Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010501111X/fa1130sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S010827010501111X/fa1130Isup2.hkl |
A mixture of V2O5 (0.0455 g), TeO2 (0.795 g), Ba(OH)2·8H2O (0.0947 g) and H2O (5 ml) was sealed in a 23 ml Teflon-lined stainless steel autoclave. The molar ratio of Ba/V/Te/H2O was 3:5:5:278. The mixture was heated at 473 K for five days and then cooled to room temperature. Bright yellow block crystals of the title compound were obtained, washed with distilled water and dried at room temperature.
Space group P21/n was established from the systematic absences. Heavy atoms were located by direct methods, and the remaining atoms were found on successive difference Fourier syntheses. The positional and anisotropic displacement parameters for all atoms (110 parameters) were refined by full-matrix least squares to F2.
Data collection: TEXRAY (Molecular Structure Corporation, 1999); cell refinement: TEXRAY; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97-2 (Sheldrick,1997).
BaO8TeV2 | F(000) = 872 |
Mr = 494.82 | Dx = 4.548 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.6380 (8) Å | Cell parameters from 25 reflections |
b = 5.6665 (3) Å | θ = 12–18° |
c = 13.8866 (11) Å | µ = 11.88 mm−1 |
β = 107.642 (4)° | T = 293 K |
V = 722.73 (9) Å3 | Block, yellow |
Z = 4 | 0.30 × 0.15 × 0.05 mm |
Rigaku Weissenberg IP diffractometer | 1663 independent reflections |
Radiation source: rotor target | 1538 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ϕ or ω scans? | θmax = 27.5°, θmin = 2.3° |
Absorption correction: multi-scan (TEXRAY; Molecular Structure Corporation, 1999) | h = 0→12 |
Tmin = 0.13, Tmax = 0.55 | k = 0→7 |
1663 measured reflections | l = −18→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.017 | w = 1/[σ2(Fo2) + (0.0236P)2 + 1.1787P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.056 | (Δ/σ)max = 0.001 |
S = 1.23 | Δρmax = 0.79 e Å−3 |
1663 reflections | Δρmin = −1.00 e Å−3 |
110 parameters | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0112 (3) |
BaO8TeV2 | V = 722.73 (9) Å3 |
Mr = 494.82 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.6380 (8) Å | µ = 11.88 mm−1 |
b = 5.6665 (3) Å | T = 293 K |
c = 13.8866 (11) Å | 0.30 × 0.15 × 0.05 mm |
β = 107.642 (4)° |
Rigaku Weissenberg IP diffractometer | 1663 independent reflections |
Absorption correction: multi-scan (TEXRAY; Molecular Structure Corporation, 1999) | 1538 reflections with I > 2σ(I) |
Tmin = 0.13, Tmax = 0.55 | Rint = 0.033 |
1663 measured reflections |
R[F2 > 2σ(F2)] = 0.017 | 110 parameters |
wR(F2) = 0.056 | 0 restraints |
S = 1.23 | Δρmax = 0.79 e Å−3 |
1663 reflections | Δρmin = −1.00 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ba1 | 0.09329 (2) | 0.18493 (4) | 0.344460 (17) | 0.01384 (10) | |
Te1 | −0.30304 (3) | 0.17884 (4) | 0.411192 (17) | 0.00905 (10) | |
V1 | −0.15161 (7) | 0.66023 (11) | 0.36459 (5) | 0.00891 (14) | |
V2 | −0.41792 (7) | 0.34548 (11) | 0.58981 (5) | 0.01013 (15) | |
O1 | −0.0087 (3) | 0.6793 (5) | 0.3230 (2) | 0.0156 (6) | |
O2 | −0.3002 (3) | 0.6391 (5) | 0.2670 (2) | 0.0164 (6) | |
O3 | −0.1577 (3) | 0.9121 (5) | 0.4404 (2) | 0.0138 (5) | |
O4 | −0.1352 (3) | 0.3864 (5) | 0.4375 (2) | 0.0134 (5) | |
O5 | −0.3081 (3) | 0.5005 (6) | 0.6818 (2) | 0.0208 (6) | |
O6 | −0.4896 (3) | 0.1430 (5) | 0.6459 (2) | 0.0164 (6) | |
O7 | −0.5863 (3) | 0.5369 (5) | 0.5443 (2) | 0.0194 (6) | |
O8 | −0.2984 (3) | 0.1153 (5) | 0.5458 (2) | 0.0138 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1 | 0.01201 (14) | 0.01688 (15) | 0.01191 (14) | 0.00261 (8) | 0.00257 (9) | 0.00222 (8) |
Te1 | 0.00858 (14) | 0.01016 (15) | 0.00872 (14) | 0.00019 (8) | 0.00307 (9) | 0.00072 (8) |
V1 | 0.0093 (3) | 0.0087 (3) | 0.0096 (3) | 0.0000 (2) | 0.0042 (2) | −0.0010 (2) |
V2 | 0.0109 (3) | 0.0103 (3) | 0.0103 (3) | 0.0016 (2) | 0.0049 (2) | 0.0015 (2) |
O1 | 0.0126 (13) | 0.0190 (15) | 0.0165 (14) | −0.0002 (11) | 0.0061 (11) | −0.0009 (11) |
O2 | 0.0133 (13) | 0.0190 (14) | 0.0153 (13) | 0.0003 (12) | 0.0023 (11) | 0.0003 (12) |
O3 | 0.0158 (13) | 0.0118 (13) | 0.0130 (12) | 0.0044 (11) | 0.0029 (10) | −0.0020 (11) |
O4 | 0.0110 (12) | 0.0118 (12) | 0.0161 (13) | −0.0021 (11) | 0.0022 (10) | 0.0017 (11) |
O5 | 0.0215 (14) | 0.0220 (15) | 0.0197 (14) | −0.0065 (13) | 0.0073 (11) | −0.0043 (13) |
O6 | 0.0164 (14) | 0.0173 (13) | 0.0165 (13) | −0.0020 (12) | 0.0067 (11) | 0.0023 (12) |
O7 | 0.0232 (14) | 0.0229 (15) | 0.0171 (14) | 0.0146 (13) | 0.0133 (12) | 0.0098 (13) |
O8 | 0.0162 (13) | 0.0153 (13) | 0.0109 (12) | 0.0061 (12) | 0.0054 (10) | 0.0037 (11) |
Ba1—O8i | 2.701 (3) | V1—O4 | 1.833 (3) |
Ba1—O2ii | 2.791 (3) | V1—Te1viii | 3.4289 (7) |
Ba1—O6iii | 2.802 (3) | V1—Ba1viii | 3.8586 (7) |
Ba1—O5iv | 2.838 (3) | V2—O5 | 1.645 (3) |
Ba1—O5iii | 2.900 (3) | V2—O6 | 1.652 (3) |
Ba1—O3iv | 2.914 (3) | V2—O7 | 1.894 (3) |
Ba1—O1 | 2.954 (3) | V2—O8 | 1.956 (3) |
Ba1—O1v | 3.014 (3) | V2—O7vi | 1.990 (3) |
Ba1—O4 | 3.090 (3) | V2—V2vi | 3.0659 (13) |
Ba1—V2iii | 3.5092 (7) | V2—Ba1ix | 3.5092 (7) |
Ba1—V1 | 3.6473 (7) | O1—Ba1viii | 3.014 (3) |
Ba1—V1v | 3.8586 (7) | O2—Ba1x | 2.791 (3) |
Te1—O8 | 1.891 (3) | O2—Te1x | 2.942 (3) |
Te1—O4 | 1.943 (3) | O3—Te1viii | 2.017 (3) |
Te1—O3v | 2.017 (3) | O3—Ba1iv | 2.914 (3) |
Te1—O7vi | 2.125 (3) | O5—Ba1iv | 2.838 (3) |
Te1—O6vii | 2.644 (3) | O5—Ba1ix | 2.900 (3) |
Te1—O2ii | 2.942 (3) | O6—Te1vii | 2.644 (3) |
Te1—V2 | 3.1519 (7) | O6—Ba1ix | 2.802 (3) |
Te1—V1 | 3.2500 (7) | O7—V2vi | 1.990 (3) |
V1—O1 | 1.651 (3) | O7—Te1vi | 2.125 (3) |
V1—O2 | 1.651 (3) | O8—Ba1i | 2.701 (3) |
V1—O3 | 1.785 (3) | ||
O8i—Ba1—O2ii | 134.33 (9) | O8—Te1—O2ii | 154.72 (10) |
O8i—Ba1—O6iii | 135.69 (8) | O4—Te1—O2ii | 74.32 (10) |
O2ii—Ba1—O6iii | 63.14 (8) | O3v—Te1—O2ii | 73.76 (9) |
O8i—Ba1—O5iv | 91.73 (9) | O7vi—Te1—O2ii | 129.06 (10) |
O2ii—Ba1—O5iv | 129.96 (9) | O6vii—Te1—O2ii | 96.45 (9) |
O6iii—Ba1—O5iv | 69.92 (9) | O1—V1—O2 | 109.00 (14) |
O8i—Ba1—O5iii | 81.63 (8) | O1—V1—O3 | 109.53 (14) |
O2ii—Ba1—O5iii | 92.87 (8) | O2—V1—O3 | 111.51 (14) |
O6iii—Ba1—O5iii | 54.76 (8) | O1—V1—O4 | 107.88 (13) |
O5iv—Ba1—O5iii | 72.75 (6) | O2—V1—O4 | 107.46 (14) |
O8i—Ba1—O3iv | 53.90 (8) | O3—V1—O4 | 111.35 (13) |
O2ii—Ba1—O3iv | 114.60 (8) | O5—V2—O6 | 105.50 (15) |
O6iii—Ba1—O3iv | 169.41 (8) | O5—V2—O7 | 103.76 (15) |
O5iv—Ba1—O3iv | 108.25 (8) | O6—V2—O7 | 96.69 (14) |
O5iii—Ba1—O3iv | 135.39 (8) | O5—V2—O8 | 107.31 (14) |
O8i—Ba1—O1 | 144.92 (8) | O6—V2—O8 | 93.11 (14) |
O2ii—Ba1—O1 | 77.43 (9) | O7—V2—O8 | 143.47 (12) |
O6iii—Ba1—O1 | 65.41 (8) | O5—V2—O7vi | 110.93 (15) |
O5iv—Ba1—O1 | 67.96 (9) | O6—V2—O7vi | 143.55 (15) |
O5iii—Ba1—O1 | 116.27 (8) | O7—V2—O7vi | 75.77 (12) |
O3iv—Ba1—O1 | 104.09 (8) | O8—V2—O7vi | 75.55 (11) |
O8i—Ba1—O1v | 67.55 (8) | V1—O1—Ba1 | 100.96 (12) |
O2ii—Ba1—O1v | 67.17 (8) | V1—O1—Ba1viii | 108.00 (12) |
O6iii—Ba1—O1v | 104.25 (8) | Ba1—O1—Ba1viii | 143.42 (11) |
O5iv—Ba1—O1v | 144.38 (8) | V1—O2—Ba1x | 158.21 (15) |
O5iii—Ba1—O1v | 75.67 (8) | V1—O2—Te1x | 104.76 (12) |
O3iv—Ba1—O1v | 83.33 (8) | Ba1x—O2—Te1x | 94.02 (8) |
O1—Ba1—O1v | 143.42 (11) | V1—O3—Te1viii | 128.75 (15) |
O8i—Ba1—O4 | 119.31 (7) | V1—O3—Ba1iv | 114.77 (12) |
O2ii—Ba1—O4 | 62.37 (8) | Te1viii—O3—Ba1iv | 105.47 (10) |
O6iii—Ba1—O4 | 104.82 (8) | V1—O4—Te1 | 118.78 (14) |
O5iv—Ba1—O4 | 117.51 (8) | V1—O4—Ba1 | 92.01 (10) |
O5iii—Ba1—O4 | 154.53 (8) | Te1—O4—Ba1 | 110.87 (11) |
O3iv—Ba1—O4 | 66.33 (7) | V2—O5—Ba1iv | 123.95 (14) |
O1—Ba1—O4 | 55.55 (7) | V2—O5—Ba1ix | 97.22 (13) |
O1v—Ba1—O4 | 98.06 (7) | Ba1iv—O5—Ba1ix | 138.74 (11) |
O8—Te1—O4 | 99.26 (12) | V2—O6—Te1vii | 136.38 (15) |
O8—Te1—O3v | 81.47 (11) | V2—O6—Ba1ix | 100.79 (13) |
O4—Te1—O3v | 85.88 (11) | Te1vii—O6—Ba1ix | 119.96 (10) |
O8—Te1—O7vi | 73.77 (11) | V2—O7—V2vi | 104.23 (12) |
O4—Te1—O7vi | 87.09 (12) | V2—O7—Te1vi | 142.38 (17) |
O3v—Te1—O7vi | 152.78 (11) | V2vi—O7—Te1vi | 99.93 (12) |
O8—Te1—O6vii | 87.39 (11) | Te1—O8—V2 | 109.99 (13) |
O4—Te1—O6vii | 169.92 (10) | Te1—O8—Ba1i | 118.13 (12) |
O3v—Te1—O6vii | 87.65 (11) | V2—O8—Ba1i | 130.04 (12) |
O7vi—Te1—O6vii | 102.11 (11) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x−1/2, y−1/2, −z+1/2; (iii) x+1/2, −y+1/2, z−1/2; (iv) −x, −y+1, −z+1; (v) x, y−1, z; (vi) −x−1, −y+1, −z+1; (vii) −x−1, −y, −z+1; (viii) x, y+1, z; (ix) x−1/2, −y+1/2, z+1/2; (x) −x−1/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | BaO8TeV2 |
Mr | 494.82 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 9.6380 (8), 5.6665 (3), 13.8866 (11) |
β (°) | 107.642 (4) |
V (Å3) | 722.73 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 11.88 |
Crystal size (mm) | 0.30 × 0.15 × 0.05 |
Data collection | |
Diffractometer | Rigaku Weissenberg IP diffractometer |
Absorption correction | Multi-scan (TEXRAY; Molecular Structure Corporation, 1999) |
Tmin, Tmax | 0.13, 0.55 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1663, 1663, 1538 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.017, 0.056, 1.23 |
No. of reflections | 1663 |
No. of parameters | 110 |
Δρmax, Δρmin (e Å−3) | 0.79, −1.00 |
Computer programs: TEXRAY (Molecular Structure Corporation, 1999), TEXRAY, TEXSAN (Molecular Structure Corporation, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEX (McArdle, 1995), SHELXL97-2 (Sheldrick,1997).
Ba1—O8i | 2.701 (3) | Te1—O7vi | 2.125 (3) |
Ba1—O2ii | 2.791 (3) | Te1—O6vii | 2.644 (3) |
Ba1—O6iii | 2.802 (3) | Te1—O2ii | 2.942 (3) |
Ba1—O5iv | 2.838 (3) | V1—O1 | 1.651 (3) |
Ba1—O5iii | 2.900 (3) | V1—O2 | 1.651 (3) |
Ba1—O3iv | 2.914 (3) | V1—O3 | 1.785 (3) |
Ba1—O1 | 2.954 (3) | V1—O4 | 1.833 (3) |
Ba1—O1v | 3.014 (3) | V2—O5 | 1.645 (3) |
Ba1—O4 | 3.090 (3) | V2—O6 | 1.652 (3) |
Te1—O8 | 1.891 (3) | V2—O7 | 1.894 (3) |
Te1—O4 | 1.943 (3) | V2—O8 | 1.956 (3) |
Te1—O3v | 2.017 (3) | V2—O7vi | 1.990 (3) |
O8—Te1—O4 | 99.26 (12) | O1—V1—O3 | 109.53 (14) |
O8—Te1—O3v | 81.47 (11) | O2—V1—O3 | 111.51 (14) |
O4—Te1—O3v | 85.88 (11) | O1—V1—O4 | 107.88 (13) |
O8—Te1—O7vi | 73.77 (11) | O2—V1—O4 | 107.46 (14) |
O4—Te1—O7vi | 87.09 (12) | O3—V1—O4 | 111.35 (13) |
O3v—Te1—O7vi | 152.78 (11) | O5—V2—O6 | 105.50 (15) |
O8—Te1—O6vii | 87.39 (11) | O5—V2—O7 | 103.76 (15) |
O4—Te1—O6vii | 169.92 (10) | O6—V2—O7 | 96.69 (14) |
O3v—Te1—O6vii | 87.65 (11) | O5—V2—O8 | 107.31 (14) |
O7vi—Te1—O6vii | 102.11 (11) | O6—V2—O8 | 93.11 (14) |
O8—Te1—O2ii | 154.72 (10) | O7—V2—O8 | 143.47 (12) |
O4—Te1—O2ii | 74.32 (10) | O5—V2—O7vi | 110.93 (15) |
O3v—Te1—O2ii | 73.76 (9) | O6—V2—O7vi | 143.55 (15) |
O7vi—Te1—O2ii | 129.06 (10) | O7—V2—O7vi | 75.77 (12) |
O6vii—Te1—O2ii | 96.45 (9) | O8—V2—O7vi | 75.55 (11) |
O1—V1—O2 | 109.00 (14) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x−1/2, y−1/2, −z+1/2; (iii) x+1/2, −y+1/2, z−1/2; (iv) −x, −y+1, −z+1; (v) x, y−1, z; (vi) −x−1, −y+1, −z+1; (vii) −x−1, −y, −z+1. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
Both vanadium and tellurium exhibit a variety of coordination geometries, such as the VO4 tetrahedron, the VO6 octahedron, the VO5 square pyramid, the TeO3 trigonal pyramid, the TeO4 folded square and the TeO5 square pyramid, which lead to the rich structural chemistry of vanadium tellurites. A series of compounds have been obtained, such as Te2V2O9 (Darriet & Galy, 1973), TeVO4 (Meunier et al., 1972), TeVO4 (Meunier et al., 1973), NaVTeO5 (Darriet et al., 1972), KVTeO5 (Darriet et al., 1972), Cs(VO2)3(TeO3)2 (Harrison & Buttery, 2000), M(phen)V2TeO8 (M = Cu and Ni; Xiao, Li et al., 2003), V4Te4O18 (Xiao, Wang et al., 2003). Thus, the preparation of novel vanadium tellurites continues to be an intriguing endeavour.
Recently, the hydrothermal method has found broader application in the syntheses of a variety of inorganic oxide materials, such as metal phosphates (Soghomonian et al., 1995), phosphonates (Bonavia et al., 1996) and selenites (Vaughey et al., 1994). The metastable materials thus prepared possess novel low-dimensional or three-dimensional framework structures. We have attempted to introduce the hydrothermal method into the synthesis of vanadium tellurites, in order to obtain compounds with novel structures. In this paper, we report the crystal structure of the new vanadium tellurite, BaV2TeO8.
There are two crystallographically independent V atoms, one Te atom and one Ba atom in this structure (Fig. 1). Atom V1 exhibits a distorted tetrahedral coordination geometry, with two terminal O atoms (O1 and O2), and two µ2-O atoms (O3 and O4) linked to Te atoms. The V1—O bond lengths are in the range 1.651 (3)–1.833 (3) Å, and the O—V1—O angles range from 107.46 (14) to 111.51 (14)°. Atom V2 has square-pyramidal coordination, with two terminal O atoms (O5, O6), one µ2-O atom (O8) shared with Te, and two µ3-O atoms (O7 and O7vi; symmetry codes: (vi) −1 − x, 1 − y, 1 − z] linked with Te and V2vi [symmetry code: (vi) −1 − x, 1 − y, 1 − z). The V2—O bond lengths are in the range 1.645 (3) − 1.990 (3) Å, and the O—V2—O angles vary from 77.55 (11) to 143.55 (15)°. The Te atom has a folded square coordination geometry, with three µ2-O atoms (O3, O4 and O8), two of which are shared with V1 atoms and the third bridging atoms Te and V2, and one µ3-O atom (O7), shared with V2 and V2vi [symmetry code: (vi) −1 − x, 1 − y, 1 − z]. This geometry can be simply rationalized in VSEPR theory as an AX4E trigonal bipyramid, with the lone pair of electrons occupying an equatorial position. The Te—O bond lengths range from 1.891 (3) to 2.125 (3) Å, and the two axial bonds are longer than the two equatorial ones. The O—Te—O angles are in the range of 73.77 (11)–152.78 (11)°. Moreover, there are two long Te—O contacts, namely Te—O2 (2.942 Å) and Te—O6 (2.644 Å). The overall shape of this TeO4 + 2 group approximates to a distorted octahedron. The Ba atom adopts a nine-coordination mode.
The title compound exhibits a three-dimensional framework. The framework contains two-dimensional [V1V2TeO8]n2n− folded anionic layers (Fig. 2) formed by VO5 square pyramids, VO4 tetrahedra and TeO4 polyhedra, which share corners and edges, with Ba atoms located between the layers. The TeO4 polyhedra and VO4 tetrahedra share corners to form an infinite [V1TeO6]n chain, parallel to the b axis. Two V2O5 square pyramids share an edge to form a V22O8 moiety. The V22O8 moieties connect two [V1TeO6]n chains into a complex [V1V2TeO8]n2n- band by sharing an edge with neighboring TeO4 groups. Taking the weak Te—O interaction into account, neighboring [V1V2TeO8]n2n− infinite bands combine with each other to form [V1V2TeO8]n2n− infinite layers parallel to (101). Successive layers are linked by Ba—O interactions into a three-dimensional framework.