Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106013412/dn3010sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270106013412/dn3010Isup2.hkl |
CCDC reference: 612443
A mixture of Na2MoO4·2H2O (0.5 mmol), CuCl2·2H2O (0.5 mmol), 1,10-phenanthroline (0.5 mmol) and terephthalate (0.25 mmol) in water (20 ml) was adjusted to pH4.2 and then heated at 423 K for 3 d. After slow cooling to room temperature, green crystals of (I) were isolated in 41% yield based on Mo. Elemental analysis for (I): calculated: H 1.62, C 30.91, N 4.51, Cu 10.22, Mo 30.86%; found: H 1.71, C 30.89, N 4.50, Cu 10.22, Mo 30.85%. IR (ν, cm−1, KBr): 3549, 3479, 3414, 3237, 1638, 1618, 1565, 1425, 1382, 1372, 1152, 1111, 954, 947, 913, 903, 883, 872, 787, 723.
All H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).
Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.
[Cu2Mo4(C8H4O4)O13(C12H8N2)2] | Z = 1 |
Mr = 1243.36 | F(000) = 602 |
Triclinic, P1 | Dx = 2.390 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.4592 (17) Å | Cell parameters from 2634 reflections |
b = 10.251 (2) Å | θ = 2.8–27.5° |
c = 11.624 (3) Å | µ = 2.71 mm−1 |
α = 78.603 (5)° | T = 298 K |
β = 85.529 (7)° | Prism, green |
γ = 83.151 (8)° | 0.22 × 0.12 × 0.06 mm |
V = 863.8 (3) Å3 |
Rigaku Saturn 70 CCD area-detector diffractometer | 3888 independent reflections |
Radiation source: fine-focus sealed tube | 3469 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
Detector resolution: 28.5714 pixels mm-1 | θmax = 27.5°, θmin = 2.8° |
CCD profile–fitting scans | h = −9→9 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2002) | k = −13→13 |
Tmin = 0.588, Tmax = 0.855 | l = −14→15 |
6795 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.020 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.054 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0342P)2] where P = (Fo2 + 2Fc2)/3 |
3888 reflections | (Δ/σ)max = 0.001 |
268 parameters | Δρmax = 0.70 e Å−3 |
0 restraints | Δρmin = −0.49 e Å−3 |
[Cu2Mo4(C8H4O4)O13(C12H8N2)2] | γ = 83.151 (8)° |
Mr = 1243.36 | V = 863.8 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.4592 (17) Å | Mo Kα radiation |
b = 10.251 (2) Å | µ = 2.71 mm−1 |
c = 11.624 (3) Å | T = 298 K |
α = 78.603 (5)° | 0.22 × 0.12 × 0.06 mm |
β = 85.529 (7)° |
Rigaku Saturn 70 CCD area-detector diffractometer | 3888 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2002) | 3469 reflections with I > 2σ(I) |
Tmin = 0.588, Tmax = 0.855 | Rint = 0.017 |
6795 measured reflections |
R[F2 > 2σ(F2)] = 0.020 | 0 restraints |
wR(F2) = 0.054 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.70 e Å−3 |
3888 reflections | Δρmin = −0.49 e Å−3 |
268 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mo1 | −0.62650 (2) | 0.004644 (17) | 0.865091 (16) | 0.01371 (6) | |
Mo2 | −1.05442 (2) | 0.048912 (17) | 0.861737 (15) | 0.01363 (6) | |
Cu3 | −0.42867 (4) | 0.29045 (3) | 0.73632 (2) | 0.01801 (7) | |
O1 | −0.85138 (18) | −0.04772 (14) | 0.97555 (13) | 0.0149 (3) | |
O2 | −0.83971 (19) | 0.04949 (16) | 0.76662 (13) | 0.0214 (3) | |
O3 | −0.5000 | 0.0000 | 1.0000 | 0.0214 (5) | |
O4 | −0.7695 (2) | 0.19830 (14) | 0.91648 (15) | 0.0239 (4) | |
O5 | −0.4991 (2) | 0.11217 (15) | 0.76296 (14) | 0.0199 (3) | |
O6 | −0.5617 (2) | −0.14903 (16) | 0.83524 (16) | 0.0275 (4) | |
O7 | −1.1629 (2) | 0.20567 (15) | 0.80590 (14) | 0.0224 (3) | |
O8 | −1.1620 (2) | −0.06607 (16) | 0.81640 (15) | 0.0251 (4) | |
O9 | −0.5796 (2) | 0.35610 (15) | 0.86342 (15) | 0.0245 (4) | |
N1 | −0.3227 (3) | 0.25965 (19) | 0.57666 (17) | 0.0213 (4) | |
N2 | −0.3645 (2) | 0.47719 (19) | 0.66959 (18) | 0.0235 (4) | |
C1 | −0.2946 (4) | 0.1466 (3) | 0.5358 (2) | 0.0311 (6) | |
H1A | −0.3306 | 0.0687 | 0.5828 | 0.037* | |
C2 | −0.2125 (4) | 0.1408 (3) | 0.4242 (3) | 0.0404 (7) | |
H2A | −0.1964 | 0.0601 | 0.3977 | 0.049* | |
C3 | −0.1565 (4) | 0.2528 (3) | 0.3547 (2) | 0.0375 (6) | |
H3A | −0.1023 | 0.2493 | 0.2804 | 0.045* | |
C4 | −0.1810 (3) | 0.3739 (3) | 0.3958 (2) | 0.0299 (6) | |
C5 | −0.1220 (4) | 0.4981 (3) | 0.3320 (2) | 0.0382 (7) | |
H5A | −0.0634 | 0.5007 | 0.2581 | 0.046* | |
C6 | −0.1504 (4) | 0.6112 (3) | 0.3777 (2) | 0.0370 (7) | |
H6A | −0.1149 | 0.6908 | 0.3334 | 0.044* | |
C7 | −0.2340 (3) | 0.6100 (2) | 0.4924 (2) | 0.0290 (6) | |
C8 | −0.2562 (4) | 0.7207 (3) | 0.5486 (3) | 0.0417 (7) | |
H8A | −0.2235 | 0.8031 | 0.5087 | 0.050* | |
C9 | −0.3261 (4) | 0.7070 (3) | 0.6617 (3) | 0.0479 (9) | |
H9A | −0.3373 | 0.7792 | 0.7002 | 0.057* | |
C10 | −0.3812 (4) | 0.5833 (3) | 0.7201 (3) | 0.0363 (7) | |
H10A | −0.4310 | 0.5759 | 0.7967 | 0.044* | |
C11 | −0.2896 (3) | 0.4901 (2) | 0.5578 (2) | 0.0211 (5) | |
C12 | −0.2648 (3) | 0.3717 (2) | 0.5076 (2) | 0.0218 (5) | |
C13 | −0.7253 (3) | 0.3125 (2) | 0.91178 (19) | 0.0187 (4) | |
C14 | −0.8641 (3) | 0.4095 (2) | 0.96246 (19) | 0.0195 (4) | |
C15 | −0.8303 (3) | 0.5398 (2) | 0.9626 (2) | 0.0235 (5) | |
H15A | −0.7165 | 0.5668 | 0.9381 | 0.028* | |
C16 | −1.0337 (3) | 0.3704 (2) | 1.0006 (2) | 0.0248 (5) | |
H16A | −1.0567 | 0.2830 | 1.0015 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.00974 (10) | 0.01517 (10) | 0.01638 (10) | −0.00039 (7) | 0.00214 (7) | −0.00510 (7) |
Mo2 | 0.01021 (10) | 0.01556 (10) | 0.01486 (10) | −0.00104 (7) | −0.00019 (7) | −0.00267 (7) |
Cu3 | 0.01709 (14) | 0.01708 (13) | 0.01847 (14) | −0.00028 (10) | 0.00371 (11) | −0.00277 (10) |
O1 | 0.0103 (7) | 0.0162 (7) | 0.0170 (7) | 0.0004 (6) | 0.0009 (6) | −0.0020 (6) |
O2 | 0.0129 (7) | 0.0354 (9) | 0.0154 (8) | −0.0023 (7) | 0.0015 (6) | −0.0049 (7) |
O3 | 0.0134 (10) | 0.0298 (12) | 0.0211 (12) | −0.0017 (9) | −0.0024 (9) | −0.0047 (9) |
O4 | 0.0228 (8) | 0.0138 (7) | 0.0326 (9) | 0.0021 (6) | 0.0095 (7) | −0.0052 (7) |
O5 | 0.0154 (7) | 0.0217 (8) | 0.0220 (8) | −0.0022 (6) | 0.0042 (6) | −0.0050 (6) |
O6 | 0.0224 (8) | 0.0227 (8) | 0.0387 (10) | −0.0006 (7) | 0.0086 (7) | −0.0143 (7) |
O7 | 0.0177 (8) | 0.0227 (8) | 0.0242 (9) | 0.0009 (6) | −0.0023 (6) | 0.0003 (6) |
O8 | 0.0184 (8) | 0.0284 (9) | 0.0315 (10) | −0.0055 (7) | −0.0035 (7) | −0.0104 (7) |
O9 | 0.0240 (8) | 0.0223 (8) | 0.0279 (9) | −0.0032 (7) | 0.0079 (7) | −0.0096 (7) |
N1 | 0.0219 (10) | 0.0213 (9) | 0.0196 (10) | −0.0010 (8) | 0.0011 (8) | −0.0028 (7) |
N2 | 0.0181 (10) | 0.0212 (10) | 0.0290 (11) | 0.0007 (8) | 0.0038 (8) | −0.0033 (8) |
C1 | 0.0392 (15) | 0.0280 (13) | 0.0270 (13) | −0.0039 (11) | 0.0036 (11) | −0.0092 (10) |
C2 | 0.0513 (18) | 0.0435 (16) | 0.0305 (15) | −0.0040 (14) | 0.0030 (13) | −0.0193 (12) |
C3 | 0.0416 (16) | 0.0532 (17) | 0.0186 (13) | −0.0056 (13) | 0.0051 (11) | −0.0115 (12) |
C4 | 0.0263 (13) | 0.0457 (15) | 0.0157 (12) | −0.0044 (11) | −0.0022 (10) | −0.0004 (10) |
C5 | 0.0362 (15) | 0.0532 (18) | 0.0201 (13) | −0.0100 (14) | −0.0014 (11) | 0.0086 (12) |
C6 | 0.0312 (14) | 0.0388 (15) | 0.0333 (15) | −0.0088 (12) | −0.0046 (12) | 0.0158 (12) |
C7 | 0.0172 (12) | 0.0264 (12) | 0.0375 (15) | −0.0011 (10) | −0.0013 (10) | 0.0072 (11) |
C8 | 0.0308 (15) | 0.0214 (13) | 0.068 (2) | −0.0043 (11) | 0.0085 (14) | −0.0002 (13) |
C9 | 0.0405 (17) | 0.0245 (14) | 0.080 (2) | −0.0075 (12) | 0.0204 (17) | −0.0192 (15) |
C10 | 0.0308 (14) | 0.0286 (13) | 0.0501 (18) | −0.0061 (11) | 0.0167 (13) | −0.0147 (12) |
C11 | 0.0139 (11) | 0.0213 (11) | 0.0249 (12) | 0.0011 (9) | −0.0017 (9) | 0.0021 (9) |
C12 | 0.0192 (11) | 0.0277 (12) | 0.0167 (11) | −0.0011 (9) | −0.0034 (9) | 0.0006 (9) |
C13 | 0.0205 (11) | 0.0173 (10) | 0.0165 (11) | 0.0034 (8) | 0.0015 (8) | −0.0031 (8) |
C14 | 0.0244 (11) | 0.0157 (10) | 0.0166 (11) | 0.0036 (9) | 0.0034 (9) | −0.0043 (8) |
C15 | 0.0223 (11) | 0.0207 (11) | 0.0284 (13) | −0.0047 (9) | 0.0082 (10) | −0.0090 (9) |
C16 | 0.0274 (12) | 0.0162 (10) | 0.0316 (13) | −0.0040 (9) | 0.0080 (10) | −0.0092 (9) |
Mo1—O6 | 1.6865 (16) | C1—H1A | 0.9300 |
Mo1—O5 | 1.7561 (15) | C2—C3 | 1.357 (4) |
Mo1—O3 | 1.8821 (4) | C2—H2A | 0.9300 |
Mo1—O2 | 1.9880 (16) | C3—C4 | 1.404 (4) |
Mo1—O1 | 2.0874 (14) | C3—H3A | 0.9300 |
Mo1—O4 | 2.3022 (14) | C4—C12 | 1.395 (3) |
Mo1—Mo2 | 3.1722 (8) | C4—C5 | 1.440 (4) |
Mo2—O8 | 1.6876 (16) | C5—C6 | 1.356 (4) |
Mo2—O7 | 1.7373 (15) | C5—H5A | 0.9300 |
Mo2—O2 | 1.8738 (15) | C6—C7 | 1.426 (4) |
Mo2—O1i | 1.9639 (15) | C6—H6A | 0.9300 |
Mo2—O1 | 2.1123 (15) | C7—C11 | 1.402 (3) |
Cu3—O5 | 1.9216 (16) | C7—C8 | 1.405 (4) |
Cu3—O9 | 1.9637 (15) | C8—C9 | 1.363 (4) |
Cu3—N2 | 2.017 (2) | C8—H8A | 0.9300 |
Cu3—N1 | 2.0279 (19) | C9—C10 | 1.406 (4) |
Cu3—O7ii | 2.2136 (16) | C9—H9A | 0.9300 |
O1—Mo2i | 1.9639 (15) | C10—H10A | 0.9300 |
O3—Mo1iii | 1.8821 (4) | C11—C12 | 1.434 (3) |
O4—C13 | 1.244 (3) | C13—C14 | 1.515 (3) |
O7—Cu3iv | 2.2136 (16) | C14—C16 | 1.386 (3) |
O9—C13 | 1.272 (3) | C14—C15 | 1.389 (3) |
N1—C1 | 1.325 (3) | C15—C16v | 1.387 (3) |
N1—C12 | 1.360 (3) | C15—H15A | 0.9300 |
N2—C10 | 1.324 (3) | C16—C15v | 1.387 (3) |
N2—C11 | 1.361 (3) | C16—H16A | 0.9300 |
C1—C2 | 1.400 (4) | ||
O6—Mo1—O5 | 104.80 (7) | C1—N1—C12 | 117.9 (2) |
O6—Mo1—O3 | 101.71 (7) | C1—N1—Cu3 | 128.98 (17) |
O5—Mo1—O3 | 99.01 (6) | C12—N1—Cu3 | 112.96 (15) |
O6—Mo1—O2 | 97.65 (8) | C10—N2—C11 | 117.9 (2) |
O5—Mo1—O2 | 91.60 (7) | C10—N2—Cu3 | 129.13 (18) |
O3—Mo1—O2 | 154.68 (4) | C11—N2—Cu3 | 112.91 (15) |
O6—Mo1—O1 | 96.46 (7) | N1—C1—C2 | 122.1 (2) |
O5—Mo1—O1 | 155.48 (6) | N1—C1—H1A | 118.9 |
O3—Mo1—O1 | 88.30 (5) | C2—C1—H1A | 118.9 |
O2—Mo1—O1 | 73.34 (6) | C3—C2—C1 | 120.1 (2) |
O6—Mo1—O4 | 168.63 (7) | C3—C2—H2A | 120.0 |
O5—Mo1—O4 | 84.93 (6) | C1—C2—H2A | 120.0 |
O3—Mo1—O4 | 82.20 (5) | C2—C3—C4 | 119.4 (2) |
O2—Mo1—O4 | 75.87 (6) | C2—C3—H3A | 120.3 |
O1—Mo1—O4 | 72.85 (5) | C4—C3—H3A | 120.3 |
O6—Mo1—Mo2 | 106.88 (6) | C12—C4—C3 | 117.1 (2) |
O5—Mo1—Mo2 | 118.72 (5) | C12—C4—C5 | 118.3 (2) |
O3—Mo1—Mo2 | 123.295 (12) | C3—C4—C5 | 124.6 (2) |
O2—Mo1—Mo2 | 33.61 (4) | C6—C5—C4 | 121.2 (3) |
O1—Mo1—Mo2 | 41.24 (4) | C6—C5—H5A | 119.4 |
O4—Mo1—Mo2 | 62.59 (4) | C4—C5—H5A | 119.4 |
O8—Mo2—O7 | 107.57 (8) | C5—C6—C7 | 121.0 (2) |
O8—Mo2—O2 | 102.33 (7) | C5—C6—H6A | 119.5 |
O7—Mo2—O2 | 101.08 (7) | C7—C6—H6A | 119.5 |
O8—Mo2—O1i | 104.81 (7) | C11—C7—C8 | 116.6 (2) |
O7—Mo2—O1i | 94.93 (7) | C11—C7—C6 | 119.2 (2) |
O2—Mo2—O1i | 142.46 (7) | C8—C7—C6 | 124.2 (2) |
O8—Mo2—O1 | 109.89 (7) | C9—C8—C7 | 119.8 (2) |
O7—Mo2—O1 | 142.29 (7) | C9—C8—H8A | 120.1 |
O2—Mo2—O1 | 75.04 (6) | C7—C8—H8A | 120.1 |
O1i—Mo2—O1 | 71.62 (6) | C8—C9—C10 | 119.8 (3) |
O8—Mo2—Mo1 | 118.42 (5) | C8—C9—H9A | 120.1 |
O7—Mo2—Mo1 | 120.24 (5) | C10—C9—H9A | 120.1 |
O2—Mo2—Mo1 | 35.97 (5) | N2—C10—C9 | 122.1 (3) |
O1i—Mo2—Mo1 | 107.09 (4) | N2—C10—H10A | 118.9 |
O1—Mo2—Mo1 | 40.65 (4) | C9—C10—H10A | 118.9 |
O5—Cu3—O9 | 98.50 (7) | N2—C11—C7 | 123.7 (2) |
O5—Cu3—N2 | 166.82 (8) | N2—C11—C12 | 116.64 (19) |
O9—Cu3—N2 | 90.53 (7) | C7—C11—C12 | 119.6 (2) |
O5—Cu3—N1 | 87.34 (7) | N1—C12—C4 | 123.4 (2) |
O9—Cu3—N1 | 163.78 (7) | N1—C12—C11 | 116.0 (2) |
N2—Cu3—N1 | 81.49 (8) | C4—C12—C11 | 120.6 (2) |
O5—Cu3—O7ii | 88.80 (6) | O4—C13—O9 | 125.87 (19) |
O9—Cu3—O7ii | 107.89 (7) | O4—C13—C14 | 116.13 (19) |
N2—Cu3—O7ii | 97.59 (7) | O9—C13—C14 | 117.89 (19) |
N1—Cu3—O7ii | 87.25 (7) | C16—C14—C15 | 119.26 (19) |
Mo2i—O1—Mo1 | 139.99 (8) | C16—C14—C13 | 119.0 (2) |
Mo2i—O1—Mo2 | 108.38 (6) | C15—C14—C13 | 121.5 (2) |
Mo1—O1—Mo2 | 98.11 (6) | C16v—C15—C14 | 120.0 (2) |
Mo2—O2—Mo1 | 110.42 (8) | C16v—C15—H15A | 120.0 |
Mo1—O3—Mo1iii | 180.000 (1) | C14—C15—H15A | 120.0 |
C13—O4—Mo1 | 134.49 (14) | C14—C16—C15v | 120.8 (2) |
Mo1—O5—Cu3 | 140.13 (9) | C14—C16—H16A | 119.6 |
Mo2—O7—Cu3iv | 137.72 (9) | C15v—C16—H16A | 119.6 |
C13—O9—Cu3 | 126.81 (15) |
Symmetry codes: (i) −x−2, −y, −z+2; (ii) x+1, y, z; (iii) −x−1, −y, −z+2; (iv) x−1, y, z; (v) −x−2, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···O2vi | 0.93 | 2.38 | 3.205 (3) | 147 |
C9—H9A···O6vii | 0.93 | 2.36 | 3.056 (3) | 132 |
Symmetry codes: (vi) −x−1, −y, −z+1; (vii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu2Mo4(C8H4O4)O13(C12H8N2)2] |
Mr | 1243.36 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 7.4592 (17), 10.251 (2), 11.624 (3) |
α, β, γ (°) | 78.603 (5), 85.529 (7), 83.151 (8) |
V (Å3) | 863.8 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 2.71 |
Crystal size (mm) | 0.22 × 0.12 × 0.06 |
Data collection | |
Diffractometer | Rigaku Saturn 70 CCD area-detector diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2002) |
Tmin, Tmax | 0.588, 0.855 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6795, 3888, 3469 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.020, 0.054, 1.02 |
No. of reflections | 3888 |
No. of parameters | 268 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.70, −0.49 |
Computer programs: CrystalClear (Rigaku, 2002), CrystalClear, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003) and DIAMOND (Brandenburg, 1998), SHELXL97.
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···O2i | 0.93 | 2.38 | 3.205 (3) | 147.3 |
C9—H9A···O6ii | 0.93 | 2.36 | 3.056 (3) | 131.6 |
Symmetry codes: (i) −x−1, −y, −z+1; (ii) x, y+1, z. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
New organic–inorganic hybrid materials based on polyoxometalates have attracted much attention due to the diversity of their structures and the vast range of potential applications in many fields, such as catalysis, electrical conductivity, magneto-chemistry and photochemistry (Yamase et al., 1999; Rhule et al., 1998; Hill & Prosser-McCartha, 1995). One promising approach for the design and synthesis of this class of solid materials is to introduce secondary metal–organic complexes into polyoxometalates via covalent bonds (Gaunt et al., 2003; Strukan et al., 2000; Wilson et al., 1983; Wu et al., 2003; Zapf et al., 1997). To date, an astonishing variety of polyoxometalate-based organic–inorganic hybrid materials with discrete or high-dimensional structures have been isolated. However, the organic molecules introduced into these polyoxometalate-based materials are mostly restricted to organonitrogen ligands (Luan et al., 2000; Reinoso et al., 2003; Kang et al., 1989). Extended polyoxomolybdate-based carboxyl ligands are rare (Liu et al., 1987; Quintal et al., 2001), which may be due to the fact that the negative charge on carboxyl ligands prevents charge balance with the polyoxomolybdate anions. In the course of our development of the chemistry of organic–inorganic hybrid materials based on polyoxomolybdates, organonitrogen and carboxyl ligands were introduced into the polyoxomolybdate systems simultaneously, and the title novel compound, (I), [{Cu(phen)}2(tp)Mo4O13] (phen is 1,10-phenanthroline and tp is terephthalate), was isolated. This compound exhibits a two-dimensional layer formed by cross-linking one-dimensional copper–molybdate chains through tp ligands.
X-ray diffraction analysis reveals that the structure of (I) exhibits a layered network constructed from [{Cu(phen)}2Mo4O13]n2n+ ribbons bridged by tp ligands. The basic building block of (I) is shown in Fig. 1. In the asymmetric unit, there are two crystallographically independent Mo atoms and one Cu atom. Atom Mo1 has a distorted octahedral environment, with Mo—O distances ranging from 1.6865 (16) to 2.3022 (14) Å, while atom Mo2 has a square-pyramidal coordination, with Mo—O distances ranging from 1.6876 (16) to 2.1123 (15) Å. The Cu atom is pentacoordinated in a square-pyramidal environment by two N atoms from the phen ligand, one O atom from the tp ligand and two O atoms from the molybdenum oxide chain. The carboxyl group of the tp ligand offers two O atoms, one to Mo and one to Cu. An extensive bond-valence sum calculation (Brown & Altermatt, 1985; Brese & O'Keeffe, 1991; Thorp, 1992) indicates the valences for Mo and Cu to be 6 and 2, respectively (Mo1 = 6.149, Mo2 = 5.917 and Cu3 = 1.874).
The structure of (I) can be described as follows. Two [MoO6] octahedra and two [MoO5] square pyramids form a tetramolybdate unit through edge-sharing, and these tetramolybdate units form an infinite molybdenum oxide chain through corner-sharing. [Cu(phen)]2+ complexes are grafted onto either side of the molybdenum oxide chain via Cu—O bonds (Fig. 2). It is noteworthy that the second ligand (tp), in a bis-bidentate mode, coordinates to Cu and to the octahedral Mo, thus serving to extend the chains into two-dimensional network (Fig. 3). Weak C—H···O hydrogen bonds (Fig. 4), together with face-to-face π–π stacking interactions between adjacent phen ligands, stabilize the structure.
As shown in Fig. 5, there are two different π–π stacking interactions. One relates phen ring R1 (atoms N1, C1, C2, C3, C4 and C12) to phen ring R3 (atoms C7, C8, C9, C10, N2 and C11) of an adjacent phen ligand, denoted R1···R3i [symmetry code: (i) −1 − x, 1 − y, 1 − z]. The second is formed between phen ring R2 (atoms C4, C5, C6, C7, C11 and C12) and its symmetry-related counterpart R2ii [symmetry code: (ii) −x, 1 − y, 1 − z]. The two phen rings involved in each π–π stacking interaction are nearly parallel, with dihedral angles of 0.08(s.u.?) for R1···R3i and 0.07(s.u.?)° for R2···R2ii, plane-to-plane distances of 3.51 (R1···R3i) and 3.29 Å (R2···R2ii), and centroid-to-centroid distances of 3.628 (13) (R1···R3i) and 3.481 (8) Å (R2···R2ii). Two R1···R3i and one R2···R2ii π–π stacking interactions alternate along the a axis. [Original paragraph was not clear. Please check rephrasing]