Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Isatin (1H-indole-2,3-dione) derivatives represent synthetically useful substrates which can be used to prepare a broad range of heterocyclic compounds. In the title compounds, C18H17NO5, (I), and C15H10FNO2, (II), the isatin ring systems are planar and form a dihedral angle of 73.04 (7)° in (I) and 76.82 (11)° in (II) with the benzyl groups. The bicyclic scaffolds in both compounds are almost superimposable, with an r.m.s. deviation of 0.061 Å. The crystal structures of both derivatives are stabilized by C—H...O inter­actions. These contacts generate an R12(7) ring motif in (I) and a C(7) chain motif in (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615018422/eg3190sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615018422/eg3190Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615018422/eg3190IIsup3.hkl
Contains datablock II

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229615018422/eg3190Isup4.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229615018422/eg3190IIsup5.cml
Supplementary material

CCDC references: 1429155; 1429154

Introduction top

Isatin (1H-indole-2,3-dione) derivatives represent synthetically useful substrates which can be used to prepare a broad range of heterocyclic compounds including examples of pharmacological significance (Bekircan & Bektas, 2008). Such isatin compounds are of inter­est due to their biological activity (Feng et al., 2010) and widespread use as synthetic precursors (da Silva et al., 2001). They show potent anti­convulsant activity at low concentrations (Mathur & Nain, 2014). The high affinity of isatin Schiff bases for chelation towards transition metal ions leads to a wide range of biological activities (Premanathan et al., 2012). We report here an iodine-mediated process for C—H functionalization of sp, sp2 and sp3 C atoms in isatin synthesis. Copper-mediated cross-de­hydrogenative C—N annulations and de­alkyl­ative C—N annulations of 2'-N-aryl/alkyl­amino­aceto­phenones and 2'-N,N-di­alkyl­amino­aceto­phenones, respectively, give isatins in good yields, and the NMR spectra [Does not follow from previous clause?] of the title compounds are in agreement with values reported in the literature (Ilangovan & Satish, 2013; Satish et al., 2015). As part of our inter­est in the identification of bioactive compounds and in our attempt to understand the above reaction mechanisms, we report here the synthesis and structure of two isatin derivatives, the title compounds, (I) and (II).

Experimental top

Synthesis and crystallization top

Preparation of 1-benzyl-4,5,6-tri­meth­oxy­indoline-2,3-dione, (I)

To a solution of 1-(2-(benzyl­amino)-2,3,4-tri­meth­oxy­phenyl)­ethanone (100 mg, 0.317 mmol) [In what solvent?], Cu(OAc)2·H2O (31.6 mg, 0.158 mmol), NaOAc (39 mg, 0.475 mmol) and di­methyl­siloxane (DMSO; 2 ml) were added at ambient temperature and the mixture heated to 353 K for 15 h in air. Progress of the reaction was monitored by thin-layer chromotography (TLC). Upon completion, the reaction mixture was allowed to cool to ambient temperature and then diluted with ethyl acetate and water. The organic phase was separated, dried over Na2SO4, filtered and concentrated. The crude product was purified by silica-gel column chromatography using hexane–ethyl acetate (9:1 v/v) as eluent. It was recrystallized from a solution in a hexane–ethyl acetate mixture (9:1 v/v) by slow evaporation. The solution was allowed to cool to room temperature (298 K) [When had it been re-heated?]. Good quality single crystals of (I) were obtained after 2 d and a crystal suitable for X-ray diffraction study was selected under an optical microscope. Compound (I) was obtained as a red solid, yield 89% (92.3 mg), m.p. 424–425 K. Spectroscopic analysis: 1H NMR (400 MHz, CDCl3, δ, p.p.m.): 7.27–7.38 (m, 5H), 5.99 (s, 1H), 4.89 (s, 2H), 4.20 (s, 3H), 3.81 (s, 3H), 3.73 (s, 3H); 13C NMR (100 MHz, CDCl3, δ, p.p.m.): 177.56, 162.24, 159.37, 154.20, 148.68, 136.39, 134.95, 129.08, 128.16, 127.29, 102.62, 90.54, 62.25, 61.48, 56.60, 43.95.

Preparation of 1-benzyl-5-fluoro­indoline-2,3-dione, (II)

To a solution of benzyl­(2-ethynyl-4-fluoro­phenyl)­amine (100 mg, 0.444 mmol) [In what solvent?], I2 (22.5 mg, 0.088 mmol) and DMSO (3 ml) were added and the mixture heated to 373 K for 3 h in air. Progress of the reaction was monitored by TLC. Upon completion, the reaction mixture was allowed to cool to ambient temperature and then quenched with aqueous sodium thio­sulfate and ethyl acetate. The organic phase was separated, dried over Na2SO4, filtered and concentrated. The crude product was purified by silica-gel column chromatography using hexane–ethyl acetate (9:1 v/v). It was recrystallized from a solution in a hexane–ethyl acetate mixture (9:1 v/v) by slow evaporation. The solution was allowed to cool to room temperature (298 K) [When had it been re-heated?]. Good quality single crystals of (II) were obtained after 3 d and a crystal suitable for X-ray diffraction study was selected under an optical microscope. Compound (II) was obtained as a red solid, yield 72% (81.5 mg), m.p. 408–410 K. Spectroscopic analysis: 1H NMR (400 MHz, CDCl3, δ, p.p.m.): 7.28–7.18 (m, 6H), 7.11 (td, J = 2.4, 2.8 and 2.8 Hz, 1H), 6.66 (dd, J = 3.6 and 3.6 Hz, 1H), 4.83 (s, 2H); 13C NMR (100 MHz, CDCl3, δ, p.p.m.): 182.7, 160.6, 158.1, 158.1, 146.8, 134.2, 129.1, 128.3, 127.4, 124.8, 124.6, 118.3, 118.2, 112.5, 112.3, 112.3, 44.2. [In the CIF tables, both crystals are described as 'solid', which is self-evident. The item #_exptl_crystal_description should be a description of the shape of the crystal, e.g. block. Please supply these details and we will add them to the CIF]

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. In (I), C-bound H atoms were included in calculated positions and treated as riding, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) for other H atoms. A similar procedure was carried out for (II). The initial structure model for both compounds showed values greater than 0.7 for the Flack parameter (Flack, 1983), so the structure models were inverted. In both cases, rather high standard uncertainties for the Flack parameter preclude reliable assignment of the absolute structure.

Results and discussion top

Perspective views of (I) and (II) are provided in Figs. 1 and 2, respectively. Corresponding bond distances and angles of the isatin ring systems in (I) and (II) are essentially equivalent and comparable with those in related structures (Helliwell et al., 2012; Lötter et al., 2007). A superposition of the isatin ring systems in (I) and (II) (Fig. 3) gives an r.m.s. deviation of 0.061 Å and underlines the conformational similarity between these molecules (Gans & Shalloway, 2001).

The isatin ring systems are almost planar, with r.m.s. deviations of the fitted atom [Specify?] amounting to 0.046 Å in (I) and 0.009 Å in (II); the bicyclic scaffolds subtend dihedral angles of 73.04 (7) and 76.82 (11)° with the benzyl groups in (I) and (II), respectively. The relative conformation about the bond joining the isatin and benzyl residues in (I) and (II) is defined by C9—N1—C1—C2 torsion angles of −2.7 (3)° in (I) and −4.8 (7)° in (II); thus, these conformations are syn-periplanar. The sums of the bond angles around atom N1 are almost 360.0° (Table 2) in both (I) and (II), indicating little evidence for the presence of sp3 lone pairs.

The crystal structures of (I) and (II) are stabilized by non-classical C—H···O hydrogen bonds (Tables 3 and 4). In (I), the shortest contacts give rise to an intra­molecular R(6) (Bernstein et al., 1995) and an inter­molecular R12(7) motif (Fig. 4). The structure of (II) extends along the [110] direction with the contact between C3 and O2 via H3, generating a C(7) motif (Fig. 5).

Computing details top

Data collection: SMART (Bruker, 2008) for (I); SMART (Bruker, 2004) for (II). Cell refinement: SAINT (Bruker, 2008) for (I); SAINT (Bruker, 2004) for (II). Data reduction: SAINT (Bruker, 2008) for (I); SAINT (Bruker, 2004) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: QMOL (Gans & Shalloway, 2001), Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular structure of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. A superimposed fit of the isatin derivatives (I) (black) and (II) (green).
[Figure 4] Fig. 4. The most relevant C–H···O interactions in (I), shown as dashed lines. H atoms not involved in short contacts have been omitted for clarity. [Symmetry code: (i) 2 − x, 1/2 + y, −1/2 − z.] [For the sake of clarity, we would prefer atom labels to be on the background and not on or overlapping atoms. Can a revised plot be supplied?]
[Figure 5] Fig. 5. The packing in (II), showing the C–H···O interactions along the [110] direction as dashed lines; a C(7) motif is generated. H atoms not involved in short contacts have been omitted for clarity.
(I) 1-Benzyl-4,5,6-trimethoxyindoline-2,3-dione top
Crystal data top
C18H17NO5F(000) = 688
Mr = 327.32Dx = 1.394 Mg m3
Orthorhombic, P212121Melting point: 425 K
a = 7.548 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.066 (5) ŵ = 0.10 mm1
c = 15.815 (5) ÅT = 293 K
V = 1559.7 (13) Å3Block, red
Z = 40.20 × 0.15 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3720 independent reflections
Radiation source: fine-focus sealed tube3183 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω and φ scansθmax = 28.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 109
Tmin = 0.980, Tmax = 0.990k = 1617
8685 measured reflectionsl = 1916
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.1642P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.17 e Å3
3720 reflectionsΔρmin = 0.31 e Å3
220 parametersAbsolute structure: Flack x parameter determined using 1221 quotients [(I+) - (I-)]/[(I+) + (I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.2 (3)
Primary atom site location: structure-invariant direct methods
Crystal data top
C18H17NO5V = 1559.7 (13) Å3
Mr = 327.32Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.548 (5) ŵ = 0.10 mm1
b = 13.066 (5) ÅT = 293 K
c = 15.815 (5) Å0.20 × 0.15 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3720 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3183 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.990Rint = 0.019
8685 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.102Δρmax = 0.17 e Å3
S = 1.02Δρmin = 0.31 e Å3
3720 reflectionsAbsolute structure: Flack x parameter determined using 1221 quotients [(I+) - (I-)]/[(I+) + (I-)] (Parsons et al., 2013)
220 parametersAbsolute structure parameter: 0.2 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9380 (2)0.80276 (13)0.21083 (11)0.0359 (4)
O11.0084 (3)0.95829 (13)0.27160 (11)0.0575 (5)
O20.9315 (3)1.03455 (12)0.10170 (12)0.0566 (5)
O30.8453 (3)0.92388 (13)0.06095 (10)0.0565 (5)
O40.7933 (2)0.71734 (12)0.12615 (9)0.0427 (4)
O50.8121 (2)0.56330 (11)0.01949 (10)0.0464 (4)
C10.8981 (2)0.76966 (16)0.12762 (13)0.0334 (4)
C20.8753 (3)0.67042 (15)0.10177 (13)0.0362 (4)
H20.88140.61580.13940.043*
C30.8421 (3)0.65593 (15)0.01495 (13)0.0359 (4)
C40.8361 (3)0.73723 (16)0.04315 (13)0.0350 (4)
C50.8571 (3)0.83774 (16)0.01407 (13)0.0371 (5)
C60.8882 (3)0.85266 (16)0.07256 (13)0.0358 (4)
C70.9269 (3)0.94496 (17)0.12030 (14)0.0406 (5)
C80.9645 (3)0.90645 (16)0.21160 (14)0.0406 (5)
C90.9552 (3)0.73712 (17)0.28543 (13)0.0398 (5)
H9A0.99790.67030.26830.048*
H9B1.04160.76650.32380.048*
C100.7804 (3)0.72530 (16)0.33074 (12)0.0362 (4)
C110.7229 (3)0.80044 (18)0.38612 (15)0.0472 (5)
H110.79560.85620.39740.057*
C120.5587 (4)0.7939 (2)0.42497 (17)0.0575 (7)
H120.52250.84440.46260.069*
C130.4492 (4)0.7119 (2)0.40751 (17)0.0600 (7)
H130.33730.70810.43200.072*
C140.5064 (4)0.6353 (2)0.35341 (17)0.0552 (6)
H140.43380.57940.34220.066*
C150.6721 (3)0.64206 (18)0.31603 (14)0.0444 (5)
H150.71070.58990.28060.053*
C160.8733 (5)0.9228 (2)0.14907 (16)0.0615 (7)
H16A0.97570.88210.16180.092*
H16B0.77150.89410.17670.092*
H16C0.89170.99150.16880.092*
C170.9261 (4)0.6656 (2)0.17463 (16)0.0537 (6)
H17A1.03670.70130.16940.080*
H17B0.93940.59690.15410.080*
H17C0.89120.66400.23300.080*
C180.8117 (4)0.47563 (17)0.03439 (16)0.0559 (7)
H18A0.92630.46790.05990.084*
H18B0.72400.48430.07780.084*
H18C0.78440.41570.00170.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0411 (9)0.0385 (9)0.0281 (8)0.0028 (7)0.0030 (7)0.0020 (7)
O10.0827 (13)0.0496 (9)0.0402 (9)0.0133 (9)0.0000 (9)0.0113 (8)
O20.0830 (13)0.0352 (8)0.0516 (10)0.0059 (8)0.0035 (10)0.0002 (7)
O30.0898 (13)0.0418 (9)0.0379 (9)0.0031 (9)0.0002 (9)0.0062 (7)
O40.0428 (8)0.0532 (9)0.0320 (7)0.0017 (7)0.0059 (6)0.0027 (6)
O50.0630 (10)0.0375 (8)0.0385 (8)0.0092 (8)0.0022 (7)0.0036 (6)
C10.0292 (9)0.0395 (10)0.0314 (10)0.0015 (8)0.0027 (8)0.0029 (8)
C20.0404 (10)0.0351 (10)0.0331 (10)0.0018 (8)0.0014 (9)0.0015 (8)
C30.0353 (10)0.0342 (10)0.0381 (11)0.0035 (8)0.0016 (8)0.0031 (8)
C40.0314 (10)0.0431 (11)0.0306 (10)0.0012 (9)0.0021 (8)0.0015 (8)
C50.0367 (11)0.0385 (11)0.0362 (11)0.0011 (9)0.0001 (8)0.0045 (8)
C60.0375 (10)0.0347 (10)0.0351 (11)0.0023 (8)0.0016 (8)0.0001 (8)
C70.0446 (11)0.0387 (11)0.0384 (11)0.0035 (9)0.0048 (9)0.0035 (9)
C80.0440 (11)0.0395 (11)0.0382 (11)0.0043 (9)0.0064 (9)0.0037 (9)
C90.0424 (11)0.0458 (11)0.0311 (10)0.0035 (10)0.0019 (9)0.0024 (9)
C100.0435 (10)0.0401 (10)0.0249 (9)0.0055 (9)0.0033 (8)0.0060 (8)
C110.0559 (13)0.0469 (12)0.0388 (12)0.0054 (10)0.0007 (11)0.0049 (10)
C120.0641 (15)0.0656 (16)0.0430 (13)0.0192 (14)0.0109 (12)0.0019 (11)
C130.0472 (13)0.090 (2)0.0429 (13)0.0109 (14)0.0085 (11)0.0148 (14)
C140.0533 (14)0.0636 (15)0.0488 (14)0.0098 (13)0.0014 (11)0.0146 (12)
C150.0558 (14)0.0440 (11)0.0333 (11)0.0005 (11)0.0014 (10)0.0030 (9)
C160.093 (2)0.0507 (14)0.0403 (13)0.0020 (14)0.0006 (14)0.0106 (11)
C170.0646 (16)0.0560 (14)0.0404 (13)0.0027 (12)0.0063 (12)0.0087 (11)
C180.086 (2)0.0361 (11)0.0456 (13)0.0067 (12)0.0069 (14)0.0021 (10)
Geometric parameters (Å, º) top
N1—C81.370 (3)C9—H9B0.9700
N1—C11.418 (3)C10—C151.381 (3)
N1—C91.464 (3)C10—C111.386 (3)
O1—C81.212 (3)C11—C121.386 (4)
O2—C71.207 (3)C11—H110.9300
O3—C51.351 (3)C12—C131.381 (4)
O3—C161.410 (3)C12—H120.9300
O4—C41.377 (2)C13—C141.386 (4)
O4—C171.432 (3)C13—H130.9300
O5—C31.346 (2)C14—C151.386 (4)
O5—C181.428 (3)C14—H140.9300
C1—C21.370 (3)C15—H150.9300
C1—C61.393 (3)C16—H16A0.9600
C2—C31.409 (3)C16—H16B0.9600
C2—H20.9300C16—H16C0.9600
C3—C41.405 (3)C17—H17A0.9600
C4—C51.400 (3)C17—H17B0.9600
C5—C61.404 (3)C17—H17C0.9600
C6—C71.453 (3)C18—H18A0.9600
C7—C81.555 (3)C18—H18B0.9600
C9—C101.510 (3)C18—H18C0.9600
C9—H9A0.9700
C8—N1—C1109.94 (17)C15—C10—C11118.6 (2)
C8—N1—C9124.00 (18)C15—C10—C9121.2 (2)
C1—N1—C9126.02 (18)C11—C10—C9120.1 (2)
C5—O3—C16121.64 (19)C10—C11—C12121.1 (2)
C4—O4—C17115.81 (18)C10—C11—H11119.4
C3—O5—C18118.70 (17)C12—C11—H11119.4
C2—C1—C6122.93 (19)C13—C12—C11119.7 (2)
C2—C1—N1126.31 (19)C13—C12—H12120.2
C6—C1—N1110.74 (17)C11—C12—H12120.2
C1—C2—C3116.12 (18)C12—C13—C14119.8 (2)
C1—C2—H2121.9C12—C13—H13120.1
C3—C2—H2121.9C14—C13—H13120.1
O5—C3—C4114.18 (18)C15—C14—C13119.9 (3)
O5—C3—C2123.03 (18)C15—C14—H14120.1
C4—C3—C2122.79 (18)C13—C14—H14120.1
O4—C4—C5121.11 (18)C10—C15—C14120.9 (2)
O4—C4—C3119.23 (18)C10—C15—H15119.6
C5—C4—C3119.37 (18)C14—C15—H15119.6
O3—C5—C4126.42 (19)O3—C16—H16A109.5
O3—C5—C6115.54 (19)O3—C16—H16B109.5
C4—C5—C6118.01 (18)H16A—C16—H16B109.5
C1—C6—C5120.73 (19)O3—C16—H16C109.5
C1—C6—C7108.11 (18)H16A—C16—H16C109.5
C5—C6—C7131.0 (2)H16B—C16—H16C109.5
O2—C7—C6133.2 (2)O4—C17—H17A109.5
O2—C7—C8122.3 (2)O4—C17—H17B109.5
C6—C7—C8104.52 (17)H17A—C17—H17B109.5
O1—C8—N1126.9 (2)O4—C17—H17C109.5
O1—C8—C7126.6 (2)H17A—C17—H17C109.5
N1—C8—C7106.56 (17)H17B—C17—H17C109.5
N1—C9—C10111.39 (17)O5—C18—H18A109.5
N1—C9—H9A109.4O5—C18—H18B109.5
C10—C9—H9A109.4H18A—C18—H18B109.5
N1—C9—H9B109.4O5—C18—H18C109.5
C10—C9—H9B109.4H18A—C18—H18C109.5
H9A—C9—H9B108.0H18B—C18—H18C109.5
C8—N1—C1—C2175.4 (2)C4—C5—C6—C10.1 (3)
C9—N1—C1—C22.7 (3)O3—C5—C6—C76.7 (3)
C8—N1—C1—C63.2 (2)C4—C5—C6—C7175.2 (2)
C9—N1—C1—C6178.73 (19)C1—C6—C7—O2178.4 (3)
C6—C1—C2—C30.5 (3)C5—C6—C7—O26.0 (4)
N1—C1—C2—C3177.94 (18)C1—C6—C7—C80.8 (2)
C18—O5—C3—C4178.7 (2)C5—C6—C7—C8174.7 (2)
C18—O5—C3—C20.8 (3)C1—N1—C8—O1176.5 (2)
C1—C2—C3—O5178.1 (2)C9—N1—C8—O11.5 (4)
C1—C2—C3—C41.4 (3)C1—N1—C8—C73.6 (2)
C17—O4—C4—C5114.1 (2)C9—N1—C8—C7178.32 (18)
C17—O4—C4—C372.1 (3)O2—C7—C8—O13.3 (4)
O5—C3—C4—O43.1 (3)C6—C7—C8—O1177.4 (2)
C2—C3—C4—O4176.46 (19)O2—C7—C8—N1176.6 (2)
O5—C3—C4—C5177.05 (19)C6—C7—C8—N12.7 (2)
C2—C3—C4—C52.5 (3)C8—N1—C9—C1091.5 (3)
C16—O3—C5—C423.5 (4)C1—N1—C9—C1090.7 (2)
C16—O3—C5—C6158.6 (2)N1—C9—C10—C1596.1 (2)
O4—C4—C5—O32.4 (3)N1—C9—C10—C1181.7 (2)
C3—C4—C5—O3176.2 (2)C15—C10—C11—C121.3 (3)
O4—C4—C5—C6175.51 (18)C9—C10—C11—C12176.6 (2)
C3—C4—C5—C61.6 (3)C10—C11—C12—C130.9 (4)
C2—C1—C6—C51.2 (3)C11—C12—C13—C142.0 (4)
N1—C1—C6—C5177.40 (19)C12—C13—C14—C151.0 (4)
C2—C1—C6—C7177.35 (19)C11—C10—C15—C142.3 (3)
N1—C1—C6—C71.3 (2)C9—C10—C15—C14175.5 (2)
O3—C5—C6—C1178.2 (2)C13—C14—C15—C101.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···O50.962.382.924 (3)116
(II) 1-Benzyl-5-fluoroindoline-2,3-dione top
Crystal data top
C15H10FNO2Dx = 1.392 Mg m3
Mr = 255.24Melting point: 410 K
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
a = 6.6616 (12) ÅCell parameters from 2807 reflections
b = 4.8577 (10) Åθ = 2.1–30.6°
c = 19.099 (4) ŵ = 0.10 mm1
β = 99.821 (6)°T = 296 K
V = 609.0 (2) Å3Block, red
Z = 20.35 × 0.30 × 0.25 mm
F(000) = 264
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
1859 independent reflections
Radiation source: fine-focus sealed tube1318 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω and φ scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 77
Tmin = 0.963, Tmax = 0.979k = 55
7057 measured reflectionsl = 2022
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + 0.2695P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max < 0.001
S = 1.16Δρmax = 0.21 e Å3
1859 reflectionsΔρmin = 0.17 e Å3
172 parametersAbsolute structure: Flack x parameter determined using 484 quotients [(I+) - (I-)]/[(I+) + (I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.2 (7)
Primary atom site location: structure-invariant direct methods
Crystal data top
C15H10FNO2V = 609.0 (2) Å3
Mr = 255.24Z = 2
Monoclinic, PcMo Kα radiation
a = 6.6616 (12) ŵ = 0.10 mm1
b = 4.8577 (10) ÅT = 296 K
c = 19.099 (4) Å0.35 × 0.30 × 0.25 mm
β = 99.821 (6)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
1859 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1318 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.979Rint = 0.052
7057 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.080Δρmax = 0.21 e Å3
S = 1.16Δρmin = 0.17 e Å3
1859 reflectionsAbsolute structure: Flack x parameter determined using 484 quotients [(I+) - (I-)]/[(I+) + (I-)] (Parsons et al., 2013)
172 parametersAbsolute structure parameter: 0.2 (7)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.5155 (5)0.9209 (8)0.93948 (19)0.0784 (12)
N10.6635 (6)0.2072 (9)1.1660 (2)0.0408 (12)
O10.4421 (7)0.1119 (9)1.2022 (3)0.0751 (14)
O20.1608 (6)0.1218 (9)1.0805 (2)0.0722 (13)
C10.6498 (7)0.4013 (11)1.1103 (3)0.0353 (14)
C20.7988 (8)0.5760 (11)1.0944 (3)0.0419 (15)
H20.92820.57791.12190.050*
C30.7496 (9)0.7494 (12)1.0360 (3)0.0496 (17)
H30.84780.86781.02380.060*
C40.5574 (9)0.7473 (13)0.9962 (3)0.0494 (16)
C50.4064 (8)0.5751 (12)1.0110 (3)0.0480 (16)
H50.27720.57550.98340.058*
C60.4546 (8)0.4019 (11)1.0686 (3)0.0385 (14)
C70.3358 (9)0.1944 (12)1.0989 (3)0.0486 (16)
C80.4836 (9)0.0692 (12)1.1633 (3)0.0515 (17)
C90.8499 (8)0.1397 (11)1.2160 (3)0.0467 (15)
H9A0.96030.11221.18950.056*
H9B0.82930.03221.23960.056*
C100.9120 (9)0.3594 (10)1.2717 (3)0.0418 (14)
C110.7832 (9)0.4374 (12)1.3171 (3)0.0541 (17)
H110.65490.35731.31280.065*
C120.8420 (11)0.6342 (14)1.3693 (3)0.065 (2)
H120.75320.68611.39960.078*
C131.0316 (12)0.7520 (14)1.3761 (3)0.069 (2)
H131.07140.88291.41120.082*
C141.1626 (10)0.6773 (13)1.3312 (4)0.0644 (19)
H141.29070.75821.33560.077*
C151.1029 (9)0.4804 (12)1.2793 (3)0.0521 (17)
H151.19210.42881.24920.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.090 (3)0.075 (3)0.065 (2)0.003 (2)0.000 (2)0.023 (2)
N10.037 (3)0.034 (3)0.051 (3)0.003 (2)0.007 (3)0.002 (3)
O10.077 (3)0.069 (3)0.085 (4)0.012 (3)0.031 (3)0.018 (3)
O20.042 (3)0.079 (3)0.098 (4)0.014 (2)0.018 (2)0.012 (3)
C10.036 (4)0.029 (3)0.042 (4)0.004 (3)0.010 (3)0.005 (3)
C20.036 (4)0.044 (4)0.045 (4)0.002 (3)0.001 (3)0.006 (3)
C30.049 (4)0.045 (4)0.056 (5)0.009 (3)0.013 (4)0.001 (3)
C40.059 (5)0.041 (4)0.046 (4)0.004 (3)0.003 (3)0.003 (3)
C50.042 (4)0.053 (5)0.046 (4)0.005 (3)0.002 (3)0.008 (4)
C60.034 (4)0.038 (4)0.044 (4)0.003 (3)0.007 (3)0.010 (3)
C70.034 (4)0.056 (4)0.060 (4)0.001 (3)0.019 (3)0.014 (3)
C80.057 (4)0.046 (4)0.055 (5)0.003 (3)0.020 (3)0.001 (4)
C90.049 (4)0.039 (4)0.052 (4)0.006 (3)0.008 (3)0.004 (3)
C100.051 (4)0.033 (3)0.041 (4)0.008 (3)0.005 (3)0.008 (3)
C110.057 (4)0.050 (4)0.057 (4)0.003 (3)0.014 (3)0.003 (4)
C120.087 (6)0.060 (5)0.051 (5)0.017 (4)0.018 (4)0.003 (4)
C130.095 (6)0.055 (4)0.048 (5)0.009 (4)0.011 (4)0.004 (4)
C140.059 (5)0.065 (5)0.063 (5)0.012 (4)0.007 (4)0.001 (4)
C150.045 (4)0.059 (4)0.051 (4)0.008 (3)0.004 (3)0.003 (4)
Geometric parameters (Å, º) top
F1—C41.364 (6)C7—C81.563 (8)
N1—C81.367 (7)C9—C101.514 (7)
N1—C11.413 (6)C9—H9A0.9700
N1—C91.469 (6)C9—H9B0.9700
O1—C81.213 (6)C10—C111.373 (7)
O2—C71.211 (6)C10—C151.386 (8)
C1—C21.378 (6)C11—C121.389 (8)
C1—C61.404 (7)C11—H110.9300
C2—C31.392 (8)C12—C131.372 (9)
C2—H20.9300C12—H120.9300
C3—C41.373 (7)C13—C141.373 (9)
C3—H30.9300C13—H130.9300
C4—C51.374 (7)C14—C151.386 (8)
C5—C61.378 (7)C14—H140.9300
C5—H50.9300C15—H150.9300
C6—C71.461 (8)
C8—N1—C1110.8 (4)N1—C8—C7105.6 (5)
C8—N1—C9123.6 (5)N1—C9—C10113.5 (4)
C1—N1—C9125.3 (4)N1—C9—H9A108.9
C2—C1—C6120.4 (5)C10—C9—H9A108.9
C2—C1—N1128.3 (5)N1—C9—H9B108.9
C6—C1—N1111.3 (4)C10—C9—H9B108.9
C1—C2—C3118.0 (5)H9A—C9—H9B107.7
C1—C2—H2121.0C11—C10—C15118.5 (6)
C3—C2—H2121.0C11—C10—C9120.9 (5)
C4—C3—C2120.6 (5)C15—C10—C9120.6 (5)
C4—C3—H3119.7C10—C11—C12120.9 (6)
C2—C3—H3119.7C10—C11—H11119.6
F1—C4—C3118.7 (6)C12—C11—H11119.6
F1—C4—C5118.8 (6)C13—C12—C11119.8 (6)
C3—C4—C5122.5 (6)C13—C12—H12120.1
C4—C5—C6117.1 (5)C11—C12—H12120.1
C4—C5—H5121.4C12—C13—C14120.3 (6)
C6—C5—H5121.4C12—C13—H13119.9
C5—C6—C1121.4 (5)C14—C13—H13119.9
C5—C6—C7132.0 (5)C13—C14—C15119.6 (6)
C1—C6—C7106.6 (5)C13—C14—H14120.2
O2—C7—C6130.2 (6)C15—C14—H14120.2
O2—C7—C8124.1 (6)C14—C15—C10120.9 (6)
C6—C7—C8105.6 (5)C14—C15—H15119.5
O1—C8—N1128.5 (6)C10—C15—H15119.5
O1—C8—C7125.9 (6)
C8—N1—C1—C2178.9 (5)C1—N1—C8—O1179.2 (6)
C9—N1—C1—C24.8 (8)C9—N1—C8—O14.9 (9)
C8—N1—C1—C61.1 (6)C1—N1—C8—C71.2 (5)
C9—N1—C1—C6175.2 (5)C9—N1—C8—C7175.4 (4)
C6—C1—C2—C30.4 (7)O2—C7—C8—O10.1 (9)
N1—C1—C2—C3179.6 (5)C6—C7—C8—O1179.5 (6)
C1—C2—C3—C40.7 (8)O2—C7—C8—N1179.8 (5)
C2—C3—C4—F1179.9 (5)C6—C7—C8—N10.9 (5)
C2—C3—C4—C50.7 (9)C8—N1—C9—C10111.8 (6)
F1—C4—C5—C6179.7 (5)C1—N1—C9—C1074.8 (6)
C3—C4—C5—C60.4 (8)N1—C9—C10—C1159.0 (7)
C4—C5—C6—C10.1 (8)N1—C9—C10—C15123.0 (5)
C4—C5—C6—C7179.3 (6)C15—C10—C11—C120.4 (8)
C2—C1—C6—C50.1 (7)C9—C10—C11—C12178.4 (5)
N1—C1—C6—C5179.9 (5)C10—C11—C12—C130.3 (9)
C2—C1—C6—C7179.5 (5)C11—C12—C13—C140.4 (10)
N1—C1—C6—C70.5 (6)C12—C13—C14—C150.5 (9)
C5—C6—C7—O20.2 (10)C13—C14—C15—C100.5 (9)
C1—C6—C7—O2179.5 (6)C11—C10—C15—C140.4 (8)
C5—C6—C7—C8179.1 (6)C9—C10—C15—C14178.5 (5)
C1—C6—C7—C80.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.503.272 (7)140
C9—H9A···O2ii0.972.663.580 (7)159
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC18H17NO5C15H10FNO2
Mr327.32255.24
Crystal system, space groupOrthorhombic, P212121Monoclinic, Pc
Temperature (K)293296
a, b, c (Å)7.548 (5), 13.066 (5), 15.815 (5)6.6616 (12), 4.8577 (10), 19.099 (4)
α, β, γ (°)90, 90, 9090, 99.821 (6), 90
V3)1559.7 (13)609.0 (2)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.100.10
Crystal size (mm)0.20 × 0.15 × 0.100.35 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Bruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Multi-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.980, 0.9900.963, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
8685, 3720, 3183 7057, 1859, 1318
Rint0.0190.052
(sin θ/λ)max1)0.6700.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.102, 1.02 0.055, 0.080, 1.16
No. of reflections37201859
No. of parameters220172
No. of restraints02
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.310.21, 0.17
Absolute structureFlack x parameter determined using 1221 quotients [(I+) - (I-)]/[(I+) + (I-)] (Parsons et al., 2013)Flack x parameter determined using 484 quotients [(I+) - (I-)]/[(I+) + (I-)] (Parsons et al., 2013)
Absolute structure parameter0.2 (3)0.2 (7)

Computer programs: SMART (Bruker, 2008), SMART (Bruker, 2004), SAINT (Bruker, 2008), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), QMOL (Gans & Shalloway, 2001), Mercury (Macrae et al., 2008), WinGX publication routines (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···O50.962.382.924 (3)115.7
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.503.272 (7)140.0
C9—H9A···O2ii0.972.663.580 (7)158.9
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.
Selected geometric parameters (°) for (I) and (II) top
(I)(II)
C8—N1—C1109.94 (17)110.8 (4)
C8—N1—C9124.00 (18)123.6 (5)
C1—N1—C9126.02 (18)125.3 (4)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds