Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Single crystals of Ni3Se2 (trinickel diselenide) and NiSe (nickel selenide) with stoichiometric chemical com­positions were grown in evacuated silica-glass tubes. The chemical com­positions of the single crystals of Ni3Se2 and NiSe were determined by scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM/EDS). The crystal structures of Ni3Se2 [rhombohedral, space group R32, a = 6.02813 (13), c = 7.24883 (16) Å, Z = 3] and NiSe [hexa­gonal, space group P63/mmc, a = 3.66147 (10), c = 5.35766 (16) Å, Z = 2] were analyzed by single-crystal X-ray diffraction and refined to yield R values of 0.020 and 0.018 for 117 and 85 unique reflections, respectively, with Fo > 4σ(Fo). R32 is a Sohncke type of space group where enanti­omeric structures can exist; the single-domain structure obtained by the refinement was confirmed to be correct by a Flack parameter of −0.05 (2). The existence of Ni—Ni bonds was confirmed in both com­pounds, in addition to the Ni—Se bonds. The value of the atomic displacement parameter (mean-square displacement) of each atom in NiSe was larger than that in Ni3Se2. The larger amplitude of the atoms in NiSe corresponds to longer Ni—Se and Ni—Ni bond lengths in NiSe than in Ni3Se2. The Debye temperatures, θD, estimated from observed mean-square displacements for Ni and Se in Ni3Se2, were 322 and 298 K, respectively, while those for Ni and Se in NiSe were 246 and 241 K, respectively. The existence of large cavities in the structure and the weak bonding force are likely responsible for the brittle and soft nature of the NiSe crystal.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229621002187/ep3012sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621002187/ep3012Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621002187/ep3012IIsup3.hkl
Contains datablock II

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229621002187/ep3012sup4.pdf
Additional tables

CCDC references: 2064912; 2064913

Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009) and SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).

Trinickel diselenide (I) top
Crystal data top
Ni3Se2Dx = 7.295 Mg m3
Mr = 334.05Mo Kα radiation, λ = 0.71073 Å
Hexagonal, R32:HCell parameters from 5172 reflections
Hall symbol: R 3 2"θ = 4.8–27.1°
a = 6.02813 (13) ŵ = 41.99 mm1
c = 7.24883 (16) ÅT = 293 K
V = 228.12 (1) Å3Block, silver
Z = 30.12 × 0.09 × 0.08 mm
F(000) = 456
Data collection top
Rigaku SuperNova Single Source
diffractometer with a HyPix3000 detector
117 independent reflections
Mirror monochromator117 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.047
ω scansθmax = 27.0°, θmin = 4.8°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2019)
h = 77
Tmin = 0.056, Tmax = 0.135k = 77
5554 measured reflectionsl = 99
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0318P)2 + 1.1728P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.020(Δ/σ)max < 0.001
wR(F2) = 0.052Δρmax = 1.15 e Å3
S = 1.37Δρmin = 1.59 e Å3
117 reflectionsAbsolute structure: Flack x determined using 42 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
9 parametersAbsolute structure parameter: 0.049 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.0000000.0000000.25999 (13)0.0061 (4)
Ni10.2469 (2)0.0000000.0000000.0070 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0057 (5)0.0057 (5)0.0069 (6)0.0029 (2)0.0000.000
Ni10.0062 (5)0.0076 (7)0.0075 (6)0.0038 (3)0.0007 (2)0.0015 (4)
Geometric parameters (Å, º) top
Se1—Ni1i2.3748 (8)Se1—Ni12.4013 (10)
Se1—Ni1ii2.3748 (8)Ni1—Ni1iv2.577 (2)
Se1—Ni1iii2.3748 (8)Ni1—Ni1v2.577 (2)
Se1—Ni1iv2.4012 (10)Ni1—Ni1i2.5795 (8)
Se1—Ni1v2.4012 (10)Ni1—Ni1vi2.5795 (8)
Ni1i—Se1—Ni1ii115.139 (17)Se1viii—Ni1—Ni1iv100.96 (2)
Ni1i—Se1—Ni1iii115.138 (17)Se1ix—Ni1—Ni1iv57.54 (2)
Ni1ii—Se1—Ni1iii115.138 (16)Se1—Ni1—Ni1iv57.54 (2)
Ni1i—Se1—Ni1iv125.03 (2)Se1vii—Ni1—Ni1v100.96 (2)
Ni1ii—Se1—Ni1iv65.38 (2)Se1viii—Ni1—Ni1v157.35 (3)
Ni1iii—Se1—Ni1iv111.71 (3)Se1ix—Ni1—Ni1v57.54 (2)
Ni1i—Se1—Ni1v111.71 (3)Se1—Ni1—Ni1v57.54 (2)
Ni1ii—Se1—Ni1v125.02 (2)Ni1iv—Ni1—Ni1v60.0
Ni1iii—Se1—Ni1v65.38 (2)Se1vii—Ni1—Ni1i57.81 (5)
Ni1iv—Se1—Ni1v64.92 (5)Se1viii—Ni1—Ni1i98.23 (3)
Ni1i—Se1—Ni165.38 (2)Se1ix—Ni1—Ni1i157.37 (5)
Ni1ii—Se1—Ni1111.71 (3)Se1—Ni1—Ni1i56.82 (2)
Ni1iii—Se1—Ni1125.03 (2)Ni1iv—Ni1—Ni1i110.49 (5)
Ni1iv—Se1—Ni164.92 (5)Ni1v—Ni1—Ni1i100.08 (2)
Ni1v—Se1—Ni164.92 (5)Se1vii—Ni1—Ni1vi98.23 (3)
Se1vii—Ni1—Se1viii100.03 (5)Se1viii—Ni1—Ni1vi57.81 (5)
Se1vii—Ni1—Se1ix125.03 (2)Se1ix—Ni1—Ni1vi56.82 (2)
Se1viii—Ni1—Se1ix102.855 (10)Se1—Ni1—Ni1vi157.38 (5)
Se1vii—Ni1—Se1102.855 (10)Ni1iv—Ni1—Ni1vi100.08 (2)
Se1viii—Ni1—Se1125.03 (2)Ni1v—Ni1—Ni1vi110.49 (5)
Se1ix—Ni1—Se1103.41 (6)Ni1i—Ni1—Ni1vi144.71 (8)
Se1vii—Ni1—Ni1iv157.35 (3)
Symmetry codes: (i) x+y2/3, x1/3, z1/3; (ii) y+1/3, xy+2/3, z1/3; (iii) x+1/3, y1/3, z1/3; (iv) x+y, x, z; (v) y, xy, z; (vi) y1/3, xy+1/3, z+1/3; (vii) xy2/3, y1/3, z1/3; (viii) x1/3, y+1/3, z+1/3; (ix) xy, y, z.
Nickel selenide (II) top
Crystal data top
NiSeDx = 7.350 Mg m3
Mr = 137.67Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mmcCell parameters from 2443 reflections
Hall symbol: -P 6c 2cθ = 3.8–39.7°
a = 3.66147 (10) ŵ = 43.98 mm1
c = 5.35766 (16) ÅT = 293 K
V = 62.20 (1) Å3Plate, silver
Z = 20.13 × 0.11 × 0.03 mm
F(000) = 124
Data collection top
Rigaku SuperNova Single Source
diffractometer with a HyPix3000 detector
91 independent reflections
Mirror monochromator85 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.054
ω scansθmax = 39.7°, θmin = 3.8°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2019)
h = 66
Tmin = 0.040, Tmax = 0.349k = 66
2898 measured reflectionsl = 99
Refinement top
Refinement on F25 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.0278P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.043(Δ/σ)max < 0.001
S = 1.24Δρmax = 1.23 e Å3
91 reflectionsΔρmin = 1.73 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.3333330.6666670.2500000.00930 (13)
Ni20.0000000.0000000.0000000.01201 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.00730 (14)0.00730 (14)0.01331 (18)0.00365 (7)0.0000.000
Ni20.01180 (17)0.01180 (17)0.0124 (2)0.00590 (9)0.0000.000
Geometric parameters (Å, º) top
Se1—Ni2i2.5026 (1)Se1—Ni2iv2.5026 (1)
Se1—Ni2ii2.5026 (1)Se1—Ni2v2.5026 (1)
Se1—Ni2iii2.5026 (1)Ni2—Ni2v2.6788 (1)
Se1—Ni22.5026 (1)Ni2—Ni2vi2.6788 (1)
Ni2i—Se1—Ni2ii64.717 (2)Se1viii—Ni2—Se1x85.968 (1)
Ni2i—Se1—Ni2iii94.032 (1)Se1—Ni2—Se1x85.968 (1)
Ni2ii—Se1—Ni2iii130.033 (1)Se1ix—Ni2—Se1x94.032 (1)
Ni2i—Se1—Ni2130.033 (1)Se1vii—Ni2—Se1xi85.968 (1)
Ni2ii—Se1—Ni294.032 (1)Se1viii—Ni2—Se1xi94.032 (1)
Ni2iii—Se1—Ni2130.033 (1)Se1—Ni2—Se1xi94.032 (1)
Ni2i—Se1—Ni2iv130.033 (1)Se1ix—Ni2—Se1xi85.968 (1)
Ni2ii—Se1—Ni2iv94.032 (1)Se1x—Ni2—Se1xi180.0
Ni2iii—Se1—Ni2iv64.717 (2)Se1vii—Ni2—Ni2v122.359 (1)
Ni2—Se1—Ni2iv94.032 (1)Se1viii—Ni2—Ni2v57.641 (1)
Ni2i—Se1—Ni2v94.032 (1)Se1—Ni2—Ni2v57.641 (1)
Ni2ii—Se1—Ni2v130.033 (1)Se1ix—Ni2—Ni2v122.359 (1)
Ni2iii—Se1—Ni2v94.032 (1)Se1x—Ni2—Ni2v122.359 (1)
Ni2—Se1—Ni2v64.717 (2)Se1xi—Ni2—Ni2v57.641 (1)
Ni2iv—Se1—Ni2v130.033 (1)Se1vii—Ni2—Ni2vi57.641 (1)
Se1vii—Ni2—Se1viii180.0Se1viii—Ni2—Ni2vi122.359 (1)
Se1vii—Ni2—Se185.968 (1)Se1—Ni2—Ni2vi122.359 (1)
Se1viii—Ni2—Se194.032 (1)Se1ix—Ni2—Ni2vi57.641 (1)
Se1vii—Ni2—Se1ix94.032 (1)Se1x—Ni2—Ni2vi57.641 (1)
Se1viii—Ni2—Se1ix85.968 (1)Se1xi—Ni2—Ni2vi122.359 (1)
Se1—Ni2—Se1ix180.0Ni2v—Ni2—Ni2vi180.0
Se1vii—Ni2—Se1x94.032 (1)
Symmetry codes: (i) xy, x+1, z+1/2; (ii) x, y+1, z; (iii) xy+1, x+1, z+1/2; (iv) x+1, y+1, z; (v) xy, x, z+1/2; (vi) xy, x, z1/2; (vii) x, y+1, z; (viii) x, y1, z; (ix) x, y, z; (x) x+1, y+1, z; (xi) x1, y1, z.
Selected interatomic distances (Å) in Ni3Se2 and NiSe top
Ni3Se2NiSe
Ni—Se2.3748 (8) ×32.50257 (5) ×6
Ni—Se2.4012 (10) ×3
Ni—Se2.577 (2) ×2
Ni—Se2.5795 (8) ×2
Ni—Ni3.4796 (14)2.67883 (8) ×2
Ni—Ni3.6391 (4)
Se—Se3.7341 (5)3.41259 (4)
Se—Se3.7692 (14)3.66150 (4)
Se—Se4.2369 (8)
Atomic coordinates and anisotropic atomic displacement parameters for Ni3Se2 and NiSe top
xyzU11U22U33U23U13U12Ueq
Ni3Se2
Ni (9d)-0.2469 (2)0.00.00.0062 (5)0.0076 (7)0.0075 (6)-0.0015 (4)-0.0007 (2)0.0038 (3)0.0070 (4)
Se (6c)0.00.0-0.25999 (13)0.0057 (5)0.0057 (5)0.0069 (6)0.00.00.0029 (2)0.0061 (4)
NiSe
Ni (2a)0.00.00.00.01180 (17)0.011800.0124 (2)0.00.00.00590 (9)0.01201 (15)
Se (2c)0.3333330.6666670.250.00730 (14)0.007300.01331 (18)0.00.00.00365 (7)0.00930 (13)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds