Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of thallium fluoro­beryllate, Tl2BeF4, has been analysed by the Rietveld method on neutron diffraction patterns collected at 1.5, 50, 100, 150, 200 and 300 K, with the aim of detecting low-temperature instabilities. Atomic parameters based on the isomorphic β-K2SO4 crystal in the paraelectric phase were used as the starting model at room temperature; no evidence for any phase transition has been detected at lower temperature. The structure was determined in the ortho­rhom­bic space group Pnma. All the atoms (except one F atom) occupy sites with m symmetry. We have compared the structure with those of other compounds of the β-K2SO4 family, at room temperature, in order to gain insight into their observed instabilities. The irregular coordination of the cations may indicate stereochemical activity of the TlI lone pair but does not indicate a possible structural instability.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010503249X/fa1150sup1.cif
Contains datablocks global, I_300K, I_200K, I_150K, I_100K, I_50K, I_1.5K

rtv

Rietveld powder data file (CIF format) https://doi.org/10.1107/S010827010503249X/fa1150_I_300Ksup2.rtv
Contains datablock I_300K

rtv

Rietveld powder data file (CIF format) https://doi.org/10.1107/S010827010503249X/fa1150_I_200Ksup3.rtv
Contains datablock I_200K

rtv

Rietveld powder data file (CIF format) https://doi.org/10.1107/S010827010503249X/fa1150_I_150Ksup4.rtv
Contains datablock I_150K

rtv

Rietveld powder data file (CIF format) https://doi.org/10.1107/S010827010503249X/fa1150_I_100Ksup5.rtv
Contains datablock I_100K

rtv

Rietveld powder data file (CIF format) https://doi.org/10.1107/S010827010503249X/fa1150_I_50Ksup6.rtv
Contains datablock I_50K

rtv

Rietveld powder data file (CIF format) https://doi.org/10.1107/S010827010503249X/fa1150_I_1.5Ksup7.rtv
Contains datablock I_1.5K

Comment top

We are interested in the large family of ferroelectric compounds having the general formula A2BX4, with the β-K2SO4 structure in the paraelectric phase (space group Pnma, Z = 4). The most widely studied compounds are K2SeO4, (NH4)2SO4 and (NH4)2BeF4; they exhibit interesting properties, related to a low-temperature phase transition, which are strikingly different. For instance, the polar axis of (NH4)2BeF4 is the b axis, while that of (NH4)2SO4 (Hoshino et al., 1958) and K2SeO4 is the c axis (Yamada et al., 1984). (NH4)2SO4 has the ferroelectric phase transition at Tc = 223.5 K (Schlemper & Hamilton, 1966), while an incommensurate phase is observed in (NH4)2BeF4 between Ti = 182.9 K and Tc = 177.2 K (Srivastava et al., 1999), and in K2SeO4 between Ti = 192.5 K and Tc = 93 K (Aiki & Hukuda, 1969). A review by Fabry & Pérez-Mato (1994) reported that the instability of a large number of A2BX4 compounds is related to the behaviour of the 11-coordinate cation, rather than to the nine-coordinate cation, and especially to the bond strength of the shorter cation–anion contact parallel to the pseudo-hexagonal a axis. A detailed and comparative study of this type of compound is necessary. Alkali metal fluoroberyllates have been exceptional cases of A2BX4-type compounds in the past, but we have recently studied them by neutron powder diffraction with refinement in Pnma at room temperature and 1.5 K (da Silva et al., 2005). Moreover, thallium oxysalts, such as Tl2SO4, Tl2CrO4 and Tl2SeO4, have also been studied; the last of these undergoes a phase transition at 72 K (Friese et al., 2004). The different behaviour of thallium compounds with respect to other β-K2SO4 compounds is a result of the stereoactivity of the 6s2 lone pair in the TlI cation (Fabry & Breczewsky, 1993).

The aim of the present work is to compare the structure of Tl2BeF4 with the rest of this class of compounds to assess the role of the cations in the structural instability. The correct crystal structure of Tl2BeF4 has not been reported previously [only the cell parameters, by Arend et al. (1980)] and a structural phase transition has never been observed. We have measured the neutron powder diffraction patterns of Tl2BeF4 at room temperature and lower temperatures down to 1.5 K and we have refined the crystal structure using the Rietveld method in space group Pnma for all temperatures. The fitted diffraction profile at room temperature is shown in Fig. 1 and the variation of the unit cell volume with temperature is shown in Fig. 2. From DSC analysis and from Fig. 2, no thermal anomaly is observed. The structure of Tl2BeF4 consists of isolated BeF42+ tetrahedra, with Tl+ ions distributed between them. The cations are placed in two different cavities — one of them, within a slightly distorted bipyramidal hole, remains 11-coordinate, while the other cation, within the distorted octahedral hole, is surrounded by nine F atoms. As in other fluoroberyllates (da Silva et al., 2005) and in thallium selenate (Friese et al., 2004), the average Be—F bond length of the fluoroberyllate anion increases at low temperature. At variance with other compounds showing structural instability (González-Silgo et al., 1997; Solans et al., 1998), (1) we do not observe any significant rotation of the tetrahedra around the b axis, so that the environment of the cations is not changed with temperature, and (2) the bond valence sum (Brown, 1992) at both the Tl1 and the Tl2 sites is close to 1 v.u. (valence units) for the entire temperature range. Otherwise, the five F atoms nearest to Tl1 are at distances less than 3.1 Å and lie on the same side of this cation (see Fig. 3a), thus indicating the stereoactivity of the Tl1 lone pair, as in other thallium compounds (Fabry & Breczewsky, 1993); this situation is maintained at lower temperatures. With respect to the Tl2 environment, the stereoactivity of the lone pair is less clear, although a tendency is observed at lower temperature; at 1.5 K, the three F atoms nearest this cation are at distances that are 0.1 Å shorter than the other Tl2—F contacts and lie approximately on the same side of Tl (Fig. 3b).

Experimental top

Tl2BeF4 was obtained via the reaction BeF2(s) + H2F2(aq) + Tl2CO3(s) Tl2BeF4 + CO2 + H2O. BeF2, H2F2 (48%) and Tl2CO3 were analytical grade. After completion of the reaction at pH 7, the sample was slowly evaporated at room temperature. After a few days, a polycrystalline powder was obtained. The sample was not evaporated to dryness in order to avoid possible contamination. The polycrystalline powder was filtered and dried. Thermal analyses were carried out on a Perkin–Elmer differential scanning calorimeter Pyris I-DSC. The sample was measured in the temperature range 98–293 K, with a warming rate of 10 K min−1 and a total scale sensitivity of 0.1 mW. The sample mass was 27.76 mg. This analysis showed no thermal anomaly. The high-resolution neutron powder diffractometer 3 T2 at the Orphée reactor of Laboratoire Léon Brillouin (Saclay, France) was used for data collection with high direct space resolution (λ = 1.2251 Å, Qmax = 9.2 Å−1). A helium cryostat was used in order to keep the sample at the correct temperature during the diffraction experiments. We present the data collected at 1.5, 50, 100, 150, 200 and 300 K.

Refinement top

Rietveld refinement of the six powder diffraction patterns was carried out with the program FULLPROF (Rodríguez-Carvajal, 2005) and the visualization of the results was performed using the program WINPLOTR (Roisnel & Rodríguez-Carvajal, 2005). The experimental profiles were all modelled using a pseudo-Voigt profile shape function, with five adjustable parameters (U, V, W, η and X); initial values were obtained from the instrumental resolution parameters. After preliminary refinements to establish the scale factor, zero point displacement, cell parameters and profile parameters, several cycles were performed to refine the atomic positions and isotropic displacement parameters. The starting values for the atomic positions were those of the β-K2SO4 structure, in space group Pnma. Space group Pn21a was also examined, without any improvement. Owing to the poor values obtained for the agreement factors and the modulated residuals that remained after the refinements, it was necessary to apply a Fourier filtering treatment, in order to model the background and to improve the results. This can be justified because from the modulated residues it has been possible to calculate the radial distribution function of other fluoroberyllates, because of the coexistence of an amorphous phase with the crystalline material (da Silva et al., 2005).

Computing details top

For all compounds, cell refinement: FULLPROF (Rodríguez-Carvajal, 2005); program(s) used to refine structure: FULLPROF; molecular graphics: Diamond (Brandenburg & Berndt, 1999); software used to prepare material for publication: FULLPROF.

Figures top
[Figure 1] Fig. 1. Plot of the Rietveld refinement result for Tl2BeF4 at room temperature, showing the calculated (line), observed (circle) and difference (lower) profiles.
[Figure 2] Fig. 2. Variation of the unit-cell volume with temperature for Tl2BeF4, showing linear behaviour without anomalies.
[Figure 3] Fig. 3. Arrangement of the nearest-neighbour BeF4 tetrahedra to (a) nine- and (b) 11-coordinated Tl+ cations, showing the shortest (thick solid line) and longest (thin dashed line) bonds. Intermediate bonds are drawn with a thin solid line. [Symmetry codes: (i) x, y, z; (ii) 1 − x, 1/2 + y, 1 − z; (iii) 1/2 + x, 1/2 − y, 1/2 − z; (iv) 1/2 − x, 1 − y, 1/2 + z; (v) −x, 1/2 + y, 1 − z; (vi) 1 − x, 1 − y, 1 − z; (vii) 1/2 − x, 1/2 + y, 1/2 + z; (viii) x, 1/2 − y, z; (ix) x, 1 + y, z; (x) 1/2 − x, 1 − y, −1/2 + z; (xi) 1/2 + x, 3/2 − y, 1/2 − z; (xii) 1/2 + x, 1/2 − y, 1/2 − z; (xiii) 1/2 + x, 1 + y, 1/2 − z.]
(I_300K) Thallium Fluoroberyllate top
Crystal data top
Tl2BeF4V = 476.39 (2) Å3
Mr = 493.77Z = 4
Orthorhombic, PnmaDx = 6.884 Mg m3
Hall symbol: -P 2ac 2nNeutron radiation, λ = 1.2251 Å
a = 7.7238 (2) ÅT = 300 K
b = 5.90226 (17) Åwhite
c = 10.4499 (3) Åcylinder, 50 × 10 mm
Data collection top
3T2 Line
diffractometer
Data collection mode: transmission
Radiation source: nuclear reactorScan method: step
Ge 335 monochromator2θmin = 6.30°, 2θmax = 125.45°, 2θstep = 0.05°
Specimen mounting: vanadium can
Refinement top
Refinement on InetExcluded region(s): 0° to 10°; no reflection region with a complex background shape
Least-squares matrix: full with fixed elements per cycleProfile function: pseudo-Voigt
Rp = 0.03635 parameters
Rwp = 0.0480 restraints
Rexp = 0.076Weighting scheme based on measured s.u.'s
RBragg = 0.075(Δ/σ)max = 0.01
R(F) = 0.055Background function: Fourier filter
χ2 = 0.395Preferred orientation correction: Not used
2384 data points
Crystal data top
Tl2BeF4V = 476.39 (2) Å3
Mr = 493.77Z = 4
Orthorhombic, PnmaNeutron radiation, λ = 1.2251 Å
a = 7.7238 (2) ÅT = 300 K
b = 5.90226 (17) Åcylinder, 50 × 10 mm
c = 10.4499 (3) Å
Data collection top
3T2 Line
diffractometer
Scan method: step
Specimen mounting: vanadium can2θmin = 6.30°, 2θmax = 125.45°, 2θstep = 0.05°
Data collection mode: transmission
Refinement top
Rp = 0.036χ2 = 0.395
Rwp = 0.0482384 data points
Rexp = 0.07635 parameters
RBragg = 0.0750 restraints
R(F) = 0.055
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tl10.1679 (6)0.250000.0901 (5)0.0299 (13)*
Tl20.0078 (6)0.250000.6943 (4)0.0282 (13)*
Be10.2343 (6)0.250000.4195 (5)0.0211 (12)*
F10.3021 (7)0.0370 (9)0.3517 (5)0.0401 (16)*
F20.0355 (10)0.250000.4167 (9)0.045 (2)*
F30.2997 (11)0.250000.5575 (8)0.041 (2)*
Geometric parameters (Å, º) top
Be1—F11.535 (6)Tl1—F3ii2.9812 (14)
Be1—F21.536 (9)Tl1—F3vii2.9812 (14)
Be1—F31.528 (10)Tl2—F1viii2.875 (7)
Tl1—F13.182 (7)Tl2—F1ix2.846 (6)
Tl1—F1i3.152 (7)Tl2—F1x2.875 (7)
Tl1—F1ii3.022 (7)Tl2—F1xi2.846 (6)
Tl1—F1iii3.022 (7)Tl2—F22.920 (10)
Tl1—F1iv3.182 (7)Tl2—F2xii3.178 (4)
Tl1—F1v3.152 (7)Tl2—F2viii3.178 (4)
Tl1—F23.563 (11)Tl2—F32.772 (10)
Tl1—F2vi2.840 (9)Tl2—F3xiii2.990 (9)
Tl1—F3i3.235 (10)
F1—Be1—F1iv110.0 (3)F1—Be1—F3108.8 (2)
F1—Be1—F2109.4 (2)F2—Be1—F3110.4 (5)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y, z1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x, y+1/2, z; (v) x1/2, y, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y+1, z1/2; (viii) x, y+1/2, z+1; (ix) x+1/2, y, z+1/2; (x) x, y, z+1; (xi) x+1/2, y+1/2, z+1/2; (xii) x, y1/2, z+1; (xiii) x1/2, y+1/2, z+3/2.
(I_200K) Thallium Fluoroberyllate top
Crystal data top
Tl2BeF4V = 470.03 (2) Å3
Mr = 493.77Z = 4
Orthorhombic, PnmaDx = 6.977 Mg m3
Hall symbol: -P 2ac 2nNeutron radiation, λ = 1.2251 Å
a = 7.69999 (15) ÅT = 200 K
b = 5.86734 (11) Åwhite
c = 10.4039 (2) Åcylinder, 50 × 10 mm
Data collection top
3T2 Line
diffractometer
Data collection mode: transmission
Radiation source: nuclear reactorScan method: step
Ge 335 monochromator2θmin = 6.30°, 2θmax = 125.45°, 2θstep = 0.05°
Specimen mounting: vanadium can
Refinement top
Rp = 0.042Profile function: pseudo-Voigt
Rwp = 0.05535 parameters
Rexp = 0.0760 restraints
RBragg = 0.072Weighting scheme based on measured s.u.'s
R(F) = 0.047(Δ/σ)max = 0.01
χ2 = 0.526Background function: Fourier filter
2384 data pointsPreferred orientation correction: Not used
Excluded region(s): 0° to 10°; no reflection region with a complex background shape
Crystal data top
Tl2BeF4V = 470.03 (2) Å3
Mr = 493.77Z = 4
Orthorhombic, PnmaNeutron radiation, λ = 1.2251 Å
a = 7.69999 (15) ÅT = 200 K
b = 5.86734 (11) Åcylinder, 50 × 10 mm
c = 10.4039 (2) Å
Data collection top
3T2 Line
diffractometer
Scan method: step
Specimen mounting: vanadium can2θmin = 6.30°, 2θmax = 125.45°, 2θstep = 0.05°
Data collection mode: transmission
Refinement top
Rp = 0.042χ2 = 0.526
Rwp = 0.0552384 data points
Rexp = 0.07635 parameters
RBragg = 0.0720 restraints
R(F) = 0.047
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tl10.1667 (4)0.250000.0908 (4)0.0216 (10)*
Tl20.0083 (4)0.250000.6944 (3)0.0160 (9)*
Be10.2352 (4)0.250000.4199 (4)0.0132 (9)*
F10.3044 (5)0.0359 (7)0.3526 (4)0.0278 (11)*
F20.0353 (7)0.250000.4154 (7)0.0301 (14)*
F30.3013 (8)0.250000.5597 (6)0.0277 (16)*
Geometric parameters (Å, º) top
Be1—F11.534 (5)Tl1—F3ii2.9617 (10)
Be1—F21.540 (6)Tl1—F3vii2.9617 (10)
Be1—F31.541 (7)Tl2—F1viii2.873 (5)
Tl1—F13.181 (6)Tl2—F1ix2.826 (5)
Tl1—F1i3.116 (5)Tl2—F1x2.873 (5)
Tl1—F1ii3.001 (5)Tl2—F1xi2.826 (5)
Tl1—F1iii3.001 (5)Tl2—F22.922 (8)
Tl1—F1iv3.181 (6)Tl2—F2xii3.155 (3)
Tl1—F1v3.116 (5)Tl2—F2viii3.155 (3)
Tl1—F23.525 (8)Tl2—F32.765 (7)
Tl1—F2vi2.839 (6)Tl2—F3xiii2.949 (7)
Tl1—F3i3.220 (7)
F1—Be1—F1iv110.0 (2)F1—Be1—F3108.43 (15)
F1—Be1—F2109.47 (14)F2—Be1—F3111.0 (4)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y, z1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x, y+1/2, z; (v) x1/2, y, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y+1, z1/2; (viii) x, y+1/2, z+1; (ix) x+1/2, y, z+1/2; (x) x, y, z+1; (xi) x+1/2, y+1/2, z+1/2; (xii) x, y1/2, z+1; (xiii) x1/2, y+1/2, z+3/2.
(I_150K) Thallium Fluoroberyllate top
Crystal data top
Tl2BeF4V = 466.82 (1) Å3
Mr = 493.77Z = 4
Orthorhombic, PnmaDx = 7.025 Mg m3
Hall symbol: -P 2ac 2nNeutron radiation, λ = 1.2251 Å
a = 7.69020 (13) ÅT = 150 K
b = 5.84889 (9) Åwhite
c = 10.37848 (17) Åcylinder, 50 × 10 mm
Data collection top
3T2 Line
diffractometer
Data collection mode: transmission
Radiation source: nuclear reactorScan method: step
Ge 335 monochromator2θmin = 6.30°, 2θmax = 125.45°, 2θstep = 0.05°
Specimen mounting: vanadium can
Refinement top
Rp = 0.047Profile function: pseudo-Voigt
Rwp = 0.06335 parameters
Rexp = 0.0760 restraints
RBragg = 0.075Weighting scheme based on measured s.u.'s
R(F) = 0.047(Δ/σ)max = 0.01
χ2 = 0.682Background function: Fourier filter
2384 data pointsPreferred orientation correction: Not used
Excluded region(s): 0° to 10°; no reflection region with a complex background shape
Crystal data top
Tl2BeF4V = 466.82 (1) Å3
Mr = 493.77Z = 4
Orthorhombic, PnmaNeutron radiation, λ = 1.2251 Å
a = 7.69020 (13) ÅT = 150 K
b = 5.84889 (9) Åcylinder, 50 × 10 mm
c = 10.37848 (17) Å
Data collection top
3T2 Line
diffractometer
Scan method: step
Specimen mounting: vanadium can2θmin = 6.30°, 2θmax = 125.45°, 2θstep = 0.05°
Data collection mode: transmission
Refinement top
Rp = 0.047χ2 = 0.682
Rwp = 0.0632384 data points
Rexp = 0.07635 parameters
RBragg = 0.0750 restraints
R(F) = 0.047
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tl10.1664 (4)0.250000.0909 (3)0.0170 (8)*
Tl20.0098 (4)0.250000.6941 (3)0.0119 (7)*
Be10.2361 (4)0.250000.4200 (3)0.0117 (7)*
F10.3062 (5)0.0356 (6)0.3527 (4)0.0218 (9)*
F20.0355 (6)0.250000.4158 (5)0.0237 (11)*
F30.3022 (6)0.250000.5606 (5)0.0181 (12)*
Geometric parameters (Å, º) top
Be1—F11.533 (4)Tl1—F3ii2.9512 (8)
Be1—F21.543 (6)Tl1—F3vii2.9512 (8)
Be1—F31.545 (6)Tl2—F1viii2.867 (5)
Tl1—F13.180 (5)Tl2—F1ix2.820 (5)
Tl1—F1i3.096 (5)Tl2—F1x2.867 (5)
Tl1—F1ii2.991 (5)Tl2—F1xi2.820 (5)
Tl1—F1iii2.991 (5)Tl2—F22.909 (6)
Tl1—F1iv3.180 (5)Tl2—F2xii3.145 (2)
Tl1—F1v3.096 (5)Tl2—F2viii3.145 (2)
Tl1—F23.519 (6)Tl2—F32.771 (6)
Tl1—F2vi2.839 (6)Tl2—F3xiii2.928 (6)
Tl1—F3i3.212 (6)
F1—Be1—F1iv109.74 (19)F1—Be1—F3108.33 (15)
F1—Be1—F2109.79 (14)F2—Be1—F3110.8 (3)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y, z1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x, y+1/2, z; (v) x1/2, y, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y+1, z1/2; (viii) x, y+1/2, z+1; (ix) x+1/2, y, z+1/2; (x) x, y, z+1; (xi) x+1/2, y+1/2, z+1/2; (xii) x, y1/2, z+1; (xiii) x1/2, y+1/2, z+3/2.
(I_100K) Thallium Fluoroberyllate top
Crystal data top
Tl2BeF4V = 463.75 (1) Å3
Mr = 493.77Z = 4
Orthorhombic, PnmaDx = 7.072 Mg m3
Hall symbol: -P 2ac 2nNeutron radiation, λ = 1.2251 Å
a = 7.68265 (11) ÅT = 100 K
b = 5.83059 (8) Åwhite
c = 10.35278 (15) Åcylinder, 50 × 10 mm
Data collection top
3T2 Line
diffractometer
Data collection mode: transmission
Radiation source: nuclear reactorScan method: step
Ge 335 monochromator2θmin = 6.30°, 2θmax = 125.45°, 2θstep = 0.05°
Specimen mounting: vanadium can
Refinement top
Rp = 0.048Profile function: pseudo-Voigt
Rwp = 0.06235 parameters
Rexp = 0.0760 restraints
RBragg = 0.063Weighting scheme based on measured s.u.'s
R(F) = 0.037(Δ/σ)max = 0.01
χ2 = 0.666Background function: Fourier filter
2384 data pointsPreferred orientation correction: Not used
Excluded region(s): 0° to 10°; no reflection region with a complex background shape
Crystal data top
Tl2BeF4V = 463.75 (1) Å3
Mr = 493.77Z = 4
Orthorhombic, PnmaNeutron radiation, λ = 1.2251 Å
a = 7.68265 (11) ÅT = 100 K
b = 5.83059 (8) Åcylinder, 50 × 10 mm
c = 10.35278 (15) Å
Data collection top
3T2 Line
diffractometer
Scan method: step
Specimen mounting: vanadium can2θmin = 6.30°, 2θmax = 125.45°, 2θstep = 0.05°
Data collection mode: transmission
Refinement top
Rp = 0.048χ2 = 0.666
Rwp = 0.0622384 data points
Rexp = 0.07635 parameters
RBragg = 0.0630 restraints
R(F) = 0.037
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tl10.1667 (3)0.250000.0901 (3)0.0113 (6)*
Tl20.0108 (3)0.250000.6930 (3)0.0079 (6)*
Be10.2364 (3)0.250000.4198 (3)0.0082 (6)*
F10.3085 (4)0.0336 (5)0.3523 (3)0.0160 (7)*
F20.0352 (5)0.250000.4139 (5)0.0180 (9)*
F30.3016 (5)0.250000.5612 (4)0.0126 (9)*
Geometric parameters (Å, º) top
Be1—F11.545 (3)Tl1—F3ii2.9407 (6)
Be1—F21.547 (4)Tl1—F3vii2.9407 (6)
Be1—F31.547 (5)Tl2—F1viii2.861 (4)
Tl1—F13.185 (4)Tl2—F1ix2.805 (4)
Tl1—F1i3.086 (4)Tl2—F1x2.861 (4)
Tl1—F1ii2.972 (4)Tl2—F1xi2.805 (4)
Tl1—F1iii2.972 (4)Tl2—F22.911 (6)
Tl1—F1iv3.185 (4)Tl2—F2xii3.124 (2)
Tl1—F1v3.086 (4)Tl2—F2viii3.124 (2)
Tl1—F23.501 (6)Tl2—F32.761 (5)
Tl1—F2vi2.831 (4)Tl2—F3xiii2.925 (5)
Tl1—F3i3.213 (5)
F1—Be1—F1iv109.50 (15)F1—Be1—F3108.17 (11)
F1—Be1—F2109.90 (11)F2—Be1—F3111.2 (3)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y, z1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x, y+1/2, z; (v) x1/2, y, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y+1, z1/2; (viii) x, y+1/2, z+1; (ix) x+1/2, y, z+1/2; (x) x, y, z+1; (xi) x+1/2, y+1/2, z+1/2; (xii) x, y1/2, z+1; (xiii) x1/2, y+1/2, z+3/2.
(I_50K) Thallium Fluoroberyllate top
Crystal data top
Tl2BeF4V = 460.96 (1) Å3
Mr = 493.77Z = 4
Orthorhombic, PnmaDx = 7.115 Mg m3
Hall symbol: -P 2ac 2nNeutron radiation, λ = 1.2251 Å
a = 7.67874 (9) ÅT = 50 K
b = 5.81248 (7) Åwhite
c = 10.32788 (12) Åcylinder, 50 × 10 mm
Data collection top
3T2 Line
diffractometer
Data collection mode: transmission
Radiation source: nuclear reactorScan method: step
Ge 335 monochromator2θmin = 6.30°, 2θmax = 125.45°, 2θstep = 0.05°
Specimen mounting: vanadium can
Refinement top
Rp = 0.053Profile function: pseudo-Voigt
Rwp = 0.06835 parameters
Rexp = 0.0760 restraints
RBragg = 0.061Weighting scheme based on measured s.u.'s
R(F) = 0.033(Δ/σ)max = 0.01
χ2 = 0.807Background function: Fourier filter
2384 data pointsPreferred orientation correction: Not used
Excluded region(s): 0° to 10°; no reflection region with a complex background shape
Crystal data top
Tl2BeF4V = 460.96 (1) Å3
Mr = 493.77Z = 4
Orthorhombic, PnmaNeutron radiation, λ = 1.2251 Å
a = 7.67874 (9) ÅT = 50 K
b = 5.81248 (7) Åcylinder, 50 × 10 mm
c = 10.32788 (12) Å
Data collection top
3T2 Line
diffractometer
Scan method: step
Specimen mounting: vanadium can2θmin = 6.30°, 2θmax = 125.45°, 2θstep = 0.05°
Data collection mode: transmission
Refinement top
Rp = 0.053χ2 = 0.807
Rwp = 0.0682384 data points
Rexp = 0.07635 parameters
RBragg = 0.0610 restraints
R(F) = 0.033
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tl10.1668 (3)0.250000.0895 (2)0.0056 (5)*
Tl20.0112 (3)0.250000.6924 (2)0.0023 (5)*
Be10.2375 (3)0.250000.4202 (3)0.0047 (5)*
F10.3114 (3)0.0321 (4)0.3532 (3)0.0098 (6)*
F20.0366 (4)0.250000.4118 (4)0.0082 (7)*
F30.3016 (5)0.250000.5621 (3)0.0074 (7)*
Geometric parameters (Å, º) top
Be1—F11.551 (3)Tl1—F3ii2.9300 (5)
Be1—F21.545 (4)Tl1—F3vii2.9300 (5)
Be1—F31.546 (4)Tl2—F1viii2.868 (3)
Tl1—F13.202 (3)Tl2—F1ix2.793 (3)
Tl1—F1i3.066 (3)Tl2—F1x2.868 (3)
Tl1—F1ii2.945 (3)Tl2—F1xi2.793 (3)
Tl1—F1iii2.945 (3)Tl2—F22.921 (5)
Tl1—F1iv3.202 (3)Tl2—F2xii3.1052 (16)
Tl1—F1v3.066 (3)Tl2—F2viii3.1052 (16)
Tl1—F23.476 (5)Tl2—F32.753 (4)
Tl1—F2vi2.840 (4)Tl2—F3xiii2.915 (4)
Tl1—F3i3.212 (4)
F1—Be1—F1iv109.51 (12)F1—Be1—F3107.85 (11)
F1—Be1—F2109.89 (9)F2—Be1—F3111.8 (3)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y, z1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x, y+1/2, z; (v) x1/2, y, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y+1, z1/2; (viii) x, y+1/2, z+1; (ix) x+1/2, y, z+1/2; (x) x, y, z+1; (xi) x+1/2, y+1/2, z+1/2; (xii) x, y1/2, z+1; (xiii) x1/2, y+1/2, z+3/2.
(I_1.5K) Thallium Fluoroberyllate top
Crystal data top
Tl2BeF4V = 459.53 (1) Å3
Mr = 493.77Z = 4
Orthorhombic, PnmaDx = 7.137 Mg m3
Hall symbol: -P 2ac 2nNeutron radiation, λ = 1.2251 Å
a = 7.67735 (10) ÅT = 2 K
b = 5.80377 (8) Åwhite
c = 10.31316 (13) Åcylinder, 50 × 10 mm
Data collection top
3T2 Line
diffractometer
Data collection mode: transmission
Radiation source: nuclear reactorScan method: step
Ge 335 monochromator2θmin = 7.30°, 2θmax = 125.45°, 2θstep = 0.05°
Specimen mounting: vanadium can
Refinement top
Rp = 0.067Profile function: pseudo-Voigt
Rwp = 0.08535 parameters
Rexp = 0.0930 restraints
RBragg = 0.069Weighting scheme based on measured s.u.'s
R(F) = 0.036(Δ/σ)max = 0.01
χ2 = 0.834Background function: Fourier filter
2364 data pointsPreferred orientation correction: Not used
Excluded region(s): 0° to 10°; no reflection region with a complex background shape
Crystal data top
Tl2BeF4V = 459.53 (1) Å3
Mr = 493.77Z = 4
Orthorhombic, PnmaNeutron radiation, λ = 1.2251 Å
a = 7.67735 (10) ÅT = 2 K
b = 5.80377 (8) Åcylinder, 50 × 10 mm
c = 10.31316 (13) Å
Data collection top
3T2 Line
diffractometer
Scan method: step
Specimen mounting: vanadium can2θmin = 7.30°, 2θmax = 125.45°, 2θstep = 0.05°
Data collection mode: transmission
Refinement top
Rp = 0.067χ2 = 0.834
Rwp = 0.0852364 data points
Rexp = 0.09335 parameters
RBragg = 0.0690 restraints
R(F) = 0.036
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tl10.1668 (3)0.250000.0906 (2)0.0000 (4)*
Tl20.0115 (3)0.250000.6930 (2)0.0018 (4)*
Be10.2385 (3)0.250000.4196 (3)0.0045 (5)*
F10.3140 (4)0.0284 (5)0.3536 (3)0.0080 (6)*
F20.0361 (4)0.250000.4123 (4)0.0061 (7)*
F30.2974 (5)0.250000.5636 (3)0.0042 (7)*
Geometric parameters (Å, º) top
Be1—F11.566 (3)Tl1—F3ii2.9281 (5)
Be1—F21.556 (4)Tl1—F3vii2.9281 (5)
Be1—F31.552 (4)Tl2—F1viii2.870 (4)
Tl1—F13.208 (4)Tl2—F1ix2.766 (4)
Tl1—F1i3.053 (4)Tl2—F1x2.870 (4)
Tl1—F1ii2.934 (3)Tl2—F1xi2.766 (4)
Tl1—F1iii2.934 (3)Tl2—F22.918 (5)
Tl1—F1iv3.208 (4)Tl2—F2xii3.1042 (16)
Tl1—F1v3.053 (4)Tl2—F2viii3.1042 (16)
Tl1—F23.466 (5)Tl2—F32.721 (4)
Tl1—F2vi2.835 (4)Tl2—F3xiii2.908 (4)
Tl1—F3i3.251 (4)
F1—Be1—F1iv110.39 (15)F1—Be1—F3107.93 (11)
F1—Be1—F2110.40 (11)F2—Be1—F3109.7 (3)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y, z1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x, y+1/2, z; (v) x1/2, y, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y+1, z1/2; (viii) x, y+1/2, z+1; (ix) x+1/2, y, z+1/2; (x) x, y, z+1; (xi) x+1/2, y+1/2, z+1/2; (xii) x, y1/2, z+1; (xiii) x1/2, y+1/2, z+3/2.

Experimental details

(I_300K)(I_200K)(I_150K)(I_100K)
Crystal data
Chemical formulaTl2BeF4Tl2BeF4Tl2BeF4Tl2BeF4
Mr493.77493.77493.77493.77
Crystal system, space groupOrthorhombic, PnmaOrthorhombic, PnmaOrthorhombic, PnmaOrthorhombic, Pnma
Temperature (K)300200150100
a, b, c (Å)7.7238 (2), 5.90226 (17), 10.4499 (3)7.69999 (15), 5.86734 (11), 10.4039 (2)7.69020 (13), 5.84889 (9), 10.37848 (17)7.68265 (11), 5.83059 (8), 10.35278 (15)
V3)476.39 (2)470.03 (2)466.82 (1)463.75 (1)
Z4444
Radiation typeNeutron, λ = 1.2251 ÅNeutron, λ = 1.2251 ÅNeutron, λ = 1.2251 ÅNeutron, λ = 1.2251 Å
µ (mm1)????
Specimen shape, size (mm)Cylinder, 50 × 10Cylinder, 50 × 10Cylinder, 50 × 10Cylinder, 50 × 10
Data collection
Diffractometer3T2 Line
diffractometer
3T2 Line
diffractometer
3T2 Line
diffractometer
3T2 Line
diffractometer
Specimen mountingVanadium canVanadium canVanadium canVanadium can
Data collection modeTransmissionTransmissionTransmissionTransmission
Scan methodStepStepStepStep
2θ values (°)2θmin = 6.30 2θmax = 125.45 2θstep = 0.052θmin = 6.30 2θmax = 125.45 2θstep = 0.052θmin = 6.30 2θmax = 125.45 2θstep = 0.052θmin = 6.30 2θmax = 125.45 2θstep = 0.05
Refinement
R factors and goodness of fitRp = 0.036, Rwp = 0.048, Rexp = 0.076, RBragg = 0.075, R(F) = 0.055, χ2 = 0.395Rp = 0.042, Rwp = 0.055, Rexp = 0.076, RBragg = 0.072, R(F) = 0.047, χ2 = 0.526Rp = 0.047, Rwp = 0.063, Rexp = 0.076, RBragg = 0.075, R(F) = 0.047, χ2 = 0.682Rp = 0.048, Rwp = 0.062, Rexp = 0.076, RBragg = 0.063, R(F) = 0.037, χ2 = 0.666
No. of data points2384238423842384
No. of parameters35353535


(I_50K)(I_1.5K)
Crystal data
Chemical formulaTl2BeF4Tl2BeF4
Mr493.77493.77
Crystal system, space groupOrthorhombic, PnmaOrthorhombic, Pnma
Temperature (K)502
a, b, c (Å)7.67874 (9), 5.81248 (7), 10.32788 (12)7.67735 (10), 5.80377 (8), 10.31316 (13)
V3)460.96 (1)459.53 (1)
Z44
Radiation typeNeutron, λ = 1.2251 ÅNeutron, λ = 1.2251 Å
µ (mm1)??
Specimen shape, size (mm)Cylinder, 50 × 10Cylinder, 50 × 10
Data collection
Diffractometer3T2 Line
diffractometer
3T2 Line
diffractometer
Specimen mountingVanadium canVanadium can
Data collection modeTransmissionTransmission
Scan methodStepStep
2θ values (°)2θmin = 6.30 2θmax = 125.45 2θstep = 0.052θmin = 7.30 2θmax = 125.45 2θstep = 0.05
Refinement
R factors and goodness of fitRp = 0.053, Rwp = 0.068, Rexp = 0.076, RBragg = 0.061, R(F) = 0.033, χ2 = 0.807Rp = 0.067, Rwp = 0.085, Rexp = 0.093, RBragg = 0.069, R(F) = 0.036, χ2 = 0.834
No. of data points23842364
No. of parameters3535

Computer programs: FULLPROF (Rodríguez-Carvajal, 2005), FULLPROF, Diamond (Brandenburg & Berndt, 1999).

Average Be–F, Tl—F distances (Å) and F—Be—F angles (°) for Tl2BeF4 at each temperature top
This dataitem was not found in the cif.
Temperature (K)Be—FTl—FF—Be—F
3001.534 (8)3.040 (8)109.47 (27)
2001.537 (6)3.022 (6)109.47 (20)
1501.539 (5)3.014 (5)109.47 (18)
1001.546 (4)3.004 (4)109.47 (14)
501.548 (4)2.997 (5)109.46 (13)
1.51.560 (4)2.996 (5)109.46 (14)
This dataitem was not found in the cif.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds