl migration to be complete. The solvent was removed under vacuum and the resulting solid recrystallized from DCM/MTBE. 2,2',3,3',6,6'-Hexaacetyl-α,α'-trehalose was dissolved in pyridine and 2.1 equivalents of isobutyroyl chloride added with stirring. After 4 h the solution was added to water. The resulting solid was collected, washed with water and dried. Recrystallization from ethanol gave 4,4'-di-O-isobutyroyl-2,2',3,3',6,6'-hex-O-acetyl-α,α'-trehalose (m.p. 397–399 K).

Refinement top

The H atoms were initially placed in calculated positions and thereafter allowed to ride on their attached atoms with isotropic displacement parameters 1.2 greater than the Ueq of the attached atom. The weakly diffracting and disordered structure resulted in a low reflections:parameters ratio and several atoms in the disordered structure were associated with large displacement parameters where the statistical distributions could not be assigned.

A similar refinement was possible in the alternate space group (P43212) which cannot be discounted. Further, the choice of the disorder (A or B) in the affected chain is not random as atom O8B is separated from itself by only 1.76 (1) Å across y, x, −z. Hence the x, y, z and the y, x, −z sites must be occupied by different orientations of the side chain. In the absence of atomic species with an atomic number greater than that of oxygen, Friedel pairs were merged prior to refinement. As a consequence, the Flack (1983) x parameter and absolute structure are indeterminate from the intensity data alone. The latter has therefore been established simply on the basis of the known stereochemistry of the parent trehalose.

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997).

Figures top
[Figure 1] Fig. 1. The atomic arrangement in the molecule (disorder excluded). Displacement ellipsoids are shown at the 50% probability level.
4,4'-Di-isobutyroyl-2,2',3,3',6,6'-hexacetyl-α,α'-trehalose top
Crystal data top
C32H46O19Dx = 1.229 Mg m3
Mr = 734.69Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 5000 reflections
a = 14.9188 (9) Åθ = 1.9–25.7°
c = 17.8355 (6) ŵ = 0.10 mm1
V = 3969.7 (4) Å3T = 150 K
Z = 4Lozenge, colourless
F(000) = 15600.45 × 0.15 × 0.15 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2206 independent reflections
Radiation source: Enraf-Nonius FR591 rotating anode1414 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.132
Detector resolution: 9.091 pixels mm-1θmax = 25.7°, θmin = 1.9°
ϕ and ω scans to fill Ewald sphereh = 1718
Absorption correction: multi-scan
using multiple and symmetry-related data measurements via SORTAV (Blessing, 1995, 1997)
k = 1818
Tmin = 0.956, Tmax = 0.985l = 2021
50356 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.1016P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.003
2206 reflectionsΔρmax = 0.35 e Å3
281 parametersΔρmin = 0.37 e Å3
5 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0117 (18)
Crystal data top
C32H46O19Z = 4
Mr = 734.69Mo Kα radiation
Tetragonal, P41212µ = 0.10 mm1
a = 14.9188 (9) ÅT = 150 K
c = 17.8355 (6) Å0.45 × 0.15 × 0.15 mm
V = 3969.7 (4) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
2206 independent reflections
Absorption correction: multi-scan
using multiple and symmetry-related data measurements via SORTAV (Blessing, 1995, 1997)
1414 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.985Rint = 0.132
50356 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0535 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.01Δρmax = 0.35 e Å3
2206 reflectionsΔρmin = 0.37 e Å3
281 parameters
Special details top

Experimental. Please note cell_measurement_ fields are not relevant to area detector data, the entire data set is used to refine the cell, which is indexed from all observed reflections in a 10 degree phi range.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.50423 (15)0.49577 (15)0.25000.0428 (8)
O20.53377 (18)0.59905 (16)0.12323 (12)0.0520 (7)
O30.6641 (2)0.5604 (2)0.07028 (16)0.0684 (9)
O40.38070 (17)0.5479 (2)0.04240 (12)0.0636 (8)
O50.50504 (16)0.36524 (16)0.17855 (11)0.0486 (6)
O60.2879 (4)0.6402 (3)0.09708 (18)0.149 (2)
O70.27419 (17)0.4091 (2)0.12429 (14)0.0759 (10)
O8A0.2417 (4)0.4346 (6)0.0022 (3)0.081 (2)0.50
O8B0.2600 (5)0.3428 (8)0.0066 (4)0.116 (3)0.50
O90.4099 (2)0.2209 (2)0.24749 (17)0.0754 (9)
O100.5227 (6)0.1458 (4)0.2006 (4)0.221 (4)
C10.5363 (2)0.4538 (2)0.18394 (16)0.0416 (8)
H10.60330.45350.18480.050*
C20.5048 (2)0.5074 (2)0.11790 (17)0.0446 (8)
H20.53010.48050.07110.053*
C30.4035 (2)0.5066 (3)0.11277 (16)0.0503 (10)
H30.37680.54090.15540.060*
C40.3701 (3)0.4107 (3)0.11322 (19)0.0589 (11)
H40.38570.38070.06480.071*
C50.4093 (3)0.3583 (3)0.17849 (19)0.0580 (11)
H50.38540.38330.22650.070*
C60.3892 (4)0.2603 (3)0.1750 (2)0.0823 (15)
H6A0.32510.25090.16290.099*
H6B0.42580.23160.13540.099*
C70.4792 (5)0.1653 (4)0.2532 (4)0.125 (3)
C80.4942 (6)0.1368 (5)0.3333 (4)0.141 (3)
H8A0.55230.10670.33750.169*
H8B0.44650.09550.34850.169*
H8C0.49350.18970.36590.169*
C90.6160 (3)0.6164 (3)0.09627 (19)0.0578 (10)
C100.6376 (4)0.7134 (3)0.1029 (3)0.0850 (16)
H10A0.70270.72170.10020.102*
H10B0.61550.73610.15110.102*
H10C0.60890.74640.06190.102*
C110.3225 (3)0.6138 (4)0.0423 (2)0.0780 (15)
C120.3098 (4)0.6506 (4)0.0354 (2)0.0891 (19)
H12A0.25720.68990.03620.107*
H12B0.30100.60100.07060.107*
H12C0.36310.68490.04990.107*
C13A0.2166 (7)0.4251 (8)0.0653 (6)0.065 (4)0.50
C14A0.1234 (9)0.4089 (16)0.0918 (9)0.080 (5)0.50
H14A0.10510.46990.10930.116 (12)*0.50
C15A0.0616 (8)0.3944 (13)0.0264 (7)0.115 (5)0.50
H15A0.00010.38810.04450.116 (12)*0.50
H15B0.07920.33980.00040.116 (12)*0.50
H15C0.06530.44580.00770.116 (12)*0.50
C16A0.1064 (7)0.3555 (10)0.1568 (6)0.109 (4)0.50
H16A0.04200.35520.16750.116 (12)*0.50
H16B0.13880.38070.19970.116 (12)*0.50
H16C0.12690.29400.14780.116 (12)*0.50
C13B0.2259 (7)0.3700 (11)0.0650 (5)0.075 (4)0.50
C14B0.1267 (10)0.3705 (12)0.0763 (11)0.091 (7)0.50
H14B0.11350.35910.13050.116 (12)*0.50
C15B0.1021 (11)0.4660 (13)0.0576 (12)0.135 (5)0.50
H15D0.03740.47430.06390.116 (12)*0.50
H15E0.11870.47890.00550.116 (12)*0.50
H15F0.13420.50690.09120.116 (12)*0.50
C16B0.0834 (9)0.3015 (10)0.0311 (6)0.108 (4)0.50
H16D0.01840.30380.03900.116 (12)*0.50
H16E0.10590.24240.04590.116 (12)*0.50
H16F0.09670.31180.02200.116 (12)*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0499 (13)0.0499 (13)0.0285 (14)0.0067 (15)0.0048 (10)0.0048 (10)
O20.0677 (19)0.0496 (15)0.0387 (12)0.0017 (12)0.0011 (12)0.0013 (11)
O30.0553 (19)0.081 (2)0.0693 (18)0.0115 (17)0.0050 (15)0.0087 (17)
O40.0602 (18)0.103 (2)0.0280 (12)0.0284 (17)0.0005 (11)0.0011 (12)
O50.0564 (17)0.0494 (16)0.0401 (12)0.0053 (12)0.0068 (11)0.0095 (10)
O60.202 (5)0.195 (5)0.0499 (18)0.140 (4)0.039 (2)0.021 (2)
O70.0459 (18)0.145 (3)0.0369 (14)0.0220 (17)0.0006 (12)0.0008 (16)
O8A0.061 (4)0.150 (7)0.033 (3)0.014 (4)0.003 (3)0.009 (4)
O8B0.084 (5)0.214 (11)0.050 (4)0.056 (6)0.008 (4)0.027 (6)
O90.088 (2)0.073 (2)0.0650 (17)0.0203 (17)0.0198 (17)0.0032 (16)
O100.336 (10)0.143 (5)0.184 (5)0.120 (6)0.151 (6)0.036 (4)
C10.043 (2)0.050 (2)0.0320 (15)0.0008 (16)0.0009 (14)0.0074 (15)
C20.054 (2)0.048 (2)0.0322 (15)0.0011 (16)0.0022 (14)0.0053 (14)
C30.046 (2)0.078 (3)0.0270 (16)0.0072 (18)0.0004 (14)0.0046 (16)
C40.047 (2)0.095 (3)0.0351 (18)0.014 (2)0.0043 (15)0.0127 (18)
C50.060 (3)0.079 (3)0.0352 (18)0.021 (2)0.0075 (17)0.0108 (18)
C60.112 (4)0.085 (3)0.050 (2)0.042 (3)0.017 (3)0.015 (2)
C70.170 (7)0.064 (4)0.141 (6)0.026 (4)0.070 (5)0.005 (4)
C80.185 (7)0.094 (5)0.144 (6)0.051 (5)0.034 (6)0.036 (4)
C90.066 (3)0.070 (3)0.0380 (18)0.011 (2)0.0052 (19)0.0030 (19)
C100.122 (5)0.074 (3)0.059 (3)0.031 (3)0.009 (3)0.004 (2)
C110.077 (3)0.116 (4)0.041 (2)0.038 (3)0.009 (2)0.006 (2)
C120.092 (4)0.126 (5)0.049 (2)0.056 (3)0.003 (2)0.006 (3)
C13A0.055 (6)0.077 (8)0.062 (7)0.007 (6)0.007 (5)0.006 (6)
C14A0.057 (9)0.111 (14)0.071 (11)0.026 (8)0.013 (6)0.016 (10)
C15A0.061 (7)0.189 (16)0.095 (8)0.003 (9)0.024 (6)0.011 (9)
C16A0.051 (6)0.166 (12)0.109 (8)0.019 (7)0.008 (5)0.033 (8)
C13B0.050 (7)0.140 (13)0.036 (5)0.019 (8)0.002 (4)0.010 (7)
C14B0.075 (10)0.136 (17)0.062 (8)0.046 (10)0.002 (6)0.009 (10)
C15B0.085 (11)0.169 (18)0.151 (15)0.020 (12)0.018 (10)0.034 (14)
C16B0.103 (9)0.120 (11)0.102 (8)0.039 (8)0.012 (7)0.002 (8)
Geometric parameters (Å, º) top
O1—C11.417 (4)C8—H8A0.9800
O1—C1i1.417 (4)C8—H8B0.9800
O2—C91.343 (5)C8—H8C0.9800
O2—C21.438 (4)C9—C101.487 (6)
O3—C91.196 (5)C10—H10A0.9800
O4—C111.312 (5)C10—H10B0.9800
O4—C31.439 (4)C10—H10C0.9800
O5—C11.405 (4)C11—C121.502 (5)
O5—C51.432 (5)C12—H12A0.9800
O6—C111.172 (5)C12—H12B0.9800
O7—C13A1.379 (10)C12—H12C0.9800
O7—C13B1.407 (10)C13A—C14A1.488 (13)
O7—C41.444 (5)C14A—C16A1.429 (18)
O8A—C13A1.194 (11)C14A—C15A1.503 (15)
O8B—C13B1.228 (11)C14A—H14A1.0000
O9—C71.329 (7)C15A—H15A0.9800
O9—C61.453 (6)C15A—H15B0.9800
O10—C71.176 (7)C15A—H15C0.9800
C1—C21.499 (5)C16A—H16A0.9800
C1—H11.0000C16A—H16B0.9800
C2—C31.514 (5)C16A—H16C0.9800
C2—H21.0000C13B—C14B1.493 (14)
C3—C41.515 (6)C14B—C16B1.460 (18)
C3—H31.0000C14B—C15B1.509 (16)
C4—C51.519 (6)C14B—H14B1.0000
C4—H41.0000C15B—H15D0.9800
C5—C61.494 (6)C15B—H15E0.9800
C5—H51.0000C15B—H15F0.9800
C6—H6A0.9900C16B—H16D0.9800
C6—H6B0.9900C16B—H16E0.9800
C7—C81.507 (10)C16B—H16F0.9800
C1—O1—C1i113.1 (4)C9—C10—H10B109.5
C9—O2—C2115.8 (3)H10A—C10—H10B109.5
C11—O4—C3118.6 (3)C9—C10—H10C109.5
C1—O5—C5113.5 (3)H10A—C10—H10C109.5
C13A—O7—C4120.7 (5)H10B—C10—H10C109.5
C13B—O7—C4114.3 (5)O6—C11—O4122.8 (4)
C7—O9—C6119.0 (4)O6—C11—C12126.2 (4)
O5—C1—O1111.1 (2)O4—C11—C12110.9 (3)
O5—C1—C2110.1 (3)C11—C12—H12A109.5
O1—C1—C2108.2 (3)C11—C12—H12B109.5
O5—C1—H1109.1H12A—C12—H12B109.5
O1—C1—H1109.1C11—C12—H12C109.5
C2—C1—H1109.1H12A—C12—H12C109.5
O2—C2—C1111.1 (3)H12B—C12—H12C109.5
O2—C2—C3108.2 (3)O8A—C13A—O7122.9 (10)
C1—C2—C3110.9 (3)O8A—C13A—C14A127.7 (10)
O2—C2—H2108.9O7—C13A—C14A108.2 (9)
C1—C2—H2108.9C16A—C14A—C13A120.9 (13)
C3—C2—H2108.9C16A—C14A—C15A116.2 (14)
O4—C3—C2106.6 (3)C13A—C14A—C15A110.5 (12)
O4—C3—C4109.3 (3)C16A—C14A—H14A101.9
C2—C3—C4109.6 (3)C13A—C14A—H14A101.9
O4—C3—H3110.4C15A—C14A—H14A101.9
C2—C3—H3110.4C14A—C15A—H15A109.5
C4—C3—H3110.4C14A—C15A—H15B109.5
O7—C4—C3110.0 (3)H15A—C15A—H15B109.5
O7—C4—C5105.6 (3)C14A—C15A—H15C109.5
C3—C4—C5111.3 (3)H15A—C15A—H15C109.5
O7—C4—H4110.0H15B—C15A—H15C109.5
C3—C4—H4110.0C14A—C16A—H16A109.5
C5—C4—H4110.0C14A—C16A—H16B109.5
O5—C5—C6105.7 (4)H16A—C16A—H16B109.5
O5—C5—C4110.3 (3)C14A—C16A—H16C109.5
C6—C5—C4113.2 (3)H16A—C16A—H16C109.5
O5—C5—H5109.1H16B—C16A—H16C109.5
C6—C5—H5109.1O8B—C13B—O7124.2 (9)
C4—C5—H5109.1O8B—C13B—C14B121.8 (11)
O9—C6—C5108.5 (3)O7—C13B—C14B113.8 (10)
O9—C6—H6A110.0C16B—C14B—C13B111.2 (13)
C5—C6—H6A110.0C16B—C14B—C15B115.9 (16)
O9—C6—H6B110.0C13B—C14B—C15B102.5 (14)
C5—C6—H6B110.0C16B—C14B—H14B109.0
H6A—C6—H6B108.4C13B—C14B—H14B109.0
O10—C7—O9121.5 (7)C15B—C14B—H14B109.0
O10—C7—C8127.1 (7)C14B—C15B—H15D109.5
O9—C7—C8111.3 (5)C14B—C15B—H15E109.5
C7—C8—H8A109.5H15D—C15B—H15E109.5
C7—C8—H8B109.5C14B—C15B—H15F109.5
H8A—C8—H8B109.5H15D—C15B—H15F109.5
C7—C8—H8C109.5H15E—C15B—H15F109.5
H8A—C8—H8C109.5C14B—C16B—H16D109.5
H8B—C8—H8C109.5C14B—C16B—H16E109.5
O3—C9—O2123.5 (4)H16D—C16B—H16E109.5
O3—C9—C10125.6 (5)C14B—C16B—H16F109.5
O2—C9—C10110.9 (4)H16D—C16B—H16F109.5
C9—C10—H10A109.5H16E—C16B—H16F109.5
C5—O5—C1—O158.4 (3)C3—C4—C5—O553.3 (4)
C5—O5—C1—C261.4 (3)O7—C4—C5—C669.1 (4)
C1i—O1—C1—O572.7 (2)C3—C4—C5—C6171.5 (4)
C1i—O1—C1—C2166.4 (3)C7—O9—C6—C5111.0 (5)
C9—O2—C2—C186.0 (3)O5—C5—C6—O972.8 (4)
C9—O2—C2—C3152.1 (3)C4—C5—C6—O9166.2 (4)
O5—C1—C2—O2178.3 (3)C6—O9—C7—O101.8 (11)
O1—C1—C2—O256.7 (3)C6—O9—C7—C8175.8 (5)
O5—C1—C2—C358.0 (4)C2—O2—C9—O31.2 (5)
O1—C1—C2—C363.6 (3)C2—O2—C9—C10178.5 (3)
C11—O4—C3—C2128.0 (4)C3—O4—C11—O60.4 (8)
C11—O4—C3—C4113.6 (4)C3—O4—C11—C12177.9 (4)
O2—C2—C3—O466.2 (3)C4—O7—C13A—O8A5.3 (16)
C1—C2—C3—O4171.7 (3)C4—O7—C13A—C14A173.7 (11)
O2—C2—C3—C4175.6 (2)O8A—C13A—C14A—C16A147.4 (16)
C1—C2—C3—C453.5 (3)O7—C13A—C14A—C16A20 (2)
C13A—O7—C4—C380.3 (7)O8A—C13A—C14A—C15A7 (3)
C13B—O7—C4—C3119.0 (8)O7—C13A—C14A—C15A160.8 (15)
C13A—O7—C4—C5159.5 (7)C4—O7—C13B—O8B3.3 (19)
C13B—O7—C4—C5120.8 (8)C13A—O7—C13B—C14B69.4 (16)
O4—C3—C4—O775.5 (3)C4—O7—C13B—C14B178.8 (11)
C2—C3—C4—O7168.0 (3)O8B—C13B—C14B—C16B27 (2)
O4—C3—C4—C5167.8 (3)O7—C13B—C14B—C16B157.8 (13)
C2—C3—C4—C551.3 (4)O8B—C13B—C14B—C15B98 (2)
C1—O5—C5—C6178.2 (3)O7—C13B—C14B—C15B77.9 (16)
C1—O5—C5—C459.0 (4)H1—C1—C1i—H1i89.1
O7—C4—C5—O5172.6 (3)
Symmetry code: (i) y+1, x+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4ii1.002.533.487 (4)161
C6—H6A···O6iii0.992.373.217 (8)143
C8—H8B···O10iv0.982.533.412 (10)150
C8—H8C···O3i0.982.593.528 (8)161
C12—H12B···O5ii0.982.583.454 (5)148
Symmetry codes: (i) y+1, x+1, z+1/2; (ii) y, x, z; (iii) x+1/2, y1/2, z+1/4; (iv) y+1/2, x1/2, z+1/4.

Experimental details

Crystal data
Chemical formulaC32H46O19
Mr734.69
Crystal system, space groupTetragonal, P41212
Temperature (K)150
a, c (Å)14.9188 (9), 17.8355 (6)
V3)3969.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.45 × 0.15 × 0.15
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
using multiple and symmetry-related data measurements via SORTAV (Blessing, 1995, 1997)
Tmin, Tmax0.956, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
50356, 2206, 1414
Rint0.132
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.155, 1.01
No. of reflections2206
No. of parameters281
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.37

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO and COLLECT, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997).

Selected geometric parameters (Å, º) top
O1—C11.417 (4)C2—C31.514 (5)
O5—C51.432 (5)C3—C41.515 (6)
C1—C21.499 (5)
C1—O1—C1i113.1 (4)
H1—C1—C1i—H1i89.1
Symmetry code: (i) y+1, x+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4ii1.002.533.487 (4)161
C6—H6A···O6iii0.992.373.217 (8)143
C8—H8B···O10iv0.982.533.412 (10)150
C8—H8C···O3i0.982.593.528 (8)161
C12—H12B···O5ii0.982.583.454 (5)148
Symmetry codes: (i) y+1, x+1, z+1/2; (ii) y, x, z; (iii) x+1/2, y1/2, z+1/4; (iv) y+1/2, x1/2, z+1/4.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds