Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title coordination polymer, [Cd2(SO4)2(C13H8N4)(H2O)2]n, there are two crystallographically independent CdII centres with different coordination geometries. The first CdII centre is hexacoordinated by four O atoms of four sulfate ligands, one water O atom and one N atom of a 1H-imid­azo[4,5-f][1,10]phenanthroline (IP) ligand, giving a distorted octa­hedral coordination environment. The second CdII centre is heptacoordinated by four O atoms of three sulfate ligands, one water O atom and two N atoms of one chelating IP ligand, resulting in a distorted monocapped anti-trigonal prismatic geometry. The symmetry-independent CdII ions are bridged in an alternating fashion by sulfate ligands, forming one-dimensional ladder-like chains which are connected through the IP ligands to form two-dimensional layers. These two-dimensional layers are linked by inter­layer hydrogen bonds, leading to the formation of a three-dimensional supra­molecular network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614015514/em3069sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614015514/em3069Isup2.hkl
Contains datablock I

CCDC reference: 1011887

Introduction top

The design of metal–organic coordination polymers has recently been well developed. Up to now, the control of the architecture still remained a major challenge in this field, due to the fact that the self-assembly process is frequently influenced by many factors. The impact of the anions is important in the coordination process, especially when they can be directly coordinated to the metal centres (Carlucci et al., 2000). In particular, doubly charged anions like sulfate are likely to enter the inner coordination sphere of metal complexes (Rao et al., 2006; Rahmani et al., 1996; Carlucci et al., 2003). Some preternatural examples of coordintion polymers containing sulfate ion have been reported in recent years (Wang et al., 2011). 1H-Imidazo[4,5-f][1,10]phenanthroline (IP) is an important derivative of 1,10-phenanthroline that has been used to recognize the secondary structure of DNA in RuII complexes (Xiong et al., 1999). From the viewpoint of crystal engineering, the IP ligand can be a good building block (Huang et al., 2012). In this context, we present the preparation and X-ray characterization of the title CdII coordination polymer, [Cd2(SO4)2(IP)(H2O)2]n, (I).

Experimental top

Synthesis and crystallization top

1H-Imidazo[4,5-f][1,10]phenanthroline (10 mmol), CdSO4 (10 mmol) and 2,2-di­thiodi­benzoic acid (10 mmol) were dissolved in an N,N-di­methyl­formamide/water solution (1:100 v/v). The mixture was sealed in a 25 ml Teflon-lined stainless steel bomb and held at 403 K for 120 h. The bomb was allowed to cool naturally to room temperature and brown prismatic crystals were obtained from the filtered solution. Analysis calculated for C13H12Cd2N4O10S2: C 23.19, H 1.80, N 8.32%; found: C 23.10, H 1.76, N 8.30%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were placed in calculated positions, with C—H = 0.93 or 0.97 Å and Uiso(H) = 1.2Ueq(C), and were refined using a riding-model approximation. The H atoms of the water molecule were located in a difference Fourier map and refined with O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O).

Results and discussion top

As depicted in Fig. 1, each asymmetric unit of (I) consists of two crystallographically independent CdII centres with different coordination geometries. The first CdII centre (Cd1) is coordinated by four O atoms of two adjacent sulfate molecules, one coordinated water molecule and one N atom of the IP ligand, forming a distorted o­cta­hedral coordination environment. A plane is defined by atoms O6, OW2, O4ii and N3iii [symmetry codes: (ii) -x+3/2, y-1/2, -z+3/2; (iii) -x+1, -y+1, -z+1], while the O1 and O2i atoms lie mutually trans [O1—Cd1—O2i = 172.48 (6)°; see Table 2 for details and symmetry code]. The second CdII centre (Cd2) is seven-coordinated by four O atoms of two adjacent sulfate ligands, one coordinated water molecule and two N atoms of one chelating IP ligand, exhibiting a distorted monocapped anti-trigonal prismatic geometry. The Cd—O distances fall in the range 2.2408 (18)–2.4782 (18) Å and the Cd—N distances vary from 2.314 (2) to 2.337 (2) Å, which are similar to those in related cadmium coodination polymers with N/O donors (Jacqueline et al., 2010). The bond angles around Cd1 range from 74.56 (6) to 172.48 (6)°, and those around Cd2 range from 56.53 (6) to 157.64 (7) ° (Table 2). As illustrated in Fig. 2, the inorganic ribbon motif substructure consists of two identical one-dimensional chains of distorted Cd1 o­cta­hedra (red polyhedra) and distorted anti-trigonal Cd2 prisms (blue polyhedra), which are linked by sharing corners (O1 from sulfate S2) and edges (O2 from sulfate S2) and O2 from sulfate S1). The ribbon motif observed in this network originates from an aggregation of two one-dimensional chains via ligation of three O atoms of sulfate S2 groups. In the ribbon motif, the Cd1 and Cd2 atoms are alternately bridged by O atoms from two sulfate ligands, the adjacent separations in the same one one-dimensional chains Cd1···Cd1 (and Cd2···Cd2) and Cd1···Cd2 are 6.087 (the unit-cell b dimension) and 4.205 Å, respectively, while the two chain Cd1···Cd1, Cd2···Cd2 and Cd1···Cd2 distances are 5.432, 9.184 and 6.341 Å, respectively. The ribbon motif chains are bridged by the IP ligands, forming the two-dimensional layer structure (Fig. 3). Furthermore, these layers are stabilized by inter­molecular hydrogen bonds, which are formed between the coordinated water molecules and sulfate O atoms, leading to the formation of a three-dimensional supra­molecular network (Fig. 4 and Table 3).

Related literature top

For related literature, see: Carlucci et al. (2000, 2003); Huang et al. (2012); Jacqueline et al. (2010); Rahmani et al. (1996); Rao et al. (2006); Wang et al. (2011); Xiong et al. (1999).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), shown with 30% probability displacement ellipsoids. [Symmetry codes: (i) x, y-1, z; (ii) -x+3/2,y-1/2, -z+3/2; (iii) -x+1, -y+1, -z+1; (iv) x, y+1, z.]
[Figure 2] Fig. 2. Part of the one-dimensional ribbon motif structure of (I).
[Figure 3] Fig. 3. Part of the two-dimensional layer structure of (I).
[Figure 4] Fig. 4. A packing diagram for (I).
Poly[diaqua(µ2-1H-imidazo[4,5-f][1,10]phenanthroline)di-µ4-sulfato-µ3-sulfato-dicadmium(II)] top
Crystal data top
[Cd2(SO4)2(C13H8N4)(H2O)2]F(000) = 1304
Mr = 673.19Dx = 2.499 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 13080 reflections
a = 10.3834 (4) Åθ = 3.0–28.3°
b = 6.8070 (3) ŵ = 2.68 mm1
c = 25.4684 (10) ÅT = 296 K
β = 96.25 (1)°Prism, brown
V = 1789.40 (13) Å30.30 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
4429 independent reflections
Radiation source: fine-focus sealed tube4042 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 10.000 pixels mm-1θmax = 28.3°, θmin = 3.0°
ω scansh = 1312
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
k = 89
Tmin = 0.500, Tmax = 0.644l = 3333
13080 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0224P)2 + 1.8401P]
where P = (Fo2 + 2Fc2)/3
4429 reflections(Δ/σ)max = 0.003
295 parametersΔρmax = 0.57 e Å3
7 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Cd2(SO4)2(C13H8N4)(H2O)2]V = 1789.40 (13) Å3
Mr = 673.19Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.3834 (4) ŵ = 2.68 mm1
b = 6.8070 (3) ÅT = 296 K
c = 25.4684 (10) Å0.30 × 0.20 × 0.18 mm
β = 96.25 (1)°
Data collection top
Bruker APEXII
diffractometer
4429 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
4042 reflections with I > 2σ(I)
Tmin = 0.500, Tmax = 0.644Rint = 0.025
13080 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0227 restraints
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.57 e Å3
4429 reflectionsΔρmin = 0.53 e Å3
295 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.601890 (16)0.18001 (2)0.685949 (6)0.01611 (5)
Cd20.390776 (16)0.70764 (3)0.651295 (6)0.01833 (5)
S10.27429 (5)0.21743 (9)0.64832 (2)0.01672 (12)
S20.67723 (5)0.66974 (8)0.69726 (2)0.01507 (11)
N10.44948 (19)0.7270 (3)0.56638 (8)0.0180 (4)
N20.20235 (19)0.7331 (3)0.59359 (8)0.0177 (4)
N30.2592 (2)0.8090 (3)0.38031 (7)0.0187 (4)
N40.0594 (2)0.7924 (3)0.40354 (8)0.0225 (5)
O10.58301 (18)0.5079 (3)0.68323 (8)0.0286 (4)
O90.49751 (19)0.1449 (3)0.76084 (8)0.0329 (5)
O20.60030 (17)0.8466 (3)0.67964 (7)0.0265 (4)
O30.78942 (18)0.6502 (3)0.66842 (7)0.0317 (5)
O40.71269 (17)0.6759 (3)0.75420 (7)0.0289 (4)
O50.30858 (18)0.4096 (3)0.67238 (8)0.0292 (4)
O60.39487 (15)0.0985 (3)0.64630 (6)0.0216 (4)
O70.20842 (18)0.2379 (3)0.59487 (7)0.0301 (4)
O80.18897 (17)0.1138 (3)0.68196 (7)0.0241 (4)
O100.3347 (2)0.8155 (3)0.72889 (8)0.0308 (4)
C10.5711 (2)0.7256 (4)0.55442 (10)0.0243 (5)
C20.6020 (2)0.7453 (4)0.50293 (10)0.0248 (5)
C30.5044 (2)0.7651 (4)0.46254 (10)0.0218 (5)
C40.3752 (2)0.7658 (3)0.47373 (9)0.0158 (4)
C50.3513 (2)0.7467 (3)0.52710 (9)0.0152 (4)
C60.2191 (2)0.7450 (3)0.54171 (9)0.0157 (4)
C70.0833 (3)0.7255 (4)0.60768 (10)0.0252 (5)
C80.0274 (3)0.7295 (4)0.57096 (11)0.0286 (6)
C90.0129 (2)0.7455 (4)0.51851 (10)0.0252 (5)
C100.1128 (2)0.7545 (4)0.50257 (9)0.0175 (5)
C110.1413 (2)0.7744 (4)0.44925 (9)0.0186 (5)
C120.2652 (2)0.7831 (3)0.43466 (9)0.0158 (4)
C130.1341 (3)0.8137 (4)0.36404 (10)0.0238 (5)
H10.63800.71090.58160.029*
H20.68810.74500.49600.030*
H30.52380.77800.42790.026*
H70.07280.71730.64340.030*
H80.10960.72140.58220.034*
H90.08520.75040.49350.030*
H130.10110.83010.32890.029*
H10B0.270 (2)0.889 (4)0.7207 (11)0.036*
H10A0.324 (3)0.746 (4)0.7555 (9)0.036*
H9B0.557 (2)0.138 (4)0.7860 (9)0.036*
H9A0.455 (2)0.038 (3)0.7583 (11)0.036*
H4N0.0272 (18)0.803 (5)0.4018 (13)0.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01689 (9)0.01553 (9)0.01560 (9)0.00147 (6)0.00029 (6)0.00002 (6)
Cd20.01612 (9)0.02584 (10)0.01275 (8)0.00219 (7)0.00026 (6)0.00101 (6)
S10.0121 (3)0.0224 (3)0.0156 (3)0.0005 (2)0.0009 (2)0.0019 (2)
S20.0141 (3)0.0157 (3)0.0147 (3)0.0004 (2)0.00151 (19)0.0005 (2)
N10.0138 (10)0.0248 (11)0.0151 (9)0.0000 (8)0.0002 (7)0.0003 (8)
N20.0166 (10)0.0230 (10)0.0140 (9)0.0015 (8)0.0035 (7)0.0016 (8)
N30.0198 (10)0.0237 (11)0.0124 (9)0.0012 (8)0.0010 (7)0.0004 (8)
N40.0133 (10)0.0380 (13)0.0154 (9)0.0003 (9)0.0025 (7)0.0013 (9)
O10.0237 (9)0.0131 (9)0.0464 (11)0.0022 (7)0.0080 (8)0.0000 (8)
O90.0226 (10)0.0529 (13)0.0225 (9)0.0074 (9)0.0002 (7)0.0037 (9)
O20.0246 (10)0.0165 (9)0.0357 (10)0.0015 (7)0.0091 (8)0.0017 (8)
O30.0185 (9)0.0565 (13)0.0205 (9)0.0037 (9)0.0035 (7)0.0007 (9)
O40.0197 (9)0.0507 (13)0.0157 (8)0.0031 (8)0.0009 (7)0.0019 (8)
O50.0303 (10)0.0219 (10)0.0350 (10)0.0054 (8)0.0015 (8)0.0004 (8)
O60.0141 (8)0.0310 (10)0.0194 (8)0.0036 (7)0.0005 (6)0.0020 (7)
O70.0185 (9)0.0499 (12)0.0210 (9)0.0054 (9)0.0027 (7)0.0049 (8)
O80.0220 (9)0.0278 (10)0.0242 (9)0.0048 (7)0.0105 (7)0.0010 (8)
O100.0403 (12)0.0300 (11)0.0243 (10)0.0024 (9)0.0129 (8)0.0050 (8)
C10.0166 (12)0.0376 (15)0.0184 (12)0.0009 (10)0.0002 (9)0.0002 (10)
C20.0136 (12)0.0389 (15)0.0226 (12)0.0017 (11)0.0052 (9)0.0006 (11)
C30.0198 (12)0.0315 (14)0.0147 (11)0.0000 (10)0.0049 (9)0.0002 (10)
C40.0163 (11)0.0174 (11)0.0138 (10)0.0003 (9)0.0020 (8)0.0004 (8)
C50.0152 (11)0.0165 (11)0.0139 (10)0.0002 (8)0.0015 (8)0.0011 (8)
C60.0162 (11)0.0171 (11)0.0141 (10)0.0002 (9)0.0026 (8)0.0009 (8)
C70.0219 (13)0.0360 (15)0.0186 (12)0.0020 (11)0.0068 (9)0.0016 (10)
C80.0148 (12)0.0466 (17)0.0254 (13)0.0020 (11)0.0067 (10)0.0005 (12)
C90.0139 (12)0.0399 (15)0.0220 (12)0.0005 (11)0.0024 (9)0.0012 (11)
C100.0166 (12)0.0215 (12)0.0148 (10)0.0005 (9)0.0031 (8)0.0010 (9)
C110.0164 (11)0.0243 (12)0.0145 (11)0.0009 (9)0.0008 (8)0.0012 (9)
C120.0166 (11)0.0192 (12)0.0117 (10)0.0007 (9)0.0019 (8)0.0008 (8)
C130.0235 (13)0.0347 (15)0.0128 (11)0.0007 (11)0.0000 (9)0.0004 (10)
Geometric parameters (Å, º) top
Cd1—N3i2.337 (2)N4—C131.343 (3)
Cd1—O12.2408 (18)N4—C111.370 (3)
Cd1—O2ii2.2748 (18)N4—H4N0.899 (18)
Cd1—O4iii2.3221 (18)O2—Cd1iv2.2748 (18)
Cd1—O62.3400 (16)O4—Cd1v2.3221 (17)
Cd1—O92.307 (2)O9—H9B0.843 (10)
Cd2—N12.314 (2)O9—H9A0.852 (10)
Cd2—N22.322 (2)O10—H10B0.850 (10)
Cd2—O12.4782 (18)O10—H10A0.844 (10)
Cd2—O22.4099 (18)C1—C21.390 (3)
Cd2—O52.2875 (19)C1—H10.9300
Cd2—O102.2437 (19)C2—C31.370 (3)
Cd2—O6iv2.664 (2)C2—H20.9300
S1—O51.472 (2)C3—C41.402 (3)
S1—O61.4966 (17)C3—H30.9300
S1—O71.4619 (18)C4—C51.414 (3)
S1—O81.4771 (17)C4—C121.435 (3)
S2—O11.4909 (18)C5—C61.460 (3)
S2—O21.4871 (18)C6—C101.406 (3)
S2—O31.4492 (19)C7—C81.401 (4)
S2—O41.4574 (18)C7—H70.9300
N1—C11.331 (3)C8—C91.365 (4)
N1—C51.355 (3)C8—H80.9300
N2—C71.326 (3)C9—C101.410 (3)
N2—C61.354 (3)C9—H90.9300
N3—C131.321 (3)C10—C111.427 (3)
N3—C121.390 (3)C11—C121.379 (3)
N3—Cd1i2.337 (2)C13—H130.9300
N1—Cd2—N272.16 (7)N4—C13—H13123.5
N1—Cd2—O193.05 (7)O2—S2—O1102.07 (10)
N1—Cd2—O286.37 (7)O3—S2—O4112.14 (11)
N2—Cd2—O1147.32 (7)O3—S2—O2110.89 (12)
N2—Cd2—O2146.23 (7)O3—S2—O1110.69 (12)
N3i—Cd1—O6107.82 (6)O4—S2—O1110.35 (12)
O1—Cd1—N3i90.27 (7)O4—S2—O2110.26 (11)
O1—Cd1—O2ii172.48 (6)O5—S1—O6109.25 (11)
O1—Cd1—O4iii95.50 (7)O5—S1—O8108.44 (11)
O1—Cd1—O698.61 (7)O7—S1—O5111.75 (12)
O1—Cd1—O994.67 (8)O7—S1—O8109.64 (11)
O2ii—Cd1—N3i88.92 (7)O7—S1—O6109.14 (11)
O2ii—Cd1—O4iii91.91 (7)O8—S1—O6108.56 (11)
O2ii—Cd1—O674.56 (6)C1—N1—Cd2124.51 (16)
O2ii—Cd1—O987.39 (8)C1—N1—C5119.2 (2)
O2—Cd2—O156.53 (6)C1—C2—H2120.3
O4iii—Cd1—N3i86.66 (7)C2—C1—H1118.8
O4iii—Cd1—O6159.62 (7)C2—C3—C4119.6 (2)
O5—Cd2—N1114.38 (7)C2—C3—H3120.2
O5—Cd2—N284.52 (7)C3—C2—C1119.4 (2)
O5—Cd2—O175.17 (6)C3—C2—H2120.3
O5—Cd2—O2128.73 (6)C3—C4—C5117.9 (2)
O9—Cd1—N3i169.35 (7)C3—C4—C12124.5 (2)
O9—Cd1—O4iii83.48 (7)C4—C3—H3120.2
O9—Cd1—O680.79 (6)C4—C5—C6120.9 (2)
O10—Cd2—N1157.64 (7)C5—N1—Cd2116.23 (15)
O10—Cd2—N2104.56 (7)C5—C4—C12117.7 (2)
O10—Cd2—O199.64 (7)C6—N2—Cd2115.67 (15)
O10—Cd2—O285.42 (7)C6—C10—C9118.3 (2)
O10—Cd2—O586.80 (7)C6—C10—C11116.8 (2)
Cd1—O1—Cd2128.41 (8)C7—N2—C6119.3 (2)
Cd1iv—O2—Cd2114.34 (7)C7—N2—Cd2124.91 (16)
Cd1—O9—H9A108 (2)C7—C8—H8120.5
Cd1—O9—H9B105 (2)C8—C7—H7118.7
Cd2—O10—H10B105 (2)C8—C9—C10119.3 (2)
Cd2—O10—H10A127 (2)C8—C9—H9120.4
S1—O5—Cd2140.37 (12)C9—C8—C7119.0 (2)
S1—O6—Cd1126.12 (10)C9—C8—H8120.5
S2—O1—Cd1132.51 (11)C9—C10—C11124.9 (2)
S2—O1—Cd299.05 (9)C10—C6—C5120.4 (2)
S2—O2—Cd1iv141.90 (11)C10—C9—H9120.4
S2—O2—Cd2102.14 (9)C11—N4—H4N125 (2)
S2—O4—Cd1v139.04 (11)C11—C12—N3109.4 (2)
N1—C1—C2122.5 (2)C11—C12—C4120.3 (2)
N1—C1—H1118.8C12—N3—Cd1i139.35 (16)
N1—C5—C4121.5 (2)C12—C11—C10123.8 (2)
N1—C5—C6117.6 (2)C13—N3—C12104.6 (2)
N2—C6—C10121.4 (2)C13—N3—Cd1i115.85 (16)
N2—C6—C5118.2 (2)C13—N4—C11106.9 (2)
N2—C7—C8122.7 (2)C13—N4—H4N128 (2)
N2—C7—H7118.7H9B—O9—H9A110.0 (16)
N3—C12—C4130.3 (2)H10B—O10—H10A110.7 (16)
N3—C13—N4113.0 (2)O1iv—Cd2—O6123.17 (6)
N3—C13—H13123.5OW1iv—Cd2—O673.88 (6)
N4—C11—C12106.1 (2)O2iv—Cd2—O666.66 (6)
N4—C11—C10130.1 (2)O5iv—Cd2—O6154.85 (6)
O3—S2—O1—Cd155.86 (18)O5—Cd2—N1—C576.45 (18)
O4—S2—O1—Cd168.88 (18)N2—Cd2—N1—C51.28 (17)
O2—S2—O1—Cd1173.92 (15)O2—Cd2—N1—C5152.29 (18)
O3—S2—O1—Cd2122.15 (10)O1—Cd2—N1—C5151.55 (17)
O4—S2—O1—Cd2113.11 (10)O10—Cd2—N2—C726.7 (2)
O2—S2—O1—Cd24.09 (12)O5—Cd2—N2—C758.5 (2)
O2ii—Cd1—O1—S2150.3 (5)N1—Cd2—N2—C7176.3 (2)
O9—Cd1—O1—S2104.06 (16)O2—Cd2—N2—C7130.6 (2)
O4iii—Cd1—O1—S220.18 (17)O1—Cd2—N2—C7109.8 (2)
N3i—Cd1—O1—S266.49 (16)O10—Cd2—N2—C6157.25 (17)
O6—Cd1—O1—S2174.56 (15)O5—Cd2—N2—C6117.51 (18)
O2ii—Cd1—O1—Cd227.2 (6)N1—Cd2—N2—C60.30 (16)
O9—Cd1—O1—Cd278.44 (11)O2—Cd2—N2—C653.4 (2)
O4iii—Cd1—O1—Cd2162.33 (11)O1—Cd2—N2—C666.2 (2)
N3i—Cd1—O1—Cd2111.00 (11)C5—N1—C1—C20.5 (4)
O6—Cd1—O1—Cd22.93 (12)Cd2—N1—C1—C2177.4 (2)
O10—Cd2—O1—S274.96 (11)N1—C1—C2—C30.6 (4)
O5—Cd2—O1—S2159.01 (11)C1—C2—C3—C40.2 (4)
N1—Cd2—O1—S286.56 (10)C2—C3—C4—C50.3 (4)
N2—Cd2—O1—S2147.55 (10)C2—C3—C4—C12179.2 (2)
O2—Cd2—O1—S22.96 (8)C1—N1—C5—C40.0 (4)
O10—Cd2—O1—Cd1106.91 (11)Cd2—N1—C5—C4178.12 (17)
O5—Cd2—O1—Cd122.86 (11)C1—N1—C5—C6179.2 (2)
N1—Cd2—O1—Cd191.56 (12)Cd2—N1—C5—C62.7 (3)
N2—Cd2—O1—Cd130.58 (19)C3—C4—C5—N10.4 (4)
O2—Cd2—O1—Cd1175.17 (14)C12—C4—C5—N1179.1 (2)
O3—S2—O2—Cd1iv74.6 (2)C3—C4—C5—C6179.6 (2)
O4—S2—O2—Cd1iv50.2 (2)C12—C4—C5—C60.1 (3)
O1—S2—O2—Cd1iv167.48 (18)C7—N2—C6—C101.6 (4)
O3—S2—O2—Cd2122.17 (11)Cd2—N2—C6—C10177.90 (18)
O4—S2—O2—Cd2113.01 (10)C7—N2—C6—C5178.0 (2)
O1—S2—O2—Cd24.25 (12)Cd2—N2—C6—C51.8 (3)
O10—Cd2—O2—S2101.75 (11)N1—C5—C6—N23.0 (3)
O5—Cd2—O2—S219.57 (14)C4—C5—C6—N2177.8 (2)
N1—Cd2—O2—S299.07 (11)N1—C5—C6—C10176.7 (2)
N2—Cd2—O2—S2148.74 (10)C4—C5—C6—C102.6 (4)
O1—Cd2—O2—S22.99 (8)C6—N2—C7—C80.1 (4)
O10—Cd2—O2—Cd1iv66.99 (9)Cd2—N2—C7—C8176.0 (2)
O5—Cd2—O2—Cd1iv149.17 (8)N2—C7—C8—C91.3 (5)
N1—Cd2—O2—Cd1iv92.19 (9)C7—C8—C9—C101.0 (4)
N2—Cd2—O2—Cd1iv42.52 (16)N2—C6—C10—C91.9 (4)
O1—Cd2—O2—Cd1iv171.73 (12)C5—C6—C10—C9177.8 (2)
O3—S2—O4—Cd1v4.2 (2)N2—C6—C10—C11177.6 (2)
O2—S2—O4—Cd1v119.89 (18)C5—C6—C10—C112.7 (4)
O1—S2—O4—Cd1v128.10 (18)C8—C9—C10—C60.5 (4)
O7—S1—O5—Cd242.1 (2)C8—C9—C10—C11178.9 (3)
O8—S1—O5—Cd2163.06 (16)C13—N4—C11—C120.8 (3)
O6—S1—O5—Cd278.79 (19)C13—N4—C11—C10177.9 (3)
O10—Cd2—O5—S1169.53 (19)C6—C10—C11—N4178.0 (3)
N1—Cd2—O5—S13.0 (2)C9—C10—C11—N41.4 (5)
N2—Cd2—O5—S164.56 (18)C6—C10—C11—C120.5 (4)
O2—Cd2—O5—S1108.94 (18)C9—C10—C11—C12179.9 (3)
O1—Cd2—O5—S189.61 (19)N4—C11—C12—N30.8 (3)
O7—S1—O6—Cd1130.99 (12)C10—C11—C12—N3178.0 (2)
O5—S1—O6—Cd18.54 (15)N4—C11—C12—C4179.2 (2)
O8—S1—O6—Cd1109.55 (13)C10—C11—C12—C42.0 (4)
O1—Cd1—O6—S129.26 (13)C13—N3—C12—C110.4 (3)
O2ii—Cd1—O6—S1153.94 (13)Cd1i—N3—C12—C11174.23 (18)
O9—Cd1—O6—S164.11 (13)C13—N3—C12—C4179.5 (3)
O4iii—Cd1—O6—S1104.1 (2)Cd1i—N3—C12—C45.7 (4)
N3i—Cd1—O6—S1122.34 (12)C3—C4—C12—C11177.4 (2)
O10—Cd2—N1—C194.3 (3)C5—C4—C12—C112.2 (3)
O5—Cd2—N1—C1105.5 (2)C3—C4—C12—N32.6 (4)
N2—Cd2—N1—C1179.3 (2)C5—C4—C12—N3177.9 (2)
O2—Cd2—N1—C125.7 (2)C12—N3—C13—N40.2 (3)
O1—Cd2—N1—C130.5 (2)Cd1i—N3—C13—N4175.38 (17)
O10—Cd2—N1—C583.7 (3)C11—N4—C13—N30.6 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x+3/2, y1/2, z+3/2; (iv) x, y+1, z; (v) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···S1vi0.90 (2)2.74 (2)3.572 (2)154 (3)
N4—H4N···O7vi0.90 (2)1.91 (2)2.794 (3)166 (3)
N4—H4N···O8vi0.90 (2)2.63 (3)3.253 (3)127 (3)
O9—H9B···S2iii0.84 (1)2.75 (2)3.433 (2)139 (3)
O9—H9B···O3iii0.84 (1)1.87 (1)2.697 (3)168 (3)
O9—H9A···O10ii0.85 (1)2.05 (1)2.872 (3)162 (3)
O10—H10A···S1vii0.84 (1)2.76 (2)3.5037 (19)148 (3)
O10—H10A···O5vii0.84 (1)2.65 (3)3.124 (3)117 (2)
O10—H10A···O8vii0.84 (1)1.85 (1)2.688 (3)174 (3)
O10—H10B···S1iv0.85 (1)2.90 (2)3.437 (2)123 (2)
O10—H10B···O8iv0.85 (1)1.96 (1)2.729 (3)151 (3)
Symmetry codes: (ii) x, y1, z; (iii) x+3/2, y1/2, z+3/2; (iv) x, y+1, z; (vi) x, y+1, z+1; (vii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cd2(SO4)2(C13H8N4)(H2O)2]
Mr673.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.3834 (4), 6.8070 (3), 25.4684 (10)
β (°) 96.25 (1)
V3)1789.40 (13)
Z4
Radiation typeMo Kα
µ (mm1)2.68
Crystal size (mm)0.30 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.500, 0.644
No. of measured, independent and
observed [I > 2σ(I)] reflections
13080, 4429, 4042
Rint0.025
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.053, 1.02
No. of reflections4429
No. of parameters295
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.53

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 2004).

Selected geometric parameters (Å, º) top
Cd1—N3i2.337 (2)Cd2—N22.322 (2)
Cd1—O12.2408 (18)Cd2—O12.4782 (18)
Cd1—O2ii2.2748 (18)Cd2—O22.4099 (18)
Cd1—O4iii2.3221 (18)Cd2—O52.2875 (19)
Cd1—O62.3400 (16)Cd2—O102.2437 (19)
Cd1—O92.307 (2)Cd2—O6iv2.664 (2)
Cd2—N12.314 (2)
N1—Cd2—N272.16 (7)O4iii—Cd1—O6159.62 (7)
N1—Cd2—O193.05 (7)O5—Cd2—N1114.38 (7)
N1—Cd2—O286.37 (7)O5—Cd2—N284.52 (7)
N2—Cd2—O1147.32 (7)O5—Cd2—O175.17 (6)
N2—Cd2—O2146.23 (7)O5—Cd2—O2128.73 (6)
N3i—Cd1—O6107.82 (6)O9—Cd1—N3i169.35 (7)
O1—Cd1—N3i90.27 (7)O9—Cd1—O4iii83.48 (7)
O1—Cd1—O2ii172.48 (6)O9—Cd1—O680.79 (6)
O1—Cd1—O4iii95.50 (7)O10—Cd2—N1157.64 (7)
O1—Cd1—O698.61 (7)O10—Cd2—N2104.56 (7)
O1—Cd1—O994.67 (8)O10—Cd2—O199.64 (7)
O2ii—Cd1—N3i88.92 (7)O10—Cd2—O285.42 (7)
O2ii—Cd1—O4iii91.91 (7)O10—Cd2—O586.80 (7)
O2ii—Cd1—O674.56 (6)O1iv—Cd2—O6123.17 (6)
O2ii—Cd1—O987.39 (8)OW1iv—Cd2—O673.88 (6)
O2—Cd2—O156.53 (6)O2iv—Cd2—O666.66 (6)
O4iii—Cd1—N3i86.66 (7)O5iv—Cd2—O6154.85 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x+3/2, y1/2, z+3/2; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O7v0.899 (18)1.913 (19)2.794 (3)166 (3)
O9—H9B···O3iii0.843 (10)1.868 (11)2.697 (3)168 (3)
O9—H9A···O10ii0.852 (10)2.050 (12)2.872 (3)162 (3)
O10—H10A···O8vi0.844 (10)1.847 (11)2.688 (3)174 (3)
O10—H10B···O8iv0.850 (10)1.956 (14)2.729 (3)151 (3)
Symmetry codes: (ii) x, y1, z; (iii) x+3/2, y1/2, z+3/2; (iv) x, y+1, z; (v) x, y+1, z+1; (vi) x+1/2, y+1/2, z+3/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds