Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C26H19N5O2, contains three aromatic rings, which are not coplanar. The crystal structure is stabilized by intermolecular C—H...N contacts.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803013400/cv6201sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803013400/cv6201Isup2.hkl
Contains datablock I

CCDC reference: 217472

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.044
  • wR factor = 0.138
  • Data-to-parameter ratio = 11.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 62.97 From the CIF: _reflns_number_total 3484 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 3810 Completeness (_total/calc) 91.44% Alert C: < 95% complete THETM_01 Alert C The value of sine(theta_max)/wavelength is less than 0.590 Calculated sin(theta_max)/wavelength = 0.5777 PLAT_371 Alert C Long C(sp2)-C(sp1) Bond C8 - C24 = 1.44 Ang. PLAT_371 Alert C Long C(sp2)-C(sp1) Bond C13 - C23 = 1.44 Ang. PLAT_371 Alert C Long C(sp2)-C(sp1) Bond C14 - C26 = 1.43 Ang. PLAT_371 Alert C Long C(sp2)-C(sp1) Bond C21 - C25 = 1.44 Ang.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
6 Alert Level C = Please check

Comment top

Diphthalonitriles have been used as starting materials for network polymeric phthalocyanines (McKeown, 1998). Phthalocyanine compounds have been widely studied for over 50 years due to their varied applications (Moser et al., 1983). Polymeric phthalocyanines have been described for use as dyes and industrial high-tech materials and are also of additional interest because of their high thermostability (Leznoff & Lever, 1989–1996).

An ORTEPIII (Burnett & Johnson, 1996) plot of the title structure, (I), is shown in Fig. 1. The bond distances and angles in (I) are normal (Table 1). The average NC bond distance in cyano groups, 1.139 (4) Å, is short enough to indicate its triple- bond character. This value is in good agreement with those in 4,4'-[2,2-methylenebis(4-chlorophenoxy)]diphthalonitrile (Çoruh et al., 2002) and 4-(phenothiazin-10-yl)benzene-1,2-dicarbonitrile ("Oztürk et al., 1999). The O—C bond distances correspond to those in 4,4'-[2,2-methylenebis(4-chlorophenoxy)]diphthalonitrile (Çoruh et al., 2002)."

The three phenyl rings in the molecule are essentially planar. The dihedral angle between ring A (C13/C11/C4/C16/C15/C8) and ring B (C7/C21/C14/C17/C20/C12) planes is 70.73 (7)°, while the dihedral angle between ring A and ring C (C3/C18/C28/C29/C27/C5) planes is 73.54(0.10)°. The angle between B and C planes is 69.23(0.10)°.

The crystal structure is stabilized by intermolecular C—H···N contacts (Table 2).

Experimental top

N-Phenyl-2,2'-iminodiethanol (1.17 g, 6.46 mmol) was dissolved in dry DMF and 4-nitrophthalonitrile (2.15 g, 12.43 mmol) was added. After stirring for 30 min, finely ground anhydrous K2CO3 (2.76 g, 20 mmol) was added portionwise in 2 h with efficient stirring. The reaction mixture was stirred for 24 h at 333 K and then poured into ice water (200 g). The product filtered off and washed with water until the filtrate was neutral. The product was then refluxed in methanol, filtered and dried. The title compound (I), was crystallized from dimethylformamide via slow evaporation at room temperature (yield 0.29 g, 10.8%). M.p.: 433 K. IR (νmax/cm-1): 3100–3040 (Ar—CH), 2940–2900 (CH), 2220 (CN), 1660, 1588, 1556, 1484, 1452, 1424, 1388, 1360, 1288, 1240, 1192, 1168, 1116, 1092, 1028, 1016, 984, 952, 908, 888, 844, 828, 748, 725, 690, 640, 624, 590, 550, 520. 1H NMR (acetone-d6): 4.01 (t,2H), 4.47 (t,2H), 6.68–7.95 (m,6H). 13C NMR (acetone-d6): 51.18 (CH2—N), 68.17 (CH2—O), 107.93, 113.52, 116.47, 117.06, 117.97, 120.75, 120.93, 130.19, 136.38, 147.94, 163.18. Analysis calculated for C26H19N5O2: C 72.04, H 4.42, N 16.16%; found: C 72.04, H 4.39, N 16.14%.

Refinement top

The H atoms were located geometrically and refined using a riding model.

Structure description top

Diphthalonitriles have been used as starting materials for network polymeric phthalocyanines (McKeown, 1998). Phthalocyanine compounds have been widely studied for over 50 years due to their varied applications (Moser et al., 1983). Polymeric phthalocyanines have been described for use as dyes and industrial high-tech materials and are also of additional interest because of their high thermostability (Leznoff & Lever, 1989–1996).

An ORTEPIII (Burnett & Johnson, 1996) plot of the title structure, (I), is shown in Fig. 1. The bond distances and angles in (I) are normal (Table 1). The average NC bond distance in cyano groups, 1.139 (4) Å, is short enough to indicate its triple- bond character. This value is in good agreement with those in 4,4'-[2,2-methylenebis(4-chlorophenoxy)]diphthalonitrile (Çoruh et al., 2002) and 4-(phenothiazin-10-yl)benzene-1,2-dicarbonitrile ("Oztürk et al., 1999). The O—C bond distances correspond to those in 4,4'-[2,2-methylenebis(4-chlorophenoxy)]diphthalonitrile (Çoruh et al., 2002)."

The three phenyl rings in the molecule are essentially planar. The dihedral angle between ring A (C13/C11/C4/C16/C15/C8) and ring B (C7/C21/C14/C17/C20/C12) planes is 70.73 (7)°, while the dihedral angle between ring A and ring C (C3/C18/C28/C29/C27/C5) planes is 73.54(0.10)°. The angle between B and C planes is 69.23(0.10)°.

The crystal structure is stabilized by intermolecular C—H···N contacts (Table 2).

Computing details top

Data collection: COLLECT (Nonius, 1997-2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1997) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. An ORTEPIII drawing (burnett & Johnson, 1996) of the title compound, showing the atomic numbering scheme. Displacement ellipsoids of non-H atoms are shown at the 50% probability level.
4,4'-(N-Phenyl-2,2'-iminodiethanoxy)diphthalonitrile top
Crystal data top
C26H19N5O2F(000) = 1808
Mr = 433.46Dx = 1.222 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ac 2abCell parameters from 3683 reflections
a = 16.621 (5) Åθ = 0.0–64.5°
b = 9.004 (5) ŵ = 0.65 mm1
c = 31.494 (5) ÅT = 293 K
V = 4713 (3) Å3Prismatic, dark yellow
Z = 80.25 × 0.18 × 0.13 mm
Data collection top
Nonius KappaCCD
diffractometer
1872 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.001
Graphite monochromatorθmax = 63.0°, θmin = 3.9°
Detector resolution: 9 pixels mm-1h = 1818
ω–2θ scansk = 99
6338 measured reflectionsl = 3635
3484 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.7824P]
where P = (Fo2 + 2Fc2)/3
3484 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.10 e Å3
Crystal data top
C26H19N5O2V = 4713 (3) Å3
Mr = 433.46Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 16.621 (5) ŵ = 0.65 mm1
b = 9.004 (5) ÅT = 293 K
c = 31.494 (5) Å0.25 × 0.18 × 0.13 mm
Data collection top
Nonius KappaCCD
diffractometer
1872 reflections with I > 2σ(I)
6338 measured reflectionsRint = 0.001
3484 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.11 e Å3
3484 reflectionsΔρmin = 0.10 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.11340 (10)0.54371 (19)0.59502 (6)0.0864 (6)
N20.99288 (12)0.3341 (2)0.62351 (7)0.0787 (6)
C31.00467 (14)0.1828 (3)0.62566 (8)0.0690 (7)
C41.18079 (16)0.5885 (3)0.57522 (9)0.0763 (7)
C51.05667 (15)0.1218 (3)0.65566 (9)0.0852 (8)
H51.08280.18380.67480.102*
O60.85398 (11)0.4874 (2)0.65186 (7)0.1084 (7)
C70.79704 (17)0.6020 (3)0.71028 (10)0.0908 (9)
H70.84840.63180.71840.109*
C81.31338 (18)0.6958 (3)0.53085 (10)0.0880 (9)
C91.03740 (17)0.4346 (3)0.65037 (9)0.0907 (9)
H9A1.04060.39290.67870.109*
H9B1.00850.52790.65230.109*
C101.12138 (16)0.4644 (3)0.63439 (9)0.0875 (8)
H10A1.15110.52340.65480.105*
H10B1.14990.37180.62990.105*
C111.16970 (17)0.6789 (3)0.53976 (9)0.0842 (8)
H111.11800.70310.53090.101*
C120.78608 (18)0.5158 (3)0.67405 (10)0.0881 (8)
C131.23535 (18)0.7325 (3)0.51787 (9)0.0843 (8)
C140.65391 (17)0.5975 (3)0.72282 (10)0.0875 (8)
C151.32313 (17)0.6049 (4)0.56557 (10)0.0958 (9)
H151.37480.57850.57400.115*
C161.25782 (17)0.5516 (3)0.58828 (9)0.0891 (8)
H161.26560.49180.61200.107*
C170.64556 (17)0.5084 (3)0.68754 (10)0.0959 (9)
H170.59450.47490.68010.115*
C180.96601 (16)0.0857 (4)0.59793 (9)0.0909 (9)
H180.93010.12230.57790.109*
C190.84996 (17)0.3978 (4)0.61419 (10)0.0999 (10)
H19A0.81160.43920.59420.120*
H19B0.83360.29730.62110.120*
C200.71044 (18)0.4672 (3)0.66285 (10)0.0939 (9)
H200.70320.40770.63900.113*
C210.73120 (18)0.6426 (3)0.73402 (10)0.0866 (8)
C220.93342 (17)0.3988 (3)0.59559 (9)0.0980 (9)
H22A0.93300.34410.56900.118*
H22B0.94870.50040.58930.118*
C231.22418 (19)0.8288 (4)0.48186 (13)0.1080 (11)
C241.3821 (2)0.7532 (4)0.50859 (11)0.1144 (11)
C250.74284 (19)0.7335 (4)0.77131 (13)0.1090 (11)
C260.5848 (2)0.6437 (4)0.74660 (10)0.1051 (10)
C271.0698 (2)0.0271 (5)0.65729 (14)0.1229 (13)
H271.10440.06530.67780.148*
C280.9811 (2)0.0658 (5)0.60024 (14)0.1262 (13)
H280.95540.13030.58160.151*
C291.0335 (3)0.1208 (5)0.62975 (19)0.1436 (18)
H291.04410.22210.63090.172*
N301.43768 (19)0.7975 (4)0.49135 (10)0.1578 (13)
N311.21692 (18)0.9059 (4)0.45360 (11)0.1447 (13)
N320.75208 (19)0.8047 (4)0.80074 (11)0.1499 (13)
N330.52887 (18)0.6815 (4)0.76449 (10)0.1413 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0728 (12)0.0835 (13)0.1028 (15)0.0038 (9)0.0040 (10)0.0121 (11)
N20.0726 (14)0.0626 (15)0.1008 (18)0.0058 (11)0.0062 (12)0.0022 (13)
C30.0611 (15)0.0595 (17)0.087 (2)0.0032 (13)0.0066 (14)0.0035 (15)
C40.0698 (19)0.0695 (18)0.090 (2)0.0049 (14)0.0016 (16)0.0078 (16)
C50.0727 (18)0.078 (2)0.105 (2)0.0000 (14)0.0021 (16)0.0188 (17)
O60.0786 (13)0.1229 (17)0.1237 (18)0.0178 (11)0.0018 (12)0.0206 (15)
C70.081 (2)0.088 (2)0.104 (2)0.0054 (16)0.0099 (18)0.0013 (19)
C80.080 (2)0.102 (2)0.083 (2)0.0168 (17)0.0021 (17)0.0142 (19)
C90.101 (2)0.0676 (18)0.104 (2)0.0067 (16)0.0154 (18)0.0056 (16)
C100.088 (2)0.0780 (19)0.096 (2)0.0096 (15)0.0038 (17)0.0045 (17)
C110.080 (2)0.082 (2)0.091 (2)0.0069 (15)0.0068 (16)0.0012 (17)
C120.074 (2)0.090 (2)0.100 (2)0.0199 (16)0.0018 (18)0.0029 (19)
C130.088 (2)0.088 (2)0.077 (2)0.0142 (17)0.0054 (17)0.0044 (17)
C140.076 (2)0.100 (2)0.087 (2)0.0087 (16)0.0084 (17)0.0042 (19)
C150.0679 (19)0.112 (2)0.107 (3)0.0072 (17)0.0114 (17)0.011 (2)
C160.0724 (19)0.096 (2)0.099 (2)0.0059 (16)0.0106 (17)0.0026 (17)
C170.074 (2)0.111 (2)0.103 (3)0.0093 (17)0.0156 (18)0.001 (2)
C180.0749 (18)0.093 (2)0.105 (2)0.0066 (16)0.0077 (16)0.0163 (19)
C190.087 (2)0.115 (2)0.098 (2)0.0336 (17)0.0096 (17)0.000 (2)
C200.074 (2)0.105 (2)0.103 (2)0.0201 (17)0.0148 (18)0.0103 (18)
C210.087 (2)0.083 (2)0.090 (2)0.0065 (16)0.0061 (18)0.0002 (17)
C220.101 (2)0.091 (2)0.102 (2)0.0266 (17)0.0050 (18)0.0197 (17)
C230.103 (2)0.124 (3)0.097 (3)0.030 (2)0.004 (2)0.007 (2)
C240.092 (2)0.149 (3)0.102 (3)0.028 (2)0.011 (2)0.025 (2)
C250.094 (2)0.119 (3)0.115 (3)0.009 (2)0.007 (2)0.008 (2)
C260.093 (2)0.135 (3)0.088 (3)0.008 (2)0.0004 (19)0.000 (2)
C270.090 (2)0.094 (3)0.185 (4)0.015 (2)0.019 (2)0.050 (3)
C280.114 (3)0.096 (3)0.168 (4)0.025 (2)0.035 (3)0.045 (3)
C290.124 (4)0.068 (3)0.238 (6)0.010 (2)0.057 (4)0.006 (3)
N300.121 (3)0.208 (3)0.144 (3)0.054 (2)0.036 (2)0.023 (2)
N310.130 (3)0.182 (3)0.122 (3)0.042 (2)0.013 (2)0.045 (2)
N320.127 (2)0.181 (3)0.141 (3)0.008 (2)0.020 (2)0.056 (3)
N330.111 (2)0.191 (3)0.123 (3)0.007 (2)0.0179 (19)0.017 (2)
Geometric parameters (Å, º) top
O1—C41.344 (3)C13—C231.440 (5)
O1—C101.437 (3)C14—C171.377 (4)
N2—C31.378 (3)C14—C211.393 (4)
N2—C91.443 (3)C14—C261.433 (4)
N2—C221.445 (3)C15—C161.386 (4)
C3—C181.393 (3)C15—H150.9300
C3—C51.393 (3)C16—H160.9300
C4—C161.385 (3)C17—C201.380 (4)
C4—C111.394 (3)C17—H170.9300
C5—C271.359 (4)C18—C281.389 (4)
C5—H50.9300C18—H180.9300
O6—C121.352 (3)C19—C221.506 (4)
O6—C191.436 (3)C19—H19A0.9700
C7—C211.375 (3)C19—H19B0.9700
C7—C121.392 (4)C20—H200.9300
C7—H70.9300C21—C251.445 (5)
C8—C151.376 (4)C22—H22A0.9700
C8—C131.399 (4)C22—H22B0.9700
C8—C241.436 (4)C23—N311.135 (4)
C9—C101.508 (3)C24—N301.144 (4)
C9—H9A0.9700C25—N321.137 (4)
C9—H9B0.9700C26—N331.139 (4)
C10—H10A0.9700C27—C291.352 (5)
C10—H10B0.9700C27—H270.9300
C11—C131.378 (3)C28—C291.367 (5)
C11—H110.9300C28—H280.9300
C12—C201.377 (4)C29—H290.9300
C4—O1—C10118.2 (2)C8—C15—C16121.6 (3)
C3—N2—C9121.2 (2)C8—C15—H15119.2
C3—N2—C22121.7 (2)C16—C15—H15119.2
C9—N2—C22117.1 (2)C4—C16—C15119.2 (3)
N2—C3—C18121.6 (3)C4—C16—H16120.4
N2—C3—C5120.7 (3)C15—C16—H16120.4
C18—C3—C5117.6 (3)C14—C17—C20122.2 (3)
O1—C4—C16124.1 (3)C14—C17—H17118.9
O1—C4—C11115.9 (2)C20—C17—H17118.9
C16—C4—C11120.0 (3)C28—C18—C3120.0 (3)
C27—C5—C3120.9 (3)C28—C18—H18120.0
C27—C5—H5119.5C3—C18—H18120.0
C3—C5—H5119.5O6—C19—C22106.0 (3)
C12—O6—C19119.6 (2)O6—C19—H19A110.5
C21—C7—C12119.3 (3)C22—C19—H19A110.5
C21—C7—H7120.3O6—C19—H19B110.5
C12—C7—H7120.3C22—C19—H19B110.5
C15—C8—C13118.8 (3)H19A—C19—H19B108.7
C15—C8—C24120.6 (3)C12—C20—C17118.9 (3)
C13—C8—C24120.6 (3)C12—C20—H20120.5
N2—C9—C10113.0 (2)C17—C20—H20120.5
N2—C9—H9A109.0C7—C21—C14121.3 (3)
C10—C9—H9A109.0C7—C21—C25119.1 (3)
N2—C9—H9B109.0C14—C21—C25119.6 (3)
C10—C9—H9B109.0N2—C22—C19113.0 (2)
H9A—C9—H9B107.8N2—C22—H22A109.0
O1—C10—C9106.9 (2)C19—C22—H22A109.0
O1—C10—H10A110.3N2—C22—H22B109.0
C9—C10—H10A110.3C19—C22—H22B109.0
O1—C10—H10B110.3H22A—C22—H22B107.8
C9—C10—H10B110.3N31—C23—C13178.6 (4)
H10A—C10—H10B108.6N30—C24—C8178.7 (5)
C13—C11—C4120.0 (3)N32—C25—C21179.8 (5)
C13—C11—H11120.0N33—C26—C14178.1 (4)
C4—C11—H11120.0C29—C27—C5121.3 (4)
O6—C12—C20124.7 (3)C29—C27—H27119.3
O6—C12—C7114.8 (3)C5—C27—H27119.3
C20—C12—C7120.4 (3)C29—C28—C18120.4 (4)
C11—C13—C8120.4 (3)C29—C28—H28119.8
C11—C13—C23120.2 (3)C18—C28—H28119.8
C8—C13—C23119.5 (3)C27—C29—C28119.6 (4)
C17—C14—C21117.8 (3)C27—C29—H29120.2
C17—C14—C26120.7 (3)C28—C29—H29120.2
C21—C14—C26121.5 (3)
C9—N2—C3—C18175.6 (2)C24—C8—C15—C16178.1 (3)
C22—N2—C3—C186.9 (4)O1—C4—C16—C15179.6 (2)
C9—N2—C3—C53.8 (3)C11—C4—C16—C150.4 (4)
C22—N2—C3—C5173.8 (2)C8—C15—C16—C41.2 (4)
C10—O1—C4—C166.1 (4)C21—C14—C17—C201.9 (4)
C10—O1—C4—C11173.1 (2)C26—C14—C17—C20177.1 (3)
N2—C3—C5—C27178.6 (2)N2—C3—C18—C28178.2 (3)
C18—C3—C5—C270.8 (4)C5—C3—C18—C281.2 (4)
C3—N2—C9—C1079.7 (3)C12—O6—C19—C22175.4 (2)
C22—N2—C9—C10102.7 (3)O6—C12—C20—C17177.8 (3)
C4—O1—C10—C9177.4 (2)C7—C12—C20—C171.6 (4)
N2—C9—C10—O166.2 (3)C14—C17—C20—C120.5 (5)
O1—C4—C11—C13178.8 (2)C12—C7—C21—C140.9 (4)
C16—C4—C11—C130.5 (4)C12—C7—C21—C25179.3 (3)
C19—O6—C12—C201.5 (4)C17—C14—C21—C71.1 (4)
C19—O6—C12—C7179.2 (2)C26—C14—C21—C7177.8 (3)
C21—C7—C12—O6177.1 (2)C17—C14—C21—C25178.7 (3)
C21—C7—C12—C202.3 (4)C26—C14—C21—C252.3 (4)
C4—C11—C13—C80.5 (4)C3—N2—C22—C1982.7 (3)
C4—C11—C13—C23178.5 (3)C9—N2—C22—C1994.9 (3)
C15—C8—C13—C110.4 (4)O6—C19—C22—N262.0 (3)
C24—C8—C13—C11179.0 (3)C3—C5—C27—C290.6 (5)
C15—C8—C13—C23179.3 (3)C3—C18—C28—C290.3 (5)
C24—C8—C13—C230.0 (4)C5—C27—C29—C281.5 (6)
C13—C8—C15—C161.2 (4)C18—C28—C29—C271.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O60.972.593.086 (4)112
C19—H19A···N31i0.972.593.546 (5)170
Symmetry code: (i) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC26H19N5O2
Mr433.46
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)16.621 (5), 9.004 (5), 31.494 (5)
V3)4713 (3)
Z8
Radiation typeCu Kα
µ (mm1)0.65
Crystal size (mm)0.25 × 0.18 × 0.13
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6338, 3484, 1872
Rint0.001
(sin θ/λ)max1)0.578
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.138, 1.01
No. of reflections3484
No. of parameters298
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.11, 0.10

Computer programs: COLLECT (Nonius, 1997-2000), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), WinGX (Farrugia, 1997) and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) top
O1—C41.344 (3)O6—C191.436 (3)
O1—C101.437 (3)C23—N311.135 (4)
N2—C31.378 (3)C24—N301.144 (4)
N2—C91.443 (3)C25—N321.137 (4)
N2—C221.445 (3)C26—N331.139 (4)
O6—C121.352 (3)
C4—O1—C10118.2 (2)C12—O6—C19119.6 (2)
C3—N2—C9121.2 (2)N2—C9—C10113.0 (2)
C3—N2—C22121.7 (2)N2—C22—C19113.0 (2)
C9—N2—C22117.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···N31i0.972.593.546 (5)170
Symmetry code: (i) x1/2, y+3/2, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds