Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109004910/em3022sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270109004910/em3022Isup2.hkl |
CCDC reference: 649177
For related literature, see: Allen (2002); Bruno et al. (2004); Corrêa (1978); Da Cruz, de Moraes, dos Santos, da Silva, Brigagão, Ellena & Doriguetto (2008); Delle Monache, Delle Monache & Bettolo (1983); Derogis et al. (2008); Doriguetto et al. (2001, 2006); Dos Santos, Corrêa, Rocha, Nagem, Oliveira, Lima & Oliveira (2007); Fernández et al. (2001); Flack (2003); Gauthier et al. (2006); Kabsch (1976); Laszczyk et al. (2006); Lemos et al. (2006); Madureira et al. (2004); Martins et al. (2007); Nakai et al. (1985); Pimenta, Silva, Silva, Barbosa, Ellena & Doriguetto (2006); Sahdeo et al. (2007); Shai et al. (2008); Shamma et al. (1962); Silva et al. (2002); Soares et al. (2006); Śliwowski & Kasprzyk (1974).
The leaves of G. brasiliensis were collected in Viçosa, Minas Gerais state, Brazil, in 2006. A voucher specimen (VIC26240) is deposited at herbarium of Universidade Federal de Viçosa. The leaves were dried and submitted to a dichloromethane extraction. The solvent was removed in vacuum and the dichloromethane extract (10 g) was submitted to column chromatography using silica gel. This extract was eluted in increasing amounts of hexane, hexane/ethyl acetate, ethyl acetate and ethyl acetate/ethanol, obtaining 95 fractions. From fraction 26 (hexane/ethyl acetate 9:1 v/v), a white solid was obtained by recrystallization with methanol, yielding lupeol (525 mg). Single crystals were obtained after one week by slow evaporation from a chloroform and methanol (2:1 v/v) solution at 283 K.
H atoms bound to C atoms were located from an electron-density difference synthesis and refined as riding on their parent atoms, with Uiso(H) values of 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) for the remaining H atoms. The hydroxy H atom was located by difference Fourier synthesis and was refined isotropically. In the absence of significant anomalous scattering, the Friedel pair reflections were merged before final refinement.
Data collection: Collect (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
C30H50O | Dx = 1.077 Mg m−3 |
Mr = 426.7 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P43 | Cell parameters from 8982 reflections |
Hall symbol: P 4cw | θ = 2.9–25.7° |
a = 19.1006 (14) Å | µ = 0.06 mm−1 |
c = 7.2128 (4) Å | T = 298 K |
V = 2631.5 (3) Å3 | Needle, colourless |
Z = 4 | 0.40 × 0.06 × 0.04 mm |
F(000) = 952 |
Nonius KappaCCD diffractometer | 1943 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.080 |
Horizonally mounted graphite crystal monochromator | θmax = 25.7°, θmin = 3.2° |
Detector resolution: 9 pixels mm-1 | h = −23→18 |
ϕ scans and ω scans winth κ offsets | k = −23→20 |
7896 measured reflections | l = −8→7 |
2655 independent reflections |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.045 | w = 1/[σ2(Fo2) + (0.0606P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.113 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.1 e Å−3 |
2655 reflections | Δρmin = −0.10 e Å−3 |
284 parameters |
C30H50O | Z = 4 |
Mr = 426.7 | Mo Kα radiation |
Tetragonal, P43 | µ = 0.06 mm−1 |
a = 19.1006 (14) Å | T = 298 K |
c = 7.2128 (4) Å | 0.40 × 0.06 × 0.04 mm |
V = 2631.5 (3) Å3 |
Nonius KappaCCD diffractometer | 1943 reflections with I > 2σ(I) |
7896 measured reflections | Rint = 0.080 |
2655 independent reflections |
R[F2 > 2σ(F2)] = 0.045 | 1 restraint |
wR(F2) = 0.113 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.1 e Å−3 |
2655 reflections | Δρmin = −0.10 e Å−3 |
284 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.42390 (11) | 0.48740 (11) | 0.7438 (3) | 0.0655 (5) | |
C1 | 0.26606 (14) | 0.39431 (15) | 0.9341 (4) | 0.0584 (7) | |
H1A | 0.2528 | 0.3853 | 1.0617 | 0.07* | |
H1B | 0.2733 | 0.3494 | 0.8741 | 0.07* | |
C2 | 0.33495 (14) | 0.43490 (16) | 0.9326 (4) | 0.0606 (7) | |
H2A | 0.3294 | 0.478 | 1.0022 | 0.073* | |
H2B | 0.371 | 0.4072 | 0.9926 | 0.073* | |
C3 | 0.35750 (13) | 0.45196 (14) | 0.7372 (4) | 0.0559 (7) | |
H3 | 0.3646 | 0.4076 | 0.6718 | 0.067* | |
C4 | 0.30280 (14) | 0.49429 (14) | 0.6280 (4) | 0.0542 (6) | |
C5 | 0.23229 (13) | 0.45354 (13) | 0.6396 (3) | 0.0486 (6) | |
H5 | 0.2421 | 0.4087 | 0.5787 | 0.058* | |
C6 | 0.17303 (14) | 0.48551 (14) | 0.5247 (4) | 0.0568 (7) | |
H6A | 0.1542 | 0.526 | 0.5889 | 0.068* | |
H6B | 0.1913 | 0.5011 | 0.4062 | 0.068* | |
C7 | 0.11475 (14) | 0.43232 (14) | 0.4926 (4) | 0.0532 (6) | |
H7A | 0.1333 | 0.3936 | 0.4208 | 0.064* | |
H7B | 0.078 | 0.4542 | 0.4201 | 0.064* | |
C8 | 0.08270 (13) | 0.40340 (12) | 0.6742 (3) | 0.0467 (6) | |
C9 | 0.14331 (13) | 0.37950 (13) | 0.8053 (3) | 0.0470 (6) | |
H9 | 0.1648 | 0.3396 | 0.7414 | 0.056* | |
C10 | 0.20527 (13) | 0.43256 (13) | 0.8362 (3) | 0.0490 (6) | |
C11 | 0.11373 (14) | 0.34848 (14) | 0.9858 (4) | 0.0565 (7) | |
H11A | 0.1521 | 0.3318 | 1.062 | 0.068* | |
H11B | 0.0896 | 0.3849 | 1.0541 | 0.068* | |
C12 | 0.06315 (14) | 0.28812 (15) | 0.9494 (4) | 0.0555 (7) | |
H12A | 0.0886 | 0.2492 | 0.8954 | 0.067* | |
H12B | 0.0433 | 0.2725 | 1.0661 | 0.067* | |
C13 | 0.00426 (13) | 0.30984 (14) | 0.8190 (4) | 0.0517 (6) | |
H13 | −0.0199 | 0.3492 | 0.8784 | 0.062* | |
C14 | 0.03361 (13) | 0.33778 (13) | 0.6315 (3) | 0.0489 (6) | |
C15 | −0.02787 (14) | 0.35906 (14) | 0.5015 (4) | 0.0618 (7) | |
H15A | −0.0475 | 0.4028 | 0.5461 | 0.074* | |
H15B | −0.0091 | 0.3677 | 0.3786 | 0.074* | |
C16 | −0.08757 (15) | 0.30504 (15) | 0.4849 (4) | 0.0667 (8) | |
H16A | −0.1257 | 0.3253 | 0.4142 | 0.08* | |
H16B | −0.0707 | 0.2643 | 0.4181 | 0.08* | |
C17 | −0.11480 (14) | 0.28221 (15) | 0.6751 (5) | 0.0641 (8) | |
C18 | −0.05153 (14) | 0.25305 (13) | 0.7842 (4) | 0.0537 (7) | |
H18 | −0.0295 | 0.2181 | 0.7036 | 0.064* | |
C19 | −0.08340 (15) | 0.21241 (15) | 0.9469 (5) | 0.0633 (7) | |
H19 | −0.0894 | 0.2447 | 1.0513 | 0.076* | |
C20 | −0.04282 (17) | 0.14889 (15) | 1.0145 (5) | 0.0671 (8) | |
C21 | −0.15751 (16) | 0.19062 (18) | 0.8756 (5) | 0.0767 (9) | |
H21A | −0.1627 | 0.1401 | 0.8778 | 0.092* | |
H21B | −0.1938 | 0.2112 | 0.9523 | 0.092* | |
C22 | −0.16245 (16) | 0.21806 (17) | 0.6776 (5) | 0.0756 (9) | |
H22A | −0.2102 | 0.2309 | 0.6473 | 0.091* | |
H22B | −0.1464 | 0.1831 | 0.5897 | 0.091* | |
C23 | 0.29855 (16) | 0.57027 (14) | 0.6948 (5) | 0.0697 (8) | |
H23A | 0.2927 | 0.5711 | 0.8269 | 0.105* | |
H23B | 0.2594 | 0.593 | 0.637 | 0.105* | |
H23C | 0.3409 | 0.5944 | 0.6622 | 0.105* | |
C24 | 0.32698 (17) | 0.49550 (18) | 0.4236 (4) | 0.0727 (9) | |
H24A | 0.2994 | 0.5288 | 0.3556 | 0.109* | |
H24B | 0.3211 | 0.4498 | 0.3703 | 0.109* | |
H24C | 0.3754 | 0.5087 | 0.4179 | 0.109* | |
C25 | 0.18454 (16) | 0.49564 (15) | 0.9588 (4) | 0.0608 (7) | |
H25A | 0.1531 | 0.4803 | 1.0543 | 0.091* | |
H25B | 0.1619 | 0.5305 | 0.8838 | 0.091* | |
H25C | 0.2258 | 0.5153 | 1.0142 | 0.091* | |
C26 | 0.03930 (14) | 0.46306 (13) | 0.7617 (5) | 0.0598 (7) | |
H26A | 0.0669 | 0.5051 | 0.7653 | 0.09* | |
H26B | 0.026 | 0.4502 | 0.8854 | 0.09* | |
H26C | −0.002 | 0.471 | 0.6886 | 0.09* | |
C27 | 0.07381 (15) | 0.27927 (14) | 0.5296 (4) | 0.0589 (7) | |
H27A | 0.1102 | 0.2616 | 0.6084 | 0.088* | |
H27B | 0.0941 | 0.2978 | 0.4181 | 0.088* | |
H27C | 0.0421 | 0.242 | 0.4989 | 0.088* | |
C28 | −0.15228 (16) | 0.34300 (17) | 0.7735 (6) | 0.0827 (10) | |
H28A | −0.1936 | 0.3554 | 0.7054 | 0.124* | |
H28B | −0.1215 | 0.3827 | 0.7798 | 0.124* | |
H28C | −0.1651 | 0.3289 | 0.8966 | 0.124* | |
C29 | 0.00880 (17) | 0.11831 (17) | 0.9239 (5) | 0.0787 (9) | |
H29A | 0.0296 | 0.0782 | 0.972 | 0.094* | |
H29B | 0.0244 | 0.1368 | 0.8121 | 0.094* | |
C30 | −0.0681 (2) | 0.1188 (2) | 1.1962 (6) | 0.1070 (13) | |
H30A | −0.0424 | 0.0768 | 1.2237 | 0.161* | |
H30B | −0.1171 | 0.1081 | 1.1871 | 0.161* | |
H30C | −0.0608 | 0.1524 | 1.2934 | 0.161* | |
H1 | 0.4509 (19) | 0.465 (2) | 0.677 (6) | 0.099 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0531 (12) | 0.0744 (14) | 0.0691 (13) | −0.0050 (10) | 0.0029 (10) | −0.0179 (11) |
C1 | 0.0580 (16) | 0.0668 (17) | 0.0504 (15) | −0.0008 (13) | −0.0096 (13) | 0.0085 (13) |
C2 | 0.0560 (16) | 0.0702 (18) | 0.0557 (17) | 0.0033 (14) | −0.0093 (13) | 0.0024 (13) |
C3 | 0.0520 (15) | 0.0589 (16) | 0.0569 (17) | −0.0049 (12) | 0.0026 (12) | −0.0088 (13) |
C4 | 0.0576 (15) | 0.0560 (15) | 0.0491 (15) | −0.0039 (13) | −0.0027 (12) | 0.0018 (12) |
C5 | 0.0570 (15) | 0.0471 (14) | 0.0417 (13) | 0.0016 (11) | −0.0029 (12) | −0.0013 (11) |
C6 | 0.0663 (17) | 0.0529 (15) | 0.0513 (16) | −0.0004 (13) | −0.0055 (13) | 0.0064 (12) |
C7 | 0.0587 (16) | 0.0573 (16) | 0.0437 (13) | 0.0024 (12) | −0.0104 (12) | 0.0053 (12) |
C8 | 0.0508 (14) | 0.0441 (13) | 0.0451 (14) | 0.0062 (11) | −0.0031 (11) | −0.0018 (11) |
C9 | 0.0532 (14) | 0.0489 (14) | 0.0390 (14) | 0.0038 (11) | −0.0026 (11) | −0.0010 (11) |
C10 | 0.0516 (14) | 0.0517 (15) | 0.0437 (14) | 0.0019 (11) | −0.0027 (11) | −0.0018 (11) |
C11 | 0.0615 (16) | 0.0643 (17) | 0.0436 (15) | −0.0069 (13) | −0.0065 (13) | 0.0034 (12) |
C12 | 0.0585 (16) | 0.0622 (16) | 0.0459 (15) | −0.0060 (13) | −0.0062 (12) | 0.0040 (12) |
C13 | 0.0546 (15) | 0.0486 (14) | 0.0517 (15) | 0.0031 (11) | −0.0014 (12) | −0.0052 (11) |
C14 | 0.0516 (14) | 0.0482 (13) | 0.0469 (15) | 0.0049 (11) | −0.0064 (12) | −0.0029 (11) |
C15 | 0.0636 (17) | 0.0612 (16) | 0.0607 (17) | 0.0017 (13) | −0.0158 (14) | 0.0029 (14) |
C16 | 0.0663 (18) | 0.0642 (18) | 0.0694 (19) | 0.0025 (14) | −0.0224 (15) | −0.0006 (15) |
C17 | 0.0546 (16) | 0.0594 (17) | 0.078 (2) | 0.0044 (13) | −0.0111 (14) | −0.0054 (15) |
C18 | 0.0535 (15) | 0.0500 (14) | 0.0576 (16) | 0.0012 (12) | −0.0026 (12) | −0.0062 (13) |
C19 | 0.0633 (17) | 0.0621 (17) | 0.0647 (18) | −0.0066 (14) | 0.0038 (14) | −0.0064 (14) |
C20 | 0.0720 (19) | 0.0592 (17) | 0.0702 (19) | −0.0146 (15) | −0.0089 (16) | 0.0047 (15) |
C21 | 0.0585 (18) | 0.080 (2) | 0.092 (2) | −0.0091 (16) | 0.0011 (17) | −0.0035 (19) |
C22 | 0.0604 (18) | 0.073 (2) | 0.093 (2) | −0.0054 (16) | −0.0135 (17) | −0.0027 (18) |
C23 | 0.0685 (18) | 0.0536 (17) | 0.087 (2) | −0.0050 (13) | −0.0068 (16) | −0.0025 (15) |
C24 | 0.074 (2) | 0.090 (2) | 0.0539 (17) | −0.0155 (17) | 0.0027 (15) | 0.0075 (16) |
C25 | 0.0658 (17) | 0.0668 (18) | 0.0498 (16) | −0.0051 (14) | 0.0005 (13) | −0.0140 (13) |
C26 | 0.0623 (16) | 0.0522 (15) | 0.0648 (18) | 0.0074 (12) | −0.0032 (14) | −0.0075 (13) |
C27 | 0.0687 (17) | 0.0538 (15) | 0.0543 (16) | 0.0005 (13) | −0.0011 (14) | −0.0090 (12) |
C28 | 0.0627 (18) | 0.073 (2) | 0.113 (3) | 0.0144 (15) | −0.0037 (19) | −0.013 (2) |
C29 | 0.075 (2) | 0.0648 (19) | 0.096 (2) | 0.0025 (17) | −0.0115 (19) | 0.0140 (18) |
C30 | 0.142 (4) | 0.090 (3) | 0.089 (3) | −0.015 (3) | 0.009 (3) | 0.017 (2) |
O1—C3 | 1.438 (3) | C15—H15B | 0.97 |
O1—H1 | 0.82 (4) | C16—C17 | 1.531 (5) |
C1—C2 | 1.527 (4) | C16—H16A | 0.97 |
C1—C10 | 1.543 (3) | C16—H16B | 0.97 |
C1—H1A | 0.97 | C17—C22 | 1.527 (4) |
C1—H1B | 0.97 | C17—C28 | 1.537 (4) |
C2—C3 | 1.509 (4) | C17—C18 | 1.546 (4) |
C2—H2A | 0.97 | C18—C19 | 1.533 (4) |
C2—H2B | 0.97 | C18—H18 | 0.98 |
C3—C4 | 1.538 (4) | C19—C20 | 1.520 (4) |
C3—H3 | 0.98 | C19—C21 | 1.563 (4) |
C4—C23 | 1.531 (4) | C19—H19 | 0.98 |
C4—C24 | 1.545 (4) | C20—C29 | 1.319 (5) |
C4—C5 | 1.558 (4) | C20—C30 | 1.510 (5) |
C5—C6 | 1.530 (4) | C21—C22 | 1.524 (5) |
C5—C10 | 1.561 (3) | C21—H21A | 0.97 |
C5—H5 | 0.98 | C21—H21B | 0.97 |
C6—C7 | 1.525 (4) | C22—H22A | 0.97 |
C6—H6A | 0.97 | C22—H22B | 0.97 |
C6—H6B | 0.97 | C23—H23A | 0.96 |
C7—C8 | 1.548 (4) | C23—H23B | 0.96 |
C7—H7A | 0.97 | C23—H23C | 0.96 |
C7—H7B | 0.97 | C24—H24A | 0.96 |
C8—C26 | 1.544 (3) | C24—H24B | 0.96 |
C8—C9 | 1.563 (3) | C24—H24C | 0.96 |
C8—C14 | 1.595 (3) | C25—H25A | 0.96 |
C9—C11 | 1.538 (4) | C25—H25B | 0.96 |
C9—C10 | 1.574 (3) | C25—H25C | 0.96 |
C9—H9 | 0.98 | C26—H26A | 0.96 |
C10—C25 | 1.546 (4) | C26—H26B | 0.96 |
C11—C12 | 1.527 (4) | C26—H26C | 0.96 |
C11—H11A | 0.97 | C27—H27A | 0.96 |
C11—H11B | 0.97 | C27—H27B | 0.96 |
C12—C13 | 1.524 (4) | C27—H27C | 0.96 |
C12—H12A | 0.97 | C28—H28A | 0.96 |
C12—H12B | 0.97 | C28—H28B | 0.96 |
C13—C18 | 1.541 (4) | C28—H28C | 0.96 |
C13—C14 | 1.558 (4) | C29—H29A | 0.93 |
C13—H13 | 0.98 | C29—H29B | 0.93 |
C14—C27 | 1.543 (4) | C30—H30A | 0.96 |
C14—C15 | 1.557 (3) | C30—H30B | 0.96 |
C15—C16 | 1.542 (4) | C30—H30C | 0.96 |
C15—H15A | 0.97 | ||
C3—O1—H1 | 107 (2) | C16—C15—H15B | 108.4 |
C2—C1—C10 | 113.9 (2) | C14—C15—H15B | 108.4 |
C2—C1—H1A | 108.8 | H15A—C15—H15B | 107.5 |
C10—C1—H1A | 108.8 | C17—C16—C15 | 111.9 (2) |
C2—C1—H1B | 108.8 | C17—C16—H16A | 109.2 |
C10—C1—H1B | 108.8 | C15—C16—H16A | 109.2 |
H1A—C1—H1B | 107.7 | C17—C16—H16B | 109.2 |
C3—C2—C1 | 111.2 (2) | C15—C16—H16B | 109.2 |
C3—C2—H2A | 109.4 | H16A—C16—H16B | 107.9 |
C1—C2—H2A | 109.4 | C22—C17—C16 | 116.2 (3) |
C3—C2—H2B | 109.4 | C22—C17—C28 | 108.9 (3) |
C1—C2—H2B | 109.4 | C16—C17—C28 | 110.9 (3) |
H2A—C2—H2B | 108 | C22—C17—C18 | 99.8 (2) |
O1—C3—C2 | 108.8 (2) | C16—C17—C18 | 107.0 (2) |
O1—C3—C4 | 111.6 (2) | C28—C17—C18 | 113.7 (3) |
C2—C3—C4 | 113.4 (2) | C19—C18—C13 | 120.4 (2) |
O1—C3—H3 | 107.6 | C19—C18—C17 | 105.2 (2) |
C2—C3—H3 | 107.6 | C13—C18—C17 | 111.7 (2) |
C4—C3—H3 | 107.6 | C19—C18—H18 | 106.2 |
C23—C4—C3 | 111.9 (2) | C13—C18—H18 | 106.2 |
C23—C4—C24 | 107.6 (2) | C17—C18—H18 | 106.2 |
C3—C4—C24 | 107.1 (2) | C20—C19—C18 | 116.6 (2) |
C23—C4—C5 | 114.3 (2) | C20—C19—C21 | 110.8 (2) |
C3—C4—C5 | 107.3 (2) | C18—C19—C21 | 104.0 (2) |
C24—C4—C5 | 108.5 (2) | C20—C19—H19 | 108.4 |
C6—C5—C4 | 114.3 (2) | C18—C19—H19 | 108.4 |
C6—C5—C10 | 110.5 (2) | C21—C19—H19 | 108.4 |
C4—C5—C10 | 117.6 (2) | C29—C20—C30 | 120.0 (3) |
C6—C5—H5 | 104.3 | C29—C20—C19 | 125.1 (3) |
C4—C5—H5 | 104.3 | C30—C20—C19 | 114.8 (3) |
C10—C5—H5 | 104.3 | C22—C21—C19 | 105.8 (3) |
C7—C6—C5 | 110.9 (2) | C22—C21—H21A | 110.6 |
C7—C6—H6A | 109.5 | C19—C21—H21A | 110.6 |
C5—C6—H6A | 109.5 | C22—C21—H21B | 110.6 |
C7—C6—H6B | 109.5 | C19—C21—H21B | 110.6 |
C5—C6—H6B | 109.5 | H21A—C21—H21B | 108.7 |
H6A—C6—H6B | 108 | C21—C22—C17 | 104.5 (3) |
C6—C7—C8 | 113.4 (2) | C21—C22—H22A | 110.9 |
C6—C7—H7A | 108.9 | C17—C22—H22A | 110.9 |
C8—C7—H7A | 108.9 | C21—C22—H22B | 110.9 |
C6—C7—H7B | 108.9 | C17—C22—H22B | 110.9 |
C8—C7—H7B | 108.9 | H22A—C22—H22B | 108.9 |
H7A—C7—H7B | 107.7 | C4—C23—H23A | 109.5 |
C26—C8—C7 | 107.1 (2) | C4—C23—H23B | 109.5 |
C26—C8—C9 | 111.5 (2) | H23A—C23—H23B | 109.5 |
C7—C8—C9 | 108.86 (19) | C4—C23—H23C | 109.5 |
C26—C8—C14 | 110.06 (19) | H23A—C23—H23C | 109.5 |
C7—C8—C14 | 110.47 (19) | H23B—C23—H23C | 109.5 |
C9—C8—C14 | 108.82 (18) | C4—C24—H24A | 109.5 |
C11—C9—C8 | 110.6 (2) | C4—C24—H24B | 109.5 |
C11—C9—C10 | 113.85 (19) | H24A—C24—H24B | 109.5 |
C8—C9—C10 | 117.04 (19) | C4—C24—H24C | 109.5 |
C11—C9—H9 | 104.6 | H24A—C24—H24C | 109.5 |
C8—C9—H9 | 104.6 | H24B—C24—H24C | 109.5 |
C10—C9—H9 | 104.6 | C10—C25—H25A | 109.5 |
C1—C10—C25 | 107.5 (2) | C10—C25—H25B | 109.5 |
C1—C10—C5 | 106.8 (2) | H25A—C25—H25B | 109.5 |
C25—C10—C5 | 113.8 (2) | C10—C25—H25C | 109.5 |
C1—C10—C9 | 109.0 (2) | H25A—C25—H25C | 109.5 |
C25—C10—C9 | 113.0 (2) | H25B—C25—H25C | 109.5 |
C5—C10—C9 | 106.57 (18) | C8—C26—H26A | 109.5 |
C12—C11—C9 | 112.2 (2) | C8—C26—H26B | 109.5 |
C12—C11—H11A | 109.2 | H26A—C26—H26B | 109.5 |
C9—C11—H11A | 109.2 | C8—C26—H26C | 109.5 |
C12—C11—H11B | 109.2 | H26A—C26—H26C | 109.5 |
C9—C11—H11B | 109.2 | H26B—C26—H26C | 109.5 |
H11A—C11—H11B | 107.9 | C14—C27—H27A | 109.5 |
C13—C12—C11 | 111.6 (2) | C14—C27—H27B | 109.5 |
C13—C12—H12A | 109.3 | H27A—C27—H27B | 109.5 |
C11—C12—H12A | 109.3 | C14—C27—H27C | 109.5 |
C13—C12—H12B | 109.3 | H27A—C27—H27C | 109.5 |
C11—C12—H12B | 109.3 | H27B—C27—H27C | 109.5 |
H12A—C12—H12B | 108 | C17—C28—H28A | 109.5 |
C12—C13—C18 | 114.8 (2) | C17—C28—H28B | 109.5 |
C12—C13—C14 | 111.3 (2) | H28A—C28—H28B | 109.5 |
C18—C13—C14 | 110.4 (2) | C17—C28—H28C | 109.5 |
C12—C13—H13 | 106.6 | H28A—C28—H28C | 109.5 |
C18—C13—H13 | 106.6 | H28B—C28—H28C | 109.5 |
C14—C13—H13 | 106.6 | C20—C29—H29A | 120 |
C27—C14—C15 | 106.1 (2) | C20—C29—H29B | 120 |
C27—C14—C13 | 110.2 (2) | H29A—C29—H29B | 120 |
C15—C14—C13 | 109.9 (2) | C20—C30—H30A | 109.5 |
C27—C14—C8 | 111.6 (2) | C20—C30—H30B | 109.5 |
C15—C14—C8 | 110.76 (19) | H30A—C30—H30B | 109.5 |
C13—C14—C8 | 108.25 (19) | C20—C30—H30C | 109.5 |
C16—C15—C14 | 115.4 (2) | H30A—C30—H30C | 109.5 |
C16—C15—H15A | 108.4 | H30B—C30—H30C | 109.5 |
C14—C15—H15A | 108.4 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O1i | 0.82 (4) | 1.94 (4) | 2.756 (3) | 171 (4) |
Symmetry code: (i) −y+1, x, z−1/4. |
Experimental details
Crystal data | |
Chemical formula | C30H50O |
Mr | 426.7 |
Crystal system, space group | Tetragonal, P43 |
Temperature (K) | 298 |
a, c (Å) | 19.1006 (14), 7.2128 (4) |
V (Å3) | 2631.5 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.06 |
Crystal size (mm) | 0.40 × 0.06 × 0.04 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7896, 2655, 1943 |
Rint | 0.080 |
(sin θ/λ)max (Å−1) | 0.610 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.113, 1.03 |
No. of reflections | 2655 |
No. of parameters | 284 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.1, −0.10 |
Computer programs: Collect (Nonius, 2000), HKL SCALEPACK (Otwinowski & Minor 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O1i | 0.82 (4) | 1.94 (4) | 2.756 (3) | 171 (4) |
Symmetry code: (i) −y+1, x, z−1/4. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
As part of our ongoing studies on the chemical constituents of Brazilian medicinal plants (Da Cruz et al., 2008; Derogis et al., 2008; Martins et al., 2007; Doriguetto et al., 2006; Soares et al., 2006; Lemos et al., 2006; Doriguetto et al., 2001), we have studied lupeol, (I), a natural pentacyclic triterpene isolated from leaves of Garcinia brasiliensis, known popularly as bacupari (Corrêa, 1978). From Garcinia genus (Guttiferae family), biflavonoids, xanthones, proanthocyanins, poliprenilated benzophenones, sesquiterpenes and pentacyclic triterpenes (PCTT) were isolated (Derogis et al., 2008; Dos Santos et al., 2007; Delle Monache et al., 1983). In particular, (I) has shown many interesting biological properties, such as, inhibition of cardiotoxicity induced by cyclosphosphamide (Sudharsan et al., 2006), and hepatoprotective (Sahdeo et al., 2007), anticancer (Laszczyk et al., 2006) and cytotoxic activities (Gauthier et al., 2006). Previous studies have also shown that (I) is a potential anti-inflammatory agent, preventing the production of some pro-inflammatory mediators (Fernández et al., 2001). Other biological targets of (I) are microorganisms such as bacteria and fungi (Shai et al., 2008).
In spite of its biological importance, up until now (I) has been characterized only by spectroscopic and spectrometric analysis (Śliwowski & Kasprzyk, 1974; Shamma et al., 1962). Therefore, in the present paper, we report for the first time the crystal structure of (I) (Fig. 1). The anomalous scattering was not large enough to permit the determination of the enantiomer present and therefore distinguish between the enantiomorphous space groups P41 and P43 (Flack, 2003). However, P43 was chosen because this space group is consistent with the stereochemistry specified by biosynthesis (Śliwowski & Kasprzyk, 1974). Thus, the chiral atoms present the following configurations: C3(S), C5(R), C8(R), C9(S), C10(R), C13(R), C14(R), C17(R), C19(R). Interestingly, another PCTT recently determined by us, 3β,30-dihydroxy-lup-20 (29)-ene, (II) (Pimenta et al., 2006), which differs chemically from (I) by the hydroxy group present at C30, was reported in the enantiomorphous P41 (or P43) space group [a = 19.038 (1) Å and c = 7.2290 (4) Å]. It is also important to mention that space groups P43 and P41 are rare for organic and organometallic compounds. Currently, in the Cambridge Structural Data Base (Version 5.29, updated in August 2008; Allen, 2002) there are only 341 and 454 structures deposited with space groups P43 and P41, respectively. Indeed, (I) is the first PCTT determined in P43 based on X-ray diffraction analysis and biosynthesis arguments (Śliwowski & Kasprzyk, 1974).
Fig. 1 shows that (I) contains five rings, all trans-fused, where all of the six-membered rings (A, B, C and D) adopt chair conformations, while the five-membered ring, E, adopts an envelope conformation with atom C17 in the flap position. The hydroxy group is linked at atom C3 in an equatorial position. The intramolecular geometric parameters were analyzed by Mogul check (Bruno et al., 2004). All geometrical values agree with those of other reported PCTT structures (e.g. Pimenta et al., 2006; Madureira et al., 2004; Silva et al., 2002; Nakai et al., 1985).
Compound (I) contains an intermolecular hydrogen bond O—H···O (Fig. 2 and Table 1). This interaction stabilizes the packing and gives rise to an infinite helical chain along the c axis. The molecules are related by 43-fold improper symmetry. Additionally, parallel chains are linked together to form a `cogwheel' structure, connected via van der Waals interactions (Fig. 2). These interactions are probably the driving force for the growth of (I) as single crystals with a needle habit.
Comparison of (I) with (II) (Pimenta et al., 2006) by the Kabsch (1976) method showed them to be very similar in terms of intramolecular geometry, with an r.m.s. deviation between homologous atoms of 0.024 (17) Å. The largest deviation between the analogues takes place at atom C30 [the displacement is 0.09 (2) Å]. However the most surprising result highlighted by the X-ray diffraction analysis is that (I) and (II) (Pimenta et al., 2006) are isomorphs: they crystallize in an enantiomorphous space group with almost identical cell parameters and supramolecular structures. Thus, the hydroxy group linked to atom C3 in both molecules is more important in terms of the packing than the hydroxy group linked to atom C30 in (II) (Pimenta et al., 2006). Although a similar supramolecular structure is observed, the forces that stabilize the crystal packing are slightly different in (I) and (II). In Fig. 2, which gives the crystal structure of (I) projected onto the ab plane, we observe the hydrophilic head hydrogen bonded along the [001] direction through the unit-cell center, whereas the hydrophobic tails, linked by weak van der Waals forces, are stacked along the [001] direction through unit-cell corners. These characteristics could explain the difficulty in obtaining single crystals of lupeol and their fragility. In (II) (Pimenta et al., 2006), there are additionally intermolecular hydrogen bonds at the unit-cell corners, which give rise to more mechanical stability in (II) than in (I).