Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The topological complexity of a crystal structure can be quantitatively evaluated using complexity measures of its quotient graph, which is defined as a projection of a periodic network of atoms and bonds onto a finite graph. The Shannon information-based measures of complexity such as topological information content, IG, and information content of the vertex-degree distribution of a quotient graph, Ivd, are shown to be efficient for comparison of the topological complexity of polymorphs and chemically related structures. The IG measure is sensitive to the symmetry of the structure, whereas the Ivd measure better describes the complexity of the bonding network.

Subscribe to Acta Crystallographica Section A: Foundations and Advances

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds