Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614021536/dt3026sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614021536/dt3026Isup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614021536/dt3026IIsup3.hkl |
CCDC references: 1003003; 1008390
Studies of coordination polymers have witnessed an upsurge in recent years due to their novel architectures, as well as their potential applications as functional materials (Hou et al., 2014; Freslon et al., 2014; Rybak et al., 2010; Deng et al., 2010). To date, a large number of coordination polymers have already been obtained through the assembly of various organic ligands and metal ions. However, the rational design and controllable prediction of prospective networks is still a great challenge, due to complicated factors such as the organic ligands, metal ions, solvent, temperature and counter-ions that could influence the ultimate structures (Manna et al., 2014; Lee et al., 2004). Recently, the utilization of mixed-ligand systems based on carboxylates and N-donor ligands has proved to be an effective strategy to construct more intricate coordination polymers (Zhang et al., 2013; Wang et al., 2013). In dual-ligand systems, metal–carboxylate architectures can be finely tuned by incorporating the different secondary N-donor linkers.
Taking all the above into account, we have successfully synthesized two new coordination polymers having the same coordination modes and structures, based on reactions of copper acetate, pentafluorobenzoic acid and pyrazine under different reaction conditions. Poly[[tris(µ-pentafluorobenzoato-κ2O:O')bis(µ-pyrazine-κ2N:N')copper(II)], (I), has been synthesized by a one-pot method with triethylamine in ethanol. The same compound, denoted (II), has been obtained under hydrothermal conditions without triethylamine. In this paper, we report mainly the structural characterization of (I), and compare the two reaction pathways.
For the preparation of the (I), Cu(CH3COO)2·H2O (0.040 g, 0.20 mmol), pentafluorobenzoic acid (0.083 g, 0.40 mmol) and pyrazine (0.016 g, 0.20 mmol) were mixed in ethanol (10 ml) and triethylamine (0.06 ml) in a flask equipped with a condenser, and the mixture was heated at 353 K for 3 h. During this period, a blue precipitate formed. The reaction mixture was cooled to room temperature, the precipitate removed by filtration, and the blue solid washed with ethanol (6 ml) and then dried under vacuum. The crude product was dissolved in dimethylformamide (12 ml) and the solution was layered with ethanol. Blue block-shaped crystals formed after 7 d (yield 0.067 g, 60% based on Cu2+). Analysis, calculated for C18H4CuF10N2O4: C 38.21, H 0.71, N 4.95%; found: C 38.14, H 0.80, N 5.03%.
For the preparation of (II), a mixture containing Cu(CH3COO)2·H2O (0.040 g, 0.20 mmol), pentafluorobenzoic acid (0.083 g, 0.40 mmol) and pyrazine (0.016 g, 0.30 mmol) in water (10 ml) was sealed in a Teflon-lined autoclave and heated under autogenic pressure to 358 K for 3 d and then allowed to cool to room temperature at a rate of 1 K h-1. Blue block-shaped crystals were obtained and these were collected by filtration, washed several times with distilled water and dried in air (yield 0.061 g, 55% based on Cu2+). Analysis, calculated for C18H4CuF10N2O4: C 38.21, H 0.71, N 4.95%; found: C,38.38, H 0.75, N 4.89%.
Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were placed in geometrically idealized positions and refined using a riding model, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). [Please check added text]
X-ray crystallographic analysis revealed that (I) crystallizes in the triclinic space group P1 with the molecule residing on a general position (Fig. 1). The relevant asymmetric unit consists of one crystallographically independent CuII centre, three pentafluorobenzoate anions (C6F5COO-) and two pyrazine ligands. The CuII cation is in an approximately square-pyramidal coordination environment, in which the equatorial plane is composed of two N atoms from two pyrazine ligands and two O atoms from two independent pentafluorobenzoate anions, while one O atom from a different pentafluorobenzoate anion occupies the apical position. Each CuII centre is five coordinated by three O atoms (O1 and O3, with O2 in the apical position) from three different pentafluorobenzoate anions (Table 2). Of the three independent Cu—O distances (Table 2), the apical Cu1—O2 distance is longer than the others, and it is especially longer than the two Cu—N distances. The angles among the two O atoms (O1 and O3) and two N atoms (N1 and N2) with Cu1 indicate that these five atoms are approximately located in an equatorial plane. The angles involving atom O2 (located at the apical position) and the equatorial plane (Table 2) indicate an approximately square-pyramidal coordination geometry. This coordination geometry of the five-coordinated CuII cation has been reported previously in recent years (Kennedy et al., 2014; Tjioe et al., 2011; Boonmak et al., 2009; Cui et al., 2008).
The pentafluorobenzoate anion coordination mode of µ3-η1:η2 is found in the crystal structure. The C6F5COO- group bridges two CuII cations; the carboxylate group at C17 is monondentate, while that at C18 is bidentate-chelating to the CuII cations. The two carboxylate groups of the pentafluorobenzoate anions coordinate two CuII cations to form a Cu–C6F5COO- chain, with a Cu1···Cu2 distance of 4.8046 (9) Å. Consequently, a one-dimensional linear chain is formed (Fig. 2). The Cu···Cu distance is longer than twice the sum of the van der Waals radius of copper (2.8 Å; Bondi, 1964), suggesting that there are no significant metal–metal interactions.
The pyrazine ligands connect adjacent CuII cations to form a one-dimensional linear chain, with a Cu1···Cu2 distance of 6.9047 (9) Å (Fig. 3). Obviously, the two kinds of one-dimensional chain cross each other by sharing CuII cations, generating a two-dimensional sheet. A schematic diagram of the two-dimensional polymeric layer is shown in Fig. 4. Adjacent two-dimensional layers are linked by intermolecular C—H···F—C interactions between pyrazine H atoms and the F atoms of the pentafluorobenzoate anions, constructing a three-dimensional supramolecular framework (Fig. 5).
From a thermodynamic point of view, the C—F bond is exceptionally strong, which is one of the reasons for the unique nature of fluorinated compounds. Incorporation of F atoms can lead to high stability, but also to a distinctly altered reactivity of fluorinated compounds compared with their nonfluorinated counterparts. For fluoroaromatic compounds, C—H···F—C interactions, although weak, contribute significantly to regulating the arrangement of organic molecules in the crystalline state and to stabilizing the secondary structure of biomolecules such as DNA. The sum of the van der Waals radii of fluorine and hydrogen is about 2.67 Å. Consequently, an F···H distance up to 2.9 Å is considered as a C—H···F—C interaction. The C—H···F angles [In (I)?] range from 70 to 180°, and such a wide range suggests weak interactions (Reichenbächer et al., 2005). In (I), the shortest F···H distance is 2.38 Å and the corresponding C—H···F angle is 144°. These results indicate the existence of strong C—H···F—C interactions in (I). Compared with (I), compound (II) has a shorter H···F distance of 2.37 Å and the C—H···F angle is 141°.
In order to investigate the function of triethylamine, two different experiments were carried out in ethanol under one-pot conditions, the first including the addition of triethylamine and the second with no triethylamine. After 10 d, blue-block crystals formed in the former, but no crystals appeared in the latter. So triethylamine, as a weak organic base, deprotonates C6F5COOH to C6F5COO-, and plays an important role in assisting crystal formation and controlling crystal size (Nordin et al., 2014; Tanaka & Ajiki, 2005; Klein et al., 2004).
It has been demonstrated previously that CuII can be easily hydrothermally converted into CuI in the presence of different types of aromatic species (Chen & Tong, 2007; Lu, 2003). We expected that a CuI compound could be obtained under hydrothermal conditions in our experiment. Nevertheless, the result demonstrated that CuII had not been reduced to CuI. Further studies of the effects of solvent and temperature on the formation of diverse CuI compounds under hydrothermal conditions are in progress in our laboratory. Comparing the two reaction pathways, we think the hydrothermal method has more advantages than the one-pot reflux method, firstly because the use of water as solvent is environmentally sound and a low-cost method, and secondly because, by virtue of high temperature and pressure, novel crystal structures and topologies can appear.
In summary, two similar structures have been obtained under different reaction conditions, indicating that the title compound is a stable structure with a five-coordinated CuII cation. Moreover, the results show that C—H···F—C interactions may play an important role in the formation of new supramolecular structures, and can be utilized in crystal design and engineering.
For related literature, see: Bondi (1964); Boonmak et al. (2009); Chen & Tong (2007); Cui et al. (2008); Deng et al. (2010); Freslon et al. (2014); Hou et al. (2014); Kennedy et al. (2014); Klein et al. (2004); Lee et al. (2004); Lu (2003); Manna et al. (2014); Nordin et al. (2014); Reichenbächer et al. (2005); Rybak et al. (2010); Tanaka & Ajiki (2005); Tjioe et al. (2011); Wang et al. (2013); Zhang et al. (2013).
For both compounds, data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
[Cu(C7F5O2)2(C4H4N2)] | Z = 2 |
Mr = 565.77 | F(000) = 554 |
Triclinic, P1 | Dx = 1.951 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 4.8046 (9) Å | Cell parameters from 2974 reflections |
b = 13.072 (2) Å | θ = 2.7–24.7° |
c = 15.357 (3) Å | µ = 1.26 mm−1 |
α = 89.785 (2)° | T = 293 K |
β = 89.660 (2)° | Block, blue |
γ = 86.666 (2)° | 0.10 × 0.10 × 0.08 mm |
V = 962.9 (3) Å3 |
Bruker SMART 1000 diffractometer | 3385 independent reflections |
Radiation source: fine-focus sealed tube | 2753 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
ω scans | θmax = 25.0°, θmin = 1.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −5→5 |
Tmin = 0.881, Tmax = 0.904 | k = −15→15 |
9285 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.059P)2] where P = (Fo2 + 2Fc2)/3 |
3385 reflections | (Δ/σ)max < 0.001 |
316 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
[Cu(C7F5O2)2(C4H4N2)] | γ = 86.666 (2)° |
Mr = 565.77 | V = 962.9 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 4.8046 (9) Å | Mo Kα radiation |
b = 13.072 (2) Å | µ = 1.26 mm−1 |
c = 15.357 (3) Å | T = 293 K |
α = 89.785 (2)° | 0.10 × 0.10 × 0.08 mm |
β = 89.660 (2)° |
Bruker SMART 1000 diffractometer | 3385 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 2753 reflections with I > 2σ(I) |
Tmin = 0.881, Tmax = 0.904 | Rint = 0.029 |
9285 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.36 e Å−3 |
3385 reflections | Δρmin = −0.34 e Å−3 |
316 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.26122 (7) | 0.74938 (3) | 0.48090 (2) | 0.02369 (14) | |
N1 | 0.1068 (5) | 0.89955 (18) | 0.49009 (17) | 0.0267 (6) | |
N2 | 0.4137 (5) | 0.60168 (18) | 0.48714 (17) | 0.0255 (6) | |
O1 | 0.4520 (4) | 0.78130 (16) | 0.37229 (14) | 0.0320 (5) | |
O2 | 0.8640 (4) | 0.71430 (17) | 0.41473 (14) | 0.0329 (5) | |
O3 | 0.1077 (5) | 0.72142 (15) | 0.59561 (14) | 0.0311 (5) | |
O4 | 0.4588 (6) | 0.7989 (3) | 0.65249 (19) | 0.0661 (9) | |
F1 | −0.0892 (6) | 0.8952 (2) | 0.75694 (17) | 0.0758 (8) | |
F2 | −0.3298 (8) | 0.8494 (3) | 0.9105 (2) | 0.1320 (15) | |
F3 | −0.2351 (10) | 0.6620 (4) | 0.9812 (2) | 0.1562 (18) | |
F4 | 0.1025 (13) | 0.5183 (3) | 0.8986 (3) | 0.181 (2) | |
F5 | 0.3344 (9) | 0.5638 (2) | 0.7437 (2) | 0.1187 (14) | |
F6 | 0.5716 (6) | 0.94161 (18) | 0.26382 (16) | 0.0767 (9) | |
F7 | 0.7947 (7) | 0.9858 (2) | 0.11008 (18) | 0.0954 (10) | |
F8 | 1.1780 (7) | 0.8540 (3) | 0.03530 (17) | 0.0980 (10) | |
F9 | 1.3248 (7) | 0.6741 (3) | 0.11389 (18) | 0.1082 (12) | |
F10 | 1.0936 (6) | 0.62475 (19) | 0.26519 (15) | 0.0746 (8) | |
C1 | 0.6123 (6) | 0.5749 (2) | 0.5441 (2) | 0.0295 (7) | |
H1 | 0.6945 | 0.6253 | 0.5759 | 0.035* | |
C2 | 0.3009 (6) | 0.5272 (2) | 0.4432 (2) | 0.0277 (7) | |
H2 | 0.1610 | 0.5438 | 0.4032 | 0.033* | |
C3 | 0.2094 (6) | 0.9763 (2) | 0.4454 (2) | 0.0292 (7) | |
H3 | 0.3554 | 0.9623 | 0.4064 | 0.035* | |
C4 | −0.1049 (6) | 0.9237 (2) | 0.5448 (2) | 0.0307 (7) | |
H4 | −0.1832 | 0.8720 | 0.5768 | 0.037* | |
C5 | −0.0415 (8) | 0.8019 (3) | 0.7916 (3) | 0.0528 (10) | |
C6 | −0.1641 (10) | 0.7788 (5) | 0.8696 (3) | 0.0783 (16) | |
C7 | −0.1147 (14) | 0.6836 (6) | 0.9048 (3) | 0.096 (2) | |
C8 | 0.0531 (16) | 0.6115 (5) | 0.8637 (4) | 0.103 (2) | |
C9 | 0.1708 (12) | 0.6354 (4) | 0.7847 (3) | 0.0714 (14) | |
C10 | 0.1260 (8) | 0.7306 (3) | 0.7470 (2) | 0.0427 (9) | |
C11 | 0.7539 (8) | 0.8721 (3) | 0.2282 (2) | 0.0436 (9) | |
C12 | 0.8687 (9) | 0.8974 (3) | 0.1489 (3) | 0.0557 (11) | |
C13 | 1.0615 (9) | 0.8305 (4) | 0.1112 (3) | 0.0608 (12) | |
C14 | 1.1369 (9) | 0.7396 (4) | 0.1511 (3) | 0.0619 (12) | |
C15 | 1.0175 (8) | 0.7159 (3) | 0.2297 (2) | 0.0451 (9) | |
C16 | 0.8233 (6) | 0.7810 (3) | 0.2715 (2) | 0.0310 (7) | |
C17 | 0.2476 (7) | 0.7541 (3) | 0.6589 (2) | 0.0349 (8) | |
C18 | 0.7091 (6) | 0.7564 (2) | 0.3602 (2) | 0.0261 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0249 (2) | 0.0157 (2) | 0.0298 (2) | 0.00401 (14) | 0.00551 (15) | 0.00319 (14) |
N1 | 0.0282 (14) | 0.0201 (13) | 0.0312 (15) | 0.0038 (10) | 0.0051 (11) | 0.0020 (11) |
N2 | 0.0248 (13) | 0.0193 (13) | 0.0318 (15) | 0.0021 (10) | 0.0064 (11) | 0.0021 (11) |
O1 | 0.0279 (12) | 0.0294 (12) | 0.0371 (13) | 0.0098 (9) | 0.0088 (10) | 0.0067 (10) |
O2 | 0.0259 (11) | 0.0418 (13) | 0.0309 (13) | −0.0033 (10) | −0.0021 (10) | 0.0101 (10) |
O3 | 0.0382 (13) | 0.0243 (11) | 0.0302 (13) | 0.0009 (10) | 0.0058 (10) | 0.0028 (10) |
O4 | 0.0505 (17) | 0.100 (2) | 0.0520 (18) | −0.0365 (17) | 0.0059 (14) | −0.0016 (16) |
F1 | 0.0881 (19) | 0.0735 (18) | 0.0621 (17) | 0.0263 (15) | 0.0060 (14) | −0.0094 (14) |
F2 | 0.114 (3) | 0.201 (4) | 0.074 (2) | 0.046 (3) | 0.044 (2) | −0.027 (2) |
F3 | 0.198 (4) | 0.215 (5) | 0.058 (2) | −0.042 (4) | 0.064 (3) | 0.026 (2) |
F4 | 0.335 (7) | 0.114 (3) | 0.091 (3) | −0.004 (4) | 0.052 (4) | 0.061 (2) |
F5 | 0.203 (4) | 0.067 (2) | 0.080 (2) | 0.042 (2) | 0.047 (2) | 0.0221 (16) |
F6 | 0.107 (2) | 0.0524 (15) | 0.0651 (16) | 0.0358 (14) | 0.0394 (15) | 0.0252 (12) |
F7 | 0.143 (3) | 0.078 (2) | 0.0625 (18) | 0.0115 (19) | 0.0236 (18) | 0.0428 (15) |
F8 | 0.111 (2) | 0.136 (3) | 0.0462 (16) | −0.007 (2) | 0.0399 (16) | 0.0233 (17) |
F9 | 0.112 (2) | 0.139 (3) | 0.0653 (18) | 0.056 (2) | 0.0522 (18) | 0.0014 (19) |
F10 | 0.100 (2) | 0.0663 (16) | 0.0510 (14) | 0.0484 (15) | 0.0232 (14) | 0.0074 (12) |
C1 | 0.0315 (17) | 0.0212 (16) | 0.0357 (19) | 0.0007 (13) | −0.0012 (14) | −0.0010 (14) |
C2 | 0.0274 (16) | 0.0229 (16) | 0.0323 (18) | 0.0032 (13) | −0.0011 (14) | 0.0018 (14) |
C3 | 0.0276 (16) | 0.0231 (16) | 0.0361 (18) | 0.0048 (13) | 0.0105 (14) | 0.0035 (13) |
C4 | 0.0309 (17) | 0.0214 (16) | 0.039 (2) | 0.0012 (13) | 0.0124 (15) | 0.0065 (14) |
C5 | 0.047 (2) | 0.072 (3) | 0.038 (2) | 0.001 (2) | 0.0022 (18) | −0.007 (2) |
C6 | 0.064 (3) | 0.123 (5) | 0.046 (3) | 0.009 (3) | 0.019 (2) | −0.014 (3) |
C7 | 0.108 (5) | 0.138 (6) | 0.043 (3) | −0.022 (4) | 0.029 (3) | 0.011 (3) |
C8 | 0.165 (6) | 0.090 (4) | 0.055 (3) | −0.013 (4) | 0.027 (4) | 0.030 (3) |
C9 | 0.105 (4) | 0.061 (3) | 0.047 (3) | 0.002 (3) | 0.019 (3) | 0.011 (2) |
C10 | 0.042 (2) | 0.054 (2) | 0.032 (2) | −0.0054 (17) | 0.0025 (16) | −0.0018 (17) |
C11 | 0.050 (2) | 0.045 (2) | 0.035 (2) | 0.0057 (17) | 0.0106 (17) | 0.0074 (17) |
C12 | 0.068 (3) | 0.055 (3) | 0.043 (2) | 0.000 (2) | 0.008 (2) | 0.019 (2) |
C13 | 0.062 (3) | 0.088 (3) | 0.032 (2) | −0.003 (2) | 0.017 (2) | 0.011 (2) |
C14 | 0.056 (3) | 0.086 (3) | 0.041 (2) | 0.019 (2) | 0.019 (2) | 0.000 (2) |
C15 | 0.045 (2) | 0.055 (2) | 0.032 (2) | 0.0147 (18) | 0.0104 (17) | 0.0030 (17) |
C16 | 0.0256 (16) | 0.0388 (19) | 0.0282 (18) | 0.0008 (14) | 0.0029 (13) | 0.0034 (15) |
C17 | 0.0365 (19) | 0.0360 (19) | 0.0314 (19) | 0.0034 (15) | 0.0055 (16) | 0.0013 (15) |
C18 | 0.0281 (17) | 0.0231 (16) | 0.0270 (17) | −0.0014 (13) | 0.0058 (14) | −0.0026 (13) |
Cu1—O3 | 1.947 (2) | F10—C15 | 1.341 (4) |
Cu1—O1 | 1.954 (2) | C1—C2iii | 1.388 (4) |
Cu1—N2 | 2.027 (2) | C1—H1 | 0.9300 |
Cu1—N1 | 2.063 (2) | C2—C1iii | 1.388 (4) |
Cu1—O2i | 2.239 (2) | C2—H2 | 0.9300 |
N1—C3 | 1.331 (4) | C3—C4iv | 1.381 (4) |
N1—C4 | 1.339 (4) | C3—H3 | 0.9300 |
N2—C1 | 1.329 (4) | C4—C3iv | 1.381 (4) |
N2—C2 | 1.329 (4) | C4—H4 | 0.9300 |
O1—C18 | 1.272 (4) | C5—C6 | 1.373 (6) |
O2—C18 | 1.230 (4) | C5—C10 | 1.377 (5) |
O2—Cu1ii | 2.239 (2) | C6—C7 | 1.363 (8) |
O3—C17 | 1.274 (4) | C7—C8 | 1.358 (8) |
O4—C17 | 1.204 (4) | C8—C9 | 1.379 (7) |
F1—C5 | 1.337 (5) | C9—C10 | 1.376 (6) |
F2—C6 | 1.338 (6) | C10—C17 | 1.508 (5) |
F3—C7 | 1.341 (6) | C11—C12 | 1.381 (5) |
F4—C8 | 1.339 (6) | C11—C16 | 1.385 (5) |
F5—C9 | 1.343 (5) | C12—C13 | 1.364 (6) |
F6—C11 | 1.341 (4) | C13—C14 | 1.366 (6) |
F7—C12 | 1.329 (5) | C14—C15 | 1.375 (5) |
F8—C13 | 1.332 (4) | C15—C16 | 1.383 (5) |
F9—C14 | 1.335 (4) | C16—C18 | 1.507 (4) |
O3—Cu1—O1 | 173.78 (10) | F3—C7—C8 | 120.2 (6) |
O3—Cu1—N2 | 84.24 (9) | F3—C7—C6 | 118.7 (6) |
O1—Cu1—N2 | 95.41 (9) | C8—C7—C6 | 121.1 (5) |
O3—Cu1—N1 | 89.80 (9) | F4—C8—C7 | 121.0 (5) |
O1—Cu1—N1 | 90.19 (9) | F4—C8—C9 | 120.1 (6) |
N2—Cu1—N1 | 173.36 (10) | C7—C8—C9 | 118.9 (5) |
O3—Cu1—O2i | 92.26 (9) | F5—C9—C10 | 119.3 (4) |
O1—Cu1—O2i | 93.96 (9) | F5—C9—C8 | 118.9 (5) |
N2—Cu1—O2i | 95.23 (9) | C10—C9—C8 | 121.8 (5) |
N1—Cu1—O2i | 87.90 (9) | C9—C10—C5 | 117.3 (4) |
C3—N1—C4 | 116.7 (2) | C9—C10—C17 | 121.1 (3) |
C3—N1—Cu1 | 123.6 (2) | C5—C10—C17 | 121.6 (3) |
C4—N1—Cu1 | 119.6 (2) | F6—C11—C12 | 116.7 (3) |
C1—N2—C2 | 117.5 (3) | F6—C11—C16 | 120.2 (3) |
C1—N2—Cu1 | 119.7 (2) | C12—C11—C16 | 123.1 (3) |
C2—N2—Cu1 | 122.3 (2) | F7—C12—C13 | 120.4 (4) |
C18—O1—Cu1 | 121.7 (2) | F7—C12—C11 | 120.7 (4) |
C18—O2—Cu1ii | 136.3 (2) | C13—C12—C11 | 118.9 (4) |
C17—O3—Cu1 | 114.6 (2) | F8—C13—C12 | 119.9 (4) |
N2—C1—C2iii | 121.1 (3) | F8—C13—C14 | 119.8 (4) |
N2—C1—H1 | 119.5 | C12—C13—C14 | 120.3 (4) |
C2iii—C1—H1 | 119.5 | F9—C14—C13 | 120.2 (4) |
N2—C2—C1iii | 121.4 (3) | F9—C14—C15 | 120.3 (4) |
N2—C2—H2 | 119.3 | C13—C14—C15 | 119.6 (4) |
C1iii—C2—H2 | 119.3 | F10—C15—C14 | 117.3 (3) |
N1—C3—C4iv | 121.8 (3) | F10—C15—C16 | 119.9 (3) |
N1—C3—H3 | 119.1 | C14—C15—C16 | 122.8 (4) |
C4iv—C3—H3 | 119.1 | C15—C16—C11 | 115.3 (3) |
N1—C4—C3iv | 121.5 (3) | C15—C16—C18 | 121.7 (3) |
N1—C4—H4 | 119.3 | C11—C16—C18 | 122.8 (3) |
C3iv—C4—H4 | 119.3 | O4—C17—O3 | 125.6 (3) |
F1—C5—C6 | 119.5 (4) | O4—C17—C10 | 120.9 (3) |
F1—C5—C10 | 118.9 (4) | O3—C17—C10 | 113.5 (3) |
C6—C5—C10 | 121.6 (4) | O2—C18—O1 | 124.9 (3) |
F2—C6—C7 | 120.7 (5) | O2—C18—C16 | 119.5 (3) |
F2—C6—C5 | 120.1 (5) | O1—C18—C16 | 115.6 (3) |
C7—C6—C5 | 119.3 (5) | ||
O3—Cu1—N1—C3 | 156.8 (3) | F5—C9—C10—C17 | 2.6 (7) |
O1—Cu1—N1—C3 | −17.0 (3) | C8—C9—C10—C17 | −177.7 (5) |
O2i—Cu1—N1—C3 | −110.9 (3) | F1—C5—C10—C9 | 179.9 (4) |
O3—Cu1—N1—C4 | −21.9 (2) | C6—C5—C10—C9 | −1.3 (6) |
O1—Cu1—N1—C4 | 164.3 (2) | F1—C5—C10—C17 | −2.2 (6) |
O2i—Cu1—N1—C4 | 70.4 (2) | C6—C5—C10—C17 | 176.5 (4) |
O3—Cu1—N2—C1 | −68.1 (2) | F6—C11—C12—F7 | −1.4 (6) |
O1—Cu1—N2—C1 | 105.6 (2) | C16—C11—C12—F7 | 179.9 (4) |
O2i—Cu1—N2—C1 | −159.9 (2) | F6—C11—C12—C13 | 178.1 (4) |
O3—Cu1—N2—C2 | 104.0 (2) | C16—C11—C12—C13 | −0.6 (7) |
O1—Cu1—N2—C2 | −82.3 (2) | F7—C12—C13—F8 | 0.5 (7) |
O2i—Cu1—N2—C2 | 12.2 (2) | C11—C12—C13—F8 | −179.0 (4) |
N2—Cu1—O1—C18 | −46.8 (2) | F7—C12—C13—C14 | −179.9 (5) |
N1—Cu1—O1—C18 | 129.6 (2) | C11—C12—C13—C14 | 0.7 (7) |
O2i—Cu1—O1—C18 | −142.5 (2) | F8—C13—C14—F9 | −0.6 (7) |
N2—Cu1—O3—C17 | 100.1 (2) | C12—C13—C14—F9 | 179.8 (4) |
N1—Cu1—O3—C17 | −77.0 (2) | F8—C13—C14—C15 | 179.6 (4) |
O2i—Cu1—O3—C17 | −164.9 (2) | C12—C13—C14—C15 | −0.1 (8) |
C2—N2—C1—C2iii | 0.3 (5) | F9—C14—C15—F10 | −1.4 (7) |
Cu1—N2—C1—C2iii | 172.7 (2) | C13—C14—C15—F10 | 178.5 (4) |
C1—N2—C2—C1iii | −0.3 (5) | F9—C14—C15—C16 | 179.6 (4) |
Cu1—N2—C2—C1iii | −172.5 (2) | C13—C14—C15—C16 | −0.6 (7) |
C4—N1—C3—C4iv | 0.6 (5) | F10—C15—C16—C11 | −178.4 (4) |
Cu1—N1—C3—C4iv | −178.2 (2) | C14—C15—C16—C11 | 0.7 (6) |
C3—N1—C4—C3iv | −0.6 (5) | F10—C15—C16—C18 | 4.9 (6) |
Cu1—N1—C4—C3iv | 178.2 (3) | C14—C15—C16—C18 | −176.0 (4) |
F1—C5—C6—F2 | 0.0 (7) | F6—C11—C16—C15 | −178.7 (4) |
C10—C5—C6—F2 | −178.8 (4) | C12—C11—C16—C15 | −0.1 (6) |
F1—C5—C6—C7 | −180.0 (5) | F6—C11—C16—C18 | −2.0 (6) |
C10—C5—C6—C7 | 1.3 (8) | C12—C11—C16—C18 | 176.6 (4) |
F2—C6—C7—F3 | −0.1 (9) | Cu1—O3—C17—O4 | −0.2 (5) |
C5—C6—C7—F3 | 179.8 (5) | Cu1—O3—C17—C10 | −179.4 (2) |
F2—C6—C7—C8 | 180.0 (6) | C9—C10—C17—O4 | −98.9 (5) |
C5—C6—C7—C8 | −0.1 (10) | C5—C10—C17—O4 | 83.3 (5) |
F3—C7—C8—F4 | −0.3 (11) | C9—C10—C17—O3 | 80.4 (5) |
C6—C7—C8—F4 | 179.6 (7) | C5—C10—C17—O3 | −97.4 (4) |
F3—C7—C8—C9 | 179.1 (6) | Cu1ii—O2—C18—O1 | −121.5 (3) |
C6—C7—C8—C9 | −1.0 (11) | Cu1ii—O2—C18—C16 | 58.9 (4) |
F4—C8—C9—F5 | 0.1 (10) | Cu1—O1—C18—O2 | −2.8 (4) |
C7—C8—C9—F5 | −179.4 (6) | Cu1—O1—C18—C16 | 176.8 (2) |
F4—C8—C9—C10 | −179.7 (6) | C15—C16—C18—O2 | 37.4 (5) |
C7—C8—C9—C10 | 0.9 (10) | C11—C16—C18—O2 | −139.0 (3) |
F5—C9—C10—C5 | −179.5 (5) | C15—C16—C18—O1 | −142.2 (3) |
C8—C9—C10—C5 | 0.2 (8) | C11—C16—C18—O1 | 41.3 (5) |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) −x+1, −y+1, −z+1; (iv) −x, −y+2, −z+1. |
[Cu(C7F5O2)2(C4H4N2)] | Z = 2 |
Mr = 565.77 | F(000) = 554 |
Triclinic, P1 | Dx = 1.945 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 4.8100 (12) Å | Cell parameters from 5716 reflections |
b = 13.095 (3) Å | θ = 2.7–27.3° |
c = 15.366 (4) Å | µ = 1.26 mm−1 |
α = 89.784 (3)° | T = 293 K |
β = 89.654 (3)° | Block, blue |
γ = 86.678 (3)° | 0.16 × 0.15 × 0.10 mm |
V = 966.2 (4) Å3 |
Bruker SMART 1000 diffractometer | 3380 independent reflections |
Radiation source: fine-focus sealed tube | 3041 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
ω scans | θmax = 25.0°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −5→5 |
Tmin = 0.818, Tmax = 0.882 | k = −15→15 |
9152 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0703P)2 + 0.4449P] where P = (Fo2 + 2Fc2)/3 |
3380 reflections | (Δ/σ)max < 0.001 |
316 parameters | Δρmax = 0.93 e Å−3 |
0 restraints | Δρmin = −0.52 e Å−3 |
[Cu(C7F5O2)2(C4H4N2)] | γ = 86.678 (3)° |
Mr = 565.77 | V = 966.2 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 4.8100 (12) Å | Mo Kα radiation |
b = 13.095 (3) Å | µ = 1.26 mm−1 |
c = 15.366 (4) Å | T = 293 K |
α = 89.784 (3)° | 0.16 × 0.15 × 0.10 mm |
β = 89.654 (3)° |
Bruker SMART 1000 diffractometer | 3380 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 3041 reflections with I > 2σ(I) |
Tmin = 0.818, Tmax = 0.882 | Rint = 0.023 |
9152 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.93 e Å−3 |
3380 reflections | Δρmin = −0.52 e Å−3 |
316 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.76146 (6) | 0.24937 (2) | 0.480927 (19) | 0.02640 (13) | |
N1 | 0.9135 (4) | 0.10153 (15) | 0.48708 (14) | 0.0280 (4) | |
N3 | 0.6064 (4) | 0.39922 (16) | 0.48980 (14) | 0.0294 (5) | |
O1 | 0.9517 (4) | 0.28140 (14) | 0.37218 (12) | 0.0343 (4) | |
O2 | 0.6067 (4) | 0.22117 (13) | 0.59549 (12) | 0.0328 (4) | |
O3 | 1.3648 (4) | 0.21413 (15) | 0.41465 (12) | 0.0362 (4) | |
O4 | 0.9592 (5) | 0.2988 (2) | 0.65229 (16) | 0.0690 (7) | |
F12 | 1.5949 (5) | 0.12473 (17) | 0.26502 (14) | 0.0769 (7) | |
F13 | 1.8272 (6) | 0.1743 (2) | 0.11415 (17) | 0.1100 (11) | |
F15 | 1.6783 (6) | 0.3533 (2) | 0.03520 (15) | 0.1006 (9) | |
F16 | 1.0714 (5) | 0.44149 (16) | 0.26396 (15) | 0.0789 (7) | |
F22 | 0.8340 (8) | 0.0635 (2) | 0.7433 (2) | 0.1198 (12) | |
F23 | 0.6016 (13) | 0.0180 (3) | 0.8982 (2) | 0.181 (2) | |
F24 | 0.2660 (10) | 0.1624 (4) | 0.9812 (2) | 0.1598 (17) | |
F25 | 0.1706 (7) | 0.3494 (3) | 0.9108 (2) | 0.1348 (14) | |
F26 | 0.4102 (5) | 0.39505 (19) | 0.75688 (16) | 0.0785 (7) | |
F33 | 1.2945 (7) | 0.4860 (2) | 0.11012 (16) | 0.0964 (9) | |
C1 | 1.2096 (5) | 0.25614 (18) | 0.36011 (16) | 0.0281 (5) | |
C2 | 0.7466 (6) | 0.2538 (2) | 0.65890 (18) | 0.0367 (6) | |
C11 | 1.3232 (5) | 0.2810 (2) | 0.27162 (17) | 0.0347 (6) | |
C12 | 1.5185 (7) | 0.2159 (3) | 0.2296 (2) | 0.0481 (8) | |
C13 | 1.6365 (8) | 0.2393 (3) | 0.1515 (2) | 0.0662 (11) | |
C14 | 1.5622 (8) | 0.3299 (3) | 0.1109 (2) | 0.0656 (10) | |
C15 | 1.3685 (8) | 0.3973 (3) | 0.1493 (2) | 0.0600 (9) | |
C16 | 1.2537 (7) | 0.3718 (2) | 0.2281 (2) | 0.0480 (7) | |
C21 | 0.6259 (6) | 0.2307 (3) | 0.74670 (19) | 0.0455 (7) | |
C22 | 0.6701 (11) | 0.1356 (3) | 0.7846 (3) | 0.0763 (12) | |
C23 | 0.5503 (15) | 0.1117 (4) | 0.8634 (3) | 0.1042 (19) | |
C24 | 0.3843 (13) | 0.1847 (5) | 0.9050 (3) | 0.0980 (17) | |
C25 | 0.3356 (9) | 0.2789 (5) | 0.8694 (3) | 0.0838 (14) | |
C26 | 0.4581 (7) | 0.3023 (3) | 0.7914 (2) | 0.0562 (9) | |
C31 | 1.1143 (5) | 0.07479 (19) | 0.54401 (18) | 0.0319 (6) | |
H31 | 1.1980 | 0.1253 | 0.5753 | 0.038* | |
C32 | 0.8006 (5) | 0.02693 (18) | 0.44288 (17) | 0.0309 (5) | |
H32 | 0.6620 | 0.0436 | 0.4025 | 0.037* | |
C33 | 0.7103 (5) | 0.47648 (19) | 0.44555 (18) | 0.0330 (6) | |
H33 | 0.8570 | 0.4626 | 0.4069 | 0.040* | |
C34 | 0.3939 (5) | 0.42339 (19) | 0.54442 (18) | 0.0337 (6) | |
H34 | 0.3150 | 0.3718 | 0.5762 | 0.040* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02404 (19) | 0.02072 (18) | 0.0339 (2) | 0.00282 (11) | 0.00640 (12) | 0.00369 (12) |
N1 | 0.0248 (10) | 0.0215 (10) | 0.0372 (11) | 0.0013 (8) | 0.0071 (8) | 0.0033 (8) |
N3 | 0.0267 (11) | 0.0233 (10) | 0.0375 (12) | 0.0031 (8) | 0.0061 (9) | 0.0031 (9) |
O1 | 0.0282 (9) | 0.0327 (10) | 0.0407 (10) | 0.0082 (7) | 0.0102 (8) | 0.0081 (8) |
O2 | 0.0349 (10) | 0.0282 (9) | 0.0349 (10) | 0.0010 (7) | 0.0056 (8) | 0.0039 (7) |
O3 | 0.0259 (9) | 0.0476 (11) | 0.0354 (10) | −0.0043 (8) | 0.0000 (8) | 0.0087 (8) |
O4 | 0.0495 (14) | 0.106 (2) | 0.0551 (14) | −0.0358 (14) | 0.0057 (11) | 0.0006 (14) |
F12 | 0.0993 (17) | 0.0712 (14) | 0.0538 (12) | 0.0467 (13) | 0.0241 (11) | 0.0082 (10) |
F13 | 0.110 (2) | 0.142 (2) | 0.0706 (16) | 0.0531 (19) | 0.0538 (16) | 0.0043 (16) |
F15 | 0.110 (2) | 0.141 (2) | 0.0493 (13) | −0.0054 (18) | 0.0414 (13) | 0.0246 (14) |
F16 | 0.1061 (18) | 0.0561 (13) | 0.0695 (14) | 0.0340 (12) | 0.0404 (13) | 0.0255 (11) |
F22 | 0.197 (4) | 0.0720 (17) | 0.0840 (18) | 0.040 (2) | 0.046 (2) | 0.0231 (14) |
F23 | 0.323 (7) | 0.120 (3) | 0.098 (2) | −0.003 (3) | 0.052 (3) | 0.062 (2) |
F24 | 0.193 (4) | 0.227 (5) | 0.0626 (18) | −0.040 (3) | 0.064 (2) | 0.024 (2) |
F25 | 0.115 (3) | 0.205 (4) | 0.0781 (19) | 0.045 (2) | 0.0480 (18) | −0.024 (2) |
F26 | 0.0847 (16) | 0.0793 (16) | 0.0682 (14) | 0.0238 (13) | 0.0054 (12) | −0.0094 (12) |
F33 | 0.140 (2) | 0.0804 (16) | 0.0666 (15) | 0.0073 (16) | 0.0217 (15) | 0.0412 (13) |
C1 | 0.0252 (12) | 0.0261 (12) | 0.0329 (13) | −0.0009 (9) | 0.0041 (10) | −0.0010 (10) |
C2 | 0.0335 (14) | 0.0401 (15) | 0.0359 (14) | 0.0010 (11) | 0.0040 (12) | 0.0011 (12) |
C11 | 0.0278 (13) | 0.0449 (15) | 0.0311 (13) | 0.0000 (11) | 0.0064 (11) | 0.0031 (11) |
C12 | 0.0447 (17) | 0.060 (2) | 0.0377 (16) | 0.0139 (14) | 0.0086 (13) | 0.0039 (14) |
C13 | 0.056 (2) | 0.095 (3) | 0.0446 (19) | 0.020 (2) | 0.0213 (16) | −0.0012 (19) |
C14 | 0.064 (2) | 0.096 (3) | 0.0366 (17) | −0.008 (2) | 0.0185 (16) | 0.0100 (18) |
C15 | 0.069 (2) | 0.066 (2) | 0.0450 (18) | −0.0034 (18) | 0.0100 (17) | 0.0196 (16) |
C16 | 0.0496 (18) | 0.0508 (18) | 0.0425 (17) | 0.0041 (14) | 0.0122 (14) | 0.0076 (14) |
C21 | 0.0424 (16) | 0.0602 (19) | 0.0345 (15) | −0.0089 (14) | 0.0040 (12) | 0.0008 (14) |
C22 | 0.109 (4) | 0.070 (3) | 0.048 (2) | 0.002 (2) | 0.020 (2) | 0.0088 (19) |
C23 | 0.161 (6) | 0.092 (4) | 0.061 (3) | −0.017 (4) | 0.025 (3) | 0.027 (3) |
C24 | 0.111 (4) | 0.139 (5) | 0.046 (2) | −0.025 (4) | 0.028 (2) | 0.007 (3) |
C25 | 0.066 (3) | 0.135 (4) | 0.049 (2) | 0.007 (3) | 0.0191 (19) | −0.018 (3) |
C26 | 0.0479 (19) | 0.078 (2) | 0.0424 (17) | 0.0019 (17) | 0.0028 (14) | −0.0050 (17) |
C31 | 0.0287 (13) | 0.0267 (13) | 0.0403 (14) | −0.0003 (10) | −0.0010 (11) | 0.0006 (11) |
C32 | 0.0275 (13) | 0.0289 (13) | 0.0358 (14) | 0.0019 (10) | 0.0004 (10) | 0.0032 (10) |
C33 | 0.0285 (13) | 0.0301 (13) | 0.0398 (14) | 0.0028 (10) | 0.0129 (11) | 0.0050 (11) |
C34 | 0.0314 (13) | 0.0266 (13) | 0.0424 (15) | 0.0015 (10) | 0.0126 (11) | 0.0068 (11) |
Cu1—O2 | 1.9495 (18) | F33—C15 | 1.337 (4) |
Cu1—O1 | 1.9561 (18) | C1—C11 | 1.504 (4) |
Cu1—N1 | 2.032 (2) | C2—C21 | 1.502 (4) |
Cu1—N3 | 2.063 (2) | C11—C16 | 1.387 (4) |
Cu1—O3i | 2.2406 (18) | C11—C12 | 1.389 (4) |
N1—C32 | 1.335 (3) | C12—C13 | 1.366 (5) |
N1—C31 | 1.338 (3) | C13—C14 | 1.368 (6) |
N3—C33 | 1.336 (3) | C14—C15 | 1.377 (5) |
N3—C34 | 1.343 (3) | C15—C16 | 1.376 (5) |
O1—C1 | 1.278 (3) | C21—C22 | 1.379 (5) |
O2—C2 | 1.276 (3) | C21—C26 | 1.383 (5) |
O3—C1 | 1.232 (3) | C22—C23 | 1.381 (6) |
O3—Cu1ii | 2.2405 (18) | C23—C24 | 1.368 (8) |
O4—C2 | 1.213 (4) | C24—C25 | 1.355 (7) |
F12—C12 | 1.343 (4) | C25—C26 | 1.374 (6) |
F13—C13 | 1.342 (4) | C31—C32iii | 1.385 (3) |
F15—C14 | 1.330 (4) | C31—H31 | 0.9300 |
F16—C16 | 1.346 (4) | C32—C31iii | 1.385 (3) |
F22—C22 | 1.351 (5) | C32—H32 | 0.9300 |
F23—C23 | 1.347 (6) | C33—C34iv | 1.385 (4) |
F24—C24 | 1.338 (5) | C33—H33 | 0.9300 |
F25—C25 | 1.342 (5) | C34—C33iv | 1.385 (4) |
F26—C26 | 1.332 (4) | C34—H34 | 0.9300 |
O2—Cu1—O1 | 174.06 (7) | F33—C15—C16 | 120.9 (3) |
O2—Cu1—N1 | 84.22 (8) | F33—C15—C14 | 120.1 (3) |
O1—Cu1—N1 | 95.49 (8) | C16—C15—C14 | 119.0 (3) |
O2—Cu1—N3 | 89.91 (8) | F16—C16—C15 | 116.6 (3) |
O1—Cu1—N3 | 90.08 (8) | F16—C16—C11 | 120.0 (3) |
N1—Cu1—N3 | 173.54 (8) | C15—C16—C11 | 123.3 (3) |
O2—Cu1—O3i | 92.09 (7) | C22—C21—C26 | 117.3 (3) |
O1—Cu1—O3i | 93.85 (8) | C22—C21—C2 | 121.1 (3) |
N1—Cu1—O3i | 95.07 (8) | C26—C21—C2 | 121.6 (3) |
N3—Cu1—O3i | 87.80 (8) | F22—C22—C21 | 119.2 (3) |
C32—N1—C31 | 117.7 (2) | F22—C22—C23 | 119.0 (4) |
C32—N1—Cu1 | 122.34 (17) | C21—C22—C23 | 121.8 (4) |
C31—N1—Cu1 | 119.58 (17) | F23—C23—C24 | 121.4 (5) |
C33—N3—C34 | 116.6 (2) | F23—C23—C22 | 119.6 (5) |
C33—N3—Cu1 | 123.75 (17) | C24—C23—C22 | 118.9 (5) |
C34—N3—Cu1 | 119.63 (17) | F24—C24—C25 | 119.7 (5) |
C1—O1—Cu1 | 121.54 (16) | F24—C24—C23 | 119.5 (5) |
C2—O2—Cu1 | 114.41 (17) | C25—C24—C23 | 120.8 (4) |
C1—O3—Cu1ii | 136.31 (17) | F25—C25—C24 | 120.1 (4) |
O3—C1—O1 | 125.0 (2) | F25—C25—C26 | 120.1 (5) |
O3—C1—C11 | 119.5 (2) | C24—C25—C26 | 119.9 (4) |
O1—C1—C11 | 115.4 (2) | F26—C26—C25 | 119.6 (4) |
O4—C2—O2 | 125.4 (3) | F26—C26—C21 | 119.0 (3) |
O4—C2—C21 | 120.9 (3) | C25—C26—C21 | 121.3 (4) |
O2—C2—C21 | 113.7 (2) | N1—C31—C32iii | 121.0 (2) |
C16—C11—C12 | 115.1 (3) | N1—C31—H31 | 119.5 |
C16—C11—C1 | 123.1 (2) | C32iii—C31—H31 | 119.5 |
C12—C11—C1 | 121.7 (2) | N1—C32—C31iii | 121.3 (2) |
F12—C12—C13 | 117.2 (3) | N1—C32—H32 | 119.3 |
F12—C12—C11 | 119.9 (3) | C31iii—C32—H32 | 119.3 |
C13—C12—C11 | 122.9 (3) | N3—C33—C34iv | 122.0 (2) |
F13—C13—C12 | 120.5 (4) | N3—C33—H33 | 119.0 |
F13—C13—C14 | 119.5 (3) | C34iv—C33—H33 | 119.0 |
C12—C13—C14 | 120.0 (3) | N3—C34—C33iv | 121.5 (2) |
F15—C14—C13 | 120.2 (4) | N3—C34—H34 | 119.3 |
F15—C14—C15 | 120.1 (4) | C33iv—C34—H34 | 119.3 |
C13—C14—C15 | 119.7 (3) | ||
O2—Cu1—N1—C32 | 103.9 (2) | F33—C15—C16—F16 | −1.7 (6) |
O1—Cu1—N1—C32 | −82.1 (2) | C14—C15—C16—F16 | 178.2 (4) |
O3i—Cu1—N1—C32 | 12.3 (2) | F33—C15—C16—C11 | −179.9 (3) |
O2—Cu1—N1—C31 | −68.7 (2) | C14—C15—C16—C11 | 0.0 (6) |
O1—Cu1—N1—C31 | 105.3 (2) | C12—C11—C16—F16 | −178.4 (3) |
O3i—Cu1—N1—C31 | −160.33 (19) | C1—C11—C16—F16 | −1.7 (5) |
O2—Cu1—N3—C33 | 156.3 (2) | C12—C11—C16—C15 | −0.3 (5) |
O1—Cu1—N3—C33 | −17.7 (2) | C1—C11—C16—C15 | 176.4 (3) |
O3i—Cu1—N3—C33 | −111.6 (2) | O4—C2—C21—C22 | −99.1 (4) |
O2—Cu1—N3—C34 | −21.7 (2) | O2—C2—C21—C22 | 80.4 (4) |
O1—Cu1—N3—C34 | 164.2 (2) | O4—C2—C21—C26 | 83.3 (4) |
O3i—Cu1—N3—C34 | 70.4 (2) | O2—C2—C21—C26 | −97.3 (3) |
N1—Cu1—O1—C1 | −46.8 (2) | C26—C21—C22—F22 | −179.6 (4) |
N3—Cu1—O1—C1 | 129.9 (2) | C2—C21—C22—F22 | 2.6 (6) |
O3i—Cu1—O1—C1 | −142.26 (19) | C26—C21—C22—C23 | 0.7 (7) |
N1—Cu1—O2—C2 | 100.05 (19) | C2—C21—C22—C23 | −177.0 (5) |
N3—Cu1—O2—C2 | −77.26 (18) | F22—C22—C23—F23 | 0.9 (9) |
O3i—Cu1—O2—C2 | −165.06 (18) | C21—C22—C23—F23 | −179.4 (5) |
Cu1ii—O3—C1—O1 | −121.2 (2) | F22—C22—C23—C24 | −179.9 (5) |
Cu1ii—O3—C1—C11 | 58.9 (3) | C21—C22—C23—C24 | −0.3 (9) |
Cu1—O1—C1—O3 | −3.0 (3) | F23—C23—C24—F24 | −1.1 (10) |
Cu1—O1—C1—C11 | 176.94 (16) | C22—C23—C24—F24 | 179.7 (6) |
Cu1—O2—C2—O4 | −0.1 (4) | F23—C23—C24—C25 | 179.7 (6) |
Cu1—O2—C2—C21 | −179.54 (19) | C22—C23—C24—C25 | 0.5 (9) |
O3—C1—C11—C16 | −139.1 (3) | F24—C24—C25—F25 | 0.3 (8) |
O1—C1—C11—C16 | 40.9 (4) | C23—C24—C25—F25 | 179.5 (5) |
O3—C1—C11—C12 | 37.4 (4) | F24—C24—C25—C26 | 179.6 (5) |
O1—C1—C11—C12 | −142.5 (3) | C23—C24—C25—C26 | −1.2 (8) |
C16—C11—C12—F12 | −178.2 (3) | F25—C25—C26—F26 | −0.6 (6) |
C1—C11—C12—F12 | 5.0 (5) | C24—C25—C26—F26 | −179.8 (4) |
C16—C11—C12—C13 | 0.5 (5) | F25—C25—C26—C21 | −179.0 (4) |
C1—C11—C12—C13 | −176.2 (3) | C24—C25—C26—C21 | 1.7 (7) |
F12—C12—C13—F13 | −2.1 (6) | C22—C21—C26—F26 | −179.9 (3) |
C11—C12—C13—F13 | 179.1 (4) | C2—C21—C26—F26 | −2.2 (5) |
F12—C12—C13—C14 | 178.4 (4) | C22—C21—C26—C25 | −1.5 (5) |
C11—C12—C13—C14 | −0.4 (6) | C2—C21—C26—C25 | 176.3 (3) |
F13—C13—C14—F15 | −0.1 (7) | C32—N1—C31—C32iii | −0.7 (4) |
C12—C13—C14—F15 | 179.5 (4) | Cu1—N1—C31—C32iii | 172.31 (19) |
F13—C13—C14—C15 | −179.4 (4) | C31—N1—C32—C31iii | 0.7 (4) |
C12—C13—C14—C15 | 0.1 (6) | Cu1—N1—C32—C31iii | −172.11 (19) |
F15—C14—C15—F33 | 0.6 (6) | C34—N3—C33—C34iv | 0.3 (4) |
C13—C14—C15—F33 | −180.0 (4) | Cu1—N3—C33—C34iv | −177.8 (2) |
F15—C14—C15—C16 | −179.3 (4) | C33—N3—C34—C33iv | −0.3 (4) |
C13—C14—C15—C16 | 0.1 (6) | Cu1—N3—C34—C33iv | 177.8 (2) |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) −x+2, −y, −z+1; (iv) −x+1, −y+1, −z+1. |
Experimental details
(I) | (II) | |
Crystal data | ||
Chemical formula | [Cu(C7F5O2)2(C4H4N2)] | [Cu(C7F5O2)2(C4H4N2)] |
Mr | 565.77 | 565.77 |
Crystal system, space group | Triclinic, P1 | Triclinic, P1 |
Temperature (K) | 293 | 293 |
a, b, c (Å) | 4.8046 (9), 13.072 (2), 15.357 (3) | 4.8100 (12), 13.095 (3), 15.366 (4) |
α, β, γ (°) | 89.785 (2), 89.660 (2), 86.666 (2) | 89.784 (3), 89.654 (3), 86.678 (3) |
V (Å3) | 962.9 (3) | 966.2 (4) |
Z | 2 | 2 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 1.26 | 1.26 |
Crystal size (mm) | 0.10 × 0.10 × 0.08 | 0.16 × 0.15 × 0.10 |
Data collection | ||
Diffractometer | Bruker SMART 1000 diffractometer | Bruker SMART 1000 diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.881, 0.904 | 0.818, 0.882 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9285, 3385, 2753 | 9152, 3380, 3041 |
Rint | 0.029 | 0.023 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.100, 1.09 | 0.037, 0.102, 1.04 |
No. of reflections | 3385 | 3380 |
No. of parameters | 316 | 316 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.34 | 0.93, −0.52 |
Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).
Cu1—O3 | 1.947 (2) | Cu1—N1 | 2.063 (2) |
Cu1—O1 | 1.954 (2) | Cu1—O2i | 2.239 (2) |
Cu1—N2 | 2.027 (2) | ||
O3—Cu1—O1 | 173.78 (10) | O3—Cu1—N1 | 89.80 (9) |
O3—Cu1—N2 | 84.24 (9) | O1—Cu1—N1 | 90.19 (9) |
O1—Cu1—N2 | 95.41 (9) | N2—Cu1—N1 | 173.36 (10) |
Symmetry code: (i) x−1, y, z. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register