Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Condensation of anthrone with p-toluidine affords 9-p-toluidinoanthracene, C21H17N. The aromatic ring systems enclose a dihedral angle of 79.97 (3)°. One short intermolecular contact from the amino H atom is found to an aromatic C atom can be found.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801011539/cv6042sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801011539/cv6042Isup2.hkl
Contains datablock I

CCDC reference: 170909

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.049
  • wR factor = 0.140
  • Data-to-parameter ratio = 21.8

checkCIF results

No syntax errors found

Structure: I
------------

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 30.76 From the CIF: _reflns_number_total 4454 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 4712 Completeness (_total/calc) 94.52% Alert C: < 95% complete PLAT_420 Alert C D-H Without Acceptor N(1) - H(1) ?
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

Anthracene derivatives have been widely studied because of their important biological and photophysical properties (Seonkyung et al., 1997; Lahlou et al., 1998). In our reseach, we concentrated on alkyl and aryl anthracene derivatives. Recently, we described the preparation of diethyl 2-anthracen-9-ylmethylenemalonate (Elazami et al., 1999). In this paper we report on the synthesis and crystal structure of a new arylanthracene, incorporating nitrogen in the chain, N-(9-anthracene) p-toluidine, which was prepared by the condensation reaction of anthrone and p-toluidine. The title compound has a high stability at room temperature [confirmed by mass spectroscopy 283 (M+, 100%)]. Since NMR and mass spectroscopy did not provide sufficient information about the conformation of the reaction product, we have carried out the X-ray structure analysis.

Bond lengths and angles are in the usual ranges. The N atom deviates only slightly from the plane of the anthracene ring system [0.036 (2) Å] and of the plane of the phenyl ring [0.075 (2) Å]. Both aromatic rings enclose a dihedral angle of 79.97 (3)°. In absence of a classical hydrogen bond acceptor, only one intermolecular N—H···C contact less than 3 Å can be found.

Experimental top

In a 100 ml three-necked flask fitted with a reflux condenser were placed anthrone (5 g, 25 mmol), p-toluidine (8 g, 075 mmol), which had previously been dissolved in benzene (40 ml), and dichloromethane (50 ml). The mixture was stirred at room temperature. Then aluminium trichloride (1 ml), dissolved in ethyl ether (20 ml), was added. At the end of the addition, the mixture was stirred and refluxed for 24 h. The solution was extracted with dichloromethane and dried with the anhydrous sodium sulfate. The solvant was removed on a rotary evaporator and the residue was purified by flash column chromatography over silica (hexane). Recrystallization from ethyl ether/hexane (volume ratio: 3/1) led to flat yellow crystals.

Refinement top

All H atoms were located by difference Fourier synthesis and refined with fixed individual displacement parameters [U(H) = 1.2 Ueq(C) or U(H) = 1.5 Ueq(Cmethyl)] using a riding model with aromatic C—H = 0.95 Å or methyl C—H = 0.98 Å, respectively. The H atom bonded to N was refined isotropically. The methyl group was allowed to rotate about its local threefold axis.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SMART (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Siemens, 1991).

Figures top
[Figure 1] Fig. 1. A perspective view of the title compound with the atom-numbering scheme. Displacement ellipsoids are at the 50% probability level.
9-p-Toluidinoanthracene top
Crystal data top
C21H17NF(000) = 600
Mr = 283.36Dx = 1.248 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.367 (1) ÅCell parameters from 6696 reflections
b = 6.343 (1) Åθ = 2–25°
c = 23.361 (2) ŵ = 0.07 mm1
β = 100.98 (1)°T = 173 K
V = 1508.0 (3) Å3Plate, yellow
Z = 40.60 × 0.50 × 0.20 mm
Data collection top
Siemens CCD three-circle
diffractometer
4454 independent reflections
Radiation source: fine-focus sealed tube2900 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ω scansθmax = 30.8°, θmin = 1.8°
Absorption correction: empirical
SADABS (Sheldrick, 1996)
h = 1414
Tmin = 0.958, Tmax = 0.986k = 99
39404 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0706P)2 + 0.162P]
where P = (Fo2 + 2Fc2)/3
4454 reflections(Δ/σ)max = 0.004
204 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C21H17NV = 1508.0 (3) Å3
Mr = 283.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.367 (1) ŵ = 0.07 mm1
b = 6.343 (1) ÅT = 173 K
c = 23.361 (2) Å0.60 × 0.50 × 0.20 mm
β = 100.98 (1)°
Data collection top
Siemens CCD three-circle
diffractometer
4454 independent reflections
Absorption correction: empirical
SADABS (Sheldrick, 1996)
2900 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.986Rint = 0.064
39404 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.22 e Å3
4454 reflectionsΔρmin = 0.28 e Å3
204 parameters
Special details top

Experimental. ;

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.36462 (11)0.56711 (18)0.66343 (5)0.0234 (2)
C20.24206 (11)0.47210 (19)0.64251 (5)0.0242 (3)
C30.14423 (13)0.5656 (2)0.59847 (5)0.0332 (3)
H30.16230.69540.58130.040*
C40.02497 (14)0.4707 (3)0.58067 (6)0.0424 (4)
H40.03900.53600.55160.051*
C50.00425 (14)0.2767 (3)0.60504 (6)0.0438 (4)
H50.08790.21350.59250.053*
C60.08592 (13)0.1803 (2)0.64613 (6)0.0361 (3)
H60.06550.04820.66140.043*
C70.21157 (12)0.27413 (19)0.66697 (5)0.0264 (3)
C80.30366 (12)0.18068 (19)0.71102 (5)0.0278 (3)
H80.28330.04970.72690.033*
C90.42485 (12)0.27501 (19)0.73224 (5)0.0266 (3)
C100.51831 (13)0.1829 (2)0.77869 (6)0.0367 (3)
H100.50030.04990.79410.044*
C110.63273 (14)0.2845 (3)0.80095 (6)0.0450 (4)
H110.69300.22290.83220.054*
C120.66229 (13)0.4804 (3)0.77791 (6)0.0425 (4)
H120.74250.54920.79390.051*
C130.57786 (12)0.5726 (2)0.73321 (6)0.0325 (3)
H130.60000.70420.71830.039*
C140.45601 (11)0.47346 (19)0.70845 (5)0.0246 (3)
N10.39332 (11)0.76511 (16)0.64016 (5)0.0296 (3)
H10.3538 (17)0.871 (3)0.6510 (7)0.051 (5)*
C210.49141 (11)0.79528 (18)0.60721 (5)0.0229 (2)
C220.54433 (13)0.62953 (19)0.58029 (6)0.0294 (3)
H220.51700.48910.58560.035*
C230.63702 (12)0.6683 (2)0.54569 (5)0.0299 (3)
H230.67240.55270.52790.036*
C240.67948 (11)0.87104 (19)0.53641 (5)0.0256 (3)
C2410.77658 (13)0.9119 (2)0.49704 (6)0.0363 (3)
H24A0.86620.90120.51970.054*
H24B0.76241.05360.48030.054*
H24C0.76420.80740.46560.054*
C250.62643 (12)1.03506 (19)0.56408 (6)0.0290 (3)
H250.65391.17540.55880.035*
C260.53484 (12)0.99975 (18)0.59908 (5)0.0275 (3)
H260.50131.11510.61770.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0281 (6)0.0192 (5)0.0256 (6)0.0006 (4)0.0121 (5)0.0009 (4)
C20.0268 (6)0.0253 (6)0.0224 (6)0.0008 (5)0.0096 (5)0.0011 (5)
C30.0356 (7)0.0391 (7)0.0260 (6)0.0033 (6)0.0085 (5)0.0035 (6)
C40.0327 (7)0.0658 (10)0.0270 (7)0.0031 (7)0.0018 (5)0.0030 (7)
C50.0338 (7)0.0622 (10)0.0356 (8)0.0144 (7)0.0076 (6)0.0157 (7)
C60.0389 (7)0.0372 (7)0.0357 (7)0.0140 (6)0.0161 (6)0.0108 (6)
C70.0325 (6)0.0252 (6)0.0246 (6)0.0042 (5)0.0135 (5)0.0047 (5)
C80.0388 (7)0.0190 (5)0.0304 (6)0.0004 (5)0.0187 (5)0.0017 (5)
C90.0314 (6)0.0257 (6)0.0262 (6)0.0066 (5)0.0142 (5)0.0036 (5)
C100.0398 (7)0.0414 (8)0.0333 (7)0.0160 (6)0.0181 (6)0.0123 (6)
C110.0316 (7)0.0714 (11)0.0330 (7)0.0208 (7)0.0087 (6)0.0110 (7)
C120.0244 (6)0.0680 (11)0.0355 (7)0.0014 (7)0.0071 (5)0.0003 (7)
C130.0255 (6)0.0408 (7)0.0333 (7)0.0030 (5)0.0111 (5)0.0009 (6)
C140.0244 (6)0.0259 (6)0.0258 (6)0.0013 (5)0.0104 (5)0.0004 (5)
N10.0354 (6)0.0179 (5)0.0407 (6)0.0021 (4)0.0200 (5)0.0036 (4)
C210.0247 (6)0.0208 (6)0.0235 (5)0.0012 (4)0.0056 (4)0.0022 (4)
C220.0386 (7)0.0184 (6)0.0342 (7)0.0029 (5)0.0141 (5)0.0006 (5)
C230.0366 (7)0.0243 (6)0.0317 (6)0.0017 (5)0.0137 (5)0.0015 (5)
C240.0254 (6)0.0278 (6)0.0243 (6)0.0005 (5)0.0060 (5)0.0036 (5)
C2410.0376 (7)0.0364 (7)0.0384 (7)0.0014 (6)0.0162 (6)0.0054 (6)
C250.0317 (6)0.0204 (6)0.0360 (7)0.0050 (5)0.0096 (5)0.0041 (5)
C260.0315 (6)0.0194 (6)0.0332 (7)0.0004 (5)0.0098 (5)0.0005 (5)
Geometric parameters (Å, º) top
C1—C141.4060 (16)C11—H110.9500
C1—C21.4071 (16)C12—C131.3603 (19)
C1—N11.4224 (15)C12—H120.9500
C2—C31.4287 (17)C13—C141.4309 (17)
C2—C71.4394 (17)C13—H130.9500
C3—C41.367 (2)N1—C211.4003 (15)
C3—H30.9500N1—H10.851 (18)
C4—C51.413 (2)C21—C221.3904 (16)
C4—H40.9500C21—C261.3977 (15)
C5—C61.352 (2)C22—C231.3904 (17)
C5—H50.9500C22—H220.9500
C6—C71.4306 (18)C23—C241.3897 (17)
C6—H60.9500C23—H230.9500
C7—C81.3955 (18)C24—C251.3921 (17)
C8—C91.3946 (18)C24—C2411.5098 (17)
C8—H80.9500C241—H24A0.9800
C9—C101.4343 (18)C241—H24B0.9800
C9—C141.4373 (17)C241—H24C0.9800
C10—C111.363 (2)C25—C261.3842 (17)
C10—H100.9500C25—H250.9500
C11—C121.411 (2)C26—H260.9500
C14—C1—C2120.94 (11)C11—C12—H12119.4
C14—C1—N1119.92 (11)C12—C13—C14120.72 (13)
C2—C1—N1119.09 (11)C12—C13—H13119.6
C1—C2—C3122.86 (11)C14—C13—H13119.6
C1—C2—C7119.19 (11)C1—C14—C13122.27 (11)
C3—C2—C7117.94 (11)C1—C14—C9119.35 (11)
C4—C3—C2120.88 (13)C13—C14—C9118.34 (11)
C4—C3—H3119.6C21—N1—C1123.88 (10)
C2—C3—H3119.6C21—N1—H1119.7 (12)
C3—C4—C5120.79 (14)C1—N1—H1116.0 (12)
C3—C4—H4119.6C22—C21—C26118.36 (11)
C5—C4—H4119.6C22—C21—N1122.39 (10)
C6—C5—C4120.52 (13)C26—C21—N1119.21 (10)
C6—C5—H5119.7C23—C22—C21120.35 (11)
C4—C5—H5119.7C23—C22—H22119.8
C5—C6—C7121.01 (13)C21—C22—H22119.8
C5—C6—H6119.5C24—C23—C22121.91 (11)
C7—C6—H6119.5C24—C23—H23119.0
C8—C7—C6121.67 (12)C22—C23—H23119.0
C8—C7—C2119.48 (11)C23—C24—C25117.03 (11)
C6—C7—C2118.84 (12)C23—C24—C241121.44 (11)
C9—C8—C7121.56 (11)C25—C24—C241121.52 (11)
C9—C8—H8119.2C24—C241—H24A109.5
C7—C8—H8119.2C24—C241—H24B109.5
C8—C9—C10121.82 (12)H24A—C241—H24B109.5
C8—C9—C14119.46 (11)C24—C241—H24C109.5
C10—C9—C14118.68 (12)H24A—C241—H24C109.5
C11—C10—C9120.64 (13)H24B—C241—H24C109.5
C11—C10—H10119.7C26—C25—C24121.96 (11)
C9—C10—H10119.7C26—C25—H25119.0
C10—C11—C12120.48 (13)C24—C25—H25119.0
C10—C11—H11119.8C25—C26—C21120.36 (11)
C12—C11—H11119.8C25—C26—H26119.8
C13—C12—C11121.10 (14)C21—C26—H26119.8
C13—C12—H12119.4
C14—C1—C2—C3177.49 (11)C2—C1—C14—C13175.93 (11)
N1—C1—C2—C30.18 (17)N1—C1—C14—C131.36 (17)
C14—C1—C2—C71.23 (17)C2—C1—C14—C91.69 (17)
N1—C1—C2—C7178.55 (10)N1—C1—C14—C9178.98 (10)
C1—C2—C3—C4178.03 (12)C12—C13—C14—C1178.02 (12)
C7—C2—C3—C40.71 (18)C12—C13—C14—C90.38 (18)
C2—C3—C4—C50.5 (2)C8—C9—C14—C11.16 (16)
C3—C4—C5—C60.6 (2)C10—C9—C14—C1179.14 (11)
C4—C5—C6—C71.5 (2)C8—C9—C14—C13176.56 (11)
C5—C6—C7—C8177.39 (12)C10—C9—C14—C131.42 (16)
C5—C6—C7—C21.33 (18)C14—C1—N1—C2168.34 (16)
C1—C2—C7—C80.24 (16)C2—C1—N1—C21114.32 (13)
C3—C2—C7—C8178.55 (11)C1—N1—C21—C2218.72 (19)
C1—C2—C7—C6178.98 (11)C1—N1—C21—C26163.70 (12)
C3—C2—C7—C60.20 (16)C26—C21—C22—C230.72 (18)
C6—C7—C8—C9178.43 (11)N1—C21—C22—C23176.88 (12)
C2—C7—C8—C90.28 (17)C21—C22—C23—C240.4 (2)
C7—C8—C9—C10178.09 (11)C22—C23—C24—C250.91 (19)
C7—C8—C9—C140.18 (17)C22—C23—C24—C241177.80 (12)
C8—C9—C10—C11176.11 (12)C23—C24—C25—C260.38 (18)
C14—C9—C10—C111.82 (18)C241—C24—C25—C26178.33 (12)
C9—C10—C11—C121.1 (2)C24—C25—C26—C210.70 (19)
C10—C11—C12—C130.0 (2)C22—C21—C26—C251.24 (18)
C11—C12—C13—C140.3 (2)N1—C21—C26—C25176.44 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···C8i0.851 (18)2.523 (18)3.3375 (17)160.4 (15)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H17N
Mr283.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)10.367 (1), 6.343 (1), 23.361 (2)
β (°) 100.98 (1)
V3)1508.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.60 × 0.50 × 0.20
Data collection
DiffractometerSiemens CCD three-circle
diffractometer
Absorption correctionEmpirical
SADABS (Sheldrick, 1996)
Tmin, Tmax0.958, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
39404, 4454, 2900
Rint0.064
(sin θ/λ)max1)0.720
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.140, 1.05
No. of reflections4454
No. of parameters204
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.28

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP in SHELXTL-Plus (Siemens, 1991).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···C8i0.851 (18)2.523 (18)3.3375 (17)160.4 (15)
Symmetry code: (i) x, y+1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds