Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The salts bis­(2-amino-3-methyl­pyridinium) fumarate dihydrate, 2C6H9N2+·C4H2O22−·2H2O (I), and 2-amino-3-methyl­pyridinium 5-chloro­salicylate, C6H9N2+·C7H4ClO3 (II), were synthesized from 2-amino-3-methyl­pyridine with fumaric acid and 5-chloro­salicylic acid, respectively. The crystal structures of these salts were characterized by single-crystal X-ray diffraction, revealing protonation in I and II by the transfer of a H atom from the acid to the pyridine base. In the crystals of both I and II, N—H...O inter­actions form an R22(8) ring motif. Hirshfeld surface analysis distinguishes the inter­actions present in the crystal structures of I and II, and the two-dimensional (2D) fingerprint plot analysis shows the percentage contribution of each type of inter­action in the crystal packing. The volumes of the crystal voids of I (39.65 Å3) and II (118.10 Å3) have been calculated and reveal that the crystal of I is more mechanically stable than II. Frontier mol­ecular orbital (FMO) analysis predicts that the band gap energy of II (2.6577 eV) is lower compared to I (4.0035 eV). The Quantum Theory of Atoms In Mol­ecules (QTAIM) analysis shows that the pyridinium–carboxyl­ate N—H...O inter­action present in I is stronger than the other inter­actions, whereas in II, the hy­droxy–carboxyl­ate O—H...O inter­action is stronger than the pyridinium–carboxyl­ate N—H...O inter­action; the bond dissociation energies also confirm these results. The positive Laplacian [∇2ρ(r) > 0] of these inter­actions shows that the inter­actions are of the closed shell type. An in-silico ADME (Absorption, Distribution, Metabolism and Excretion) study predicts that both salts will exhibit good pharmacokinetic properties and druglikeness.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229624005473/ef3056sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229624005473/ef3056Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229624005473/ef3056IIsup3.hkl
Contains datablock II

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229624005473/ef3056Isup4.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229624005473/ef3056IIsup5.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229624005473/ef3056sup6.pdf
Additional tables and packing diagrams

CCDC references: 2361278; 2221382

Computing details top

Bis(2-amino-3-methylpyridin-1-ium) (2E)-but-2-enedioate dihydrate (I) top
Crystal data top
2C6H9N2+·C4H2O42·2H2OZ = 1
Mr = 368.39F(000) = 196
Triclinic, P1Dx = 1.324 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8383 (2) ÅCell parameters from 2285 reflections
b = 7.2272 (2) Åθ = 3.1–28.3°
c = 9.7427 (2) ŵ = 0.10 mm1
α = 82.921 (1)°T = 293 K
β = 76.809 (1)°Block, green
γ = 82.043 (1)°0.64 × 0.50 × 0.28 mm
V = 462.18 (2) Å3
Data collection top
Bruker D8 QUEST ECO
diffractometer
2118 reflections with I > 2σ(I)
ω and φ scansRint = 0.021
Absorption correction: numericalθmax = 28.3°, θmin = 3.1°
Tmin = 0.985, Tmax = 0.993h = 99
13678 measured reflectionsk = 99
2285 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: dual
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difference Fourier map
wR(F2) = 0.127All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0831P)2 + 0.0403P]
where P = (Fo2 + 2Fc2)/3
2285 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.21 e Å3
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.45370 (10)0.59625 (12)0.74961 (7)0.0462 (2)
O20.78438 (11)0.51702 (12)0.72217 (7)0.0484 (2)
O30.04724 (15)0.74470 (16)0.79679 (12)0.0659 (3)
N20.47857 (12)0.76067 (12)0.48593 (8)0.0376 (2)
N10.81571 (14)0.65419 (14)0.42588 (10)0.0477 (3)
C10.65232 (14)0.75031 (13)0.38781 (9)0.0351 (2)
C70.60883 (13)0.53625 (13)0.79683 (9)0.0337 (2)
C80.58517 (13)0.48544 (14)0.95351 (9)0.0380 (2)
C50.65334 (17)0.84300 (14)0.25000 (10)0.0414 (2)
C20.30349 (16)0.85702 (16)0.46070 (12)0.0460 (3)
C40.4763 (2)0.94154 (15)0.22736 (11)0.0503 (3)
C30.29758 (19)0.94987 (17)0.33208 (13)0.0532 (3)
C60.8443 (2)0.8279 (2)0.13837 (13)0.0622 (3)
H2A0.479 (2)0.694 (2)0.5790 (19)0.062 (4)*
H20.192 (3)0.855 (2)0.538 (2)0.076 (5)*
H1B0.804 (2)0.603 (2)0.5182 (18)0.060 (4)*
H40.475 (3)1.009 (3)0.133 (2)0.078 (5)*
H1A0.931 (3)0.639 (2)0.3676 (17)0.063 (4)*
H6A0.826 (3)0.893 (3)0.053 (3)0.096 (6)*
H30.174 (3)1.019 (2)0.3195 (19)0.070 (4)*
H6C0.948 (4)0.884 (3)0.162 (2)0.100 (7)*
H6B0.887 (4)0.694 (4)0.116 (2)0.108 (7)*
H80.710 (3)0.427 (2)0.9823 (17)0.067 (4)*
H3A0.172 (3)0.686 (3)0.797 (2)0.082 (5)*
H3B0.022 (4)0.653 (3)0.777 (2)0.096 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0314 (4)0.0726 (5)0.0304 (4)0.0010 (3)0.0074 (3)0.0071 (3)
O20.0309 (4)0.0762 (5)0.0308 (4)0.0044 (3)0.0001 (3)0.0007 (3)
O30.0435 (5)0.0768 (6)0.0760 (6)0.0055 (4)0.0130 (4)0.0160 (5)
N20.0350 (4)0.0467 (4)0.0284 (4)0.0003 (3)0.0051 (3)0.0014 (3)
N10.0359 (5)0.0675 (6)0.0326 (4)0.0078 (4)0.0028 (3)0.0011 (4)
C10.0364 (5)0.0399 (4)0.0276 (4)0.0020 (3)0.0050 (3)0.0040 (3)
C70.0298 (4)0.0428 (4)0.0264 (4)0.0024 (3)0.0039 (3)0.0009 (3)
C80.0303 (4)0.0532 (5)0.0277 (4)0.0004 (4)0.0064 (3)0.0010 (3)
C50.0504 (6)0.0447 (5)0.0280 (4)0.0071 (4)0.0060 (4)0.0014 (3)
C20.0359 (5)0.0555 (6)0.0441 (6)0.0031 (4)0.0075 (4)0.0069 (4)
C40.0665 (7)0.0492 (6)0.0359 (5)0.0016 (5)0.0195 (5)0.0031 (4)
C30.0503 (6)0.0572 (6)0.0525 (6)0.0101 (5)0.0229 (5)0.0035 (5)
C60.0644 (8)0.0813 (9)0.0321 (5)0.0120 (7)0.0054 (5)0.0029 (5)
Geometric parameters (Å, º) top
O1—C71.2535 (11)C8—C8i1.3112 (18)
O2—C71.2529 (11)C8—H80.981 (18)
O3—H3A0.90 (2)C5—C41.3662 (16)
O3—H3B0.93 (2)C5—C61.4971 (16)
N2—C11.3438 (12)C2—C31.3530 (17)
N2—C21.3565 (13)C2—H20.94 (2)
N2—H2A0.974 (17)C4—C31.4012 (19)
N1—C11.3339 (12)C4—H40.984 (19)
N1—H1B0.920 (17)C3—H30.942 (19)
N1—H1A0.863 (18)C6—H6A0.93 (2)
C1—C51.4236 (13)C6—H6C0.95 (2)
C7—C81.5022 (12)C6—H6B1.01 (2)
H3A—O3—H3B103.8 (18)C4—C5—C6123.52 (10)
C1—N2—C2123.19 (8)C1—C5—C6119.32 (10)
C1—N2—H2A118.1 (10)C3—C2—N2120.28 (10)
C2—N2—H2A118.7 (10)C3—C2—H2124.2 (11)
C1—N1—H1B118.3 (10)N2—C2—H2115.5 (11)
C1—N1—H1A122.6 (10)C5—C4—C3122.70 (10)
H1B—N1—H1A119.0 (15)C5—C4—H4118.4 (11)
N1—C1—N2117.74 (8)C3—C4—H4118.9 (11)
N1—C1—C5123.53 (9)C2—C3—C4117.91 (10)
N2—C1—C5118.73 (9)C2—C3—H3117.8 (11)
O2—C7—O1124.41 (8)C4—C3—H3124.2 (11)
O2—C7—C8117.18 (8)C5—C6—H6A111.3 (14)
O1—C7—C8118.41 (8)C5—C6—H6C112.2 (14)
C8i—C8—C7124.23 (10)H6A—C6—H6C104.2 (18)
C8i—C8—H8121.5 (9)C5—C6—H6B111.1 (14)
C7—C8—H8114.2 (9)H6A—C6—H6B104.8 (18)
C4—C5—C1117.16 (10)H6C—C6—H6B112.8 (19)
C2—N2—C1—N1178.78 (9)N2—C1—C5—C6178.18 (10)
C2—N2—C1—C50.67 (14)C1—N2—C2—C30.37 (16)
O2—C7—C8—C8i173.25 (13)C1—C5—C4—C31.54 (17)
O1—C7—C8—C8i6.09 (18)C6—C5—C4—C3178.20 (12)
N1—C1—C5—C4177.84 (10)N2—C2—C3—C40.45 (18)
N2—C1—C5—C41.58 (14)C5—C4—C3—C20.54 (19)
N1—C1—C5—C62.41 (16)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2ii0.86 (19)2.16 (19)2.96 (13)154.5 (14)
N1—H1B···O20.92 (17)1.98 (17)2.90 (12)174.3 (14)
N2—H2A···O10.97 (17)1.70 (18)2.67 (10)173.2 (14)
O3—H3A···O10.90 (2)1.92 (2)2.79 (13)165.0 (18)
O3—H3B···O2iii0.93 (2)1.95 (3)2.85 (14)165 (2)
C2—H2···O30.94 (2)2.55 (19)3.40 (16)149.1 (15)
C3—H3···O3iv0.95 (2)2.46 (18)3.35 (17)156.1 (15)
Symmetry codes: (ii) x, y+1, z+1; (iii) x+1, y, z; (iv) x+2, y, z+1.
2-Amino-3-methylpyridin-1-ium 5-chloro-2-hydroxybenzoate (II) top
Crystal data top
C6H9N2+·C7H4ClO3F(000) = 584
Mr = 280.7Dx = 1.448 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3194 reflections
a = 11.7399 (2) Åθ = 2.9–28.3°
b = 8.3731 (1) ŵ = 0.30 mm1
c = 13.6779 (2) ÅT = 293 K
β = 106.782 (1)°Plate, green
V = 1287.27 (3) Å30.74 × 0.45 × 0.36 mm
Z = 4
Data collection top
Bruker D8 QUEST ECO
diffractometer
2907 reflections with I > 2σ(I)
ω and φ scansRint = 0.021
Absorption correction: numericalθmax = 28.3°, θmin = 2.9°
Tmin = 0.606, Tmax = 0.647h = 1515
30652 measured reflectionsk = 1110
3194 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: dual
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.107All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.2514P]
where P = (Fo2 + 2Fc2)/3
3194 reflections(Δ/σ)max = 0.002
224 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.28 e Å3
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1.05112 (3)0.27065 (6)0.57782 (3)0.06891 (15)
O30.64726 (8)0.60188 (11)0.49608 (6)0.0494 (2)
O10.70973 (9)0.46216 (12)0.79510 (7)0.0506 (2)
O20.59619 (8)0.61202 (12)0.64034 (7)0.0513 (2)
N20.46431 (9)0.79911 (11)0.40726 (7)0.0359 (2)
N10.40130 (10)0.81870 (13)0.55084 (7)0.0415 (2)
C80.38904 (9)0.86283 (12)0.45482 (7)0.0329 (2)
C20.76984 (9)0.46817 (12)0.64153 (8)0.0333 (2)
C70.66395 (10)0.56791 (12)0.58751 (8)0.0366 (2)
C30.85209 (10)0.42167 (14)0.59101 (8)0.0386 (2)
C90.30097 (10)0.97273 (13)0.40035 (8)0.0372 (2)
C10.78668 (10)0.41900 (14)0.74288 (8)0.0383 (2)
C120.46073 (11)0.83664 (15)0.31002 (9)0.0423 (3)
C40.94755 (10)0.32745 (16)0.64037 (9)0.0438 (3)
C110.37977 (12)0.94218 (16)0.25540 (9)0.0472 (3)
C60.88328 (12)0.32154 (17)0.79078 (9)0.0492 (3)
C100.29943 (12)1.00941 (15)0.30240 (9)0.0457 (3)
C50.96310 (11)0.27580 (17)0.73958 (10)0.0499 (3)
C130.21525 (12)1.04167 (18)0.45147 (11)0.0499 (3)
H1A0.3562 (15)0.859 (2)0.5827 (12)0.059 (4)*
H120.5156 (15)0.784 (2)0.2873 (13)0.056 (4)*
H30.8388 (13)0.4560 (18)0.5223 (12)0.048 (4)*
H1B0.4565 (15)0.7444 (19)0.5780 (12)0.053 (4)*
H110.3748 (15)0.969 (2)0.1868 (12)0.058 (4)*
H100.2410 (15)1.085 (2)0.2641 (12)0.060 (4)*
H10.6558 (19)0.517 (3)0.7472 (16)0.086 (6)*
H60.8933 (15)0.283 (2)0.8605 (14)0.064 (5)*
H20.5216 (18)0.725 (2)0.4376 (15)0.073 (5)*
H13A0.1607 (19)1.111 (3)0.4046 (15)0.088 (6)*
H13B0.2567 (17)1.100 (2)0.5144 (15)0.075 (5)*
H51.0313 (17)0.199 (2)0.7694 (15)0.075 (5)*
H13C0.1699 (19)0.957 (3)0.4738 (16)0.086 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0479 (2)0.0929 (3)0.0708 (3)0.01654 (17)0.02496 (18)0.0117 (2)
O30.0525 (5)0.0564 (5)0.0393 (4)0.0140 (4)0.0131 (4)0.0070 (4)
O10.0533 (5)0.0649 (6)0.0398 (4)0.0047 (4)0.0233 (4)0.0057 (4)
O20.0510 (5)0.0582 (5)0.0502 (5)0.0176 (4)0.0233 (4)0.0074 (4)
N20.0385 (5)0.0380 (4)0.0336 (4)0.0007 (4)0.0139 (4)0.0013 (3)
N10.0468 (5)0.0477 (5)0.0332 (5)0.0080 (4)0.0165 (4)0.0019 (4)
C80.0344 (5)0.0327 (5)0.0324 (5)0.0041 (4)0.0107 (4)0.0038 (4)
C20.0325 (5)0.0332 (5)0.0337 (5)0.0038 (4)0.0088 (4)0.0025 (4)
C70.0378 (5)0.0336 (5)0.0389 (5)0.0007 (4)0.0117 (4)0.0006 (4)
C30.0366 (5)0.0440 (6)0.0355 (5)0.0020 (4)0.0110 (4)0.0032 (4)
C90.0362 (5)0.0379 (5)0.0367 (5)0.0005 (4)0.0091 (4)0.0024 (4)
C10.0376 (5)0.0432 (5)0.0345 (5)0.0044 (4)0.0110 (4)0.0010 (4)
C120.0487 (6)0.0461 (6)0.0372 (5)0.0043 (5)0.0205 (5)0.0043 (4)
C40.0333 (5)0.0512 (6)0.0465 (6)0.0009 (5)0.0111 (4)0.0087 (5)
C110.0584 (7)0.0522 (7)0.0325 (5)0.0043 (5)0.0155 (5)0.0023 (5)
C60.0466 (6)0.0602 (7)0.0364 (6)0.0028 (5)0.0050 (5)0.0070 (5)
C100.0475 (6)0.0470 (6)0.0391 (6)0.0031 (5)0.0070 (5)0.0045 (5)
C50.0377 (6)0.0557 (7)0.0493 (7)0.0063 (5)0.0016 (5)0.0012 (5)
C130.0441 (6)0.0554 (7)0.0511 (7)0.0116 (6)0.0153 (5)0.0012 (6)
Geometric parameters (Å, º) top
Cl—C41.7428 (12)C3—H30.952 (15)
O3—C71.2417 (13)C9—C101.3694 (17)
O1—C11.3525 (14)C9—C131.4971 (16)
O1—H10.90 (2)C1—C61.3972 (17)
O2—C71.2741 (13)C12—C111.3538 (19)
N2—C81.3494 (13)C12—H120.907 (17)
N2—C121.3554 (14)C4—C51.3851 (19)
N2—H20.92 (2)C11—C101.4036 (19)
N1—C81.3315 (14)C11—H110.951 (16)
N1—H1A0.849 (18)C6—C51.376 (2)
N1—H1B0.897 (17)C6—H60.982 (18)
C8—C91.4233 (15)C10—H100.967 (17)
C2—C31.3953 (15)C5—H51.01 (2)
C2—C11.4043 (15)C13—H13A0.96 (2)
C2—C71.5028 (15)C13—H13B0.99 (2)
C3—C41.3774 (17)C13—H13C0.99 (2)
C1—O1—H1101.0 (13)C11—C12—N2120.72 (11)
C8—N2—C12122.84 (10)C11—C12—H12125.8 (11)
C8—N2—H2122.9 (12)N2—C12—H12113.5 (11)
C12—N2—H2114.2 (12)C3—C4—C5121.16 (11)
C8—N1—H1A119.3 (11)C3—C4—Cl119.99 (10)
C8—N1—H1B117.4 (10)C5—C4—Cl118.84 (10)
H1A—N1—H1B123.3 (15)C12—C11—C10117.81 (11)
N1—C8—N2117.81 (10)C12—C11—H11122.3 (10)
N1—C8—C9123.44 (10)C10—C11—H11119.9 (10)
N2—C8—C9118.76 (9)C5—C6—C1120.24 (11)
C3—C2—C1119.13 (10)C5—C6—H6119.6 (10)
C3—C2—C7120.27 (9)C1—C6—H6120.2 (10)
C1—C2—C7120.59 (10)C9—C10—C11122.50 (11)
O3—C7—O2124.20 (10)C9—C10—H10118.9 (10)
O3—C7—C2119.34 (10)C11—C10—H10118.6 (10)
O2—C7—C2116.46 (9)C6—C5—C4119.68 (11)
C4—C3—C2119.90 (10)C6—C5—H5123.0 (11)
C4—C3—H3122.4 (9)C4—C5—H5117.2 (11)
C2—C3—H3117.7 (9)C9—C13—H13A109.3 (12)
C10—C9—C8117.36 (10)C9—C13—H13B111.7 (11)
C10—C9—C13123.34 (11)H13A—C13—H13B110.6 (16)
C8—C9—C13119.30 (10)C9—C13—H13C111.3 (12)
O1—C1—C6118.94 (10)H13A—C13—H13C109.0 (17)
O1—C1—C2121.19 (10)H13B—C13—H13C104.9 (16)
C6—C1—C2119.87 (11)
C12—N2—C8—N1179.32 (10)C3—C2—C1—C61.56 (17)
C12—N2—C8—C90.82 (16)C7—C2—C1—C6177.71 (10)
C3—C2—C7—O33.52 (16)C8—N2—C12—C110.10 (18)
C1—C2—C7—O3175.75 (10)C2—C3—C4—C50.77 (18)
C3—C2—C7—O2176.66 (10)C2—C3—C4—Cl179.44 (8)
C1—C2—C7—O24.08 (15)N2—C12—C11—C100.70 (19)
C1—C2—C3—C40.64 (16)O1—C1—C6—C5179.95 (12)
C7—C2—C3—C4178.64 (10)C2—C1—C6—C51.10 (19)
N1—C8—C9—C10179.07 (11)C8—C9—C10—C110.50 (18)
N2—C8—C9—C101.08 (15)C13—C9—C10—C11179.30 (12)
N1—C8—C9—C131.13 (17)C12—C11—C10—C90.4 (2)
N2—C8—C9—C13178.72 (10)C1—C6—C5—C40.3 (2)
C3—C2—C1—O1179.51 (10)C3—C4—C5—C61.2 (2)
C7—C2—C1—O11.22 (16)Cl—C4—C5—C6178.96 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.90 (2)1.63 (2)2.49 (13)159 (2)
N1—H1A···O1i0.85 (18)2.20 (17)3.02 (15)162.2 (16)
N1—H1B···O2ii0.89 (17)1.95 (17)2.84 (15)170.3 (16)
N2—H2···O3ii0.92 (19)1.79 (2)2.70 (14)172.2)
C3—H3···O30.95 (16)2.49 (16)2.81 (15)100.0 (11)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1/2, z1/2.
Molecular descriptors of I and II top
Parameters (eV)Salt ISalt II
EHOMO-6.3983-5.2748
ELUMO-2.3948-2.6171
Energy gap (ΔE)4.00352.6577
Electron affinity (A)2.39482.6171
Ionization potential (I)6.39835.2748
Electronegativity (χ)4.39653.9459
Electrochemical potential (µ)-4.3965-3.9459
Electrophilicity (ω)4.82805.8587
Global hardness (ν)2.00171.3288
Softness (σ)0.49950.7525
QTAIM analysis of I and II top
D—H···AH···A (Å)ρ(r) (e Å-3)2ρ(r) (e Å-5)G(r) (a.u.)V(r) (a.u.)H(r) (a.u.)De (kJ cal-1)
N1—H1A···O22.16 (19)0.1371.9770.0290-0.0375-0.008549.21
N1—H1B···O21.98 (17)0.2172.4640.0502-0.0749-0.024798.30
N2—H2A···O11.70 (18)0.4013.6220.1176-0.1977-0.0801259.48
C2—H2···O32.55 (19)0.0780.7690.0113-0.0147-0.003419.29
C3—H3···O32.46 (18)0.0740.8560.0114-0.014-0.002618.37
O1—H1···O21.63 (2)0.4534.2260.1427-0.2416-0.0989317.1
N1—H1A···O12.20 (17)0.1432.0020.0304-0.0401-0.009752.63
N1—H1B···O21.95 (17)0.2102.4610.0485-0.0715-0.02393.84
N2—H2···O31.79 (2)0.3263.050.0866-0.1416-0.055185.85
Results of in-silico ADME prediction for I and II TPSA is topological polar surface area, GI is gastrointestinal and BBB is blood–brain barrier. top
FormulaC10H14N2O5C13H13ClN2O3
Mr241.22280.71
Heavy atoms1719
Aromatic heavy atoms06
Fraction C(sp3)0.20.15
No of rotatable bonds21
No of hydrogen-bond acceptors64
No of hydrogen-bond donors33
TPSA81.4275.35
GI absorptionHighHigh
BBB permeantNoNo
Bioavailability score0.560.55
log Kp (cm s-1) (skin permeation)-9.87-7.26
Lipinski No. of violations00
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds