Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Two new mononuclear coordination compounds, bis{4-[(hy­droxyimino)methyl]pyridinium} di­aqua­bis­(pyridine-2,5-di­car­boxyl­ato-κ2N,O2)zincate(II), (C6H7N2O)2[Zn(C7H3NO4)2(H2O)2], (1), and (pyridine-2,6-dicarboxylato-κ3O2,N,O6)bis[N-(pyridin-4-ylmethylidene-κN)hydroxylamine]zinc(II), [Zn(C7H3NO4)(C6H6N2O)2], (2), have been synthesized and characterized by single-crystal X-ray diffractometry. The centrosymmetric ZnII cation in (1) is octa­hedrally coordinated by two chelating pyridine-2,5-di­carboxyl­ate ligands and by two water mol­ecules in a distorted octa­hedral geometry. In (2), the ZnII cation is coordinated by a tridentate pyridine-2,6-di­­carboxyl­ate dianion and by two N-(pyridin-4-ylmethylidene)hydroxylamine mol­ecules in a distorted C2-symmetric trigonal bipyramidal coordination geometry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614023109/dt3027sup1.cif
Contains datablocks cl_2372, cl_2371, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614023109/dt3027cl_2372sup2.hkl
Contains datablock cl_2372

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614023109/dt3027cl_2371sup3.hkl
Contains datablock cl_2371

CCDC references: 1030174; 1030175

Computing details top

For both compounds, data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(cl_2372) Bis{4-[(hydroxyimino)methyl]pyridinium} diaquabis[pyridine-2,5-dicarboxylato-κ2N,O2]zincate(II) top
Crystal data top
(C6H7N2O)2[Zn(C7H3NO4)2(H2O)2]F(000) = 696
Mr = 677.88Dx = 1.677 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2019 reflections
a = 7.2649 (3) Åθ = 3.0–29.1°
b = 10.6796 (3) ŵ = 1.00 mm1
c = 17.4288 (5) ÅT = 293 K
β = 96.823 (3)°Prism, colourless
V = 1342.66 (8) Å30.40 × 0.30 × 0.12 mm
Z = 2
Data collection top
Agilent Xcalibur
diffractometer with Eos detector
2009 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.027
Graphite monochromatorθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2011)
h = 68
Tmin = 0.692, Tmax = 0.890k = 812
4758 measured reflectionsl = 1820
2375 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.046P)2 + 0.3978P]
where P = (Fo2 + 2Fc2)/3
2375 reflections(Δ/σ)max < 0.001
213 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.32 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00001.00000.50000.03213 (16)
O10.1480 (2)0.87462 (16)0.57416 (9)0.0345 (4)
O20.1997 (2)0.67034 (17)0.59075 (9)0.0364 (4)
O30.2347 (3)0.7994 (2)0.20303 (10)0.0565 (6)
O40.1572 (3)0.59923 (19)0.20201 (9)0.0463 (5)
O50.6928 (3)0.62272 (18)0.56537 (9)0.0437 (5)
H50.71390.66770.60350.066*
N10.0158 (2)0.83978 (18)0.42997 (10)0.0244 (4)
N20.3206 (3)0.7544 (2)0.23171 (11)0.0329 (5)
H20.27250.78080.18720.039*
N30.6065 (2)0.6915 (2)0.50495 (11)0.0304 (5)
C10.1410 (3)0.7632 (2)0.55140 (12)0.0258 (5)
C20.0578 (3)0.7386 (2)0.46863 (12)0.0232 (5)
C30.0613 (3)0.6228 (2)0.43506 (12)0.0268 (5)
H30.11110.55430.46330.032*
C40.0109 (3)0.6094 (2)0.35803 (12)0.0271 (5)
H40.00970.53170.33400.032*
C50.0846 (3)0.7126 (2)0.31730 (12)0.0241 (5)
C60.0842 (3)0.8259 (2)0.35599 (12)0.0270 (5)
H60.13410.89560.32910.032*
C70.1647 (3)0.7033 (2)0.23321 (13)0.0292 (5)
C80.3419 (3)0.8343 (3)0.29097 (13)0.0342 (6)
H80.30130.91660.28400.041*
C90.4236 (3)0.7959 (2)0.36235 (13)0.0293 (5)
H90.43970.85190.40350.035*
C100.4817 (3)0.6725 (2)0.37234 (12)0.0256 (5)
C110.4506 (3)0.5914 (3)0.30967 (13)0.0313 (5)
H110.48330.50740.31540.038*
C120.3718 (3)0.6352 (3)0.23970 (14)0.0339 (6)
H120.35380.58130.19750.041*
C130.5728 (3)0.6227 (2)0.44512 (13)0.0297 (5)
H130.60710.53870.44790.036*
O1W0.2524 (3)1.05364 (19)0.44816 (11)0.0375 (4)
H1W0.215 (5)1.076 (4)0.397 (2)0.092 (13)*
H2W0.311 (4)1.107 (3)0.4665 (18)0.053 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0528 (3)0.0210 (2)0.0197 (2)0.00606 (17)0.00757 (17)0.00448 (16)
O10.0539 (10)0.0251 (10)0.0208 (8)0.0039 (8)0.0105 (7)0.0035 (8)
O20.0565 (11)0.0274 (10)0.0217 (8)0.0062 (8)0.0095 (7)0.0013 (8)
O30.0982 (16)0.0419 (13)0.0233 (9)0.0129 (11)0.0183 (10)0.0019 (9)
O40.0782 (13)0.0361 (12)0.0225 (9)0.0041 (10)0.0030 (8)0.0084 (9)
O50.0701 (12)0.0344 (11)0.0216 (9)0.0110 (9)0.0155 (8)0.0009 (8)
N10.0314 (10)0.0244 (11)0.0163 (9)0.0001 (8)0.0011 (7)0.0003 (8)
N20.0363 (11)0.0409 (14)0.0193 (10)0.0015 (9)0.0056 (8)0.0045 (10)
N30.0353 (11)0.0312 (12)0.0231 (10)0.0016 (9)0.0039 (8)0.0023 (9)
C10.0296 (12)0.0283 (14)0.0186 (11)0.0024 (10)0.0009 (9)0.0001 (10)
C20.0262 (11)0.0244 (12)0.0187 (11)0.0003 (9)0.0018 (8)0.0002 (10)
C30.0333 (12)0.0239 (13)0.0224 (12)0.0024 (10)0.0005 (9)0.0021 (10)
C40.0332 (12)0.0224 (13)0.0253 (12)0.0011 (10)0.0023 (9)0.0038 (10)
C50.0273 (11)0.0262 (13)0.0184 (11)0.0031 (9)0.0012 (8)0.0022 (10)
C60.0354 (12)0.0238 (13)0.0203 (11)0.0025 (10)0.0031 (9)0.0014 (10)
C70.0372 (13)0.0311 (15)0.0188 (11)0.0055 (11)0.0009 (9)0.0015 (11)
C80.0413 (14)0.0283 (14)0.0316 (13)0.0012 (11)0.0013 (10)0.0028 (12)
C90.0356 (12)0.0302 (14)0.0210 (11)0.0003 (10)0.0018 (9)0.0023 (11)
C100.0250 (11)0.0301 (13)0.0212 (11)0.0020 (9)0.0009 (9)0.0028 (10)
C110.0389 (13)0.0281 (14)0.0257 (12)0.0019 (10)0.0006 (10)0.0024 (11)
C120.0421 (14)0.0352 (15)0.0228 (12)0.0028 (11)0.0026 (10)0.0021 (11)
C130.0361 (13)0.0281 (13)0.0231 (12)0.0015 (10)0.0037 (9)0.0007 (11)
O1W0.0544 (12)0.0317 (11)0.0250 (10)0.0045 (10)0.0006 (8)0.0001 (9)
Geometric parameters (Å, º) top
Zn1—O1i2.0712 (16)N2—C81.335 (3)
Zn1—O12.0712 (16)N3—C131.276 (3)
Zn1—N12.0969 (19)C1—C21.519 (3)
Zn1—N1i2.0970 (19)C2—C31.371 (3)
Zn1—O1W2.214 (2)C3—C41.389 (3)
Zn1—O1Wi2.214 (2)C4—C51.384 (3)
O1—C11.253 (3)C5—C61.384 (3)
O2—C11.251 (3)C5—C71.515 (3)
O3—C71.235 (3)C8—C91.376 (3)
O4—C71.241 (3)C9—C101.388 (3)
O5—N31.373 (2)C10—C111.391 (3)
N1—C61.334 (3)C10—C131.460 (3)
N1—C21.349 (3)C11—C121.367 (3)
N2—C121.329 (3)
O1i—Zn1—O1180.00 (7)O2—C1—C2117.0 (2)
O1i—Zn1—N1100.13 (7)O1—C1—C2117.5 (2)
O1—Zn1—N179.87 (7)N1—C2—C3122.41 (19)
O1i—Zn1—N1i79.87 (7)N1—C2—C1115.2 (2)
O1—Zn1—N1i100.13 (7)C3—C2—C1122.4 (2)
N1—Zn1—N1i180.000 (1)C2—C3—C4118.8 (2)
O1i—Zn1—O1W88.38 (7)C5—C4—C3119.5 (2)
O1—Zn1—O1W91.62 (7)C4—C5—C6117.9 (2)
N1—Zn1—O1W87.95 (7)C4—C5—C7121.6 (2)
N1i—Zn1—O1W92.05 (7)C6—C5—C7120.5 (2)
O1i—Zn1—O1Wi91.62 (7)N1—C6—C5123.2 (2)
O1—Zn1—O1Wi88.38 (7)O3—C7—O4126.5 (2)
N1—Zn1—O1Wi92.05 (7)O3—C7—C5116.7 (2)
N1i—Zn1—O1Wi87.95 (7)O4—C7—C5116.8 (2)
O1W—Zn1—O1Wi180.0N2—C8—C9120.5 (2)
C1—O1—Zn1114.68 (14)C8—C9—C10119.3 (2)
C6—N1—C2118.3 (2)C9—C10—C11118.3 (2)
C6—N1—Zn1129.93 (16)C9—C10—C13123.7 (2)
C2—N1—Zn1111.81 (13)C11—C10—C13118.0 (2)
C12—N2—C8121.7 (2)C12—C11—C10119.9 (2)
C13—N3—O5110.1 (2)N2—C12—C11120.2 (2)
O2—C1—O1125.5 (2)N3—C13—C10121.6 (2)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O3ii0.821.772.535 (2)156
N2—H2···O2iii0.861.782.635 (2)173
N2—H2···O1iii0.862.653.193 (2)122
O1W—H1W···O4iv0.94 (4)1.74 (4)2.671 (2)173 (4)
O1W—H2W···N3v0.76 (3)2.27 (3)2.988 (3)157 (3)
Symmetry codes: (ii) x+1, y+3/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x, y+1/2, z+1/2; (v) x+1, y+2, z+1.
(cl_2371) (Pyridine-2,6-dicarboxylato-κ3O2,N,O6)bis[N-(pyridin-4-ylmethylidene)hydroxylamine-κN1]zinc(II) top
Crystal data top
[Zn(C7H3NO4)(C6H6N2O)2]F(000) = 968
Mr = 474.73Dx = 1.639 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 1593 reflections
a = 6.7644 (2) Åθ = 3.0–29.0°
b = 18.5124 (5) ŵ = 1.33 mm1
c = 15.3595 (6) ÅT = 293 K
V = 1923.40 (11) Å3Block, colourless
Z = 40.35 × 0.25 × 0.25 mm
Data collection top
Agilent Xcalibur
diffractometer with Eos detector
1693 independent reflections
Radiation source: Enhance (Mo) X-ray Source1390 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 15.9914 pixels mm-1θmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 84
Tmin = 0.654, Tmax = 0.733k = 2212
4548 measured reflectionsl = 1810
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.043P)2 + 0.5499P]
where P = (Fo2 + 2Fc2)/3
1693 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.31494 (2)0.25000.04058 (17)
O10.7094 (3)0.05551 (11)0.06470 (13)0.0628 (6)
H10.82560.06270.07710.094*
O20.2647 (2)0.34129 (10)0.32226 (12)0.0486 (4)
O30.4386 (3)0.43657 (12)0.36843 (14)0.0694 (6)
N10.1395 (3)0.24930 (10)0.16438 (14)0.0402 (5)
N20.6391 (3)0.11239 (12)0.01473 (14)0.0460 (5)
N30.00000.42277 (15)0.25000.0342 (6)
C10.3293 (3)0.26191 (13)0.14281 (17)0.0460 (7)
H1A0.39090.30290.16500.055*
C20.4356 (3)0.21708 (14)0.08958 (17)0.0427 (6)
H20.56520.22870.07500.051*
C30.3506 (3)0.15458 (14)0.05753 (15)0.0386 (6)
C40.1531 (3)0.14219 (14)0.07819 (18)0.0467 (7)
H40.08860.10160.05660.056*
C50.0544 (4)0.19001 (14)0.13039 (19)0.0472 (7)
H50.07780.18110.14300.057*
C60.4585 (3)0.10206 (15)0.00495 (17)0.0450 (6)
H60.39460.06060.01440.054*
C80.1482 (3)0.45774 (13)0.28816 (15)0.0375 (6)
C90.1529 (4)0.53201 (14)0.28938 (18)0.0521 (7)
H90.25630.55670.31600.062*
C100.00000.5690 (2)0.25000.0593 (12)
H100.00000.61920.25000.071*
C70.2989 (3)0.40795 (15)0.32989 (16)0.0441 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0308 (2)0.0331 (2)0.0579 (3)0.0000.00167 (17)0.000
O10.0392 (10)0.0750 (13)0.0743 (13)0.0033 (10)0.0219 (10)0.0189 (12)
O20.0320 (9)0.0525 (10)0.0613 (11)0.0080 (8)0.0096 (8)0.0047 (10)
O30.0421 (10)0.0892 (15)0.0768 (15)0.0133 (11)0.0287 (11)0.0009 (13)
N10.0293 (10)0.0373 (10)0.0538 (13)0.0025 (9)0.0040 (9)0.0003 (10)
N20.0371 (11)0.0571 (13)0.0437 (12)0.0022 (10)0.0085 (9)0.0001 (11)
N30.0259 (14)0.0354 (14)0.0412 (16)0.0000.0069 (12)0.000
C10.0356 (13)0.0400 (13)0.0623 (17)0.0079 (11)0.0039 (12)0.0012 (13)
C20.0277 (11)0.0482 (14)0.0523 (16)0.0050 (12)0.0045 (11)0.0055 (14)
C30.0308 (12)0.0470 (14)0.0381 (13)0.0008 (11)0.0003 (10)0.0055 (12)
C40.0338 (13)0.0473 (15)0.0589 (17)0.0081 (12)0.0032 (12)0.0108 (14)
C50.0270 (11)0.0517 (15)0.0630 (18)0.0061 (12)0.0066 (12)0.0056 (14)
C60.0350 (13)0.0537 (15)0.0462 (15)0.0044 (12)0.0035 (11)0.0047 (14)
C80.0320 (12)0.0443 (14)0.0361 (13)0.0065 (11)0.0039 (11)0.0008 (12)
C90.0617 (17)0.0460 (15)0.0486 (16)0.0168 (14)0.0092 (15)0.0059 (14)
C100.089 (3)0.035 (2)0.054 (2)0.0000.007 (2)0.000
C70.0278 (12)0.0613 (16)0.0433 (14)0.0024 (12)0.0058 (11)0.0023 (14)
Geometric parameters (Å, º) top
Zn1—N31.996 (3)N3—C81.329 (3)
Zn1—N12.0239 (19)N3—C8i1.329 (3)
Zn1—N1i2.0239 (19)C1—C21.369 (3)
Zn1—O22.1623 (16)C2—C31.383 (3)
Zn1—O2i2.1623 (16)C3—C41.392 (3)
O1—N21.387 (3)C3—C61.459 (3)
O2—C71.261 (3)C4—C51.368 (3)
O3—C71.235 (3)C8—C91.375 (4)
N1—C51.345 (3)C8—C71.517 (3)
N1—C11.346 (3)C9—C101.379 (3)
N2—C61.272 (3)C10—C9i1.379 (3)
N3—Zn1—N1126.90 (5)C8i—N3—Zn1119.15 (14)
N3—Zn1—N1i126.90 (5)N1—C1—C2122.9 (2)
N1—Zn1—N1i106.21 (11)C1—C2—C3120.1 (2)
N3—Zn1—O276.96 (5)C2—C3—C4117.1 (2)
N1—Zn1—O294.75 (7)C2—C3—C6123.1 (2)
N1i—Zn1—O2100.84 (7)C4—C3—C6119.8 (2)
N3—Zn1—O2i76.96 (5)C5—C4—C3119.7 (2)
N1—Zn1—O2i100.84 (7)N1—C5—C4123.1 (2)
N1i—Zn1—O2i94.75 (7)N2—C6—C3120.8 (2)
O2—Zn1—O2i153.93 (10)N3—C8—C9120.7 (2)
C7—O2—Zn1114.86 (15)N3—C8—C7113.4 (2)
C5—N1—C1117.0 (2)C9—C8—C7125.9 (2)
C5—N1—Zn1122.88 (16)C8—C9—C10118.2 (3)
C1—N1—Zn1120.03 (16)C9i—C10—C9120.6 (4)
C6—N2—O1110.3 (2)O3—C7—O2127.2 (2)
C8—N3—C8i121.7 (3)O3—C7—C8117.2 (2)
C8—N3—Zn1119.15 (14)O2—C7—C8115.6 (2)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3ii0.821.802.597 (2)163
Symmetry code: (ii) x+3/2, y+1/2, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds