Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the cobalt(II) coordination polymer poly[[(μ2-benzene-1,3-dicarboxyl­ato){μ2-1,1′-[2,2′-oxybis(ethane-2,1-di­yl)]di-1H-imidazole}cobalt(II)] monohydrate], {[Co(C10H14N4O)(C8H4O4)]·H2O}n, two crystallographically distinct CoII cations are four-coordinated by N2O2 donor sets in distorted tetra­hedral geometries. The CoII centers are connected by benzene-1,3-dicarboxyl­ate (m-BDC) anions, giving two types of linear chains, which are further joined via meso-helical 1,1′-[2,2′-oxybis(ethane-2,1-di­yl)]di-1H-imidazole ligands to yield a thick two-dimensional slab. The compound displays a two-dimensional four-connected 42.63.8 topology, which is unprecedented in coordination polymers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108018921/fa3149sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108018921/fa3149Isup2.hkl
Contains datablock I

CCDC reference: 697568

Comment top

The design and synthesis of metal–organic coordination polymers are of great interest, not only because of their tremendous potential applications in nonlinear optics, catalysis, gas absorption, luminescence, magnetism and medicine, but also because of their intriguing variety of architectures and topologies (Wu et al., 2005; Spencer et al., 2006). The construction of coordination networks with different topological characteristics has attracted significant attention among chemists. By judicious choice of the organic spacers and the central metals, it is possible to produce different types of coordination networks with novel topologies. So far, numerous fascinating archetypal topological structures, including diamond (66), SrSi2 (103-a), α-ThSi2 (103-b), SiO2 (6482-b), and PtS (42.84), have provided experimental examples of these theoretical topologies. In this regard, 4-connected networks are particularly interesting (Zhang et al., 2005; Abrahams et al., 1999; Carlucci et al., 2002). The majority of 4-connected nets are constructed by tetrahedral or square-planar nodes. Typical 4-connected nets such as 66, 64.82, 42.84 and 75.9 have been documented (Wells, 1984; Bregeaul & Herpin, 1970; Hawkins et al., 1993; Qi et al., 2008; Long et al., 2004; Fang et al., 2008; Bhogala et al., 2004; Carlucci et al., 1998).

We have reported several 4-connected structures, such as the first square-planar four-connected 86 net made using the flexible 1,1'-(1,4-butanediyl)bis(imidazole) ligand (Ma et al., 2003, 2004; Yang et al., 2005, 2006). In order to extend the study on topologies of coordination polymers with flexible ligands, a new flexible bis(imidazole) ligand, 1,1'-[2,2'-oxybis(ethane-2,1-diyl)]di-1H-imidazole (L), was used (Wei et al., 2008). L, as a secondary N-donor bridging ligand, contains a heteroatom, oxygen, at the symmetric center of the molecule. Therefore, the two imidazole rings can twist freely around the –O– group to meet the requirements of the coordination geometries of metal atoms in the assembly process. Furthermore, owing to the presence of the flexible –CH2– spacer, the L ligand can exhibit more flexible conformations. In this contribution, L and m-BDC (m-BDC is deprotonated m-benzenedicarboxylic acid) were used as bridging ligands, and a new cobalt(II) coordination polymer, namely {[Co(C10H14N4O)(C8H4O4)].H2O}n, (I), was obtained under hydrothermal conditions. Compound (I) is a rare example of a two-dimensional structure with a unique 42.63.8 topology based solely upon tetrahedral nodes.

The asymmetric unit of (I) contains two crystallographically distinct CoII cations (Fig. 1), two unique m-BDC anions and two unique L ligands. Each CoII ion has a distorted tetrahedral coordination environment formed by two carboxylate O atoms from two m-BDC anions [Co—O = 1.970 (3)–2.018 (3) Å] and two N atoms from two L ligands [Co—N = 2.018 (3)–2.035 (3) Å]. Each m-BDC anion coordinates two CoII centers in a bis-monodentate mode (see scheme; the Co···Co distances through m-BDC are both 10.041 (1) Å, because both correspond to C-lattice translations. The two cobalt(II) cations are bridged by the crystallographically independent m-BDC anions to form two independent one-dimensional Co–m-BDC chains (Fig. 2). The Co2···Co2vi chain propagates along [110] [symmetry code: (vi) x + 1/2, y + 1/2, z] in the plane z = 0.127, while the Co1···Co1v chain propagates parallel to [110] [symmetry code: (v) x + 1/2, y - 1/2, z] in the plane z = 0.393. That is, the chains that run vertically in Fig. 2 are at a different elevation from those that run horizontally. The propagation vectors of the two Co–m-BDC polymer chains are at 81.93 (5)° to each other (Fig. 2). The two crystallographically distinct L ligands exhibit similar conformations, which link atoms Co1 and Co2 to generate an interesting meso-helical chain (Han & Hong, 2005), with Co1···Co2 distances of 8.211 (3) and Co1···Co2iv distances of 10.729 (5) Å [symmetry code: (iv) x + 1, y, z; Figs. 3 and 4]. The two imidazole rings of each L ligand are far from parallel [having dihedral angles of 81.1 (3)° between the N1- and N3-containg rings, 70.4 (4)° between the N5 and N7 rings, 79.3 (3)° between the N1 and N5 rings, and 87.3 (3)° between the N7 and N3iii rings; symmetry code: (iii) x - 1, y, z; Fig. 3]. Obviously, these twists are important factors in forming the helical structure. The two independent L ligands link the nearly perpendicular Co–m-BDC chains into a slab (Fig. 5). Furthermore, these linear chains are connected by hydrogen bonding bridged by uncoordinated water molecules, which enhance the stability of the two-dimensional network. The adjacent two-dimensional slabs are stacked in a staggered pattern (–ABAB– sequence) along the c axis.

Better insight into the structure of (I) can be achieved by application of topological concepts, describing the multidimensional structure in terms of simple node-and-linker nets. The CoII center is described as a tetrahedral 4-connected node. The m-BDC and L ligands are bridges. With reference to Fig. 4, the Co1i···Co1···Co1v angle with links formed by the m-BDC ligand is 180° and the Co2···Co1···Co2iv dihedral angle with links formed by the flexible L ligand is 81.93 (5)° [symmetry code: (i) x - 1/2, y + 1/2, z]. From a topological perspective, the resulting structure of (I) is a uninodal 4-connected two-dimensional net with the short (Schläfli) vertex symbol 42.63.8 and with the long-form circuit symbol 4.4.62.62.64.8 (Fig. 5) (Treacy et al., 2006; OLEX; Dolomanov et al., 2003). The topology of a single frame can be rationalized by considering that the shortest circuits starting and ending at each cobalt(II) cation are tetragons, hexagons and octagons in the ratio 2:3:1; that is, this is a 42.63.8-net (Wells, 1979).

It is noteworthy that the 42.63.8-net presented here is clearly different from the two-dimensional 4-connected (4,4)-networks that have been widely reported. We are not aware of any previously reported coordination polymer with a two-dimensional 4-connected structure with this topology. Polymer (I) appears to be the first example of a two-dimensional 4-connected net with 42.63.8 topology. The flexibility of the ligand L may play an important role in the formation of this unusual structure.

Related literature top

For related literature, see: Abrahams et al. (1999); Bhogala et al. (2004); Bregeaul & Herpin (1970); Carlucci et al. (1998, 2002); Dolomanov et al. (2003); Fang et al. (2008); Han & Hong (2005); Hawkins et al. (1993); Long et al. (2004); Ma et al. (2003, 2004); Qi et al. (2008); Spencer et al. (2006); Wei et al. (2008); Wells (1979, 1984); Wu et al. (2005); Yang et al. (2005, 2006); Zhang et al. (2005).

Experimental top

A mixture of Co(NO3)2.6H2O (29.1 mg, 0.10 mmol), m-H2BDC (16.7 mg, 0.10 mmol), L (20.6 mg, 0.10 mmol) and water (7 ml) was sealed in a Teflon reactor (15 ml), which was heated at 453 K for 3 d and then cooled gradually to room temperature. Purple crystals of (I) were isolated using a cobalt(II)/L/m-H2BDC molar ratio of 1:1:1 (yield 84% based on Co). Analysis calculated for C36H40Co2N8O12 (Mr = 894.62): C 48.33, H 4.50, N 12.53%; found: C 48.34, H 4.50, N 12.52%. IR (cm-1, KBr): 3110 (s), 3047 (s), 2915 (vs), 1605 (vs), 1391 (s), 1347 (s), 1106 (s), 753 (s), 656 (s).

Refinement top

H atoms bonded to C atoms were positioned geometrically (C—H = 0.93 and 0.97 Å) and refined as riding, with Uiso(H) values of 1.2Ueq(C). The water H-atoms were located in a difference Fourier map and were refined with O—H distance restraints of 0.85 (please provide s.u. value) Å; their displacement parameters were tied to those of parent atoms by a factor of 1.2 [not true according to CIF; they have a common value of 0.167 Å2].

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The local coordination of the CoII cations in (I), showing the atom-numbering scheme. Displacement ellipsoids are shown at the 30% probability level. [Symmetry codes: (i) x - 1/2, y + 1/2, z; (ii) x - 1/2, y - 1/2, z; (iii) x - 1, y, z.]
[Figure 2] Fig. 2. The perpendicular linear Co–m-BDC chains.
[Figure 3] Fig. 3. Infinite meso-helical chain formed by two types of L ligands.
[Figure 4] Fig. 4. A schematic illustation of the distances and angles between topological nodes [Co1···Co1i = 10.041 (1) Å, Co1···Co2 = 10.730 (1) Å, Co1···Co2iv = 8.211 (1) Å, Co1i—Co1—Co2 = 123.35 (4)°, Co2—Co1—Co1v = 56.65 (3)°, Co1v—Co1—Co2iv = 132.55 (5)° and Co2iv—Co1—Co1i = 47.45 (3)°] and two types of angles between adjacent nodes [Co2···Co1··· Co2iv = 81.93 (5)° and Co1i···Co1···Co1v = 180°] in (I). [Symmetry codes: (i) x - 1/2, y + 1/2, z; (iv) x + 1, y, z; (v) x + 1/2, y - 1/2, z.]
[Figure 5] Fig. 5. A schematic representation of the slab and highlighted representation of the 42.63.8 topology of the two-dimensional 4-connected network. [Symmetry codes: (i) x - 1/2, y + 1/2, z; (ii) x - 1/2, y - 1/2, z; (iii) x - 1, y, z; (iv) x + 1, y, z; (v) x + 1/2, y - 1/2, z; (vi) x + 1/2, y + 1/2, z.] Table 2 iv -> v and v -> vii
poly[[(µ2-benzene-1,3-dicarboxylato){µ2-1,1'-[2,2'-oxybis(ethane-2,1- diyl)]di-1H-imidazole}cobalt(II)] monohydrate] top
Crystal data top
[Co(C10H14N4O)(C8H4O4)]·H2OF(000) = 1848
Mr = 447.31Dx = 1.476 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71069 Å
Hall symbol: C -2ycCell parameters from 4840 reflections
a = 15.1641 (9) Åθ = 2–25°
b = 13.1653 (9) ŵ = 0.90 mm1
c = 20.6761 (19) ÅT = 293 K
β = 102.753 (1)°Block, purple
V = 4025.9 (5) Å30.44 × 0.32 × 0.19 mm
Z = 8
Data collection top
Bruker APEX CCD area-detector
diffractometer
5554 independent reflections
Radiation source: fine-focus sealed tube4840 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1418
Tmin = 0.711, Tmax = 0.841k = 1315
10068 measured reflectionsl = 2422
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0402P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
5554 reflectionsΔρmax = 0.46 e Å3
535 parametersΔρmin = 0.27 e Å3
4 restraintsAbsolute structure: Flack (1983), 1999 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.007 (12)
Crystal data top
[Co(C10H14N4O)(C8H4O4)]·H2OV = 4025.9 (5) Å3
Mr = 447.31Z = 8
Monoclinic, CcMo Kα radiation
a = 15.1641 (9) ŵ = 0.90 mm1
b = 13.1653 (9) ÅT = 293 K
c = 20.6761 (19) Å0.44 × 0.32 × 0.19 mm
β = 102.753 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
5554 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4840 reflections with I > 2σ(I)
Tmin = 0.711, Tmax = 0.841Rint = 0.037
10068 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081Δρmax = 0.46 e Å3
S = 0.98Δρmin = 0.27 e Å3
5554 reflectionsAbsolute structure: Flack (1983), 1999 Friedel pairs
535 parametersAbsolute structure parameter: 0.007 (12)
4 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.59672 (3)1.07560 (4)0.12677 (3)0.03690 (14)
Co20.28068 (3)1.19311 (4)0.39342 (3)0.03903 (15)
C10.7174 (3)1.1442 (3)0.2550 (2)0.0417 (9)
H10.76661.10990.24560.050*
C20.5844 (3)1.2016 (3)0.2496 (2)0.0519 (11)
H20.52291.21390.23490.062*
C30.6374 (3)1.2411 (4)0.3047 (2)0.0536 (12)
H30.61961.28500.33470.064*
C40.8036 (3)1.2323 (4)0.3573 (2)0.0593 (13)
H4A0.85151.18430.35550.071*
H4B0.79151.22960.40150.071*
C50.8328 (3)1.3369 (4)0.3437 (3)0.0627 (13)
H5A0.84281.34100.29900.075*
H5B0.78681.38590.34810.075*
C60.9403 (3)1.4604 (4)0.3907 (3)0.0585 (12)
H6A0.89591.50310.40490.070*
H6B0.94441.48100.34650.070*
C71.0296 (3)1.4717 (4)0.4371 (2)0.0542 (12)
H7A1.04181.54330.44580.065*
H7B1.02751.43920.47890.065*
C81.1422 (3)1.4674 (4)0.3632 (3)0.0647 (14)
H81.12801.52890.34110.078*
C91.2045 (3)1.4013 (4)0.3539 (3)0.0600 (13)
H91.24211.40940.32430.072*
C101.1420 (3)1.3389 (3)0.4281 (2)0.0416 (10)
H101.12721.29540.45950.050*
C110.4490 (3)0.9192 (3)0.0960 (2)0.0476 (11)
H110.41410.95990.06330.057*
C120.5569 (4)0.8647 (4)0.1723 (3)0.0825 (19)
H120.61180.85970.20290.099*
C130.4893 (4)0.7956 (4)0.1626 (3)0.090 (2)
H130.48920.73480.18540.108*
C140.3368 (3)0.7799 (4)0.0858 (3)0.0692 (15)
H14A0.31340.80650.04160.083*
H14B0.34800.70790.08170.083*
C150.2691 (5)0.7927 (5)0.1245 (4)0.099 (2)
H15A0.21670.75180.10500.119*
H15B0.29300.76700.16890.119*
C160.1631 (4)0.9020 (5)0.1544 (3)0.090 (2)
H16A0.17360.87440.19890.108*
H16B0.11350.86500.12670.108*
C170.1405 (3)1.0105 (5)0.1553 (3)0.0763 (16)
H17A0.13821.03890.11160.092*
H17B0.08071.01730.16450.092*
C180.2877 (3)1.1029 (4)0.1990 (3)0.0611 (13)
H180.31441.09590.16280.073*
C190.3230 (3)1.1485 (4)0.2569 (2)0.0599 (13)
H190.37951.17950.26740.072*
C200.1928 (3)1.0941 (4)0.2641 (2)0.0536 (12)
H200.14131.07920.27970.064*
C210.7544 (3)0.9815 (3)0.1130 (2)0.0424 (10)
C220.8204 (2)0.9414 (3)0.0749 (2)0.0342 (9)
C230.8341 (3)0.9904 (3)0.0182 (2)0.0444 (10)
H230.80231.04930.00340.053*
C240.8953 (3)0.9508 (3)0.0160 (2)0.0497 (11)
H240.90490.98410.05350.060*
C250.9421 (3)0.8627 (3)0.0051 (2)0.0421 (10)
H250.98360.83730.01790.050*
C260.9272 (2)0.8122 (3)0.06058 (18)0.0317 (8)
C270.8672 (2)0.8517 (3)0.09497 (18)0.0323 (8)
H270.85760.81780.13230.039*
C280.9730 (3)0.7129 (3)0.0837 (2)0.0370 (9)
C290.4407 (3)1.2786 (3)0.4178 (2)0.0387 (9)
C300.5333 (3)1.3168 (3)0.44829 (19)0.0337 (9)
C310.5917 (3)1.2643 (3)0.4974 (2)0.0504 (11)
H310.57271.20430.51380.061*
C320.6783 (3)1.2999 (4)0.5228 (3)0.0610 (13)
H320.71771.26310.55520.073*
C330.7060 (3)1.3906 (4)0.4996 (2)0.0537 (12)
H330.76451.41430.51610.064*
C340.6470 (2)1.4460 (3)0.4521 (2)0.0375 (9)
C350.5618 (2)1.4084 (3)0.42610 (18)0.0329 (8)
H350.52271.44470.39320.039*
C360.6734 (3)1.5474 (3)0.4277 (2)0.0413 (10)
N10.6354 (2)1.1400 (2)0.21813 (16)0.0384 (8)
N20.7214 (2)1.2043 (3)0.30794 (16)0.0456 (9)
N31.1026 (2)1.4277 (2)0.41162 (19)0.0434 (8)
N41.2045 (2)1.3194 (2)0.39478 (17)0.0413 (8)
N50.5302 (2)0.9434 (3)0.12895 (18)0.0472 (9)
N60.4225 (3)0.8306 (3)0.1144 (2)0.0561 (10)
N70.2045 (3)1.0689 (3)0.20420 (19)0.0559 (10)
N80.2640 (2)1.1430 (3)0.29847 (16)0.0449 (8)
O10.69757 (19)1.0482 (2)0.08332 (15)0.0491 (7)
O20.7561 (2)0.9512 (3)0.16961 (16)0.0619 (9)
O30.9419 (2)0.6577 (2)0.12121 (17)0.0592 (9)
O41.04582 (18)0.6901 (2)0.06551 (14)0.0433 (7)
O50.40953 (18)1.2043 (2)0.44555 (15)0.0479 (7)
O60.3958 (2)1.3188 (2)0.36714 (16)0.0577 (9)
O70.6159 (2)1.5991 (2)0.39070 (17)0.0617 (9)
O80.7556 (2)1.5744 (2)0.44611 (16)0.0536 (8)
O90.9138 (2)1.3568 (2)0.39055 (16)0.0611 (9)
O100.2414 (3)0.8919 (4)0.1291 (3)0.1064 (16)
O1W0.9264 (4)0.9184 (4)0.2560 (2)0.0947 (14)
O2W0.4608 (4)0.6253 (4)0.2791 (3)0.1110 (18)
H1A0.861 (6)0.932 (6)0.236 (4)0.167*
H1B0.911 (6)0.905 (7)0.291 (3)0.167*
H2A0.496 (6)0.621 (7)0.317 (4)0.167*
H2B0.467 (7)0.569 (7)0.260 (5)0.167*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0374 (3)0.0295 (3)0.0439 (3)0.0036 (2)0.0093 (2)0.0014 (3)
Co20.0341 (3)0.0369 (3)0.0459 (3)0.0058 (3)0.0084 (2)0.0022 (3)
C10.042 (2)0.037 (2)0.048 (2)0.0008 (18)0.014 (2)0.0020 (19)
C20.043 (3)0.059 (3)0.058 (3)0.002 (2)0.022 (2)0.010 (2)
C30.055 (3)0.057 (3)0.053 (3)0.001 (2)0.020 (2)0.014 (2)
C40.059 (3)0.062 (3)0.050 (3)0.007 (2)0.001 (2)0.004 (2)
C50.054 (3)0.060 (3)0.067 (3)0.004 (2)0.003 (2)0.002 (3)
C60.056 (3)0.044 (3)0.074 (3)0.004 (2)0.011 (3)0.001 (2)
C70.057 (3)0.041 (3)0.064 (3)0.002 (2)0.012 (2)0.011 (2)
C80.069 (3)0.046 (3)0.085 (4)0.008 (2)0.031 (3)0.027 (3)
C90.063 (3)0.058 (3)0.064 (3)0.002 (3)0.025 (2)0.021 (3)
C100.043 (2)0.027 (2)0.056 (3)0.0025 (18)0.012 (2)0.0004 (19)
C110.051 (3)0.031 (2)0.059 (3)0.003 (2)0.007 (2)0.001 (2)
C120.078 (4)0.055 (4)0.095 (4)0.011 (3)0.023 (3)0.032 (3)
C130.103 (5)0.051 (3)0.102 (5)0.019 (3)0.008 (4)0.033 (3)
C140.077 (4)0.047 (3)0.082 (4)0.024 (3)0.014 (3)0.019 (3)
C150.105 (5)0.087 (5)0.118 (5)0.053 (4)0.053 (5)0.039 (4)
C160.083 (4)0.097 (5)0.093 (5)0.045 (4)0.024 (4)0.035 (4)
C170.058 (3)0.108 (5)0.059 (3)0.019 (3)0.007 (3)0.017 (3)
C180.064 (3)0.071 (3)0.057 (3)0.015 (3)0.031 (2)0.014 (3)
C190.052 (3)0.065 (3)0.067 (3)0.016 (2)0.023 (2)0.011 (3)
C200.043 (3)0.071 (3)0.051 (3)0.007 (2)0.019 (2)0.005 (2)
C210.036 (2)0.037 (3)0.053 (3)0.0082 (19)0.008 (2)0.006 (2)
C220.025 (2)0.032 (2)0.044 (2)0.0039 (16)0.0056 (17)0.0054 (17)
C230.046 (2)0.030 (2)0.056 (3)0.0107 (18)0.009 (2)0.0076 (19)
C240.054 (3)0.047 (3)0.054 (3)0.007 (2)0.024 (2)0.011 (2)
C250.034 (2)0.043 (2)0.051 (2)0.0073 (18)0.0151 (19)0.002 (2)
C260.0256 (19)0.028 (2)0.040 (2)0.0038 (15)0.0036 (16)0.0050 (16)
C270.030 (2)0.026 (2)0.039 (2)0.0065 (16)0.0035 (16)0.0015 (16)
C280.031 (2)0.031 (2)0.047 (2)0.0076 (17)0.0038 (18)0.0031 (18)
C290.033 (2)0.035 (2)0.048 (2)0.0082 (18)0.0109 (19)0.0031 (19)
C300.031 (2)0.030 (2)0.042 (2)0.0057 (16)0.0113 (17)0.0038 (17)
C310.047 (3)0.033 (2)0.067 (3)0.007 (2)0.002 (2)0.008 (2)
C320.042 (3)0.046 (3)0.085 (4)0.005 (2)0.009 (2)0.011 (2)
C330.031 (2)0.049 (3)0.075 (3)0.011 (2)0.001 (2)0.001 (2)
C340.033 (2)0.033 (2)0.050 (2)0.0105 (17)0.0170 (19)0.0064 (18)
C350.027 (2)0.033 (2)0.040 (2)0.0041 (16)0.0112 (16)0.0009 (16)
C360.046 (3)0.038 (2)0.047 (2)0.019 (2)0.024 (2)0.0099 (19)
N10.039 (2)0.035 (2)0.0416 (19)0.0011 (15)0.0096 (16)0.0026 (15)
N20.049 (2)0.045 (2)0.042 (2)0.0036 (16)0.0056 (17)0.0067 (16)
N30.041 (2)0.034 (2)0.054 (2)0.0010 (16)0.0089 (17)0.0023 (16)
N40.039 (2)0.0343 (19)0.049 (2)0.0026 (15)0.0068 (17)0.0002 (15)
N50.048 (2)0.034 (2)0.057 (2)0.0008 (16)0.0055 (18)0.0037 (16)
N60.065 (3)0.035 (2)0.067 (3)0.0101 (19)0.013 (2)0.0003 (18)
N70.051 (2)0.069 (3)0.049 (2)0.0130 (19)0.0124 (19)0.0097 (19)
N80.042 (2)0.048 (2)0.047 (2)0.0078 (17)0.0130 (17)0.0011 (17)
O10.0425 (16)0.0424 (17)0.0628 (19)0.0211 (14)0.0128 (14)0.0015 (14)
O20.069 (2)0.066 (2)0.057 (2)0.0274 (17)0.0277 (18)0.0086 (17)
O30.059 (2)0.0363 (18)0.088 (2)0.0135 (15)0.0284 (18)0.0141 (17)
O40.0358 (16)0.0413 (16)0.0516 (17)0.0147 (12)0.0070 (13)0.0057 (13)
O50.0375 (16)0.0400 (16)0.0655 (19)0.0167 (13)0.0099 (14)0.0045 (14)
O60.0423 (18)0.061 (2)0.061 (2)0.0201 (16)0.0077 (16)0.0100 (17)
O70.068 (2)0.0419 (19)0.075 (2)0.0177 (17)0.0143 (19)0.0130 (17)
O80.0445 (18)0.0526 (19)0.068 (2)0.0260 (15)0.0208 (15)0.0090 (15)
O90.0545 (19)0.046 (2)0.072 (2)0.0004 (15)0.0081 (17)0.0000 (16)
O100.079 (3)0.085 (3)0.168 (5)0.036 (2)0.054 (3)0.059 (3)
O1W0.108 (3)0.105 (3)0.064 (2)0.007 (3)0.006 (3)0.018 (2)
O2W0.092 (4)0.099 (4)0.132 (5)0.005 (3)0.003 (3)0.036 (4)
Geometric parameters (Å, º) top
Co1—O11.970 (3)C16—C171.470 (8)
Co1—O4i2.011 (3)C16—H16A0.9700
Co1—N52.018 (3)C16—H16B0.9700
Co1—N12.035 (3)C17—N71.458 (6)
Co2—O8ii1.989 (3)C17—H17A0.9700
Co2—O52.018 (3)C17—H17B0.9700
Co2—N4iii2.029 (3)C18—C191.341 (7)
Co2—N82.033 (3)C18—N71.365 (6)
C1—N11.308 (5)C18—H180.9300
C1—N21.341 (5)C19—N81.373 (5)
C1—H10.9300C19—H190.9300
C2—C31.346 (6)C20—N81.321 (5)
C2—N11.377 (5)C20—N71.331 (6)
C2—H20.9300C20—H200.9300
C3—N21.351 (5)C21—O21.232 (5)
C3—H30.9300C21—O11.287 (5)
C4—N21.473 (5)C21—C221.499 (5)
C4—C51.492 (7)C22—C231.392 (6)
C4—H4A0.9700C22—C271.393 (5)
C4—H4B0.9700C23—C241.387 (6)
C5—O91.411 (5)C23—H230.9300
C5—H5A0.9700C24—C251.379 (6)
C5—H5B0.9700C24—H240.9300
C6—O91.422 (6)C25—C261.388 (5)
C6—C71.484 (6)C25—H250.9300
C6—H6A0.9700C26—C271.374 (5)
C6—H6B0.9700C26—C281.508 (5)
C7—N31.448 (5)C27—H270.9300
C7—H7A0.9700C28—O31.231 (5)
C7—H7B0.9700C28—O41.279 (4)
C8—C91.329 (7)C29—O61.235 (5)
C8—N31.380 (6)C29—O51.277 (5)
C8—H80.9300C29—C301.494 (5)
C9—N41.370 (5)C30—C311.377 (6)
C9—H90.9300C30—C351.392 (5)
C10—N41.313 (5)C31—C321.384 (6)
C10—N31.323 (5)C31—H310.9300
C10—H100.9300C32—C331.386 (6)
C11—N51.308 (5)C32—H320.9300
C11—N61.318 (5)C33—C341.381 (6)
C11—H110.9300C33—H330.9300
C12—C131.352 (7)C34—C351.378 (5)
C12—N51.371 (6)C34—C361.511 (5)
C12—H120.9300C35—H350.9300
C13—N61.337 (7)C36—O71.231 (5)
C13—H130.9300C36—O81.271 (5)
C14—C151.445 (7)N4—Co2iv2.029 (3)
C14—N61.464 (6)O4—Co1v2.011 (3)
C14—H14A0.9700O8—Co2vi1.989 (3)
C14—H14B0.9700O1W—H1A1.00 (9)
C15—O101.381 (7)O1W—H1B0.83 (7)
C15—H15A0.9700O2W—H2A0.84 (9)
C15—H15B0.9700O2W—H2B0.86 (9)
C16—O101.406 (7)
O1—Co1—O4i94.52 (12)C19—C18—H18127.2
O1—Co1—N5107.13 (14)N7—C18—H18127.2
O4i—Co1—N5122.46 (13)C18—C19—N8110.4 (4)
O1—Co1—N1113.96 (13)C18—C19—H19124.8
O4i—Co1—N1105.31 (12)N8—C19—H19124.8
N5—Co1—N1112.44 (14)N8—C20—N7111.2 (4)
O8ii—Co2—O592.54 (12)N8—C20—H20124.4
O8ii—Co2—N4iii117.28 (13)N7—C20—H20124.4
O5—Co2—N4iii114.84 (13)O2—C21—O1123.0 (4)
O8ii—Co2—N8106.00 (13)O2—C21—C22120.6 (4)
O5—Co2—N8116.05 (13)O1—C21—C22116.4 (4)
N4iii—Co2—N8109.23 (14)C23—C22—C27118.9 (3)
N1—C1—N2111.5 (4)C23—C22—C21121.3 (4)
N1—C1—H1124.2C27—C22—C21119.8 (4)
N2—C1—H1124.2C24—C23—C22119.7 (4)
C3—C2—N1109.6 (4)C24—C23—H23120.1
C3—C2—H2125.2C22—C23—H23120.1
N1—C2—H2125.2C25—C24—C23120.8 (4)
C2—C3—N2106.4 (4)C25—C24—H24119.6
C2—C3—H3126.8C23—C24—H24119.6
N2—C3—H3126.8C24—C25—C26119.8 (3)
N2—C4—C5109.9 (4)C24—C25—H25120.1
N2—C4—H4A109.7C26—C25—H25120.1
C5—C4—H4A109.7C27—C26—C25119.7 (3)
N2—C4—H4B109.7C27—C26—C28118.4 (3)
C5—C4—H4B109.7C25—C26—C28122.0 (3)
H4A—C4—H4B108.2C26—C27—C22121.2 (4)
O9—C5—C4106.9 (4)C26—C27—H27119.4
O9—C5—H5A110.3C22—C27—H27119.4
C4—C5—H5A110.3O3—C28—O4121.5 (4)
O9—C5—H5B110.3O3—C28—C26119.9 (4)
C4—C5—H5B110.3O4—C28—C26118.5 (4)
H5A—C5—H5B108.6O6—C29—O5121.4 (4)
O9—C6—C7108.3 (4)O6—C29—C30120.3 (3)
O9—C6—H6A110.0O5—C29—C30118.3 (4)
C7—C6—H6A110.0C31—C30—C35118.8 (4)
O9—C6—H6B110.0C31—C30—C29122.3 (3)
C7—C6—H6B110.0C35—C30—C29118.9 (4)
H6A—C6—H6B108.4C30—C31—C32120.8 (4)
N3—C7—C6112.7 (4)C30—C31—H31119.6
N3—C7—H7A109.0C32—C31—H31119.6
C6—C7—H7A109.0C31—C32—C33119.7 (4)
N3—C7—H7B109.0C31—C32—H32120.1
C6—C7—H7B109.0C33—C32—H32120.1
H7A—C7—H7B107.8C34—C33—C32120.1 (4)
C9—C8—N3107.1 (4)C34—C33—H33119.9
C9—C8—H8126.5C32—C33—H33119.9
N3—C8—H8126.5C35—C34—C33119.5 (4)
C8—C9—N4109.2 (4)C35—C34—C36118.8 (4)
C8—C9—H9125.4C33—C34—C36121.7 (4)
N4—C9—H9125.4C34—C35—C30121.0 (4)
N4—C10—N3112.0 (4)C34—C35—H35119.5
N4—C10—H10124.0C30—C35—H35119.5
N3—C10—H10124.0O7—C36—O8123.0 (4)
N5—C11—N6112.1 (4)O7—C36—C34119.5 (4)
N5—C11—H11123.9O8—C36—C34117.5 (4)
N6—C11—H11123.9C1—N1—C2105.1 (4)
C13—C12—N5107.8 (5)C1—N1—Co1126.9 (3)
C13—C12—H12126.1C2—N1—Co1127.3 (3)
N5—C12—H12126.1C1—N2—C3107.3 (3)
N6—C13—C12107.7 (5)C1—N2—C4126.4 (4)
N6—C13—H13126.1C3—N2—C4126.1 (4)
C12—C13—H13126.1C10—N3—C8106.1 (4)
C15—C14—N6113.5 (4)C10—N3—C7126.7 (4)
C15—C14—H14A108.9C8—N3—C7127.1 (4)
N6—C14—H14A108.9C10—N4—C9105.6 (4)
C15—C14—H14B108.9C10—N4—Co2iv130.2 (3)
N6—C14—H14B108.9C9—N4—Co2iv124.0 (3)
H14A—C14—H14B107.7C11—N5—C12105.4 (4)
O10—C15—C14114.3 (5)C11—N5—Co1128.0 (3)
O10—C15—H15A108.7C12—N5—Co1126.1 (3)
C14—C15—H15A108.7C11—N6—C13106.9 (4)
O10—C15—H15B108.7C11—N6—C14126.0 (4)
C14—C15—H15B108.7C13—N6—C14127.1 (4)
H15A—C15—H15B107.6C20—N7—C18107.9 (4)
O10—C16—C17108.4 (5)C20—N7—C17124.9 (4)
O10—C16—H16A110.0C18—N7—C17127.2 (4)
C17—C16—H16A110.0C20—N8—C19104.9 (4)
O10—C16—H16B110.0C20—N8—Co2126.2 (3)
C17—C16—H16B110.0C19—N8—Co2128.9 (3)
H16A—C16—H16B108.4C21—O1—Co1114.4 (3)
N7—C17—C16113.6 (5)C28—O4—Co1v103.1 (2)
N7—C17—H17A108.9C29—O5—Co2103.1 (3)
C16—C17—H17A108.9C36—O8—Co2vi110.4 (3)
N7—C17—H17B108.9C5—O9—C6112.5 (3)
C16—C17—H17B108.9C15—O10—C16114.2 (5)
H17A—C17—H17B107.7H1A—O1W—H1B88 (8)
C19—C18—N7105.7 (4)H2A—O2W—H2B105 (9)
N1—C2—C3—N20.0 (5)N4—C10—N3—C81.0 (5)
N2—C4—C5—O9177.2 (4)N4—C10—N3—C7178.3 (4)
O9—C6—C7—N372.2 (5)C9—C8—N3—C101.1 (6)
N3—C8—C9—N40.9 (6)C9—C8—N3—C7178.4 (4)
N5—C12—C13—N60.2 (8)C6—C7—N3—C10101.1 (5)
N6—C14—C15—O1063.9 (8)C6—C7—N3—C875.6 (6)
O10—C16—C17—N769.4 (6)N3—C10—N4—C90.4 (5)
N7—C18—C19—N80.5 (6)N3—C10—N4—Co2iv175.2 (3)
O2—C21—C22—C23164.7 (4)C8—C9—N4—C100.3 (6)
O1—C21—C22—C2315.0 (6)C8—C9—N4—Co2iv174.8 (3)
O2—C21—C22—C2717.4 (6)N6—C11—N5—C120.8 (5)
O1—C21—C22—C27162.9 (4)N6—C11—N5—Co1173.2 (3)
C27—C22—C23—C241.8 (6)C13—C12—N5—C110.3 (7)
C21—C22—C23—C24179.6 (4)C13—C12—N5—Co1172.9 (4)
C22—C23—C24—C250.8 (6)O1—Co1—N5—C11111.2 (4)
C23—C24—C25—C260.8 (6)O4i—Co1—N5—C114.1 (4)
C24—C25—C26—C271.4 (6)N1—Co1—N5—C11122.9 (4)
C24—C25—C26—C28176.9 (4)O1—Co1—N5—C1277.9 (5)
C25—C26—C27—C220.4 (6)O4i—Co1—N5—C12175.0 (4)
C28—C26—C27—C22177.9 (3)N1—Co1—N5—C1248.0 (5)
C23—C22—C27—C261.2 (6)N5—C11—N6—C130.9 (6)
C21—C22—C27—C26179.1 (3)N5—C11—N6—C14177.7 (4)
C27—C26—C28—O317.1 (6)C12—C13—N6—C110.7 (7)
C25—C26—C28—O3161.1 (4)C12—C13—N6—C14178.0 (5)
C27—C26—C28—O4160.2 (3)C15—C14—N6—C1199.5 (7)
C25—C26—C28—O421.5 (5)C15—C14—N6—C1382.1 (8)
O6—C29—C30—C31168.5 (4)N8—C20—N7—C180.1 (6)
O5—C29—C30—C3111.9 (6)N8—C20—N7—C17177.1 (5)
O6—C29—C30—C3511.1 (6)C19—C18—N7—C200.4 (6)
O5—C29—C30—C35168.5 (4)C19—C18—N7—C17177.3 (5)
C35—C30—C31—C322.3 (7)C16—C17—N7—C2098.0 (6)
C29—C30—C31—C32177.4 (4)C16—C17—N7—C1878.5 (7)
C30—C31—C32—C331.6 (8)N7—C20—N8—C190.2 (5)
C31—C32—C33—C340.9 (8)N7—C20—N8—Co2177.8 (3)
C32—C33—C34—C352.6 (7)C18—C19—N8—C200.5 (6)
C32—C33—C34—C36177.5 (4)C18—C19—N8—Co2177.5 (4)
C33—C34—C35—C301.9 (6)O8ii—Co2—N8—C2051.5 (4)
C36—C34—C35—C30178.2 (3)O5—Co2—N8—C20152.5 (4)
C31—C30—C35—C340.5 (6)N4iii—Co2—N8—C2075.8 (4)
C29—C30—C35—C34179.1 (3)O8ii—Co2—N8—C19126.1 (4)
C35—C34—C36—O77.7 (6)O5—Co2—N8—C1925.1 (4)
C33—C34—C36—O7172.4 (4)N4iii—Co2—N8—C19106.6 (4)
C35—C34—C36—O8171.3 (4)O2—C21—O1—Co113.1 (6)
C33—C34—C36—O88.6 (6)C22—C21—O1—Co1167.2 (3)
N2—C1—N1—C20.3 (5)O4i—Co1—O1—C21174.0 (3)
N2—C1—N1—Co1171.2 (3)N5—Co1—O1—C2160.0 (3)
C3—C2—N1—C10.1 (5)N1—Co1—O1—C2165.1 (3)
C3—C2—N1—Co1171.0 (3)O3—C28—O4—Co1v12.1 (4)
O1—Co1—N1—C115.6 (4)C26—C28—O4—Co1v165.3 (3)
O4i—Co1—N1—C1117.8 (3)O6—C29—O5—Co26.1 (5)
N5—Co1—N1—C1106.5 (4)C30—C29—O5—Co2173.5 (3)
O1—Co1—N1—C2153.3 (3)O8ii—Co2—O5—C29178.7 (3)
O4i—Co1—N1—C251.1 (4)N4iii—Co2—O5—C2959.5 (3)
N5—Co1—N1—C284.5 (4)N8—Co2—O5—C2969.6 (3)
N1—C1—N2—C30.3 (5)O7—C36—O8—Co2vi11.3 (5)
N1—C1—N2—C4175.4 (4)C34—C36—O8—Co2vi167.7 (3)
C2—C3—N2—C10.2 (5)C4—C5—O9—C6169.4 (4)
C2—C3—N2—C4175.3 (4)C7—C6—O9—C5175.2 (4)
C5—C4—N2—C1101.4 (5)C14—C15—O10—C16167.2 (5)
C5—C4—N2—C372.8 (6)C17—C16—O10—C15178.9 (6)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x1/2, y1/2, z; (iii) x1, y, z; (iv) x+1, y, z; (v) x+1/2, y1/2, z; (vi) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O21.00 (9)1.87 (9)2.830 (6)158 (8)
O1W—H1B···O6v0.83 (7)1.99 (4)2.773 (5)157 (9)
O2W—H2A···O7vii0.84 (9)2.12 (9)2.929 (6)160 (9)
Symmetry codes: (v) x+1/2, y1/2, z; (vii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Co(C10H14N4O)(C8H4O4)]·H2O
Mr447.31
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)15.1641 (9), 13.1653 (9), 20.6761 (19)
β (°) 102.753 (1)
V3)4025.9 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.44 × 0.32 × 0.19
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.711, 0.841
No. of measured, independent and
observed [I > 2σ(I)] reflections
10068, 5554, 4840
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.081, 0.98
No. of reflections5554
No. of parameters535
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.27
Absolute structureFlack (1983), 1999 Friedel pairs
Absolute structure parameter0.007 (12)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—O11.970 (3)Co2—O8ii1.989 (3)
Co1—O4i2.011 (3)Co2—O52.018 (3)
Co1—N52.018 (3)Co2—N4iii2.029 (3)
Co1—N12.035 (3)Co2—N82.033 (3)
O1—Co1—O4i94.52 (12)O8ii—Co2—O592.54 (12)
O1—Co1—N5107.13 (14)O8ii—Co2—N4iii117.28 (13)
O4i—Co1—N5122.46 (13)O5—Co2—N4iii114.84 (13)
O1—Co1—N1113.96 (13)O8ii—Co2—N8106.00 (13)
O4i—Co1—N1105.31 (12)O5—Co2—N8116.05 (13)
N5—Co1—N1112.44 (14)N4iii—Co2—N8109.23 (14)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x1/2, y1/2, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O21.00 (9)1.87 (9)2.830 (6)158 (8)
O1W—H1B···O6iv0.83 (7)1.99 (4)2.773 (5)157 (9)
O2W—H2A···O7v0.84 (9)2.12 (9)2.929 (6)160 (9)
Symmetry codes: (iv) x+1/2, y1/2, z; (v) x, y1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds