Buy article online - an online subscription or single-article purchase is required to access this article.
4,4′-Bipyrazolium [or 4-(1
H-pyrazol-4-yl)pyrazolium] bromide monohydrate, C
6H
7N
4+·Br
−·H
2O, and 4,4′-bipyrazolium perchlorate monohydrate, C
6H
7N
4+·ClO
4−·H
2O, have closely related layered structures involving tight stacks of antiparallel N—H
N hydrogen-bonded polar bipyrazolium chains [N
N = 2.712 (3) and 2.742 (2) Å], which are crosslinked by hydrogen bonds with water molecules and counter-anions.
Supporting information
CCDC references: 275528; 275529
4,4'-Bipyrazole was prepared by condensation of 1,1,2,2-ethanetetraaldehyde and hydrazine (Trofimenko, 1964). Recrystallization of the compound from hot 10% aqueous HBr or hot 10% aqueous HClO4 afforded large colourless prisms of salts (I) and (II), respectively.
The structures were solved by direct methods. All H atoms were located from difference maps and then refined as riding, with O—H distances constrained to 0.85 Å, N—H distances constrained to 0.90 Å and C—H distances constrained to 0.96 Å, and with Uiso(H) = 1.2Ueq(parent atom).
For both compounds, data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.
(I) 4-(1
H-pyrazol-4-yl)pyrazolium bromide monohydrate
top
Crystal data top
C6H7N4+·Br−·H2O | Z = 2 |
Mr = 233.08 | F(000) = 232 |
Triclinic, P1 | Dx = 1.677 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1352 (11) Å | Cell parameters from 22 reflections |
b = 8.505 (2) Å | θ = 12.1–17.8° |
c = 9.056 (2) Å | µ = 4.41 mm−1 |
α = 112.52 (3)° | T = 223 K |
β = 108.53 (3)° | Prism, colourless |
γ = 97.31 (3)° | 0.25 × 0.23 × 0.22 mm |
V = 461.5 (3) Å3 | |
Data collection top
Enraf–Nonius CAD-4 diffractometer | 1611 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.017 |
Graphite monochromator | θmax = 27.9°, θmin = 3.1° |
non–profiled ω–2θ scans | h = −9→9 |
Absorption correction: ψ scan (North et al., 1968) | k = −11→10 |
Tmin = 0.321, Tmax = 0.379 | l = −10→11 |
2879 measured reflections | 3 standard reflections every 120 min |
2204 independent reflections | intensity decay: none |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.072 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0407P)2 + 0.0613P] where P = (Fo2 + 2Fc2)/3 |
2204 reflections | (Δ/σ)max < 0.001 |
109 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
Crystal data top
C6H7N4+·Br−·H2O | γ = 97.31 (3)° |
Mr = 233.08 | V = 461.5 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.1352 (11) Å | Mo Kα radiation |
b = 8.505 (2) Å | µ = 4.41 mm−1 |
c = 9.056 (2) Å | T = 223 K |
α = 112.52 (3)° | 0.25 × 0.23 × 0.22 mm |
β = 108.53 (3)° | |
Data collection top
Enraf–Nonius CAD-4 diffractometer | 1611 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.017 |
Tmin = 0.321, Tmax = 0.379 | 3 standard reflections every 120 min |
2879 measured reflections | intensity decay: none |
2204 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.072 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.32 e Å−3 |
2204 reflections | Δρmin = −0.29 e Å−3 |
109 parameters | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Br1 | 0.75795 (5) | 0.34439 (3) | 0.06516 (3) | 0.04738 (11) | |
O1 | 0.2799 (4) | 0.3219 (3) | 0.0357 (3) | 0.0670 (6) | |
H1W | 0.4075 | 0.3492 | 0.0566 | 0.080* | |
H2W | 0.2270 | 0.3935 | 0.0036 | 0.080* | |
N1 | 0.2302 (3) | 0.2360 (3) | 0.2791 (3) | 0.0391 (5) | |
H1 | 0.2229 | 0.2590 | 0.1887 | 0.047* | |
N2 | 0.2405 (3) | 0.3529 (3) | 0.4332 (3) | 0.0386 (5) | |
H2 | 0.2427 | 0.4673 | 0.4639 | 0.046* | |
N3 | 0.2624 (3) | −0.1852 (3) | 0.6571 (3) | 0.0374 (4) | |
H3 | 0.2742 | −0.2079 | 0.7485 | 0.045* | |
N4 | 0.2389 (3) | −0.3083 (2) | 0.4992 (3) | 0.0376 (4) | |
C1 | 0.2315 (4) | 0.0800 (3) | 0.2806 (3) | 0.0361 (5) | |
H1A | 0.2260 | −0.0256 | 0.1861 | 0.043* | |
C2 | 0.2423 (3) | 0.0954 (3) | 0.4417 (3) | 0.0277 (4) | |
C3 | 0.2472 (4) | 0.2709 (3) | 0.5333 (3) | 0.0353 (5) | |
H3A | 0.2543 | 0.3245 | 0.6502 | 0.042* | |
C4 | 0.2663 (4) | −0.0257 (3) | 0.6617 (3) | 0.0361 (5) | |
H4A | 0.2803 | 0.0805 | 0.7598 | 0.043* | |
C5 | 0.2464 (3) | −0.0416 (3) | 0.5001 (3) | 0.0290 (4) | |
C6 | 0.2298 (4) | −0.2200 (3) | 0.4041 (3) | 0.0360 (5) | |
H6A | 0.2137 | −0.2727 | 0.2846 | 0.043* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Br1 | 0.0733 (2) | 0.04043 (15) | 0.04186 (15) | 0.02333 (13) | 0.02914 (13) | 0.02453 (11) |
O1 | 0.0938 (17) | 0.0729 (15) | 0.0831 (16) | 0.0444 (13) | 0.0552 (14) | 0.0604 (13) |
N1 | 0.0564 (13) | 0.0318 (10) | 0.0464 (11) | 0.0199 (9) | 0.0279 (10) | 0.0263 (9) |
N2 | 0.0508 (12) | 0.0255 (9) | 0.0510 (12) | 0.0178 (9) | 0.0257 (10) | 0.0222 (9) |
N3 | 0.0513 (12) | 0.0333 (10) | 0.0379 (10) | 0.0161 (9) | 0.0202 (9) | 0.0228 (8) |
N4 | 0.0539 (12) | 0.0233 (9) | 0.0431 (11) | 0.0147 (9) | 0.0216 (10) | 0.0192 (8) |
C1 | 0.0502 (14) | 0.0280 (10) | 0.0411 (12) | 0.0187 (10) | 0.0250 (11) | 0.0185 (10) |
C2 | 0.0325 (11) | 0.0194 (9) | 0.0362 (11) | 0.0109 (8) | 0.0162 (9) | 0.0142 (8) |
C3 | 0.0491 (14) | 0.0238 (10) | 0.0412 (12) | 0.0162 (9) | 0.0231 (11) | 0.0169 (9) |
C4 | 0.0484 (14) | 0.0271 (11) | 0.0355 (12) | 0.0133 (10) | 0.0181 (11) | 0.0149 (9) |
C5 | 0.0354 (11) | 0.0217 (10) | 0.0355 (11) | 0.0120 (8) | 0.0161 (9) | 0.0154 (9) |
C6 | 0.0534 (14) | 0.0243 (10) | 0.0380 (12) | 0.0155 (10) | 0.0226 (11) | 0.0169 (9) |
Geometric parameters (Å, º) top
O1—H1W | 0.8500 | N4—C6 | 1.335 (3) |
O1—H2W | 0.8500 | C1—C2 | 1.389 (3) |
N1—C1 | 1.334 (3) | C1—H1A | 0.9600 |
N1—N2 | 1.340 (3) | C2—C3 | 1.392 (3) |
N1—H1 | 0.8999 | C2—C5 | 1.452 (3) |
N2—C3 | 1.333 (3) | C3—H3A | 0.9600 |
N2—H2 | 0.9000 | C4—C5 | 1.375 (3) |
N3—C4 | 1.338 (3) | C4—H4A | 0.9600 |
N3—N4 | 1.351 (3) | C5—C6 | 1.397 (3) |
N3—H3 | 0.9000 | C6—H6A | 0.9600 |
| | | |
H1W—O1—H2W | 108.4 | C1—C2—C5 | 127.55 (19) |
C1—N1—N2 | 109.23 (19) | C3—C2—C5 | 128.01 (19) |
C1—N1—H1 | 125.4 | N2—C3—C2 | 109.2 (2) |
N2—N1—H1 | 125.4 | N2—C3—H3A | 125.3 |
C3—N2—N1 | 108.32 (18) | C2—C3—H3A | 125.4 |
C3—N2—H2 | 125.9 | N3—C4—C5 | 107.6 (2) |
N1—N2—H2 | 125.8 | N3—C4—H4A | 126.2 |
C4—N3—N4 | 111.97 (18) | C5—C4—H4A | 126.2 |
C4—N3—H3 | 124.0 | C4—C5—C6 | 104.28 (19) |
N4—N3—H3 | 124.0 | C4—C5—C2 | 128.0 (2) |
C6—N4—N3 | 104.60 (18) | C6—C5—C2 | 127.7 (2) |
N1—C1—C2 | 108.8 (2) | N4—C6—C5 | 111.6 (2) |
N1—C1—H1A | 125.6 | N4—C6—H6A | 124.2 |
C2—C1—H1A | 125.6 | C5—C6—H6A | 124.2 |
C1—C2—C3 | 104.45 (18) | | |
| | | |
C1—N1—N2—C3 | −0.3 (3) | N3—C4—C5—C6 | 0.3 (3) |
C4—N3—N4—C6 | 0.5 (3) | N3—C4—C5—C2 | −180.0 (2) |
N2—N1—C1—C2 | 0.2 (3) | C1—C2—C5—C4 | 176.8 (2) |
N1—C1—C2—C3 | 0.0 (3) | C3—C2—C5—C4 | −3.6 (4) |
N1—C1—C2—C5 | 179.7 (2) | C1—C2—C5—C6 | −3.6 (4) |
N1—N2—C3—C2 | 0.4 (3) | C3—C2—C5—C6 | 176.0 (2) |
C1—C2—C3—N2 | −0.2 (3) | N3—N4—C6—C5 | −0.3 (3) |
C5—C2—C3—N2 | −179.9 (2) | C4—C5—C6—N4 | −0.1 (3) |
N4—N3—C4—C5 | −0.5 (3) | C2—C5—C6—N4 | −179.7 (2) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.90 | 1.80 | 2.680 (3) | 165 |
N2—H2···N4i | 0.90 | 1.82 | 2.712 (3) | 173 |
N3—H3···Br1ii | 0.90 | 2.43 | 3.312 (2) | 165 |
O1—H1W···Br1 | 0.85 | 2.48 | 3.311 (2) | 165 |
O1—H2W···Br1iii | 0.85 | 2.53 | 3.315 (2) | 154 |
C1—H1A···Br1iv | 0.96 | 2.84 | 3.795 (3) | 174 |
C4—H4A···O1v | 0.96 | 2.56 | 3.503 (4) | 169 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y, −z+1; (iii) −x+1, −y+1, −z; (iv) −x+1, −y, −z; (v) x, y, z+1. |
(II) 4-(1
H-pyrazol-4-yl)pyrazolium perchlorate monohydrate
top
Crystal data top
C6H7N4+·ClO4−·H2O | Z = 2 |
Mr = 252.62 | F(000) = 260 |
Triclinic, P1 | Dx = 1.660 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7691 (7) Å | Cell parameters from 23 reflections |
b = 7.9578 (11) Å | θ = 7.0–14.5° |
c = 9.826 (2) Å | µ = 0.39 mm−1 |
α = 69.941 (18)° | T = 223 K |
β = 70.38 (1)° | Prism, colourless |
γ = 65.393 (8)° | 0.22 × 0.20 × 0.20 mm |
V = 505.43 (14) Å3 | |
Data collection top
Enraf–Nonius CAD-4 diffractometer | 1830 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.019 |
Graphite monochromator | θmax = 27.9°, θmin = 4.1° |
non–profiled ω–2θ scans | h = −9→10 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→10 |
Tmin = 0.862, Tmax = 0.926 | l = −12→12 |
2565 measured reflections | 3 standard reflections every 120 min |
2397 independent reflections | intensity decay: none |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0593P)2 + 0.2131P] where P = (Fo2 + 2Fc2)/3 |
2397 reflections | (Δ/σ)max < 0.001 |
145 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.38 e Å−3 |
Crystal data top
C6H7N4+·ClO4−·H2O | γ = 65.393 (8)° |
Mr = 252.62 | V = 505.43 (14) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.7691 (7) Å | Mo Kα radiation |
b = 7.9578 (11) Å | µ = 0.39 mm−1 |
c = 9.826 (2) Å | T = 223 K |
α = 69.941 (18)° | 0.22 × 0.20 × 0.20 mm |
β = 70.38 (1)° | |
Data collection top
Enraf–Nonius CAD-4 diffractometer | 1830 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.019 |
Tmin = 0.862, Tmax = 0.926 | 3 standard reflections every 120 min |
2565 measured reflections | intensity decay: none |
2397 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.31 e Å−3 |
2397 reflections | Δρmin = −0.38 e Å−3 |
145 parameters | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cl1 | 0.76133 (7) | −0.19004 (7) | 0.06074 (5) | 0.04157 (17) | |
O1 | 0.7079 (3) | 0.2998 (3) | 0.0908 (2) | 0.0766 (6) | |
H2W | 0.8163 | 0.3155 | 0.0448 | 0.092* | |
H1W | 0.7105 | 0.1989 | 0.0772 | 0.092* | |
O2 | 0.6339 (3) | −0.1156 (3) | 0.1843 (2) | 0.0837 (7) | |
O3 | 0.6617 (4) | −0.2516 (4) | 0.0005 (3) | 0.0911 (7) | |
O4 | 0.9228 (3) | −0.3443 (3) | 0.1090 (2) | 0.0777 (7) | |
O5 | 0.8271 (3) | −0.0493 (3) | −0.0517 (2) | 0.0877 (7) | |
N1 | 0.4313 (2) | 0.4759 (2) | 0.29416 (19) | 0.0416 (4) | |
H1 | 0.5238 | 0.4457 | 0.2132 | 0.050* | |
N2 | 0.4261 (2) | 0.3676 (2) | 0.43137 (18) | 0.0344 (3) | |
H2 | 0.5136 | 0.2525 | 0.4590 | 0.041* | |
N3 | −0.2705 (2) | 0.9238 (2) | 0.63927 (18) | 0.0370 (4) | |
H3 | −0.3585 | 0.9549 | 0.7218 | 0.044* | |
N4 | −0.2875 (2) | 1.0257 (2) | 0.50031 (19) | 0.0358 (4) | |
C1 | 0.2784 (3) | 0.6363 (3) | 0.2950 (2) | 0.0401 (4) | |
H1A | 0.2482 | 0.7383 | 0.2098 | 0.048* | |
C2 | 0.1698 (2) | 0.6311 (2) | 0.43908 (18) | 0.0265 (3) | |
C3 | 0.2703 (2) | 0.4576 (2) | 0.5216 (2) | 0.0315 (4) | |
H3A | 0.2324 | 0.4105 | 0.6271 | 0.038* | |
C4 | −0.1084 (3) | 0.7715 (2) | 0.6405 (2) | 0.0343 (4) | |
H4A | −0.0662 | 0.6794 | 0.7266 | 0.041* | |
C5 | −0.0118 (2) | 0.7712 (2) | 0.49424 (18) | 0.0270 (3) | |
C6 | −0.1306 (2) | 0.9337 (2) | 0.4119 (2) | 0.0319 (4) | |
H6A | −0.1019 | 0.9735 | 0.3053 | 0.038* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cl1 | 0.0377 (3) | 0.0370 (3) | 0.0285 (2) | 0.00035 (18) | −0.00157 (17) | −0.00460 (17) |
O1 | 0.0591 (11) | 0.0738 (13) | 0.0799 (13) | −0.0150 (10) | 0.0231 (10) | −0.0459 (11) |
O2 | 0.0624 (11) | 0.0949 (15) | 0.0467 (10) | 0.0280 (10) | −0.0077 (8) | −0.0348 (10) |
O3 | 0.0981 (17) | 0.1006 (17) | 0.0937 (17) | −0.0416 (15) | −0.0250 (14) | −0.0326 (14) |
O4 | 0.0542 (10) | 0.0645 (11) | 0.0510 (10) | 0.0216 (9) | −0.0044 (8) | 0.0011 (8) |
O5 | 0.0844 (15) | 0.0650 (12) | 0.0780 (14) | −0.0304 (12) | −0.0079 (12) | 0.0210 (11) |
N1 | 0.0338 (8) | 0.0344 (8) | 0.0388 (8) | −0.0002 (6) | 0.0047 (6) | −0.0144 (7) |
N2 | 0.0258 (7) | 0.0233 (7) | 0.0447 (9) | 0.0013 (5) | −0.0083 (6) | −0.0086 (6) |
N3 | 0.0275 (7) | 0.0332 (8) | 0.0402 (8) | −0.0009 (6) | 0.0008 (6) | −0.0169 (7) |
N4 | 0.0256 (7) | 0.0265 (7) | 0.0472 (9) | 0.0005 (6) | −0.0078 (6) | −0.0115 (6) |
C1 | 0.0402 (10) | 0.0285 (8) | 0.0322 (9) | 0.0001 (7) | −0.0018 (8) | −0.0055 (7) |
C2 | 0.0237 (7) | 0.0215 (7) | 0.0287 (8) | −0.0020 (6) | −0.0056 (6) | −0.0068 (6) |
C3 | 0.0274 (8) | 0.0258 (8) | 0.0325 (8) | −0.0011 (6) | −0.0067 (7) | −0.0064 (6) |
C4 | 0.0297 (8) | 0.0303 (8) | 0.0331 (9) | −0.0015 (7) | −0.0041 (7) | −0.0100 (7) |
C5 | 0.0231 (7) | 0.0209 (7) | 0.0319 (8) | −0.0019 (6) | −0.0049 (6) | −0.0085 (6) |
C6 | 0.0276 (8) | 0.0242 (8) | 0.0357 (9) | −0.0011 (6) | −0.0075 (7) | −0.0068 (6) |
Geometric parameters (Å, º) top
Cl1—O5 | 1.4087 (19) | N3—N4 | 1.346 (2) |
Cl1—O2 | 1.4154 (17) | N3—H3 | 0.9000 |
Cl1—O3 | 1.419 (2) | N4—C6 | 1.326 (2) |
Cl1—O4 | 1.4224 (17) | C1—C2 | 1.380 (2) |
O1—H2W | 0.8500 | C1—H1A | 0.9600 |
O1—H1W | 0.8500 | C2—C3 | 1.391 (2) |
N1—N2 | 1.326 (2) | C2—C5 | 1.455 (2) |
N1—C1 | 1.334 (2) | C3—H3A | 0.9600 |
N1—H1 | 0.9000 | C4—C5 | 1.380 (2) |
N2—C3 | 1.325 (2) | C4—H4A | 0.9600 |
N2—H2 | 0.9000 | C5—C6 | 1.403 (2) |
N3—C4 | 1.336 (2) | C6—H6A | 0.9600 |
| | | |
O5—Cl1—O2 | 110.63 (15) | N1—C1—H1A | 125.9 |
O5—Cl1—O3 | 107.79 (15) | C2—C1—H1A | 125.5 |
O2—Cl1—O3 | 109.65 (16) | C1—C2—C3 | 104.40 (15) |
O5—Cl1—O4 | 109.55 (14) | C1—C2—C5 | 128.63 (15) |
O2—Cl1—O4 | 108.53 (11) | C3—C2—C5 | 126.95 (15) |
O3—Cl1—O4 | 110.70 (15) | N2—C3—C2 | 109.13 (15) |
H2W—O1—H1W | 108.2 | N2—C3—H3A | 125.6 |
N2—N1—C1 | 109.35 (15) | C2—C3—H3A | 125.3 |
N2—N1—H1 | 125.2 | N3—C4—C5 | 107.16 (16) |
C1—N1—H1 | 125.4 | N3—C4—H4A | 126.7 |
C3—N2—N1 | 108.55 (14) | C5—C4—H4A | 126.2 |
C3—N2—H2 | 125.6 | C4—C5—C6 | 104.26 (15) |
N1—N2—H2 | 125.9 | C4—C5—C2 | 127.51 (15) |
C4—N3—N4 | 112.22 (15) | C6—C5—C2 | 128.22 (15) |
C4—N3—H3 | 124.0 | N4—C6—C5 | 111.27 (16) |
N4—N3—H3 | 123.8 | N4—C6—H6A | 124.3 |
C6—N4—N3 | 105.09 (14) | C5—C6—H6A | 124.4 |
N1—C1—C2 | 108.57 (16) | | |
| | | |
C1—N1—N2—C3 | −0.2 (2) | N3—C4—C5—C6 | 0.3 (2) |
C4—N3—N4—C6 | 0.0 (2) | N3—C4—C5—C2 | −178.57 (16) |
N2—N1—C1—C2 | −0.1 (2) | C1—C2—C5—C4 | −173.36 (19) |
N1—C1—C2—C3 | 0.2 (2) | C3—C2—C5—C4 | 8.5 (3) |
N1—C1—C2—C5 | −178.22 (17) | C1—C2—C5—C6 | 8.1 (3) |
N1—N2—C3—C2 | 0.3 (2) | C3—C2—C5—C6 | −170.04 (18) |
C1—C2—C3—N2 | −0.3 (2) | N3—N4—C6—C5 | 0.2 (2) |
C5—C2—C3—N2 | 178.15 (17) | C4—C5—C6—N4 | −0.3 (2) |
N4—N3—C4—C5 | −0.2 (2) | C2—C5—C6—N4 | 178.56 (16) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.90 | 1.81 | 2.665 (2) | 159 |
N2—H2···N4i | 0.90 | 1.85 | 2.742 (2) | 174 |
N3—H3···O2ii | 0.90 | 2.07 | 2.871 (2) | 148 |
O1—H1W···O5 | 0.85 | 2.40 | 3.193 (3) | 155 |
O1—H2W···O4iii | 0.85 | 2.13 | 2.966 (3) | 168 |
C1—H1A···O5iv | 0.96 | 2.38 | 3.297 (3) | 160 |
C3—H3A···O2v | 0.96 | 2.51 | 3.267 (3) | 136 |
C3—H3A···O4v | 0.96 | 2.44 | 3.386 (3) | 169 |
Symmetry codes: (i) x+1, y−1, z; (ii) −x, −y+1, −z+1; (iii) −x+2, −y, −z; (iv) −x+1, −y+1, −z; (v) −x+1, −y, −z+1. |
Experimental details
| (I) | (II) |
Crystal data |
Chemical formula | C6H7N4+·Br−·H2O | C6H7N4+·ClO4−·H2O |
Mr | 233.08 | 252.62 |
Crystal system, space group | Triclinic, P1 | Triclinic, P1 |
Temperature (K) | 223 | 223 |
a, b, c (Å) | 7.1352 (11), 8.505 (2), 9.056 (2) | 7.7691 (7), 7.9578 (11), 9.826 (2) |
α, β, γ (°) | 112.52 (3), 108.53 (3), 97.31 (3) | 69.941 (18), 70.38 (1), 65.393 (8) |
V (Å3) | 461.5 (3) | 505.43 (14) |
Z | 2 | 2 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 4.41 | 0.39 |
Crystal size (mm) | 0.25 × 0.23 × 0.22 | 0.22 × 0.20 × 0.20 |
|
Data collection |
Diffractometer | Enraf–Nonius CAD-4 diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.321, 0.379 | 0.862, 0.926 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2879, 2204, 1611 | 2565, 2397, 1830 |
Rint | 0.017 | 0.019 |
(sin θ/λ)max (Å−1) | 0.658 | 0.658 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.072, 1.02 | 0.037, 0.113, 1.05 |
No. of reflections | 2204 | 2397 |
No. of parameters | 109 | 145 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.29 | 0.31, −0.38 |
Selected geometric parameters (Å, º) for (I) topN1—C1 | 1.334 (3) | C1—C2 | 1.389 (3) |
N1—N2 | 1.340 (3) | C2—C3 | 1.392 (3) |
N2—C3 | 1.333 (3) | C2—C5 | 1.452 (3) |
N3—C4 | 1.338 (3) | C4—C5 | 1.375 (3) |
N3—N4 | 1.351 (3) | C5—C6 | 1.397 (3) |
N4—C6 | 1.335 (3) | | |
| | | |
C1—N1—N2 | 109.23 (19) | C3—C2—C5 | 128.01 (19) |
C3—N2—N1 | 108.32 (18) | N2—C3—C2 | 109.2 (2) |
C4—N3—N4 | 111.97 (18) | N3—C4—C5 | 107.6 (2) |
C6—N4—N3 | 104.60 (18) | C4—C5—C6 | 104.28 (19) |
N1—C1—C2 | 108.8 (2) | C4—C5—C2 | 128.0 (2) |
C1—C2—C3 | 104.45 (18) | C6—C5—C2 | 127.7 (2) |
C1—C2—C5 | 127.55 (19) | N4—C6—C5 | 111.6 (2) |
| | | |
C1—C2—C5—C4 | 176.8 (2) | | |
Hydrogen-bond geometry (Å, º) for (I) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.90 | 1.80 | 2.680 (3) | 165 |
N2—H2···N4i | 0.90 | 1.82 | 2.712 (3) | 173 |
N3—H3···Br1ii | 0.90 | 2.43 | 3.312 (2) | 165 |
O1—H1W···Br1 | 0.85 | 2.48 | 3.311 (2) | 165 |
O1—H2W···Br1iii | 0.85 | 2.53 | 3.315 (2) | 154 |
C1—H1A···Br1iv | 0.96 | 2.84 | 3.795 (3) | 174 |
C4—H4A···O1v | 0.96 | 2.56 | 3.503 (4) | 169 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y, −z+1; (iii) −x+1, −y+1, −z; (iv) −x+1, −y, −z; (v) x, y, z+1. |
π–π contacts (Å, °) for (I) topGroup 1/group 2 | | IPD (Å) | CCD (Å) | SA (°) |
Ring A/ring Bii | (layer) | 3.366 (4) | 3.630 (5) | 22.0 (2) |
Ring A/ring Bvi | (interlayer) | 3.254 (4) | 3.691 (5) | 28.2 (2) |
Notes: rings A and B are labelled according to Fig. 1 [symmetry codes: (ii) 1 − x, −y, 1 − z; (vi) −x, −y, 1 − z]. IPD is interplanar distance (distance from one plane to the neighbouring centroid). CCD is centre-to-centre distance (distance between ring centroids). SA is the slippage angle (angle subtended by the intercentroid vector to the plane normal). For details, see Janiak (2000). |
Selected geometric parameters (Å, º) for (II) topN1—N2 | 1.326 (2) | C1—C2 | 1.380 (2) |
N1—C1 | 1.334 (2) | C2—C3 | 1.391 (2) |
N2—C3 | 1.325 (2) | C2—C5 | 1.455 (2) |
N3—C4 | 1.336 (2) | C4—C5 | 1.380 (2) |
N3—N4 | 1.346 (2) | C5—C6 | 1.403 (2) |
N4—C6 | 1.326 (2) | | |
| | | |
N2—N1—C1 | 109.35 (15) | C3—C2—C5 | 126.95 (15) |
C3—N2—N1 | 108.55 (14) | N2—C3—C2 | 109.13 (15) |
C4—N3—N4 | 112.22 (15) | N3—C4—C5 | 107.16 (16) |
C6—N4—N3 | 105.09 (14) | C4—C5—C6 | 104.26 (15) |
N1—C1—C2 | 108.57 (16) | C4—C5—C2 | 127.51 (15) |
C1—C2—C3 | 104.40 (15) | C6—C5—C2 | 128.22 (15) |
C1—C2—C5 | 128.63 (15) | N4—C6—C5 | 111.27 (16) |
| | | |
C1—C2—C5—C4 | −173.36 (19) | | |
Hydrogen-bond geometry (Å, º) for (II) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.90 | 1.81 | 2.665 (2) | 159 |
N2—H2···N4i | 0.90 | 1.85 | 2.742 (2) | 174 |
N3—H3···O2ii | 0.90 | 2.07 | 2.871 (2) | 148 |
O1—H1W···O5 | 0.85 | 2.40 | 3.193 (3) | 155 |
O1—H2W···O4iii | 0.85 | 2.13 | 2.966 (3) | 168 |
C1—H1A···O5iv | 0.96 | 2.38 | 3.297 (3) | 160 |
C3—H3A···O2v | 0.96 | 2.51 | 3.267 (3) | 136 |
C3—H3A···O4v | 0.96 | 2.44 | 3.386 (3) | 169 |
Symmetry codes: (i) x+1, y−1, z; (ii) −x, −y+1, −z+1; (iii) −x+2, −y, −z; (iv) −x+1, −y+1, −z; (v) −x+1, −y, −z+1. |
π–π contacts (Å, °) for (II) topGroup 1/group 2 | | IPD (Å) | CCD (Å) | SA (°) |
Ring A/ring Bii | (layer) | 3.216 (4) | 3.623 (4) | 27.4 (2) |
Ring A/ring Avi | (interlayer) | 3.390 (4) | 3.944 (4) | 30.7 (2) |
Ring B/ring Bvii | (interlayer) | 3.323 (3) | 3.445 (4) | 15.3 (2) |
Notes: rings A and B are labelled according to Fig. 2 [symmetry codes: (ii) −x, 1 − y, 1 − z; (vi) 1 − x, 1 − y, 1 − z; (vii) −x, 2 − y, 1 − z]. IPD is interplanar distance (distance from one plane to the neighbouring centroid). CCD is centre-to-centre distance (distance between ring centroids). SA is the slippage angle (angle subtended by the intercentroid vector to the plane normal). For details, see Janiak (2000). |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.
Pyrazole possesses self-complementary functionality and yields hydrogen-bonded polar chains when associated by `head-to-tail' NH···N hydrogen bonding (Foces-Foces et al., 2000). The doubled number of hydrogen-bond donor (NH) and acceptor (N) sites (2:2) of 4,4'-bipyrazole allows the incorporation of this polar motif into a planar hydrogen-bonded network (Boldog et al., 2001). However, the molecular symmetry of the 4,4'-bipyrazole molecule effects its situation across a centre of inversion and this eliminates any overall polarity of the hydrogen-bonding directions. Double protonation of 4,4'-bipyrazole yields centrosymmetric dications, which act as donors of four NH···X hydrogen bonds and which are unable to participate in self-association due to a lack of acceptor sites (Boldog, 2005). Unlike these cases, 4,4'-bipyrazolium monocations are inherently noncentrosymmetric and they retain both types of binding sites (NH and N), in a 3:1 ratio, allowing self-association and effective interchain interactions. Thus, singly protonated 4,4'-bipyrazole offers a special potential for the generation of polar hydrogen-bonded chains and their integration into an extended architecture. In this context, we have prepared two new salts of 4,4'-bipyrazole, (I) and (II), and present their structures here.
The structural results reveal the close resemblance of the crystalline salts (I) and (II). The bipyrazolium monocations have a nearly planar structure. The dihedral angles between the mean planes of the two heterocyclic fragments are 3.5 (1)° in (I) and 8.7 (1)° in (II) (Figs. 1 and 2). Protonation of the pyrazole ring results in the equivalence of atoms N1 and N2, and the corresponding pairs of bonds, C1—N1 and C3—N2, and C1—C2 and C2—C3, are actually uniform in length, while bond C6—N4 (N) remains ca 0.02 Å shorter than C4—N3 (NH). This reflects the greater delocalization of π-electron density within the frame of the pyrazolium moiety compared with the neutral pyrazole fragment. The N3—N4 bond lengths for the neutral pyrazole fragments are the same as for 4,4'-bipyrazole [1.345 (2) Å; Boldog et al., 2001] or its complexes with metal ions [1.341 (2)–1.347 (2) Å; Boldog et al., 2002], while the N1—N2 bonds for the protonated fragments are somewhat shortened and are comparable with the parameter for 4,4'-bipyrazolium diperchlorate [1.328 (3) Å; Boldog, 2005]. A similar result may be found from a comparison of the molecular geometries of pyrazole (la Cour & Rasmussen, 1973) and the pyrazolium cation (Ishida & Kashino, 2001) (N—N 1.343 and 1.335 Å, respectively).
The bipyrazolium monocations in (I) and (II) associate in a uniform fashion, yielding polar chains with relatively strong hydrogen bonds [N···N 2.712 (3) and 2.742 (2) Å, respectively], employing the only acceptor sites, N4, and the N2—H2 donor sites trans to them (Figs. 3 and 4). Owing to the cationic nature of the donor sites, these NH···N interactions are appreciably stronger than those observed for neutral species [2.912 (3) Å for pyrazole (la Cour & Rasmussen, 1973) and 2.886 (2) Å for 4,4'-bipyrazole (Boldog et al., 2001)].
Two bipyrazolium cations, related by inversion [symmetry codes: (1 − x, −y, 1 − z) for (I) and (−x, 1 − y, 1 − z) for (II)], afford tight π–π stacking, in which the interaction occurs between pairs of cationic (A) and neutral (B) pyrazole rings. Such a mode of stacking dictates antiparallel alignment of the chains. Within the hydrogen-bonded layers (Figs. 3 and 4), the geometric parameters of π–π interactions (Janiak, 2000) are similar for (I) and (II) (Tables 3 and 6). For (I), both intra- and interlayer π–π stacking follow the A/B mode and are actually uniform in their geometry, while for (II), the interlayer interactions are supported by B/B (−x, 2 − y, 1 − z) and A/A (1 − x, 1 − y, 1 − z) stacking modes.
The hydrogen-bonded chains retain two NH functions per bipyrazole block and donate a set of NH···O and NH···Br hydrogen bonds to finite hydrogen-bonded anion–water ensembles [(H2O)2(X)2]2− [X is Br in (I) or ClO4 in (II)]. These lie across centres of inversion and unite pairs of antiparallel bipyrazolium chains into layers. Such centrosymmetric 2:2 anion–water aggregates have also been observed for acetylcarnitine hydrochloride monohydrate (Destro & Heyda, 1977). The water molecules tend to accept bonds from the cationic pyrazole fragment, while the anions are bound to the neutral pyrazole site (Tables 2 and 4). Hydrogen bonds of the type NH···Br in (I) [3.312 (2) Å] are only slightly weaker than the hydrogen bonding observed in pyrazolium bromides (3.17–3.22 Å; Foces-Foces et al., 1997).
A number of directional CH···O(X) interactions observed in (I) and (II) could be attributed to a weaker hydrogen bond (Desiraju & Steiner, 1999). The protonation evidently enhances the CH acidity of the pyrazole ring and, as a result, the CH···O(X) interactions donated by the cationic pyrazole fragment are appreciably shorter. Thus, in (II) the cationic pyrazolium fragment supports three weak CH···O bonds [C···O 3.267 (3)–3.386 (3) Å], while the shortest CH···O contact donated by the neutral pyrazole fragment is longer [3.502 (3) Å]. Similar directional CH···O hydrogen bonding [C···O 3.201 (3) Å] also occurs for the pyrazolium cation in the salt with 2,5-dichloro-3,6-dioxy-1,4-benzoquinone (Ishida & Kashino, 2001). The shortest C···Br separation in (I) is also observed for the cationic pyrazolium fragment (Table 2) and is comparable with the typical CH···Br bond in acetylenes (3.72 Å; Steiner, 1998).
Thus, the 4,4'-bipyrazolium monocations of (I) and (II) produce polar hydrogen-bonded chains by direct association. The mode of the intercation stacking, however, effects an antiparallel alignment of the chains and this mitigates against bulk polarity of the structure. We intend to investigate a series of related systems in order to resolve this problem.