Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title peptide, N-benzyl­oxycarbonyl-α-aminoisobutyryl-α-amino­isobutyryl-α-amino­isobutyryl-L-alanine tert-butyl ester or Z-Aib-Aib-Aib-L-Ala-OtBu (Aib is α-amino­isobutyric acid, Z is benzyl­oxycarbonyl and OtBu indicates the tert-butyl ester), C27H42N4O7, is a left-handed helix with a right-handed conformation in the fourth residue, which is the only chiral residue. There are two 4→1 intra­molecular hydrogen bonds in the structure. In the lattice, mol­ecules are hydrogen bonded to form columns along the c axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614005567/eg3150sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614005567/eg3150Isup2.hkl
Contains datablock I

txt

Text file https://doi.org/10.1107/S2053229614005567/eg3150Isup3.txt
Supplementary material

CCDC reference: 991221

Introduction top

The sequence Aib-Aib-Aib-Ala represents a segment of the naturally occurring peptaibol anti­biotics, which are peptides containing α-amino­isobutyric acid (Aib) and a C-terminal β-amino alcohol (Brückner & Graf, 1983; Benedetti et al., 1982) such as trichotoxin (Brückner et al., 1985). We present here the crystal structure of Z-Aib-Aib-Aib-L-Ala-OtBu, (II), containing this tetra­peptide.

Experimental top

Synthesis and crystallization top

For the synthesis of Z-Aib-Aib-Aib-Ala-OtBu, the protected tripeptide acid Z-Aib-Aib-Aib-OH was reacted with acetic anhydride to provide the oxazolone Z-Aib-Aib-AibOx, (I) (AibOx is the oxazolone of C-terminal Aib; Leplawy et al. 1960; Brückner & Jung, 1982; Toniolo et al., 1983). To a solution of (I) (6.51 mmol) in propio­nitrile (30 ml), L-Ala-OtBu.HCl (7.81 mmol, 1.20 equivalents) and N-methyl­morpholine (0.87 ml, 1.20 equivalents) were added and the mixture was heated for 17 h at 373 K. This was followed by evaporation to dryness in vacuo using a rotary evaporator. To the remaining residue, n-butanol–ethyl acetate (1:1 v/v, 750 ml) was added, and the organic phase was washed successively with 5% aqueous KHSO4, 5% aqueous NaHCO3 and water. On evaporation of the organic phase, the protected tetra­peptide Z-Aib3-L-Ala-OtBu, (II), started to crystallize. Crystallization was completed by addition of ethyl acetate and petroleum ether (b.p. 313–333 K; [Ratio or volumes?]), providing white needles (yield 2.01 g, 57.8%), uniform in thin-layer chromatography. A further qu­antity of (II) could be obtained from the mother liquor. Crystals suitable for X-ray crystallography were obtained from cooling a hot methanol–water mixture (70:30 v/v). Block-shaped crystals of (II) were observed after a few days at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. In view of the crystal size, a spherical absorption correction was applied in addition to the correction based on symmetry-related measurements (Bruker, 2008). The four N-bound H atoms were located in a difference Fourier synthesis. Their positional parameters were refined with distance restraints and their isotropic displacement parameters were refined freely, except that of the N2—H02 group which was fixed at 1.2Ueq(N). C-bound H atoms were calculated with C—H = 0.93 (aryl), 0.96 (methyl), 0.97 (methyl­ene) and 0.98 Å (methine H atoms), and refined as riding, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise.

Results and discussion top

The backbone of the tetra­peptide of (II) adopts a quite unusual conformation, namely an incipient left-handed 310-helix with a reversal of the helical sense in the Ala residue (Fig. 1 and Table 2). The helix is stabilized by two 41 hydrogen bonds (Table 3). All residues, including the N-terminal protecting group, are involved in intra­molecular hydrogen bonding.

The peptide adopts the expected trans-planar conformation with significant deviations from planarity (ω = 180°; Table 2). The valence geometry around the Cα atom is asymmetric for the Aib residues (Table 4). If one designates as CL and CR the atoms which occupy the same position as Cβ and the α-hydrogen in the L-amino acids, respectively, the bond angles N—Cα—CL and C—Cα—CL are significantly greater than N—Cα—CR and C—Cα—CR. This observation is in excellent agreement with theoretical calculations and with the bond angles of other left-handed 310-helical Aib peptides (Gessmann et al., 1997).

In the crystal structure, one molecule of (II) is hydrogen-bonded in a head-to-tail manner to a symmetry-related molecule via two hydrogen bonds (Table 3 and Fig. 2), thus building infinite columns in the [001] direction. These columns pack parallel to the same columns translated in the [100] direction along the small a axis in the next unit cell, and these hydrogen-bonded columns pack in an anti­parallel manner to the space group symmetry-related columns in the [010] direction. The only polar group not involved in hydrogen bonding is the CO group of Aib2, with a closest apolar contact of 3.44 Å to a C atom of the benzyl­oxycarbonyl protecting group.

The structure of the related peptide Z-Aib-Aib-Aib-L-Val-OtBu has been solved previously (Gessmann et al., 1997). The overall folding of the two molecules in the asymmetric unit is essentially the same as for the structure described herein, with an incipient left-handed 310-helix with reversal of the helical sense in the last residue. The r.m.s. deviation of the backbone and the common side-chain atoms in residues 1 to 4 of molecule A of the Val-substituted tetra­peptide and (II) is 0.69 Å, while the corresponding value for molecule B and (II) is 0.42 Å.

Related literature top

For related literature, see: Benedetti et al. (1982); Brückner & Graf (1983); Brückner & Jung (1982); Brückner et al. (1985); Gessmann et al. (1997); Leplawy et al. (1960); Toniolo et al. (1983).

Computing details top

Data collection: PROTEUM2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XTALVIEW (McRee 1999) and SwissPDBViewer (Guex & Peitsch, 1997); software used to prepare material for publication: CHEMDRAW (Mills, 2006) and ORTEP-3 for Windows (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of Z-Aib-Aib-Aib-Ala-OtBu, (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The two intramolecular hydrogen bonds are shown as green dashed lines. [Can a revised figure be supplied with smaller labels and labels not overlapping atoms as far as possible?]
[Figure 2] Fig. 2. The crystal packing of Z-Aib-Aib-Aib-Ala-OtBu, (II), viewed approximately along the a axis. The four molecules in the unit cell and, by translation along unit-cell axes, symmetry-related molecules are shown when they possess atoms inside the unit cell. Hydrogen bonds are indicated as dashed lines and H atoms not involved in hydrogen bonding have been omitted for clarity.
N-benzyloxycarbonyl-α-aminoisobutyryl-α-aminoisobutyryl-α-aminoisobutyryl-L-alanine tert-butyl ester top
Crystal data top
C27H42N4O7Z = 4
Mr = 534.65F(000) = 1152
Orthorhombic, P212121Dx = 1.169 Mg m3
Hall symbol: P 2ac 2abCu Kα radiation, λ = 1.54184 Å
a = 9.3730 (19) ŵ = 0.69 mm1
b = 17.032 (3) ÅT = 293 K
c = 19.032 (4) ÅBlock, colourless
V = 3038.3 (11) Å31.4 × 1.1 × 0.9 mm
Data collection top
Bruker D8 Venture
diffractometer
5541 independent reflections
Radiation source: microfocus tube IµS5018 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.034
ω and ψ scansθmax = 72.4°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.423, Tmax = 0.754k = 2021
5835 measured reflectionsl = 2222
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.142(Δ/σ)max = 0.001
S = 1.16Δρmax = 0.18 e Å3
5541 reflectionsΔρmin = 0.23 e Å3
358 parametersAbsolute structure: Flack (1983), with how many Friedel pairs?
4 restraintsAbsolute structure parameter: 0.05 (18)
Primary atom site location: structure-invariant direct methods
Crystal data top
C27H42N4O7V = 3038.3 (11) Å3
Mr = 534.65Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 9.3730 (19) ŵ = 0.69 mm1
b = 17.032 (3) ÅT = 293 K
c = 19.032 (4) Å1.4 × 1.1 × 0.9 mm
Data collection top
Bruker D8 Venture
diffractometer
5541 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5018 reflections with I > 2σ(I)
Tmin = 0.423, Tmax = 0.754Rint = 0.034
5835 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142Δρmax = 0.18 e Å3
S = 1.16Δρmin = 0.23 e Å3
5541 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
358 parametersAbsolute structure parameter: 0.05 (18)
4 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C100.5062 (4)0.31972 (14)0.92733 (13)0.0807 (8)
C200.4369 (4)0.37358 (17)0.96801 (16)0.0857 (8)
H200.48950.40420.99910.103*
C300.2917 (5)0.3838 (2)0.9643 (2)0.1199 (13)
H300.24690.42030.99330.144*
C400.2136 (6)0.3407 (3)0.9183 (4)0.166 (3)
H400.11540.34750.91510.199*
C500.2831 (9)0.2862 (4)0.8760 (4)0.198 (4)
H500.23000.25610.84470.237*
C600.4284 (6)0.2756 (2)0.8794 (2)0.1279 (17)
H600.47370.23970.85010.153*
C700.6653 (5)0.30493 (15)0.93185 (17)0.0986 (10)
H7A00.68160.25680.95790.118*
H7B00.70270.29750.88480.118*
O000.7426 (2)0.36826 (10)0.96550 (9)0.0749 (5)
C800.7712 (2)0.43054 (12)0.92446 (10)0.0541 (4)
O800.73385 (19)0.43571 (8)0.86297 (7)0.0628 (4)
N10.84362 (18)0.48500 (10)0.95943 (8)0.0531 (4)
H010.869 (3)0.4784 (17)1.0040 (10)0.096 (9)*
CA10.8991 (2)0.55453 (12)0.92371 (9)0.0502 (4)
CL11.0180 (2)0.53321 (15)0.87215 (12)0.0658 (6)
HL110.98150.49770.83740.099*
HL211.09490.50860.89710.099*
HL311.05210.58000.84960.099*
CR10.9568 (3)0.61072 (15)0.98015 (12)0.0701 (6)
HR111.03190.58531.00580.105*
HR210.88120.62471.01180.105*
HR310.99330.65720.95810.105*
C10.77989 (19)0.59811 (10)0.88472 (9)0.0428 (4)
O10.80434 (14)0.63206 (8)0.82935 (7)0.0517 (3)
N20.65117 (16)0.59936 (9)0.91577 (7)0.0444 (3)
H020.643 (3)0.5779 (12)0.9571 (8)0.053*
CA20.5316 (2)0.64628 (11)0.88785 (10)0.0471 (4)
CL20.5637 (3)0.73332 (13)0.89584 (13)0.0681 (6)
HL120.64830.74610.86980.102*
HL220.57820.74540.94460.102*
HL320.48490.76340.87820.102*
CR20.3978 (2)0.62341 (14)0.92878 (11)0.0626 (5)
HR120.38030.56820.92320.094*
HR220.31760.65250.91120.094*
HR320.41130.63510.97770.094*
C20.50370 (19)0.62624 (11)0.80957 (9)0.0481 (4)
O20.4652 (2)0.67669 (10)0.76925 (8)0.0721 (5)
N30.51572 (15)0.54954 (9)0.79299 (8)0.0443 (3)
H030.557 (2)0.5194 (11)0.8230 (10)0.050 (5)*
CA30.47843 (19)0.51504 (12)0.72466 (9)0.0498 (4)
CL30.3308 (2)0.54203 (18)0.69914 (12)0.0726 (7)
HL130.26090.53090.73460.109*
HL230.30660.51460.65670.109*
HL330.33280.59750.69020.109*
CR30.4804 (3)0.42615 (14)0.73379 (13)0.0677 (6)
HR130.57310.40990.74950.102*
HR230.45920.40140.68970.102*
HR330.41010.41110.76790.102*
C30.59109 (19)0.53298 (11)0.66821 (9)0.0489 (4)
O30.56553 (18)0.51739 (14)0.60668 (8)0.0823 (6)
N40.71787 (15)0.55887 (9)0.68888 (7)0.0441 (3)
H040.741 (3)0.5730 (14)0.7301 (9)0.059 (6)*
CA40.83797 (19)0.55982 (11)0.64070 (9)0.0451 (4)
HA40.80760.58550.59710.054*
CL40.9623 (2)0.60637 (13)0.67140 (12)0.0568 (5)
HL140.93090.65850.68290.085*
HL241.03800.60920.63750.085*
HL340.99620.58070.71310.085*
C40.88906 (19)0.47719 (11)0.62274 (9)0.0470 (4)
O40.93292 (19)0.45995 (10)0.56531 (8)0.0723 (4)
O50.88386 (18)0.43023 (8)0.67759 (7)0.0631 (4)
C150.9361 (2)0.34770 (12)0.67624 (12)0.0609 (5)
C251.0925 (3)0.34759 (19)0.6623 (3)0.1191 (14)
H2A51.11010.36660.61560.179*
H2B51.12870.29510.66670.179*
H2C51.13960.38100.69560.179*
C350.8974 (6)0.3175 (2)0.74756 (17)0.1367 (19)
H3A50.79570.31890.75320.205*
H3B50.94120.34980.78280.205*
H3C50.93050.26450.75250.205*
C450.8569 (4)0.30347 (18)0.6201 (2)0.1093 (11)
H4A50.88200.32410.57480.164*
H4B50.75600.30920.62730.164*
H4C50.88190.24890.62230.164*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C100.136 (2)0.0469 (12)0.0593 (13)0.0278 (15)0.0160 (14)0.0080 (10)
C200.109 (2)0.0717 (16)0.0765 (16)0.0142 (15)0.0238 (15)0.0014 (13)
C300.123 (3)0.099 (2)0.137 (3)0.014 (2)0.024 (3)0.038 (2)
C400.142 (4)0.117 (4)0.239 (7)0.058 (4)0.082 (5)0.082 (4)
C500.236 (8)0.122 (4)0.234 (7)0.112 (5)0.138 (6)0.057 (4)
C600.217 (5)0.0707 (19)0.095 (2)0.055 (3)0.035 (3)0.0001 (17)
C700.165 (3)0.0422 (12)0.0889 (19)0.0050 (15)0.008 (2)0.0008 (12)
O000.1035 (12)0.0553 (8)0.0660 (9)0.0009 (8)0.0050 (8)0.0133 (7)
C800.0628 (11)0.0519 (10)0.0475 (10)0.0096 (9)0.0007 (9)0.0028 (8)
O800.0881 (10)0.0515 (8)0.0487 (7)0.0016 (7)0.0046 (7)0.0041 (6)
N10.0583 (9)0.0590 (9)0.0418 (8)0.0058 (7)0.0078 (7)0.0050 (7)
CA10.0468 (9)0.0610 (11)0.0429 (9)0.0013 (8)0.0020 (7)0.0001 (8)
CL10.0484 (10)0.0894 (16)0.0596 (12)0.0119 (11)0.0025 (9)0.0035 (11)
CR10.0752 (14)0.0852 (15)0.0498 (11)0.0208 (12)0.0142 (10)0.0013 (10)
C10.0478 (9)0.0419 (9)0.0386 (8)0.0022 (7)0.0011 (7)0.0053 (7)
O10.0546 (7)0.0562 (7)0.0443 (6)0.0024 (6)0.0027 (5)0.0044 (6)
N20.0472 (7)0.0488 (8)0.0371 (7)0.0032 (6)0.0030 (6)0.0001 (6)
CA20.0499 (9)0.0462 (9)0.0451 (9)0.0077 (7)0.0046 (7)0.0010 (7)
CL20.0834 (15)0.0475 (11)0.0733 (14)0.0123 (10)0.0044 (12)0.0111 (10)
CR20.0522 (10)0.0807 (14)0.0548 (11)0.0133 (11)0.0095 (9)0.0110 (10)
C20.0495 (9)0.0513 (10)0.0435 (9)0.0044 (8)0.0033 (7)0.0032 (7)
O20.0969 (12)0.0620 (9)0.0573 (9)0.0175 (8)0.0084 (8)0.0147 (7)
N30.0448 (7)0.0502 (8)0.0379 (7)0.0033 (6)0.0026 (6)0.0000 (6)
CA30.0421 (9)0.0649 (11)0.0425 (9)0.0024 (8)0.0018 (7)0.0061 (8)
CL30.0454 (10)0.109 (2)0.0632 (12)0.0041 (11)0.0092 (9)0.0072 (13)
CR30.0762 (14)0.0627 (13)0.0642 (12)0.0178 (11)0.0037 (11)0.0073 (10)
C30.0494 (9)0.0602 (10)0.0371 (8)0.0002 (8)0.0018 (7)0.0039 (7)
O30.0675 (9)0.1385 (17)0.0408 (7)0.0235 (10)0.0002 (7)0.0187 (9)
N40.0421 (7)0.0550 (9)0.0353 (7)0.0037 (6)0.0016 (6)0.0029 (6)
CA40.0432 (8)0.0524 (10)0.0397 (8)0.0058 (7)0.0010 (7)0.0012 (7)
CL40.0499 (9)0.0596 (11)0.0609 (11)0.0012 (8)0.0025 (9)0.0020 (9)
C40.0451 (8)0.0534 (10)0.0426 (9)0.0017 (8)0.0016 (7)0.0031 (7)
O40.0936 (11)0.0714 (10)0.0519 (8)0.0141 (8)0.0192 (8)0.0052 (7)
O50.0907 (10)0.0507 (7)0.0479 (7)0.0204 (7)0.0081 (7)0.0014 (6)
C150.0717 (13)0.0451 (10)0.0659 (12)0.0141 (9)0.0015 (11)0.0056 (9)
C250.0610 (15)0.0785 (18)0.218 (4)0.0135 (14)0.015 (2)0.014 (2)
C350.240 (5)0.0813 (19)0.089 (2)0.078 (3)0.040 (3)0.0299 (17)
C450.125 (3)0.0600 (15)0.143 (3)0.0191 (16)0.033 (2)0.0080 (17)
Geometric parameters (Å, º) top
C10—C601.389 (4)CR2—HR220.9600
C10—C201.365 (5)CR2—HR320.9600
C10—C701.515 (5)C2—O21.207 (2)
C20—C301.375 (5)C2—N31.349 (3)
C20—H200.9300N3—CA31.469 (2)
C30—C401.358 (7)N3—H030.861 (16)
C30—H300.9300CA3—CL31.537 (3)
C40—C501.390 (11)CA3—CR31.524 (3)
C40—H400.9300CA3—C31.537 (3)
C50—C601.376 (9)CL3—HL130.9600
C50—H500.9300CL3—HL230.9600
C60—H600.9300CL3—HL330.9600
C70—O001.449 (4)CG3—HR130.9600
C70—H7A00.9700CG3—HR230.9600
C70—H7B00.9700CG3—HR330.9600
O00—C801.344 (3)C3—O31.224 (2)
C80—O801.225 (2)C3—N41.327 (2)
C80—N11.328 (3)N4—CA41.452 (2)
N1—CA11.461 (3)N4—H040.849 (16)
N1—H010.888 (18)CA4—CL41.526 (3)
CA1—CL11.528 (3)CA4—C41.525 (3)
CA1—CR11.537 (3)CA4—HA40.9800
CA1—C11.533 (3)CL4—HL140.9600
CL1—HL110.9600CL4—HL240.9600
CL1—HL210.9600CL4—HL340.9600
CL1—HL310.9600C4—O41.204 (2)
CR1—HR110.9600C4—O51.316 (2)
CR1—HR210.9600O5—C151.489 (2)
CR1—HR310.9600C15—C351.496 (4)
C1—O11.224 (2)C15—C251.490 (4)
C1—N21.344 (2)C15—C451.503 (4)
N2—CA21.475 (2)C25—H2A50.9600
N2—H020.871 (15)C25—H2B50.9600
CA2—CL21.521 (3)C25—H2C50.9600
CA2—CR21.527 (3)C35—H3A50.9600
CA2—C21.551 (3)C35—H3B50.9600
CG2—HL120.9600C35—H3C50.9600
CG2—HL220.9600C45—H4A50.9600
CG2—HL320.9600C45—H4B50.9600
CR2—HR120.9600C45—H4C50.9600
C60—C10—C20119.1 (4)CA2—CL2—HL32109.5
C60—C10—C70117.7 (4)HL12—CL2—HL32109.5
C20—C10—C70123.2 (3)HL22—CL2—HL32109.5
C30—C20—C10121.9 (3)O2—C2—N3124.44 (18)
C30—C20—H20119.1O2—C2—CA2120.30 (17)
C10—C20—H20119.1N3—C2—CA2115.08 (15)
C20—C30—C40119.9 (5)C2—N3—CA3125.08 (16)
C20—C30—H30120.1C2—N3—H03117.5 (14)
C40—C30—H30120.1CA3—N3—H03117.1 (14)
C30—C40—C50118.8 (6)N3—CA3—CL3111.98 (17)
C30—C40—H40120.6N3—CA3—C3112.07 (14)
C50—C40—H40120.6C3—CA3—CL3109.77 (16)
C60—C50—C40121.6 (5)CL3—CA3—CR3110.13 (19)
C60—C50—H50119.2CA3—CR3—HR13109.5
C40—C50—H50119.2CA3—CR3—HR23109.5
C50—C60—C10118.7 (5)HR13—CR3—HR23109.5
C50—C60—H60120.7CA3—CR3—HR33109.5
C10—C60—H60120.7HR13—CR3—HR33109.5
O00—C70—C10113.2 (2)HR23—CR3—HR33109.5
O00—C70—H7A0108.9CA3—CL3—HL13109.5
C10—C70—H7A0108.9CA3—CL3—HL23109.5
O00—C70—H7B0108.9HL13—CL3—HL23109.5
C10—C70—H7B0108.9CA3—CL3—HL33109.5
H7A0—C70—H7B0107.8HL13—CL3—HL33109.5
C80—O00—C70115.51 (19)HL23—CL3—HL33109.5
O80—C80—N1125.1 (2)O3—C3—N4122.05 (17)
O80—C80—O00123.7 (2)O3—C3—CA3119.40 (17)
N1—C80—O00111.22 (17)N4—C3—CA3118.30 (15)
C80—N1—CA1120.98 (16)C3—N4—CA4120.71 (14)
C80—N1—H01122 (2)C3—N4—H04126.8 (16)
CA1—N1—H01117 (2)CA4—N4—H04112.4 (17)
N1—CA1—CR1107.73 (16)N4—CA4—CL4110.86 (14)
N1—CA1—C1110.98 (15)N4—CA4—C4112.00 (15)
C1—CA1—CR1107.06 (17)CL4—CA4—C4108.99 (15)
N2—CA2—CR2107.58 (14)N4—CA4—HA4108.3
C2—CA2—CR2107.19 (16)CL4—CA4—HA4108.3
N3—CA3—CR3107.07 (17)C4—CA4—HA4108.3
C3—CA3—CR3105.60 (17)CL4—CL4—HL14109.5
N1—CA1—CL1111.44 (18)CL4—CL4—HL24109.5
CR1—CA1—CL1109.90 (18)HL14—CL4—HL24109.5
C1—CA1—CL1109.61 (14)CA4—CL4—HL34109.5
CA1—CL1—HL11109.5HL14—CL4—HL34109.5
CA1—CL1—HL21109.5HL24—CL4—HL34109.5
HL11—CL1—HL21109.5O4—C4—O5125.77 (17)
CA1—CL1—HL31109.5O4—C4—CA4122.39 (17)
HL11—CL1—HL31109.5O5—C4—CA4111.79 (14)
HL21—CL1—HL31109.5C4—O5—C15123.23 (16)
CA1—CR1—HR11109.5O5—C15—C35103.25 (18)
CA1—CR1—HR21109.5O5—C15—C25109.1 (2)
HR11—CR1—HR21109.5C35—C15—C25113.5 (3)
CA1—CR1—HR31109.5O5—C15—C45108.9 (2)
HR11—CR1—HR31109.5C35—C15—C45110.7 (3)
HR21—CR1—HR31109.5C25—C15—C45111.0 (3)
O1—C1—N2122.64 (17)C15—C25—H2A5109.5
O1—C1—CA1120.60 (16)C15—C25—H2B5109.5
N2—C1—CA1116.71 (14)H2A5—C25—H2B5109.5
C1—N2—CA2122.16 (14)C15—C25—H2C5109.5
C1—N2—H02118.2 (16)H2A5—C25—H2C5109.5
CA2—N2—H02118.9 (16)H2B5—C25—H2C5109.5
N2—CA2—CL2109.97 (17)C15—C35—H3A5109.5
CR2—CA2—CL2111.13 (17)C15—C35—H3B5109.5
N2—CA2—C2110.79 (14)H3A5—C35—H3B5109.5
C2—CA2—CL2110.12 (17)C15—C35—H3C5109.5
CA2—CR2—HR12109.5H3A5—C35—H3C5109.5
CA2—CR2—HR22109.5H3B5—C35—H3C5109.5
HR12—CR2—HR22109.5C15—C45—H4A5109.5
CA2—CR2—HR32109.5C15—C45—H4B5109.5
HR12—CR2—HR32109.5H4A5—C45—H4B5109.5
HR22—CR2—HR32109.5C15—C45—H4C5109.5
CA2—CL2—HL12109.5H4A5—C45—H4C5109.5
CA2—CL2—HL22109.5H4B5—C45—H4C5109.5
HL12—CL2—HL22109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H03···O800.86 (2)2.31 (2)3.117 (2)156 (2)
N4—H04···O10.85 (2)2.22 (2)3.059 (2)169 (2)
N1—H01···O3i0.89 (2)2.05 (2)2.929 (2)171 (3)
N2—H02···O4i0.87 (2)2.27 (2)3.121 (2)165 (2)
Symmetry code: (i) x+3/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC27H42N4O7
Mr534.65
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.3730 (19), 17.032 (3), 19.032 (4)
V3)3038.3 (11)
Z4
Radiation typeCu Kα
µ (mm1)0.69
Crystal size (mm)1.4 × 1.1 × 0.9
Data collection
DiffractometerBruker D8 Venture
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.423, 0.754
No. of measured, independent and
observed [I > 2σ(I)] reflections
5835, 5541, 5018
Rint0.034
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.142, 1.16
No. of reflections5541
No. of parameters358
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.23
Absolute structureFlack (1983), with how many Friedel pairs?
Absolute structure parameter0.05 (18)

Computer programs: PROTEUM2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XTALVIEW (McRee 1999) and SwissPDBViewer (Guex & Peitsch, 1997), CHEMDRAW (Mills, 2006) and ORTEP-3 for Windows (Farrugia, 2012).

Backbone torsion angles (°) top
ω(z)O00—C80—N1—CA1173.8 (2)
ϕ(1)C80—N1—CA1—C154.8 (3)
ψ(1)N1—CA1—C1—N236.3 (2)
ω(1)CA1—C1—N2—CA2173.2 (2)
ϕ(2)C1—N2—CA2—C254.2 (2)
ψ(2)N2—CA2—C2—N339.4 (2)
ω(2)CA2—C2—N3—CA3172.5 (2)
ϕ(3)C2—N3—CA3—C375.7 (2)
ψ(3)N3—CA3—C3—N415.5 (3)
ω(3)CA3—C3—N4—CA4165.9 (2)
ϕ(4)C3—N4—CA4—C4-69.2 (2)
ψ(4)N4—CA4—C4—O5-38.3 (2)
ω(4)C4A—C4—O5—C15-176.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H03···O800.86 (2)2.31 (2)3.117 (2)156 (2)
N4—H04···O10.85 (2)2.22 (2)3.059 (2)169 (2)
N1—H01···O3i0.89 (2)2.05 (2)2.929 (2)171 (3)
N2—H02···O4i0.87 (2)2.27 (2)3.121 (2)165 (2)
Symmetry code: (i) x+3/2, y+1, z+1/2.
Selected bond angles (º) top
N1—CA1—CR1107.73 (16)N1—CA1—CL1111.44 (18)
C1—CA1—CR1107.06 (17)C1—CA1—CL1109.61 (14)
N2—CA2—CR2107.58 (14)N2—CA2—CL2109.97 (17)
C2—CA2—CR2107.19 (16)C2—CA2—CL2110.12 (17)
N3—CA3—CR3107.07 (17)N3—CA3—CL3111.98 (17)
C3—CA3—CR3105.60 (17)C3—CA3—CL3109.77 (16)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds