Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100001037/da1109sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270100001037/da1109Isup2.hkl |
In a typical procedure, acetylene gas was bubbled at a slow rate with constant stirring into a methanol solution (15 ml) containing freshly prepared (CO)6Fe2(µ-SSe) (0.6 g, 1.53 mmol) (Mathur, Sekar et al., 1995) and anhydrous sodium acetate (0.25 g). The reaction was monitored by thin layer chromatography (TLC) and terminated after 48 h at room temperature, when all the (CO)6Fe2(µ-SSe) had been consumed. Chromatographic work up on silica gel TLC plates using 2:3 solution mixture of CH2Cl2:hexane yielded an orange band of [{(CO)6Fe2SSe}2{µ-C(H)—C(H)}] in 28% yield. Rectangular-shaped air-stable crystals of [{(CO)6Fe2SSe}2{µ-C(H)—C(H)}] were obtained by slow evaporation from a mixture of CH2Cl2/hexane solutions at 263 K. IR data: (ν, CH2Cl2) 2080(s), 2068 (s), 2042 (s), 2009 (s), 1997 (m) cm-1.
The data were originally collected in the monoclinic system and the structure solved in space group Cc. Additional symmetry was observed, and the structure was found to transform to the orthorhombic system, space group Fdd2. The Se and S positions were found to be disordered, so their occupancies were fixed at 50% and they were constrained to have the same positional coordinates and the same anisotropic thermal parameters. The hydrogen atom was fixed geometrically and not refined. During refinement, the structure was treated as a racemic twin. The occupancy of the major component refined to a value of 0.515.
Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: NRCVAX; software used to prepare material for publication: SHELXL97.
Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids. |
[Fe4(C2H2S2Se2)(CO)12] | Dx = 2.262 Mg m−3 |
Mr = 807.60 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Fdd2 | Cell parameters from 25 reflections |
a = 6.531 (2) Å | θ = 8.0–12.2° |
b = 44.759 (4) Å | µ = 5.70 mm−1 |
c = 16.224 (2) Å | T = 293 K |
V = 4742.6 (16) Å3 | Rectangular, orange |
Z = 8 | 0.38 × 0.13 × 0.13 mm |
F(000) = 3088 |
Enraf-Nonius CAD4 diffractometer | 2188 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.034 |
Graphite monochromator | θmax = 27.4°, θmin = 1.8° |
ω/2θ scans | h = −8→0 |
Absorption correction: ψ scan (North et al., 1968) | k = −18→58 |
Tmin = 0.323, Tmax = 0.488 | l = −19→21 |
6094 measured reflections | 3 standard reflections every 60 min |
2449 independent reflections | intensity decay: 2% |
Refinement on F2 | Primary atom site location: heavy-atom |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0473P)2 + 78.9306P] where P = (Fo2 + 2Fc2)/3 |
2449 reflections | (Δ/σ)max = 0.001 |
154 parameters | Δρmax = 0.48 e Å−3 |
1 restraint | Δρmin = −0.48 e Å−3 |
[Fe4(C2H2S2Se2)(CO)12] | V = 4742.6 (16) Å3 |
Mr = 807.60 | Z = 8 |
Orthorhombic, Fdd2 | Mo Kα radiation |
a = 6.531 (2) Å | µ = 5.70 mm−1 |
b = 44.759 (4) Å | T = 293 K |
c = 16.224 (2) Å | 0.38 × 0.13 × 0.13 mm |
Enraf-Nonius CAD4 diffractometer | 2188 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.034 |
Tmin = 0.323, Tmax = 0.488 | 3 standard reflections every 60 min |
6094 measured reflections | intensity decay: 2% |
2449 independent reflections |
R[F2 > 2σ(F2)] = 0.037 | 1 restraint |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0473P)2 + 78.9306P] where P = (Fo2 + 2Fc2)/3 |
2449 reflections | Δρmax = 0.48 e Å−3 |
154 parameters | Δρmin = −0.48 e Å−3 |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Se1 | 0.54003 (17) | 0.77886 (2) | −0.05105 (7) | 0.0334 (3) | 0.5 |
Se2 | 0.08860 (15) | 0.78785 (2) | −0.00076 (6) | 0.0239 (2) | 0.5 |
Fe1 | 0.32371 (18) | 0.82009 (2) | −0.06395 (7) | 0.0337 (3) | |
Fe2 | 0.39615 (17) | 0.79592 (2) | 0.07283 (7) | 0.0306 (2) | |
S1 | 0.54003 (17) | 0.77886 (2) | −0.05105 (7) | 0.0334 (3) | 0.5 |
S2 | 0.08860 (15) | 0.78785 (2) | −0.00076 (6) | 0.0239 (2) | 0.5 |
O1 | 0.0963 (14) | 0.87131 (13) | 0.0035 (6) | 0.073 (2) | |
O2 | 0.1397 (18) | 0.8162 (2) | −0.2256 (5) | 0.100 (4) | |
O3 | 0.6805 (14) | 0.85641 (19) | −0.1043 (6) | 0.082 (3) | |
O4 | 0.5112 (14) | 0.75006 (18) | 0.1933 (6) | 0.072 (2) | |
O5 | 0.7465 (11) | 0.83563 (18) | 0.0979 (5) | 0.066 (2) | |
O6 | 0.1609 (13) | 0.8288 (2) | 0.1983 (6) | 0.081 (3) | |
C1 | 0.1892 (16) | 0.8520 (2) | −0.0235 (7) | 0.049 (2) | |
C2 | 0.2155 (19) | 0.8180 (2) | −0.1636 (7) | 0.061 (3) | |
C3 | 0.5412 (17) | 0.84249 (19) | −0.0872 (7) | 0.053 (2) | |
C4 | 0.4660 (15) | 0.76641 (18) | 0.1451 (6) | 0.044 (2) | |
C5 | 0.6128 (14) | 0.82003 (18) | 0.0883 (6) | 0.0412 (19) | |
C6 | 0.2509 (15) | 0.8162 (2) | 0.1493 (6) | 0.046 (2) | |
C7 | 0.3620 (12) | 0.74577 (16) | −0.0727 (5) | 0.0324 (16) | |
H7 | 0.3937 | 0.7390 | −0.1287 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Se1 | 0.0312 (5) | 0.0293 (5) | 0.0396 (6) | −0.0041 (4) | −0.0032 (5) | −0.0054 (4) |
Se2 | 0.0233 (4) | 0.0202 (4) | 0.0282 (5) | −0.0021 (4) | −0.0028 (4) | −0.0017 (4) |
Fe1 | 0.0424 (6) | 0.0280 (5) | 0.0308 (5) | −0.0075 (4) | −0.0071 (5) | 0.0025 (4) |
Fe2 | 0.0316 (5) | 0.0319 (5) | 0.0283 (5) | −0.0009 (4) | −0.0065 (5) | −0.0023 (4) |
S1 | 0.0312 (5) | 0.0293 (5) | 0.0396 (6) | −0.0041 (4) | −0.0032 (5) | −0.0054 (4) |
S2 | 0.0233 (4) | 0.0202 (4) | 0.0282 (5) | −0.0021 (4) | −0.0028 (4) | −0.0017 (4) |
O1 | 0.090 (5) | 0.031 (3) | 0.097 (6) | 0.011 (4) | 0.001 (5) | −0.006 (4) |
O2 | 0.137 (9) | 0.116 (7) | 0.046 (5) | −0.058 (7) | −0.046 (6) | 0.023 (4) |
O3 | 0.070 (6) | 0.079 (5) | 0.099 (7) | −0.044 (5) | −0.008 (5) | 0.018 (5) |
O4 | 0.085 (5) | 0.065 (4) | 0.066 (5) | 0.000 (4) | −0.027 (5) | 0.020 (4) |
O5 | 0.053 (4) | 0.085 (5) | 0.061 (5) | −0.023 (4) | −0.009 (4) | −0.017 (4) |
O6 | 0.067 (5) | 0.111 (7) | 0.064 (6) | 0.017 (5) | 0.003 (5) | −0.042 (5) |
C1 | 0.055 (5) | 0.038 (5) | 0.053 (5) | −0.008 (4) | −0.015 (4) | 0.006 (4) |
C2 | 0.080 (8) | 0.058 (6) | 0.047 (6) | −0.036 (5) | −0.010 (6) | 0.011 (4) |
C3 | 0.064 (6) | 0.037 (4) | 0.057 (6) | −0.012 (4) | −0.007 (5) | 0.005 (4) |
C4 | 0.052 (5) | 0.041 (4) | 0.040 (5) | −0.006 (4) | −0.015 (4) | 0.005 (3) |
C5 | 0.040 (4) | 0.044 (4) | 0.040 (5) | 0.000 (4) | 0.000 (4) | −0.011 (3) |
C6 | 0.044 (5) | 0.050 (5) | 0.045 (5) | −0.001 (4) | −0.008 (4) | −0.004 (4) |
C7 | 0.035 (4) | 0.032 (4) | 0.030 (4) | 0.000 (3) | 0.002 (3) | −0.003 (3) |
Se1/S1—C7 | 1.916 (7) | Fe2—C6 | 1.805 (10) |
Se1/S1—Fe1 | 2.334 (2) | Fe2—C4 | 1.824 (8) |
Se1/S1—Fe2 | 2.346 (2) | O1—C1 | 1.145 (13) |
Se2/S2—C7i | 1.931 (8) | O2—C2 | 1.124 (13) |
Se2/S2—Fe1 | 2.343 (1) | O3—C3 | 1.137 (12) |
Se2/S2—Fe2 | 2.364 (1) | O4—C4 | 1.111 (11) |
Fe1—C2 | 1.766 (11) | O5—C5 | 1.128 (11) |
Fe1—C3 | 1.779 (10) | O6—C6 | 1.139 (12) |
Fe1—C1 | 1.799 (11) | C7—C7i | 1.511 (16) |
Fe1—Fe2 | 2.514 (2) | C7—H7 | 0.9800 |
Fe2—C5 | 1.797 (9) | ||
C7—Se1/S1—Fe1 | 103.2 (2) | C5—Fe2—Se1/S1 | 90.0 (3) |
C7—Se1/S1—Fe2 | 99.5 (2) | C6—Fe2—Se1/S1 | 164.2 (3) |
Fe1—Se1/S1—Fe2 | 65.0 (1) | C4—Fe2—Se1/S1 | 102.4 (3) |
C7i—Se2/S2—Fe1 | 96.1 (2) | C5—Fe2—Se2/S2 | 146.2 (3) |
C7i—Se2/S2—Fe2 | 106.4 (2) | C6—Fe2—Se2/S2 | 88.7 (3) |
Fe1—Se2/S2—Fe2 | 64.5 (1) | C4—Fe2—Se2/S2 | 115.2 (3) |
C2—Fe1—C3 | 99.0 (5) | Se1/S1—Fe2—Se2/S2 | 81.8 (1) |
C2—Fe1—C1 | 100.4 (5) | C5—Fe2—Fe1 | 90.8 (3) |
C3—Fe1—C1 | 91.2 (5) | C6—Fe2—Fe1 | 107.0 (3) |
C2—Fe1—Se1/S1 | 106.4 (4) | C4—Fe2—Fe1 | 157.8 (3) |
C3—Fe1—Se1/S1 | 88.9 (3) | Se1/S1—Fe2—Fe1 | 57.3 (1) |
C1—Fe1—Se1/S1 | 152.9 (3) | Se2/S2—Fe2—Fe1 | 57.3 (1) |
C2—Fe1—Se2/S2 | 96.0 (3) | O1—C1—Fe1 | 176.7 (10) |
C3—Fe1—Se2/S2 | 164.4 (3) | O2—C2—Fe1 | 177.3 (11) |
C1—Fe1—Se2/S2 | 90.5 (3) | O3—C3—Fe1 | 178.0 (11) |
Se1/S1—Fe1—Se2/S2 | 82.6 (1) | O4—C4—Fe2 | 174.8 (9) |
C2—Fe1—Fe2 | 149.3 (3) | O5—C5—Fe2 | 178.7 (9) |
C3—Fe1—Fe2 | 106.2 (3) | O6—C6—Fe2 | 179.1 (10) |
C1—Fe1—Fe2 | 96.4 (3) | C7i—C7—Se1/S1 | 113.2 (6) |
Se1/S1—Fe1—Fe2 | 57.8 (1) | C7i—C7—Se2/S2i | 110.9 (5) |
Se2/S2—Fe1—Fe2 | 58.1 (1) | Se1/S1—C7—Se2/S2i | 113.0 (4) |
C5—Fe2—C6 | 91.0 (4) | C7i—C7—H7 | 106.4 |
C5—Fe2—C4 | 98.5 (4) | Se1/S1—C7—H7 | 106.4 |
C6—Fe2—C4 | 93.0 (4) | Se2/S2i—C7—H7 | 106.4 |
Symmetry code: (i) −x+1/2, −y+3/2, z. |
Experimental details
Crystal data | |
Chemical formula | [Fe4(C2H2S2Se2)(CO)12] |
Mr | 807.60 |
Crystal system, space group | Orthorhombic, Fdd2 |
Temperature (K) | 293 |
a, b, c (Å) | 6.531 (2), 44.759 (4), 16.224 (2) |
V (Å3) | 4742.6 (16) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 5.70 |
Crystal size (mm) | 0.38 × 0.13 × 0.13 |
Data collection | |
Diffractometer | Enraf-Nonius CAD4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.323, 0.488 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6094, 2449, 2188 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.108, 1.10 |
No. of reflections | 2449 |
No. of parameters | 154 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0473P)2 + 78.9306P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.48, −0.48 |
Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), NRCVAX, SHELXL97.
Se1/S1—C7 | 1.916 (7) | Se2/S2—Fe1 | 2.343 (1) |
Se1/S1—Fe1 | 2.334 (2) | Se2/S2—Fe2 | 2.364 (1) |
Se1/S1—Fe2 | 2.346 (2) | Fe1—Fe2 | 2.514 (2) |
Se2/S2—C7i | 1.931 (8) | ||
C7—Se1/S1—Fe1 | 103.2 (2) | C1—Fe1—Fe2 | 96.4 (3) |
C7—Se1/S1—Fe2 | 99.5 (2) | Se1/S1—Fe1—Fe2 | 57.8 (1) |
Fe1—Se1/S1—Fe2 | 65.0 (1) | Se2/S2—Fe1—Fe2 | 58.1 (1) |
C7i—Se2/S2—Fe1 | 96.1 (2) | C5—Fe2—C6 | 91.0 (4) |
C7i—Se2/S2—Fe2 | 106.4 (2) | C5—Fe2—C4 | 98.5 (4) |
Fe1—Se2/S2—Fe2 | 64.5 (1) | C6—Fe2—C4 | 93.0 (4) |
C2—Fe1—C3 | 99.0 (5) | C5—Fe2—Se1/S1 | 90.0 (3) |
C2—Fe1—C1 | 100.4 (5) | C6—Fe2—Se1/S1 | 164.2 (3) |
C3—Fe1—C1 | 91.2 (5) | C4—Fe2—Se1/S1 | 102.4 (3) |
C2—Fe1—Se1/S1 | 106.4 (4) | C5—Fe2—Se2/S2 | 146.2 (3) |
C3—Fe1—Se1/S1 | 88.9 (3) | C6—Fe2—Se2/S2 | 88.7 (3) |
C1—Fe1—Se1/S1 | 152.9 (3) | C4—Fe2—Se2/S2 | 115.2 (3) |
C2—Fe1—Se2/S2 | 96.0 (3) | Se1/S1—Fe2—Se2/S2 | 81.8 (1) |
C3—Fe1—Se2/S2 | 164.4 (3) | C5—Fe2—Fe1 | 90.8 (3) |
C1—Fe1—Se2/S2 | 90.5 (3) | C6—Fe2—Fe1 | 107.0 (3) |
Se1/S1—Fe1—Se2/S2 | 82.6 (1) | C4—Fe2—Fe1 | 157.8 (3) |
C2—Fe1—Fe2 | 149.3 (3) | Se1/S1—Fe2—Fe1 | 57.3 (1) |
C3—Fe1—Fe2 | 106.2 (3) | Se2/S2—Fe2—Fe1 | 57.3 (1) |
Symmetry code: (i) −x+1/2, −y+3/2, z. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
Bonding and reactivity studies of alkynes attached to metal centres is of considerable interest because of the potential of the coordinated alkynes to be transformed into useful organic species (Katz & Hacker, 1985). In contrast to the large number of reports on the different bonding modes between alkynes and transition metals (Sappa et al., 1985), studies of complexes in which alkynes are attached to main group elements are more recent and relatively few (Mathur, 1997). Recent successes in the area of incorporating group-16 elements into transition metal carbonyl complexes has evoked interest in studying the interaction of alkynes with these ligands. The facile addition of phenylacetylene to (CO)6Fe2(µ-Se2) and (CO)6Fe2(µ-EE') occurs at room temperature to form (CO)6Fe2{µ-SeC(H)=C(Ph)Se} and (CO)6Fe2{µ-EC(H) ═C(Ph)E'} respectively, whereas (CO)6Fe2(µ-S2) and (CO)6Fe2(µ-Te2) are inert towards such addition under similar reaction conditions (Mathur, Hossain et al., 1995). In (CO)6Fe2{µ-SeC(H)═C(Ph)Se} the reactive Se sites are blocked, and addition of Pt(PPh3)2 (Mathur, Hossain, Das & Sinha et al., 1993) and (CO)6Fe2(µ-Se2) (Mathur & Hossain, 1993) occurs readily across the C=C bond to yield products in which the acetylenic bond is reduced. Similarly, addition of organometallic groups across the Fe—Fe bond can be carried out thermolytically, as in the formation of Se-bridged mixed-metal clusters Cp2Mo2Fe2(CO)6(µ4-Se)(µ3-Se)2 (Mathur, Hossain & Rheingold, 1993). Here we report the structural characterization of a mixed-chalcogenide double butterfly complex, (I), obtained from the reaction of (CO)6Fe2(µ-SSe) with acetylene. The starting material provides an important probe to the active metallic centre in enzymatic processes (Pombeiro & Richards, 1990) \sch
In this structure the Se and S positions are disordered with equal occupany (50%). The molecule contains a twofold axis bisecting the C7—C7' bond. The structure can be described as two Fe2SSe core units linked to each other through a bridging HC—CH group. As a result of the acetylene addition to the Fe2SSe tetrahedron, the acetylenic bond is reduced to beyond an olefinic bond order. The C7—C7' bond distance of 1.511 (16) Å in [{(CO)6Fe2SSe}2{µ-C(H)—C(H)}] is similar to that observed in [{(CO)6Fe2SSe}2{µ-C(H)—C(Ph)}] (1.53 (1) Å) (Mathur, Dash et al., 1996), whereas it is longer than the corresponding bond lengths of 1.48 (1) Å in [{(CO)6Fe2Se2}2{µ-C(H)—C(Ph)}] (Mathur & Hossain, 1993), 1.47 (1) Å in (CO)6Fe2{µ-Te(CH2)2Te} (Shieh & Shieh, 1994), 1.494 Å in (CO)6Fe2{µ-Se(CH2)2Se} (Mathur, Manimaran et al., 1996) and 1.42 (1) Å in [(CO)6Fe2{µ-SeC(H)—C(Ph)}Pt(PPh3)2] (Mathur, Hossain & Rheingold, 1993). Each Fe atom has three CO groups bonded to it. The CO groups, the µ3-S ligand, the µ3-Se ligand and the Fe—Fe bond define a distorted octahedral geometry around each Fe centre.