Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A new three-dimensional bimetallic tellurite, BaV2TeO8, was synthesized by the hydro­thermal reaction of Ba(OH)2, TeO2 and V2O5, and characterized by single-crystal X-ray diffraction. The three-dimensional framework is built up from anionic [V2TeO8]n2n- layers parallel to (101) and connected via Ba-O bonds. The anionic layers are formed by three types of polyhedra, namely VO5 tetra­gonal pyramids, VO4 tetra­hedra and TeO4+2 `folded square' polyhedra.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010501111X/fa1130sup1.cif
Contains datablocks I, hjy

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010501111X/fa1130Isup2.hkl
Contains datablock I

Comment top

Both vanadium and tellurium exhibit a variety of coordination geometries, such as the VO4 tetrahedron, the VO6 octahedron, the VO5 square pyramid, the TeO3 trigonal pyramid, the TeO4 folded square and the TeO5 square pyramid, which lead to the rich structural chemistry of vanadium tellurites. A series of compounds have been obtained, such as Te2V2O9 (Darriet & Galy, 1973), TeVO4 (Meunier et al., 1972), TeVO4 (Meunier et al., 1973), NaVTeO5 (Darriet et al., 1972), KVTeO5 (Darriet et al., 1972), Cs(VO2)3(TeO3)2 (Harrison & Buttery, 2000), M(phen)V2TeO8 (M = Cu and Ni; Xiao, Li et al., 2003), V4Te4O18 (Xiao, Wang et al., 2003). Thus, the preparation of novel vanadium tellurites continues to be an intriguing endeavour.

Recently, the hydrothermal method has found broader application in the syntheses of a variety of inorganic oxide materials, such as metal phosphates (Soghomonian et al., 1995), phosphonates (Bonavia et al., 1996) and selenites (Vaughey et al., 1994). The metastable materials thus prepared possess novel low-dimensional or three-dimensional framework structures. We have attempted to introduce the hydrothermal method into the synthesis of vanadium tellurites, in order to obtain compounds with novel structures. In this paper, we report the crystal structure of the new vanadium tellurite, BaV2TeO8.

There are two crystallographically independent V atoms, one Te atom and one Ba atom in this structure (Fig. 1). Atom V1 exhibits a distorted tetrahedral coordination geometry, with two terminal O atoms (O1 and O2), and two µ2-O atoms (O3 and O4) linked to Te atoms. The V1—O bond lengths are in the range 1.651 (3)–1.833 (3) Å, and the O—V1—O angles range from 107.46 (14) to 111.51 (14)°. Atom V2 has square-pyramidal coordination, with two terminal O atoms (O5, O6), one µ2-O atom (O8) shared with Te, and two µ3-O atoms (O7 and O7vi; symmetry codes: (vi) −1 − x, 1 − y, 1 − z] linked with Te and V2vi [symmetry code: (vi) −1 − x, 1 − y, 1 − z). The V2—O bond lengths are in the range 1.645 (3) − 1.990 (3) Å, and the O—V2—O angles vary from 77.55 (11) to 143.55 (15)°. The Te atom has a folded square coordination geometry, with three µ2-O atoms (O3, O4 and O8), two of which are shared with V1 atoms and the third bridging atoms Te and V2, and one µ3-O atom (O7), shared with V2 and V2vi [symmetry code: (vi) −1 − x, 1 − y, 1 − z]. This geometry can be simply rationalized in VSEPR theory as an AX4E trigonal bipyramid, with the lone pair of electrons occupying an equatorial position. The Te—O bond lengths range from 1.891 (3) to 2.125 (3) Å, and the two axial bonds are longer than the two equatorial ones. The O—Te—O angles are in the range of 73.77 (11)–152.78 (11)°. Moreover, there are two long Te—O contacts, namely Te—O2 (2.942 Å) and Te—O6 (2.644 Å). The overall shape of this TeO4 + 2 group approximates to a distorted octahedron. The Ba atom adopts a nine-coordination mode.

The title compound exhibits a three-dimensional framework. The framework contains two-dimensional [V1V2TeO8]n2n folded anionic layers (Fig. 2) formed by VO5 square pyramids, VO4 tetrahedra and TeO4 polyhedra, which share corners and edges, with Ba atoms located between the layers. The TeO4 polyhedra and VO4 tetrahedra share corners to form an infinite [V1TeO6]n chain, parallel to the b axis. Two V2O5 square pyramids share an edge to form a V22O8 moiety. The V22O8 moieties connect two [V1TeO6]n chains into a complex [V1V2TeO8]n2n- band by sharing an edge with neighboring TeO4 groups. Taking the weak Te—O interaction into account, neighboring [V1V2TeO8]n2n infinite bands combine with each other to form [V1V2TeO8]n2n infinite layers parallel to (101). Successive layers are linked by Ba—O interactions into a three-dimensional framework.

Experimental top

A mixture of V2O5 (0.0455 g), TeO2 (0.795 g), Ba(OH)2·8H2O (0.0947 g) and H2O (5 ml) was sealed in a 23 ml Teflon-lined stainless steel autoclave. The molar ratio of Ba/V/Te/H2O was 3:5:5:278. The mixture was heated at 473 K for five days and then cooled to room temperature. Bright yellow block crystals of the title compound were obtained, washed with distilled water and dried at room temperature.

Refinement top

Space group P21/n was established from the systematic absences. Heavy atoms were located by direct methods, and the remaining atoms were found on successive difference Fourier syntheses. The positional and anisotropic displacement parameters for all atoms (110 parameters) were refined by full-matrix least squares to F2.

Computing details top

Data collection: TEXRAY (Molecular Structure Corporation, 1999); cell refinement: TEXRAY; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97-2 (Sheldrick,1997).

Figures top
[Figure 1] Fig. 1. Coordination enviroments of the V, Te and Ba atoms, showing the atom-labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Infinite [V1V2TeO8]n2n layers parallel to (101). The light lines represent weak Te—O interactions.
(I) top
Crystal data top
BaO8TeV2F(000) = 872
Mr = 494.82Dx = 4.548 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.6380 (8) ÅCell parameters from 25 reflections
b = 5.6665 (3) Åθ = 12–18°
c = 13.8866 (11) ŵ = 11.88 mm1
β = 107.642 (4)°T = 293 K
V = 722.73 (9) Å3Block, yellow
Z = 40.30 × 0.15 × 0.05 mm
Data collection top
Rigaku Weissenberg IP
diffractometer
1663 independent reflections
Radiation source: rotor target1538 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ or ω scans?θmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(TEXRAY; Molecular Structure Corporation, 1999)
h = 012
Tmin = 0.13, Tmax = 0.55k = 07
1663 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017 w = 1/[σ2(Fo2) + (0.0236P)2 + 1.1787P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.056(Δ/σ)max = 0.001
S = 1.23Δρmax = 0.79 e Å3
1663 reflectionsΔρmin = 1.00 e Å3
110 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0112 (3)
Crystal data top
BaO8TeV2V = 722.73 (9) Å3
Mr = 494.82Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.6380 (8) ŵ = 11.88 mm1
b = 5.6665 (3) ÅT = 293 K
c = 13.8866 (11) Å0.30 × 0.15 × 0.05 mm
β = 107.642 (4)°
Data collection top
Rigaku Weissenberg IP
diffractometer
1663 independent reflections
Absorption correction: multi-scan
(TEXRAY; Molecular Structure Corporation, 1999)
1538 reflections with I > 2σ(I)
Tmin = 0.13, Tmax = 0.55Rint = 0.033
1663 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.017110 parameters
wR(F2) = 0.0560 restraints
S = 1.23Δρmax = 0.79 e Å3
1663 reflectionsΔρmin = 1.00 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.09329 (2)0.18493 (4)0.344460 (17)0.01384 (10)
Te10.30304 (3)0.17884 (4)0.411192 (17)0.00905 (10)
V10.15161 (7)0.66023 (11)0.36459 (5)0.00891 (14)
V20.41792 (7)0.34548 (11)0.58981 (5)0.01013 (15)
O10.0087 (3)0.6793 (5)0.3230 (2)0.0156 (6)
O20.3002 (3)0.6391 (5)0.2670 (2)0.0164 (6)
O30.1577 (3)0.9121 (5)0.4404 (2)0.0138 (5)
O40.1352 (3)0.3864 (5)0.4375 (2)0.0134 (5)
O50.3081 (3)0.5005 (6)0.6818 (2)0.0208 (6)
O60.4896 (3)0.1430 (5)0.6459 (2)0.0164 (6)
O70.5863 (3)0.5369 (5)0.5443 (2)0.0194 (6)
O80.2984 (3)0.1153 (5)0.5458 (2)0.0138 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.01201 (14)0.01688 (15)0.01191 (14)0.00261 (8)0.00257 (9)0.00222 (8)
Te10.00858 (14)0.01016 (15)0.00872 (14)0.00019 (8)0.00307 (9)0.00072 (8)
V10.0093 (3)0.0087 (3)0.0096 (3)0.0000 (2)0.0042 (2)0.0010 (2)
V20.0109 (3)0.0103 (3)0.0103 (3)0.0016 (2)0.0049 (2)0.0015 (2)
O10.0126 (13)0.0190 (15)0.0165 (14)0.0002 (11)0.0061 (11)0.0009 (11)
O20.0133 (13)0.0190 (14)0.0153 (13)0.0003 (12)0.0023 (11)0.0003 (12)
O30.0158 (13)0.0118 (13)0.0130 (12)0.0044 (11)0.0029 (10)0.0020 (11)
O40.0110 (12)0.0118 (12)0.0161 (13)0.0021 (11)0.0022 (10)0.0017 (11)
O50.0215 (14)0.0220 (15)0.0197 (14)0.0065 (13)0.0073 (11)0.0043 (13)
O60.0164 (14)0.0173 (13)0.0165 (13)0.0020 (12)0.0067 (11)0.0023 (12)
O70.0232 (14)0.0229 (15)0.0171 (14)0.0146 (13)0.0133 (12)0.0098 (13)
O80.0162 (13)0.0153 (13)0.0109 (12)0.0061 (12)0.0054 (10)0.0037 (11)
Geometric parameters (Å, º) top
Ba1—O8i2.701 (3)V1—O41.833 (3)
Ba1—O2ii2.791 (3)V1—Te1viii3.4289 (7)
Ba1—O6iii2.802 (3)V1—Ba1viii3.8586 (7)
Ba1—O5iv2.838 (3)V2—O51.645 (3)
Ba1—O5iii2.900 (3)V2—O61.652 (3)
Ba1—O3iv2.914 (3)V2—O71.894 (3)
Ba1—O12.954 (3)V2—O81.956 (3)
Ba1—O1v3.014 (3)V2—O7vi1.990 (3)
Ba1—O43.090 (3)V2—V2vi3.0659 (13)
Ba1—V2iii3.5092 (7)V2—Ba1ix3.5092 (7)
Ba1—V13.6473 (7)O1—Ba1viii3.014 (3)
Ba1—V1v3.8586 (7)O2—Ba1x2.791 (3)
Te1—O81.891 (3)O2—Te1x2.942 (3)
Te1—O41.943 (3)O3—Te1viii2.017 (3)
Te1—O3v2.017 (3)O3—Ba1iv2.914 (3)
Te1—O7vi2.125 (3)O5—Ba1iv2.838 (3)
Te1—O6vii2.644 (3)O5—Ba1ix2.900 (3)
Te1—O2ii2.942 (3)O6—Te1vii2.644 (3)
Te1—V23.1519 (7)O6—Ba1ix2.802 (3)
Te1—V13.2500 (7)O7—V2vi1.990 (3)
V1—O11.651 (3)O7—Te1vi2.125 (3)
V1—O21.651 (3)O8—Ba1i2.701 (3)
V1—O31.785 (3)
O8i—Ba1—O2ii134.33 (9)O8—Te1—O2ii154.72 (10)
O8i—Ba1—O6iii135.69 (8)O4—Te1—O2ii74.32 (10)
O2ii—Ba1—O6iii63.14 (8)O3v—Te1—O2ii73.76 (9)
O8i—Ba1—O5iv91.73 (9)O7vi—Te1—O2ii129.06 (10)
O2ii—Ba1—O5iv129.96 (9)O6vii—Te1—O2ii96.45 (9)
O6iii—Ba1—O5iv69.92 (9)O1—V1—O2109.00 (14)
O8i—Ba1—O5iii81.63 (8)O1—V1—O3109.53 (14)
O2ii—Ba1—O5iii92.87 (8)O2—V1—O3111.51 (14)
O6iii—Ba1—O5iii54.76 (8)O1—V1—O4107.88 (13)
O5iv—Ba1—O5iii72.75 (6)O2—V1—O4107.46 (14)
O8i—Ba1—O3iv53.90 (8)O3—V1—O4111.35 (13)
O2ii—Ba1—O3iv114.60 (8)O5—V2—O6105.50 (15)
O6iii—Ba1—O3iv169.41 (8)O5—V2—O7103.76 (15)
O5iv—Ba1—O3iv108.25 (8)O6—V2—O796.69 (14)
O5iii—Ba1—O3iv135.39 (8)O5—V2—O8107.31 (14)
O8i—Ba1—O1144.92 (8)O6—V2—O893.11 (14)
O2ii—Ba1—O177.43 (9)O7—V2—O8143.47 (12)
O6iii—Ba1—O165.41 (8)O5—V2—O7vi110.93 (15)
O5iv—Ba1—O167.96 (9)O6—V2—O7vi143.55 (15)
O5iii—Ba1—O1116.27 (8)O7—V2—O7vi75.77 (12)
O3iv—Ba1—O1104.09 (8)O8—V2—O7vi75.55 (11)
O8i—Ba1—O1v67.55 (8)V1—O1—Ba1100.96 (12)
O2ii—Ba1—O1v67.17 (8)V1—O1—Ba1viii108.00 (12)
O6iii—Ba1—O1v104.25 (8)Ba1—O1—Ba1viii143.42 (11)
O5iv—Ba1—O1v144.38 (8)V1—O2—Ba1x158.21 (15)
O5iii—Ba1—O1v75.67 (8)V1—O2—Te1x104.76 (12)
O3iv—Ba1—O1v83.33 (8)Ba1x—O2—Te1x94.02 (8)
O1—Ba1—O1v143.42 (11)V1—O3—Te1viii128.75 (15)
O8i—Ba1—O4119.31 (7)V1—O3—Ba1iv114.77 (12)
O2ii—Ba1—O462.37 (8)Te1viii—O3—Ba1iv105.47 (10)
O6iii—Ba1—O4104.82 (8)V1—O4—Te1118.78 (14)
O5iv—Ba1—O4117.51 (8)V1—O4—Ba192.01 (10)
O5iii—Ba1—O4154.53 (8)Te1—O4—Ba1110.87 (11)
O3iv—Ba1—O466.33 (7)V2—O5—Ba1iv123.95 (14)
O1—Ba1—O455.55 (7)V2—O5—Ba1ix97.22 (13)
O1v—Ba1—O498.06 (7)Ba1iv—O5—Ba1ix138.74 (11)
O8—Te1—O499.26 (12)V2—O6—Te1vii136.38 (15)
O8—Te1—O3v81.47 (11)V2—O6—Ba1ix100.79 (13)
O4—Te1—O3v85.88 (11)Te1vii—O6—Ba1ix119.96 (10)
O8—Te1—O7vi73.77 (11)V2—O7—V2vi104.23 (12)
O4—Te1—O7vi87.09 (12)V2—O7—Te1vi142.38 (17)
O3v—Te1—O7vi152.78 (11)V2vi—O7—Te1vi99.93 (12)
O8—Te1—O6vii87.39 (11)Te1—O8—V2109.99 (13)
O4—Te1—O6vii169.92 (10)Te1—O8—Ba1i118.13 (12)
O3v—Te1—O6vii87.65 (11)V2—O8—Ba1i130.04 (12)
O7vi—Te1—O6vii102.11 (11)
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x, y+1, z+1; (v) x, y1, z; (vi) x1, y+1, z+1; (vii) x1, y, z+1; (viii) x, y+1, z; (ix) x1/2, y+1/2, z+1/2; (x) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaBaO8TeV2
Mr494.82
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.6380 (8), 5.6665 (3), 13.8866 (11)
β (°) 107.642 (4)
V3)722.73 (9)
Z4
Radiation typeMo Kα
µ (mm1)11.88
Crystal size (mm)0.30 × 0.15 × 0.05
Data collection
DiffractometerRigaku Weissenberg IP
diffractometer
Absorption correctionMulti-scan
(TEXRAY; Molecular Structure Corporation, 1999)
Tmin, Tmax0.13, 0.55
No. of measured, independent and
observed [I > 2σ(I)] reflections
1663, 1663, 1538
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.056, 1.23
No. of reflections1663
No. of parameters110
Δρmax, Δρmin (e Å3)0.79, 1.00

Computer programs: TEXRAY (Molecular Structure Corporation, 1999), TEXRAY, TEXSAN (Molecular Structure Corporation, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEX (McArdle, 1995), SHELXL97-2 (Sheldrick,1997).

Selected geometric parameters (Å, º) top
Ba1—O8i2.701 (3)Te1—O7vi2.125 (3)
Ba1—O2ii2.791 (3)Te1—O6vii2.644 (3)
Ba1—O6iii2.802 (3)Te1—O2ii2.942 (3)
Ba1—O5iv2.838 (3)V1—O11.651 (3)
Ba1—O5iii2.900 (3)V1—O21.651 (3)
Ba1—O3iv2.914 (3)V1—O31.785 (3)
Ba1—O12.954 (3)V1—O41.833 (3)
Ba1—O1v3.014 (3)V2—O51.645 (3)
Ba1—O43.090 (3)V2—O61.652 (3)
Te1—O81.891 (3)V2—O71.894 (3)
Te1—O41.943 (3)V2—O81.956 (3)
Te1—O3v2.017 (3)V2—O7vi1.990 (3)
O8—Te1—O499.26 (12)O1—V1—O3109.53 (14)
O8—Te1—O3v81.47 (11)O2—V1—O3111.51 (14)
O4—Te1—O3v85.88 (11)O1—V1—O4107.88 (13)
O8—Te1—O7vi73.77 (11)O2—V1—O4107.46 (14)
O4—Te1—O7vi87.09 (12)O3—V1—O4111.35 (13)
O3v—Te1—O7vi152.78 (11)O5—V2—O6105.50 (15)
O8—Te1—O6vii87.39 (11)O5—V2—O7103.76 (15)
O4—Te1—O6vii169.92 (10)O6—V2—O796.69 (14)
O3v—Te1—O6vii87.65 (11)O5—V2—O8107.31 (14)
O7vi—Te1—O6vii102.11 (11)O6—V2—O893.11 (14)
O8—Te1—O2ii154.72 (10)O7—V2—O8143.47 (12)
O4—Te1—O2ii74.32 (10)O5—V2—O7vi110.93 (15)
O3v—Te1—O2ii73.76 (9)O6—V2—O7vi143.55 (15)
O7vi—Te1—O2ii129.06 (10)O7—V2—O7vi75.77 (12)
O6vii—Te1—O2ii96.45 (9)O8—V2—O7vi75.55 (11)
O1—V1—O2109.00 (14)
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x, y+1, z+1; (v) x, y1, z; (vi) x1, y+1, z+1; (vii) x1, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds