Buy article online - an online subscription or single-article purchase is required to access this article.
In
O-ethyl
N-benzoylthiocarbamate, C
10H
11NO
2S, the molecules are linked into sheets by a combination of two-centre N—H
O and C—H
S hydrogen bonds and a three-centre C—H
(O,S) hydrogen bond. A combination of two-centre N—H
O and C—H
O hydrogen bonds links the molecules of
O-ethyl
N-(4-methylbenzoyl)thiocarbamate, C
11H
13NO
2S, into chains of rings, which are linked into sheets by an aromatic π–π stacking interaction. In
O,
S-diethyl
N-(4-methylbenzoyl)imidothiocarbonate, C
13H
17NO
2S, pairs of molecules are linked into centrosymmetric dimers by pairs of symmetry-related C—H
π(arene) hydrogen bonds, while the molecules of
O,
S-diethyl
N-(4-chlorobenzoyl)imidothiocarbonate, C
12H
14ClNO
2S, are linked by a single C—H
O hydrogen bond into simple chains, pairs of which are linked by an aromatic π–π stacking interaction to form a ladder-type structure.
Supporting information
CCDC references: 774090; 774091; 774092; 774093
For the synthesis of (I) and (II), the appropriate aroyl chloride (0.043 mol)
was added to a solution of potassium thiocyanate (0.043 mol) in acetonitrile
(75 ml). This mixture was heated under reflux for 15 min to afford the
corresponding aroyl isothiocyanate, which was not isolated. After cooling the
intermediate solution to 273 K under an inert atmosphere, dry ethanol (0.47 mol) was added, and this mixture was then stirred at ambient temperature for
24 h. Ice–water was added to the reaction mixture and the resulting
light-green solid was collected by filtration, washed with water, dried under
reduced pressure and finally crystallized by slow evaporation, at ambient
temperature and in air, of a solution in n-hexane, to give crystals
suitable for single-crystal X-ray diffraction. For (I), yield 95%, m.p. 345 K.
For (II), yield 92%, m.p. 331 K.
For the synthesis of (III) and (IV), a slight excess of sodium hydride (60%
suspension in oil, 0.020 mol) was added under an inert atmosphere to an
ice-cold solution of the corresponding O-ethyl aroyliminothiocarbonate
(0.010 mol) in N,N-dimethylformamide (6 ml). This mixture was
stirred for 45 min at ambient temperature, and then bromoethane (0.012 mol)
was slowly added and the stirring was continued for a further 30 min.
Ice–water was added to the reaction mixture and the resulting colourless
solid was collected by filtration, washed with water, dried under reduced
pressure and finally crystallized by slow evaporation, at ambient temperature
and in air, of a solution in dry ethanol, to give crystals suitable for
single-crystal X-ray diffraction. For (III), yield 94%, m.p. 333 K. For (IV),
yield 95%, m.p. 373 K.
All H atoms were located in difference maps and then treated as riding atoms in
geometrically idealized positions, with C—H = 0.95 (aromatic), 0.98 (CH3)
or 0.99 Å (CH2) and N—H = 0.88 Å, and with Uiso(H) =
kUeq(carrier), where k = 1.5 for the methyl groups, which
were permitted to rotate but not to tilt, and 1.2 for all other H atoms. For
(I), the correct orientation of the structure with respect to the polar axis
direction was established by means of the Flack x parameter (Flack,
1983), x = 0.08 (17), and the Hooft y parameter (Hooft
et
al., 2008), y = 0.03 (5), for 99.6% coverage of the Bijvoet
pairs.
Compound (III) was handled as a non-merohedral twin, in which the two twin
components are related by the matrix (1.000, 0.557, 0.320/0.000, -1.000,
0.000/0.000, 0.000, -1.000). Using the original HKLF file [15150 reflections,
R(int) = 0.0581], a modified file [2460 reflections, R(int) =
0.0000] was prepared using the TwinRotMat option in PLATON (Spek,
2009)
and then used in conjunction with the HKLF 5 option in SHELXL97
(Sheldrick, 2008), giving twin fractions of 0.268 (5) and 0.732 (5).
For all compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (I); SIR2004 (Burla et al., 2005) for (II), (III), (IV). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
(I)
O-ethyl benzoylthiocarbamate
top
Crystal data top
C10H11NO2S | F(000) = 440 |
Mr = 209.27 | Dx = 1.366 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 1889 reflections |
a = 9.9418 (8) Å | θ = 2.9–25.5° |
b = 9.3619 (5) Å | µ = 0.29 mm−1 |
c = 10.9337 (13) Å | T = 120 K |
V = 1017.65 (16) Å3 | Block, green |
Z = 4 | 0.50 × 0.42 × 0.41 mm |
Data collection top
Bruker Nonius KappaCCD area-detector diffractometer | 1889 independent reflections |
Radiation source: Bruker Nonius FR591 rotating anode | 1284 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.074 |
Detector resolution: 9.091 pixels mm-1 | θmax = 25.5°, θmin = 2.9° |
ϕ and ω scans | h = −12→11 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −11→11 |
Tmin = 0.868, Tmax = 0.890 | l = −13→13 |
13852 measured reflections | |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.130 | w = 1/[σ2(Fo2) + (0.0546P)2 + 0.655P] where P = (Fo2 + 2Fc2)/3 |
S = 1.14 | (Δ/σ)max = 0.001 |
1889 reflections | Δρmax = 0.45 e Å−3 |
128 parameters | Δρmin = −0.29 e Å−3 |
1 restraint | Absolute structure: Flack (1983), with 890 Bijvoet pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.08 (17) |
Crystal data top
C10H11NO2S | V = 1017.65 (16) Å3 |
Mr = 209.27 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 9.9418 (8) Å | µ = 0.29 mm−1 |
b = 9.3619 (5) Å | T = 120 K |
c = 10.9337 (13) Å | 0.50 × 0.42 × 0.41 mm |
Data collection top
Bruker Nonius KappaCCD area-detector diffractometer | 1889 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 1284 reflections with I > 2σ(I) |
Tmin = 0.868, Tmax = 0.890 | Rint = 0.074 |
13852 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.130 | Δρmax = 0.45 e Å−3 |
S = 1.14 | Δρmin = −0.29 e Å−3 |
1889 reflections | Absolute structure: Flack (1983), with 890 Bijvoet pairs |
128 parameters | Absolute structure parameter: 0.08 (17) |
1 restraint | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.5732 (4) | 0.7797 (5) | 0.2183 (4) | 0.0260 (10) | |
O1 | 0.6860 (3) | 0.7329 (3) | 0.2110 (3) | 0.0307 (7) | |
N2 | 0.4670 (3) | 0.6998 (4) | 0.2635 (3) | 0.0270 (9) | |
H2 | 0.3857 | 0.7310 | 0.2461 | 0.032* | |
C3 | 0.4743 (4) | 0.5764 (5) | 0.3329 (4) | 0.0279 (10) | |
S3 | 0.60817 (10) | 0.49807 (13) | 0.38277 (14) | 0.0356 (3) | |
O4 | 0.3488 (3) | 0.5368 (3) | 0.3554 (3) | 0.0362 (9) | |
C5 | 0.3277 (5) | 0.4172 (5) | 0.4363 (5) | 0.0337 (11) | |
H5A | 0.3527 | 0.4429 | 0.5212 | 0.040* | |
H5B | 0.3828 | 0.3345 | 0.4103 | 0.040* | |
C6 | 0.1807 (4) | 0.3815 (5) | 0.4290 (5) | 0.0365 (12) | |
H6A | 0.1274 | 0.4667 | 0.4479 | 0.055* | |
H6B | 0.1596 | 0.3059 | 0.4880 | 0.055* | |
H6C | 0.1590 | 0.3485 | 0.3462 | 0.055* | |
C11 | 0.5382 (4) | 0.9261 (5) | 0.1803 (4) | 0.0300 (11) | |
C12 | 0.4230 (4) | 0.9969 (4) | 0.2190 (4) | 0.0262 (10) | |
H12 | 0.3596 | 0.9491 | 0.2695 | 0.031* | |
C13 | 0.4006 (4) | 1.1359 (5) | 0.1842 (5) | 0.0342 (12) | |
H13 | 0.3221 | 1.1843 | 0.2112 | 0.041* | |
C14 | 0.4913 (5) | 1.2049 (5) | 0.1106 (5) | 0.0387 (12) | |
H14 | 0.4753 | 1.3012 | 0.0874 | 0.046* | |
C15 | 0.6053 (4) | 1.1359 (5) | 0.0700 (4) | 0.0328 (12) | |
H15 | 0.6671 | 1.1837 | 0.0178 | 0.039* | |
C16 | 0.6287 (5) | 0.9976 (4) | 0.1058 (5) | 0.0269 (10) | |
H16 | 0.7079 | 0.9502 | 0.0791 | 0.032* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C1 | 0.021 (2) | 0.031 (3) | 0.027 (2) | −0.0004 (19) | −0.0034 (19) | −0.006 (2) |
O1 | 0.0219 (15) | 0.0322 (17) | 0.0380 (18) | 0.0010 (13) | −0.0002 (14) | 0.0041 (15) |
N2 | 0.0190 (18) | 0.029 (2) | 0.033 (2) | −0.0024 (16) | 0.0011 (16) | 0.0025 (18) |
C3 | 0.033 (3) | 0.021 (2) | 0.029 (3) | 0.002 (2) | −0.002 (2) | −0.007 (2) |
S3 | 0.0267 (5) | 0.0359 (6) | 0.0441 (6) | 0.0034 (5) | −0.0018 (7) | 0.0087 (5) |
O4 | 0.0270 (17) | 0.0363 (17) | 0.045 (2) | −0.0023 (13) | 0.0020 (15) | 0.0123 (16) |
C5 | 0.033 (3) | 0.029 (2) | 0.039 (3) | 0.000 (2) | −0.004 (2) | 0.011 (2) |
C6 | 0.035 (3) | 0.034 (3) | 0.040 (3) | −0.004 (2) | 0.003 (2) | 0.007 (2) |
C11 | 0.027 (3) | 0.031 (2) | 0.032 (3) | −0.005 (2) | −0.002 (2) | 0.005 (2) |
C12 | 0.024 (2) | 0.028 (2) | 0.026 (2) | −0.0015 (18) | −0.0010 (19) | 0.000 (2) |
C13 | 0.029 (3) | 0.031 (3) | 0.042 (3) | 0.003 (2) | −0.001 (2) | 0.000 (2) |
C14 | 0.040 (3) | 0.029 (2) | 0.047 (3) | −0.005 (2) | −0.004 (2) | 0.003 (2) |
C15 | 0.029 (3) | 0.034 (3) | 0.035 (3) | −0.010 (2) | 0.006 (2) | 0.008 (2) |
C16 | 0.024 (2) | 0.027 (2) | 0.030 (2) | −0.001 (2) | 0.0035 (18) | −0.005 (2) |
Geometric parameters (Å, º) top
C1—O1 | 1.206 (5) | C6—H6C | 0.9800 |
C1—N2 | 1.385 (5) | C11—C16 | 1.386 (6) |
C1—C11 | 1.473 (6) | C11—C12 | 1.389 (6) |
N2—C3 | 1.384 (6) | C12—C13 | 1.374 (6) |
N2—H2 | 0.8800 | C12—H12 | 0.9500 |
C3—O4 | 1.325 (5) | C13—C14 | 1.369 (7) |
C3—S3 | 1.615 (4) | C13—H13 | 0.9500 |
O4—C5 | 1.443 (5) | C14—C15 | 1.378 (6) |
C5—C6 | 1.501 (6) | C14—H14 | 0.9500 |
C5—H5A | 0.9900 | C15—C16 | 1.373 (6) |
C5—H5B | 0.9900 | C15—H15 | 0.9500 |
C6—H6A | 0.9800 | C16—H16 | 0.9500 |
C6—H6B | 0.9800 | | |
| | | |
O1—C1—N2 | 122.4 (4) | H6A—C6—H6C | 109.5 |
O1—C1—C11 | 122.6 (4) | H6B—C6—H6C | 109.5 |
N2—C1—C11 | 115.0 (4) | C16—C11—C12 | 118.9 (4) |
C3—N2—C1 | 127.3 (4) | C16—C11—C1 | 117.5 (4) |
C3—N2—H2 | 116.3 | C12—C11—C1 | 123.6 (4) |
C1—N2—H2 | 116.3 | C13—C12—C11 | 120.1 (4) |
O4—C3—N2 | 106.6 (3) | C13—C12—H12 | 120.0 |
O4—C3—S3 | 125.9 (3) | C11—C12—H12 | 120.0 |
N2—C3—S3 | 127.4 (3) | C14—C13—C12 | 120.2 (4) |
C3—O4—C5 | 117.9 (4) | C14—C13—H13 | 119.9 |
O4—C5—C6 | 106.3 (4) | C12—C13—H13 | 119.9 |
O4—C5—H5A | 110.5 | C13—C14—C15 | 120.7 (4) |
C6—C5—H5A | 110.5 | C13—C14—H14 | 119.7 |
O4—C5—H5B | 110.5 | C15—C14—H14 | 119.7 |
C6—C5—H5B | 110.5 | C16—C15—C14 | 119.3 (4) |
H5A—C5—H5B | 108.7 | C16—C15—H15 | 120.4 |
C5—C6—H6A | 109.5 | C14—C15—H15 | 120.4 |
C5—C6—H6B | 109.5 | C15—C16—C11 | 120.9 (4) |
H6A—C6—H6B | 109.5 | C15—C16—H16 | 119.6 |
C5—C6—H6C | 109.5 | C11—C16—H16 | 119.6 |
| | | |
O1—C1—N2—C3 | 17.4 (6) | N2—C1—C11—C12 | 19.3 (6) |
C11—C1—N2—C3 | −162.4 (4) | C16—C11—C12—C13 | −0.5 (6) |
C1—N2—C3—O4 | −179.9 (4) | C1—C11—C12—C13 | 176.8 (5) |
C1—N2—C3—S3 | 2.5 (6) | C11—C12—C13—C14 | 0.4 (7) |
N2—C3—O4—C5 | −174.4 (4) | C12—C13—C14—C15 | 0.4 (8) |
S3—C3—O4—C5 | 3.2 (6) | C13—C14—C15—C16 | −1.1 (8) |
C3—O4—C5—C6 | −171.0 (4) | C14—C15—C16—C11 | 1.0 (7) |
O1—C1—C11—C16 | 16.9 (7) | C12—C11—C16—C15 | −0.2 (7) |
N2—C1—C11—C16 | −163.3 (4) | C1—C11—C16—C15 | −177.7 (4) |
O1—C1—C11—C12 | −160.5 (4) | | |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.88 | 2.05 | 2.921 (4) | 170 |
C12—H12···S3i | 0.95 | 2.83 | 3.606 (4) | 139 |
C12—H12···O1i | 0.95 | 2.51 | 3.192 (5) | 129 |
C16—H16···S3ii | 0.95 | 2.86 | 3.576 (5) | 134 |
Symmetry codes: (i) x−1/2, −y+3/2, z; (ii) −x+3/2, y+1/2, z−1/2. |
(II)
O-ethyl (4-methylbenzoyl)thiocarbamate
top
Crystal data top
C11H13NO2S | F(000) = 472 |
Mr = 223.29 | Dx = 1.349 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2026 reflections |
a = 12.2845 (14) Å | θ = 3.1–25.5° |
b = 9.1431 (17) Å | µ = 0.27 mm−1 |
c = 9.7897 (4) Å | T = 120 K |
β = 90.182 (7)° | Block, green |
V = 1099.6 (2) Å3 | 0.34 × 0.30 × 0.24 mm |
Z = 4 | |
Data collection top
Bruker Nonius KappaCCD area-detector diffractometer | 2026 independent reflections |
Radiation source: Bruker Nonius FR591 rotating anode | 1334 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
Detector resolution: 9.091 pixels mm-1 | θmax = 25.5°, θmin = 3.1° |
ϕ and ω scans | h = −14→14 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −11→11 |
Tmin = 0.918, Tmax = 0.937 | l = −11→11 |
11469 measured reflections | |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.134 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0646P)2 + 0.4813P] where P = (Fo2 + 2Fc2)/3 |
2026 reflections | (Δ/σ)max = 0.001 |
138 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
Crystal data top
C11H13NO2S | V = 1099.6 (2) Å3 |
Mr = 223.29 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.2845 (14) Å | µ = 0.27 mm−1 |
b = 9.1431 (17) Å | T = 120 K |
c = 9.7897 (4) Å | 0.34 × 0.30 × 0.24 mm |
β = 90.182 (7)° | |
Data collection top
Bruker Nonius KappaCCD area-detector diffractometer | 2026 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 1334 reflections with I > 2σ(I) |
Tmin = 0.918, Tmax = 0.937 | Rint = 0.051 |
11469 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.134 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.31 e Å−3 |
2026 reflections | Δρmin = −0.29 e Å−3 |
138 parameters | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.2612 (2) | 0.7412 (3) | 0.5728 (3) | 0.0330 (7) | |
O1 | 0.25886 (19) | 0.7948 (2) | 0.68555 (18) | 0.0497 (6) | |
N2 | 0.22197 (17) | 0.8125 (2) | 0.4599 (2) | 0.0300 (5) | |
H2 | 0.2288 | 0.7668 | 0.3813 | 0.036* | |
C3 | 0.1730 (2) | 0.9479 (3) | 0.4559 (3) | 0.0313 (7) | |
S3 | 0.16384 (6) | 1.06818 (8) | 0.57612 (7) | 0.0422 (3) | |
O4 | 0.13528 (15) | 0.96362 (19) | 0.32994 (18) | 0.0358 (5) | |
C5 | 0.0823 (2) | 1.1002 (3) | 0.2940 (3) | 0.0422 (8) | |
H5A | 0.1358 | 1.1811 | 0.2919 | 0.051* | |
H5B | 0.0250 | 1.1244 | 0.3612 | 0.051* | |
C6 | 0.0340 (2) | 1.0774 (3) | 0.1566 (3) | 0.0464 (8) | |
H6A | 0.0916 | 1.0530 | 0.0915 | 0.070* | |
H6B | −0.0029 | 1.1671 | 0.1271 | 0.070* | |
H6C | −0.0187 | 0.9970 | 0.1605 | 0.070* | |
C11 | 0.3084 (2) | 0.5953 (3) | 0.5491 (2) | 0.0293 (6) | |
C12 | 0.2867 (2) | 0.5081 (3) | 0.4378 (3) | 0.0292 (6) | |
H12 | 0.2408 | 0.5436 | 0.3669 | 0.035* | |
C13 | 0.3304 (2) | 0.3710 (3) | 0.4279 (3) | 0.0310 (6) | |
H13 | 0.3131 | 0.3122 | 0.3508 | 0.037* | |
C14 | 0.3990 (2) | 0.3160 (3) | 0.5272 (3) | 0.0319 (7) | |
C15 | 0.4228 (2) | 0.4060 (3) | 0.6366 (3) | 0.0354 (7) | |
H15 | 0.4716 | 0.3726 | 0.7053 | 0.042* | |
C16 | 0.3781 (2) | 0.5411 (3) | 0.6481 (3) | 0.0364 (7) | |
H16 | 0.3949 | 0.5995 | 0.7256 | 0.044* | |
C17 | 0.4463 (2) | 0.1660 (3) | 0.5182 (3) | 0.0417 (8) | |
H17A | 0.4091 | 0.1110 | 0.4460 | 0.062* | |
H17B | 0.4369 | 0.1157 | 0.6057 | 0.062* | |
H17C | 0.5241 | 0.1729 | 0.4969 | 0.062* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C1 | 0.0435 (17) | 0.0310 (15) | 0.0245 (14) | −0.0072 (13) | 0.0004 (12) | 0.0018 (12) |
O1 | 0.0930 (18) | 0.0335 (12) | 0.0226 (10) | 0.0052 (11) | 0.0007 (10) | −0.0019 (9) |
N2 | 0.0395 (13) | 0.0276 (12) | 0.0229 (11) | 0.0011 (11) | 0.0005 (10) | −0.0007 (9) |
C3 | 0.0279 (14) | 0.0346 (17) | 0.0314 (15) | −0.0086 (13) | 0.0027 (12) | 0.0038 (12) |
S3 | 0.0533 (5) | 0.0322 (4) | 0.0413 (5) | −0.0006 (4) | −0.0001 (4) | −0.0063 (3) |
O4 | 0.0407 (11) | 0.0346 (11) | 0.0322 (11) | 0.0023 (9) | −0.0023 (9) | 0.0048 (8) |
C5 | 0.0384 (17) | 0.0328 (17) | 0.055 (2) | 0.0019 (14) | −0.0029 (15) | 0.0118 (14) |
C6 | 0.0385 (17) | 0.056 (2) | 0.0446 (18) | 0.0059 (15) | −0.0024 (14) | 0.0141 (15) |
C11 | 0.0349 (15) | 0.0313 (15) | 0.0216 (14) | −0.0024 (12) | 0.0025 (12) | 0.0036 (11) |
C12 | 0.0324 (15) | 0.0313 (15) | 0.0238 (14) | −0.0038 (13) | −0.0008 (11) | 0.0034 (12) |
C13 | 0.0378 (16) | 0.0294 (15) | 0.0259 (14) | −0.0021 (13) | 0.0003 (12) | −0.0014 (12) |
C14 | 0.0328 (16) | 0.0325 (15) | 0.0303 (15) | 0.0015 (12) | 0.0035 (12) | 0.0063 (12) |
C15 | 0.0391 (16) | 0.0379 (17) | 0.0291 (15) | 0.0032 (13) | −0.0041 (13) | 0.0074 (13) |
C16 | 0.0470 (18) | 0.0399 (18) | 0.0222 (14) | −0.0051 (14) | −0.0028 (13) | −0.0002 (12) |
C17 | 0.0433 (18) | 0.0409 (18) | 0.0408 (17) | 0.0098 (15) | 0.0007 (14) | 0.0057 (14) |
Geometric parameters (Å, º) top
C1—O1 | 1.208 (3) | C11—C12 | 1.376 (4) |
C1—N2 | 1.370 (3) | C11—C16 | 1.383 (4) |
C1—C11 | 1.473 (4) | C12—C13 | 1.367 (4) |
N2—C3 | 1.377 (3) | C12—H12 | 0.9500 |
N2—H2 | 0.8800 | C13—C14 | 1.379 (4) |
C3—O4 | 1.324 (3) | C13—H13 | 0.9500 |
C3—S3 | 1.615 (3) | C14—C15 | 1.381 (4) |
O4—C5 | 1.451 (3) | C14—C17 | 1.492 (4) |
C5—C6 | 1.483 (4) | C15—C16 | 1.357 (4) |
C5—H5A | 0.9900 | C15—H15 | 0.9500 |
C5—H5B | 0.9900 | C16—H16 | 0.9500 |
C6—H6A | 0.9800 | C17—H17A | 0.9800 |
C6—H6B | 0.9800 | C17—H17B | 0.9800 |
C6—H6C | 0.9800 | C17—H17C | 0.9800 |
| | | |
O1—C1—N2 | 122.3 (3) | C12—C11—C1 | 125.0 (2) |
O1—C1—C11 | 121.5 (2) | C16—C11—C1 | 117.2 (2) |
N2—C1—C11 | 116.2 (2) | C13—C12—C11 | 120.8 (2) |
C1—N2—C3 | 127.1 (2) | C13—C12—H12 | 119.6 |
C1—N2—H2 | 116.4 | C11—C12—H12 | 119.6 |
C3—N2—H2 | 116.4 | C12—C13—C14 | 121.6 (2) |
O4—C3—N2 | 106.0 (2) | C12—C13—H13 | 119.2 |
O4—C3—S3 | 125.5 (2) | C14—C13—H13 | 119.2 |
N2—C3—S3 | 128.5 (2) | C13—C14—C15 | 117.2 (2) |
C3—O4—C5 | 118.3 (2) | C13—C14—C17 | 122.1 (3) |
O4—C5—C6 | 106.1 (2) | C15—C14—C17 | 120.8 (2) |
O4—C5—H5A | 110.5 | C16—C15—C14 | 121.5 (2) |
C6—C5—H5A | 110.5 | C16—C15—H15 | 119.3 |
O4—C5—H5B | 110.5 | C14—C15—H15 | 119.3 |
C6—C5—H5B | 110.5 | C15—C16—C11 | 121.2 (3) |
H5A—C5—H5B | 108.7 | C15—C16—H16 | 119.4 |
C5—C6—H6A | 109.5 | C11—C16—H16 | 119.4 |
C5—C6—H6B | 109.5 | C14—C17—H17A | 109.5 |
H6A—C6—H6B | 109.5 | C14—C17—H17B | 109.5 |
C5—C6—H6C | 109.5 | H17A—C17—H17B | 109.5 |
H6A—C6—H6C | 109.5 | C14—C17—H17C | 109.5 |
H6B—C6—H6C | 109.5 | H17A—C17—H17C | 109.5 |
C12—C11—C16 | 117.7 (3) | H17B—C17—H17C | 109.5 |
| | | |
O1—C1—N2—C3 | −2.0 (4) | C16—C11—C12—C13 | 1.8 (4) |
C11—C1—N2—C3 | 179.0 (2) | C1—C11—C12—C13 | −176.8 (2) |
C1—N2—C3—O4 | −171.7 (2) | C11—C12—C13—C14 | −1.2 (4) |
C1—N2—C3—S3 | 9.7 (4) | C12—C13—C14—C15 | −0.7 (4) |
N2—C3—O4—C5 | −177.8 (2) | C12—C13—C14—C17 | 179.4 (3) |
S3—C3—O4—C5 | 0.9 (3) | C13—C14—C15—C16 | 1.9 (4) |
C3—O4—C5—C6 | −171.3 (2) | C17—C14—C15—C16 | −178.2 (3) |
O1—C1—C11—C12 | 159.5 (3) | C14—C15—C16—C11 | −1.3 (4) |
N2—C1—C11—C12 | −21.4 (4) | C12—C11—C16—C15 | −0.6 (4) |
O1—C1—C11—C16 | −19.1 (4) | C1—C11—C16—C15 | 178.1 (3) |
N2—C1—C11—C16 | 160.0 (2) | | |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.88 | 2.03 | 2.896 (3) | 167 |
C12—H12···O1i | 0.95 | 2.32 | 3.075 (3) | 136 |
Symmetry code: (i) x, −y+3/2, z−1/2. |
(III)
O,
S-diethyl (4-methylbenzoyl)imidothiocarbonate
top
Crystal data top
C13H17NO2S | Z = 2 |
Mr = 251.35 | F(000) = 268 |
Triclinic, P1 | Dx = 1.327 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2470 (16) Å | Cell parameters from 2460 reflections |
b = 8.8870 (7) Å | θ = 3.2–26.0° |
c = 10.737 (1) Å | µ = 0.25 mm−1 |
α = 100.691 (7)° | T = 120 K |
β = 99.984 (13)° | Block, colourless |
γ = 107.307 (11)° | 0.42 × 0.33 × 0.26 mm |
V = 629.19 (17) Å3 | |
Data collection top
Bruker Nonius KappaCCD area-detector diffractometer | 2460 independent reflections |
Radiation source: Bruker Nonius FR591 rotating anode | 2064 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.000 |
Detector resolution: 9.091 pixels mm-1 | θmax = 26.0°, θmin = 3.2° |
ϕ and ω scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −10→10 |
Tmin = 0.889, Tmax = 0.938 | l = −13→13 |
2460 measured reflections | |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.060 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.167 | H-atom parameters constrained |
S = 1.18 | w = 1/[σ2(Fo2) + (0.0398P)2 + 1.4311P] where P = (Fo2 + 2Fc2)/3 |
2460 reflections | (Δ/σ)max = 0.001 |
158 parameters | Δρmax = 0.71 e Å−3 |
0 restraints | Δρmin = −0.46 e Å−3 |
Crystal data top
C13H17NO2S | γ = 107.307 (11)° |
Mr = 251.35 | V = 629.19 (17) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.2470 (16) Å | Mo Kα radiation |
b = 8.8870 (7) Å | µ = 0.25 mm−1 |
c = 10.737 (1) Å | T = 120 K |
α = 100.691 (7)° | 0.42 × 0.33 × 0.26 mm |
β = 99.984 (13)° | |
Data collection top
Bruker Nonius KappaCCD area-detector diffractometer | 2460 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 2064 reflections with I > 2σ(I) |
Tmin = 0.889, Tmax = 0.938 | Rint = 0.000 |
2460 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.060 | 0 restraints |
wR(F2) = 0.167 | H-atom parameters constrained |
S = 1.18 | Δρmax = 0.71 e Å−3 |
2460 reflections | Δρmin = −0.46 e Å−3 |
158 parameters | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.2399 (5) | 0.3732 (4) | 0.3110 (3) | 0.0209 (8) | |
O1 | 0.2428 (4) | 0.4849 (3) | 0.2609 (2) | 0.0273 (6) | |
N2 | 0.2465 (4) | 0.3780 (4) | 0.4408 (3) | 0.0209 (6) | |
C3 | 0.2579 (5) | 0.5096 (4) | 0.5199 (3) | 0.0192 (7) | |
S31 | 0.26244 (14) | 0.69351 (11) | 0.48636 (9) | 0.0220 (3) | |
C32 | 0.2713 (6) | 0.8125 (4) | 0.6447 (3) | 0.0233 (8) | |
H32A | 0.1534 | 0.7594 | 0.6756 | 0.028* | |
H32B | 0.3927 | 0.8227 | 0.7092 | 0.028* | |
C33 | 0.2735 (7) | 0.9786 (5) | 0.6291 (4) | 0.0295 (9) | |
H33A | 0.3915 | 1.0302 | 0.5993 | 0.044* | |
H33B | 0.2772 | 1.0464 | 0.7133 | 0.044* | |
H33C | 0.1531 | 0.9668 | 0.5646 | 0.044* | |
O41 | 0.2677 (4) | 0.5126 (3) | 0.6444 (2) | 0.0214 (6) | |
C42 | 0.2605 (6) | 0.3634 (4) | 0.6821 (3) | 0.0232 (8) | |
H42A | 0.3754 | 0.3314 | 0.6652 | 0.028* | |
H42B | 0.1361 | 0.2741 | 0.6320 | 0.028* | |
C43 | 0.2679 (8) | 0.3969 (5) | 0.8243 (4) | 0.0361 (10) | |
H43A | 0.3918 | 0.4854 | 0.8725 | 0.054* | |
H43B | 0.2630 | 0.2986 | 0.8545 | 0.054* | |
H43C | 0.1537 | 0.4288 | 0.8395 | 0.054* | |
C11 | 0.2342 (5) | 0.2128 (4) | 0.2367 (3) | 0.0213 (7) | |
C12 | 0.2106 (5) | 0.0801 (4) | 0.2895 (3) | 0.0237 (8) | |
H12 | 0.1963 | 0.0905 | 0.3767 | 0.028* | |
C13 | 0.2074 (6) | −0.0675 (4) | 0.2185 (4) | 0.0250 (8) | |
H13 | 0.1892 | −0.1575 | 0.2566 | 0.030* | |
C14 | 0.2305 (6) | −0.0847 (4) | 0.0919 (4) | 0.0251 (8) | |
C15 | 0.2545 (6) | 0.0478 (5) | 0.0396 (4) | 0.0292 (9) | |
H15 | 0.2718 | 0.0379 | −0.0469 | 0.035* | |
C16 | 0.2542 (6) | 0.1947 (5) | 0.1091 (3) | 0.0249 (8) | |
H16 | 0.2676 | 0.2834 | 0.0697 | 0.030* | |
C17 | 0.2257 (7) | −0.2452 (5) | 0.0150 (4) | 0.0344 (10) | |
H17A | 0.0910 | −0.3060 | −0.0399 | 0.052* | |
H17B | 0.2629 | −0.3079 | 0.0750 | 0.052* | |
H17C | 0.3201 | −0.2268 | −0.0405 | 0.052* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C1 | 0.0179 (17) | 0.0253 (19) | 0.0148 (17) | 0.0019 (15) | 0.0029 (13) | 0.0039 (14) |
O1 | 0.0408 (16) | 0.0279 (14) | 0.0176 (13) | 0.0150 (13) | 0.0100 (11) | 0.0083 (11) |
N2 | 0.0207 (15) | 0.0246 (16) | 0.0170 (14) | 0.0071 (13) | 0.0058 (12) | 0.0044 (12) |
C3 | 0.0188 (17) | 0.0214 (17) | 0.0180 (17) | 0.0075 (14) | 0.0051 (13) | 0.0049 (14) |
S31 | 0.0273 (5) | 0.0226 (5) | 0.0189 (4) | 0.0105 (4) | 0.0069 (4) | 0.0073 (3) |
C32 | 0.0282 (19) | 0.0202 (18) | 0.0230 (18) | 0.0106 (16) | 0.0076 (15) | 0.0035 (14) |
C33 | 0.041 (2) | 0.0215 (19) | 0.027 (2) | 0.0134 (17) | 0.0081 (17) | 0.0053 (16) |
O41 | 0.0317 (14) | 0.0183 (13) | 0.0139 (12) | 0.0071 (11) | 0.0068 (10) | 0.0048 (9) |
C42 | 0.035 (2) | 0.0159 (17) | 0.0205 (18) | 0.0099 (16) | 0.0074 (15) | 0.0056 (14) |
C43 | 0.066 (3) | 0.021 (2) | 0.023 (2) | 0.013 (2) | 0.013 (2) | 0.0086 (16) |
C11 | 0.0181 (17) | 0.0235 (18) | 0.0221 (18) | 0.0058 (15) | 0.0052 (14) | 0.0070 (15) |
C12 | 0.0252 (19) | 0.0255 (19) | 0.0152 (17) | 0.0041 (15) | 0.0041 (14) | 0.0011 (14) |
C13 | 0.028 (2) | 0.0211 (19) | 0.0244 (19) | 0.0062 (16) | 0.0050 (15) | 0.0076 (15) |
C14 | 0.0259 (19) | 0.0243 (19) | 0.0212 (18) | 0.0067 (16) | 0.0054 (15) | −0.0002 (15) |
C15 | 0.036 (2) | 0.034 (2) | 0.0180 (18) | 0.0126 (18) | 0.0088 (16) | 0.0041 (15) |
C16 | 0.031 (2) | 0.028 (2) | 0.0168 (17) | 0.0100 (17) | 0.0072 (15) | 0.0067 (15) |
C17 | 0.043 (2) | 0.029 (2) | 0.029 (2) | 0.0140 (19) | 0.0082 (18) | −0.0004 (17) |
Geometric parameters (Å, º) top
C1—O1 | 1.210 (4) | C43—H43A | 0.9800 |
C1—N2 | 1.379 (4) | C43—H43B | 0.9800 |
C1—C11 | 1.484 (5) | C43—H43C | 0.9800 |
N2—C3 | 1.283 (4) | C11—C12 | 1.380 (5) |
C3—O41 | 1.321 (4) | C11—C16 | 1.386 (5) |
C3—S31 | 1.730 (4) | C12—C13 | 1.381 (5) |
S31—C32 | 1.807 (4) | C12—H12 | 0.9500 |
C32—C33 | 1.512 (5) | C13—C14 | 1.384 (5) |
C32—H32A | 0.9900 | C13—H13 | 0.9500 |
C32—H32B | 0.9900 | C14—C15 | 1.375 (5) |
C33—H33A | 0.9800 | C14—C17 | 1.497 (5) |
C33—H33B | 0.9800 | C15—C16 | 1.380 (5) |
C33—H33C | 0.9800 | C15—H15 | 0.9500 |
O41—C42 | 1.445 (4) | C16—H16 | 0.9500 |
C42—C43 | 1.489 (5) | C17—H17A | 0.9800 |
C42—H42A | 0.9900 | C17—H17B | 0.9800 |
C42—H42B | 0.9900 | C17—H17C | 0.9800 |
| | | |
O1—C1—N2 | 125.7 (3) | H43A—C43—H43B | 109.5 |
O1—C1—C11 | 122.4 (3) | C42—C43—H43C | 109.5 |
N2—C1—C11 | 111.9 (3) | H43A—C43—H43C | 109.5 |
C3—N2—C1 | 120.0 (3) | H43B—C43—H43C | 109.5 |
N2—C3—O41 | 119.1 (3) | C12—C11—C16 | 118.3 (3) |
N2—C3—S31 | 128.3 (3) | C12—C11—C1 | 122.6 (3) |
O41—C3—S31 | 112.6 (2) | C16—C11—C1 | 119.1 (3) |
C3—S31—C32 | 101.54 (16) | C11—C12—C13 | 121.4 (3) |
C33—C32—S31 | 107.2 (2) | C11—C12—H12 | 119.3 |
C33—C32—H32A | 110.3 | C13—C12—H12 | 119.3 |
S31—C32—H32A | 110.3 | C12—C13—C14 | 120.2 (4) |
C33—C32—H32B | 110.3 | C12—C13—H13 | 119.9 |
S31—C32—H32B | 110.3 | C14—C13—H13 | 119.9 |
H32A—C32—H32B | 108.5 | C15—C14—C13 | 118.2 (3) |
C32—C33—H33A | 109.5 | C15—C14—C17 | 121.7 (3) |
C32—C33—H33B | 109.5 | C13—C14—C17 | 120.0 (4) |
H33A—C33—H33B | 109.5 | C14—C15—C16 | 121.8 (3) |
C32—C33—H33C | 109.5 | C14—C15—H15 | 119.1 |
H33A—C33—H33C | 109.5 | C16—C15—H15 | 119.1 |
H33B—C33—H33C | 109.5 | C15—C16—C11 | 119.9 (4) |
C3—O41—C42 | 116.9 (3) | C15—C16—H16 | 120.0 |
O41—C42—C43 | 106.4 (3) | C11—C16—H16 | 120.0 |
O41—C42—H42A | 110.4 | C14—C17—H17A | 109.5 |
C43—C42—H42A | 110.4 | C14—C17—H17B | 109.5 |
O41—C42—H42B | 110.4 | H17A—C17—H17B | 109.5 |
C43—C42—H42B | 110.4 | C14—C17—H17C | 109.5 |
H42A—C42—H42B | 108.6 | H17A—C17—H17C | 109.5 |
C42—C43—H43A | 109.5 | H17B—C17—H17C | 109.5 |
C42—C43—H43B | 109.5 | | |
| | | |
O1—C1—N2—C3 | −0.4 (6) | O1—C1—C11—C16 | 7.0 (5) |
C11—C1—N2—C3 | 177.9 (3) | N2—C1—C11—C16 | −171.4 (3) |
C1—N2—C3—O41 | −178.8 (3) | C16—C11—C12—C13 | 0.2 (5) |
C1—N2—C3—S31 | 1.3 (5) | C1—C11—C12—C13 | −179.5 (3) |
N2—C3—S31—C32 | 178.1 (3) | C11—C12—C13—C14 | 0.8 (6) |
O41—C3—S31—C32 | −1.8 (3) | C12—C13—C14—C15 | −0.6 (6) |
C3—S31—C32—C33 | −179.4 (3) | C12—C13—C14—C17 | −179.6 (4) |
N2—C3—O41—C42 | −1.3 (5) | C13—C14—C15—C16 | −0.6 (6) |
S31—C3—O41—C42 | 178.7 (3) | C17—C14—C15—C16 | 178.4 (4) |
C3—O41—C42—C43 | −178.4 (3) | C14—C15—C16—C11 | 1.6 (6) |
O1—C1—C11—C12 | −173.3 (4) | C12—C11—C16—C15 | −1.4 (6) |
N2—C1—C11—C12 | 8.3 (5) | C1—C11—C16—C15 | 178.3 (3) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
C32—H32B···Cg1i | 0.99 | 2.62 | 3.554 (5) | 158 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
(IV)
O,
S-diethyl (4-chlorobenzoyl)imidothiocarbonate
top
Crystal data top
C12H14ClNO2S | Z = 2 |
Mr = 271.75 | F(000) = 284 |
Triclinic, P1 | Dx = 1.424 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.8028 (14) Å | Cell parameters from 2363 reflections |
b = 9.480 (2) Å | θ = 3.1–25.5° |
c = 9.860 (2) Å | µ = 0.46 mm−1 |
α = 69.545 (13)° | T = 120 K |
β = 75.683 (14)° | Block, colourless |
γ = 69.548 (15)° | 0.52 × 0.45 × 0.29 mm |
V = 633.7 (2) Å3 | |
Data collection top
Bruker Nonius KappaCCD area-detector diffractometer | 2363 independent reflections |
Radiation source: Bruker Nonius FR591 rotating anode | 1707 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
Detector resolution: 9.091 pixels mm-1 | θmax = 25.5°, θmin = 3.1° |
ϕ and ω scans | h = −9→9 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −11→11 |
Tmin = 0.778, Tmax = 0.879 | l = −11→11 |
14986 measured reflections | |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0506P)2 + 0.5461P] where P = (Fo2 + 2Fc2)/3 |
2363 reflections | (Δ/σ)max = 0.001 |
156 parameters | Δρmax = 0.49 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
Crystal data top
C12H14ClNO2S | γ = 69.548 (15)° |
Mr = 271.75 | V = 633.7 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.8028 (14) Å | Mo Kα radiation |
b = 9.480 (2) Å | µ = 0.46 mm−1 |
c = 9.860 (2) Å | T = 120 K |
α = 69.545 (13)° | 0.52 × 0.45 × 0.29 mm |
β = 75.683 (14)° | |
Data collection top
Bruker Nonius KappaCCD area-detector diffractometer | 2363 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 1707 reflections with I > 2σ(I) |
Tmin = 0.778, Tmax = 0.879 | Rint = 0.051 |
14986 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.12 | Δρmax = 0.49 e Å−3 |
2363 reflections | Δρmin = −0.34 e Å−3 |
156 parameters | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.6593 (4) | 0.7556 (3) | 0.4431 (3) | 0.0240 (6) | |
O1 | 0.8135 (3) | 0.7656 (2) | 0.3846 (2) | 0.0325 (5) | |
N2 | 0.5661 (3) | 0.7985 (3) | 0.5679 (2) | 0.0226 (5) | |
C3 | 0.6490 (4) | 0.8421 (3) | 0.6362 (3) | 0.0223 (6) | |
S31 | 0.87215 (10) | 0.85769 (9) | 0.59107 (8) | 0.0268 (2) | |
C32 | 0.9012 (4) | 0.8995 (3) | 0.7480 (3) | 0.0273 (7) | |
H32A | 1.0037 | 0.9474 | 0.7203 | 0.033* | |
H32B | 0.7871 | 0.9771 | 0.7772 | 0.033* | |
C33 | 0.9421 (4) | 0.7544 (4) | 0.8772 (3) | 0.0328 (7) | |
H33A | 0.8340 | 0.7146 | 0.9138 | 0.049* | |
H33B | 0.9705 | 0.7812 | 0.9549 | 0.049* | |
H33C | 1.0482 | 0.6733 | 0.8467 | 0.049* | |
O41 | 0.5607 (2) | 0.8827 (2) | 0.7565 (2) | 0.0251 (5) | |
C42 | 0.3756 (4) | 0.8675 (4) | 0.8099 (3) | 0.0292 (7) | |
H42A | 0.3786 | 0.7553 | 0.8456 | 0.035* | |
H42B | 0.2969 | 0.9224 | 0.7312 | 0.035* | |
C43 | 0.3037 (4) | 0.9407 (3) | 0.9311 (3) | 0.0304 (7) | |
H43A | 0.3876 | 0.8894 | 1.0049 | 0.046* | |
H43B | 0.1809 | 0.9281 | 0.9757 | 0.046* | |
H43C | 0.2950 | 1.0529 | 0.8928 | 0.046* | |
C11 | 0.5539 (4) | 0.6970 (3) | 0.3790 (3) | 0.0211 (6) | |
C12 | 0.3699 (4) | 0.7069 (3) | 0.4287 (3) | 0.0236 (6) | |
H12 | 0.3088 | 0.7486 | 0.5084 | 0.028* | |
C13 | 0.2736 (4) | 0.6566 (3) | 0.3632 (3) | 0.0242 (6) | |
H13 | 0.1466 | 0.6640 | 0.3968 | 0.029* | |
C14 | 0.3655 (4) | 0.5958 (3) | 0.2486 (3) | 0.0250 (6) | |
Cl14 | 0.24405 (10) | 0.53734 (8) | 0.16335 (8) | 0.0315 (2) | |
C15 | 0.5495 (4) | 0.5827 (3) | 0.1988 (3) | 0.0263 (6) | |
H15 | 0.6109 | 0.5391 | 0.1203 | 0.032* | |
C16 | 0.6435 (4) | 0.6338 (3) | 0.2646 (3) | 0.0271 (6) | |
H16 | 0.7707 | 0.6255 | 0.2311 | 0.033* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C1 | 0.0224 (15) | 0.0244 (15) | 0.0243 (15) | −0.0039 (12) | −0.0070 (12) | −0.0063 (12) |
O1 | 0.0244 (11) | 0.0500 (13) | 0.0283 (11) | −0.0146 (10) | 0.0005 (9) | −0.0167 (10) |
N2 | 0.0184 (12) | 0.0261 (13) | 0.0247 (12) | −0.0057 (10) | −0.0039 (10) | −0.0094 (10) |
C3 | 0.0234 (15) | 0.0206 (14) | 0.0207 (14) | −0.0043 (11) | −0.0050 (11) | −0.0041 (11) |
S31 | 0.0216 (4) | 0.0374 (4) | 0.0246 (4) | −0.0120 (3) | −0.0027 (3) | −0.0100 (3) |
C32 | 0.0236 (15) | 0.0363 (17) | 0.0279 (16) | −0.0130 (13) | −0.0067 (12) | −0.0096 (13) |
C33 | 0.0324 (17) | 0.0354 (17) | 0.0326 (17) | −0.0061 (14) | −0.0099 (14) | −0.0124 (14) |
O41 | 0.0182 (10) | 0.0317 (11) | 0.0281 (11) | −0.0085 (8) | −0.0015 (8) | −0.0118 (9) |
C42 | 0.0195 (15) | 0.0390 (18) | 0.0338 (17) | −0.0119 (13) | 0.0012 (12) | −0.0161 (14) |
C43 | 0.0308 (17) | 0.0314 (17) | 0.0304 (16) | −0.0111 (14) | −0.0012 (13) | −0.0106 (13) |
C11 | 0.0220 (14) | 0.0191 (13) | 0.0192 (13) | −0.0038 (11) | −0.0055 (11) | −0.0022 (11) |
C12 | 0.0218 (14) | 0.0223 (14) | 0.0261 (15) | −0.0045 (12) | −0.0051 (11) | −0.0072 (12) |
C13 | 0.0210 (15) | 0.0256 (15) | 0.0251 (15) | −0.0052 (12) | −0.0039 (12) | −0.0075 (12) |
C14 | 0.0319 (16) | 0.0220 (14) | 0.0220 (15) | −0.0074 (12) | −0.0092 (12) | −0.0045 (12) |
Cl14 | 0.0374 (5) | 0.0333 (4) | 0.0305 (4) | −0.0114 (3) | −0.0119 (3) | −0.0112 (3) |
C15 | 0.0278 (16) | 0.0285 (16) | 0.0217 (15) | −0.0048 (13) | −0.0024 (12) | −0.0103 (12) |
C16 | 0.0247 (15) | 0.0279 (15) | 0.0260 (15) | −0.0059 (12) | −0.0021 (12) | −0.0076 (12) |
Geometric parameters (Å, º) top
C1—O1 | 1.220 (3) | C42—H42B | 0.9900 |
C1—N2 | 1.382 (3) | C43—H43A | 0.9800 |
C1—C11 | 1.485 (4) | C43—H43B | 0.9800 |
N2—C3 | 1.281 (3) | C43—H43C | 0.9800 |
C3—O41 | 1.326 (3) | C11—C12 | 1.379 (4) |
C3—S31 | 1.733 (3) | C11—C16 | 1.382 (4) |
S31—C32 | 1.808 (3) | C12—C13 | 1.384 (4) |
C32—C33 | 1.512 (4) | C12—H12 | 0.9500 |
C32—H32A | 0.9900 | C13—C14 | 1.375 (4) |
C32—H32B | 0.9900 | C13—H13 | 0.9500 |
C33—H33A | 0.9800 | C14—C15 | 1.373 (4) |
C33—H33B | 0.9800 | C14—Cl14 | 1.731 (3) |
C33—H33C | 0.9800 | C15—C16 | 1.377 (4) |
O41—C42 | 1.449 (3) | C15—H15 | 0.9500 |
C42—C43 | 1.484 (4) | C16—H16 | 0.9500 |
C42—H42A | 0.9900 | | |
| | | |
O1—C1—N2 | 125.1 (3) | H42A—C42—H42B | 108.7 |
O1—C1—C11 | 120.5 (2) | C42—C43—H43A | 109.5 |
N2—C1—C11 | 114.4 (2) | C42—C43—H43B | 109.5 |
C3—N2—C1 | 119.2 (2) | H43A—C43—H43B | 109.5 |
N2—C3—O41 | 119.5 (2) | C42—C43—H43C | 109.5 |
N2—C3—S31 | 127.9 (2) | H43A—C43—H43C | 109.5 |
O41—C3—S31 | 112.63 (19) | H43B—C43—H43C | 109.5 |
C3—S31—C32 | 102.47 (13) | C12—C11—C16 | 119.7 (3) |
C33—C32—S31 | 112.8 (2) | C12—C11—C1 | 121.8 (2) |
C33—C32—H32A | 109.0 | C16—C11—C1 | 118.5 (3) |
S31—C32—H32A | 109.0 | C11—C12—C13 | 120.5 (3) |
C33—C32—H32B | 109.0 | C11—C12—H12 | 119.8 |
S31—C32—H32B | 109.0 | C13—C12—H12 | 119.8 |
H32A—C32—H32B | 107.8 | C14—C13—C12 | 118.6 (3) |
C32—C33—H33A | 109.5 | C14—C13—H13 | 120.7 |
C32—C33—H33B | 109.5 | C12—C13—H13 | 120.7 |
H33A—C33—H33B | 109.5 | C15—C14—C13 | 121.8 (3) |
C32—C33—H33C | 109.5 | C15—C14—Cl14 | 119.4 (2) |
H33A—C33—H33C | 109.5 | C13—C14—Cl14 | 118.8 (2) |
H33B—C33—H33C | 109.5 | C14—C15—C16 | 119.0 (3) |
C3—O41—C42 | 118.0 (2) | C14—C15—H15 | 120.5 |
O41—C42—C43 | 105.8 (2) | C16—C15—H15 | 120.5 |
O41—C42—H42A | 110.6 | C15—C16—C11 | 120.4 (3) |
C43—C42—H42A | 110.6 | C15—C16—H16 | 119.8 |
O41—C42—H42B | 110.6 | C11—C16—H16 | 119.8 |
C43—C42—H42B | 110.6 | | |
| | | |
O1—C1—N2—C3 | −5.3 (4) | O1—C1—C11—C16 | 9.0 (4) |
C11—C1—N2—C3 | 176.1 (2) | N2—C1—C11—C16 | −172.4 (2) |
C1—N2—C3—O41 | −179.6 (2) | C16—C11—C12—C13 | −1.1 (4) |
C1—N2—C3—S31 | 0.7 (4) | C1—C11—C12—C13 | 177.6 (2) |
N2—C3—S31—C32 | −172.7 (3) | C11—C12—C13—C14 | 0.4 (4) |
O41—C3—S31—C32 | 7.7 (2) | C12—C13—C14—C15 | 0.5 (4) |
C3—S31—C32—C33 | 78.7 (2) | C12—C13—C14—Cl14 | −178.4 (2) |
N2—C3—O41—C42 | 3.2 (4) | C13—C14—C15—C16 | −0.8 (4) |
S31—C3—O41—C42 | −177.08 (19) | Cl14—C14—C15—C16 | 178.1 (2) |
C3—O41—C42—C43 | −172.5 (2) | C14—C15—C16—C11 | 0.1 (4) |
O1—C1—C11—C12 | −169.8 (3) | C12—C11—C16—C15 | 0.9 (4) |
N2—C1—C11—C12 | 8.9 (4) | C1—C11—C16—C15 | −177.9 (3) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···O1i | 0.95 | 2.45 | 3.345 (4) | 156 |
Symmetry code: (i) x−1, y, z. |
Experimental details
| (I) | (II) | (III) | (IV) |
Crystal data |
Chemical formula | C10H11NO2S | C11H13NO2S | C13H17NO2S | C12H14ClNO2S |
Mr | 209.27 | 223.29 | 251.35 | 271.75 |
Crystal system, space group | Orthorhombic, Pna21 | Monoclinic, P21/c | Triclinic, P1 | Triclinic, P1 |
Temperature (K) | 120 | 120 | 120 | 120 |
a, b, c (Å) | 9.9418 (8), 9.3619 (5), 10.9337 (13) | 12.2845 (14), 9.1431 (17), 9.7897 (4) | 7.2470 (16), 8.8870 (7), 10.737 (1) | 7.8028 (14), 9.480 (2), 9.860 (2) |
α, β, γ (°) | 90, 90, 90 | 90, 90.182 (7), 90 | 100.691 (7), 99.984 (13), 107.307 (11) | 69.545 (13), 75.683 (14), 69.548 (15) |
V (Å3) | 1017.65 (16) | 1099.6 (2) | 629.19 (17) | 633.7 (2) |
Z | 4 | 4 | 2 | 2 |
Radiation type | Mo Kα | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 0.29 | 0.27 | 0.25 | 0.46 |
Crystal size (mm) | 0.50 × 0.42 × 0.41 | 0.34 × 0.30 × 0.24 | 0.42 × 0.33 × 0.26 | 0.52 × 0.45 × 0.29 |
|
Data collection |
Diffractometer | Bruker Nonius KappaCCD area-detector diffractometer | Bruker Nonius KappaCCD area-detector diffractometer | Bruker Nonius KappaCCD area-detector diffractometer | Bruker Nonius KappaCCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) | Multi-scan (SADABS; Sheldrick, 2003) | Multi-scan (SADABS; Sheldrick, 2003) | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.868, 0.890 | 0.918, 0.937 | 0.889, 0.938 | 0.778, 0.879 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13852, 1889, 1284 | 11469, 2026, 1334 | 2460, 2460, 2064 | 14986, 2363, 1707 |
Rint | 0.074 | 0.051 | 0.000 | 0.051 |
(sin θ/λ)max (Å−1) | 0.606 | 0.606 | 0.617 | 0.606 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.130, 1.14 | 0.049, 0.134, 1.07 | 0.060, 0.167, 1.18 | 0.045, 0.119, 1.12 |
No. of reflections | 1889 | 2026 | 2460 | 2363 |
No. of parameters | 128 | 138 | 158 | 156 |
No. of restraints | 1 | 0 | 0 | 0 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.45, −0.29 | 0.31, −0.29 | 0.71, −0.46 | 0.49, −0.34 |
Absolute structure | Flack (1983), with 890 Bijvoet pairs | ? | ? | ? |
Absolute structure parameter | 0.08 (17) | ? | ? | ? |
Selected geometric parameters (Å, °) for (I)–(IV) topParameter | (I) | (II) | (III) | (IV) |
(a) Bond distances | | | | |
C1-O1 | 1.206 (5) | 1.208 (3) | 1.210 (4) | 1.220 (3) |
C1-N2 | 1.385 (5) | 1.370 (3) | 1.379 (4) | 1.382 (3) |
N2-C3 | 1.384 (6) | 1.377 (3) | 1.283 (4) | 1.281 (3) |
C3-S3 | 1.615 (4) | 1.615 (3) | | |
C3-O4 | 1.325 (5) | 1.324 (3) | | |
C3-S31 | | | 1.730 (4) | 1.733 (3) |
C3-O41 | | | 1.321 (4) | 1.326 (3) |
(b) Inter-bond angles | | | | |
O1-C1-N2 | 122.4 (4) | 122.3 (3) | 125.7 (3) | 125.1 (3) |
C1-N2-C3 | 127.3 (4) | 127.1 (2) | 120.0 (3) | 119.2 (2) |
N2-C3-S3 | 127.4 (3) | 128.5 (2) | | |
N2-C3-S31 | | | 128.3 (3) | 127.9 (2) |
(c) Torsion angles | | | | |
C12-C11-C1-N2 | 19.3 (6) | -21.4 (4) | 8.3 (5) | 8.9 (4) |
C11-C1-N2-C3 | -162.4 (4) | 179.0 (2) | 177.9 (3) | 176.1 (2) |
C1-N2-C3-O4 | -179.9 (4) | -171.7 (2) | | |
N2-C3-O4-C5 | -174.4 (4) | -177.8 (2) | | |
C3-O4-C5-C6 | -171.0 (4) | -171.3 (2) | | |
C1-N2-C3-S31 | | | 1.3 (5) | 0.7 (4) |
C1-N2-C3-O41 | | | -178.8 (3) | -179.6 (2) |
N2-C3-C31-C32 | | | 178.1 (3) | -172.7 (3) |
C3-S31-C32-C33 | | | -179.4 (3) | 78.7 (2) |
N2-C3-O41-C42 | | | -1.3 (5) | 3.2 (4) |
C3-O41-C42-C43 | | | -178.4 (3) | -172.5 (2) |
Hydrogen bonds and short intermolecular contacts (Å, °) for (I)–(IV) topCompound | D—H···A | D—H | H···A | D···A | D—H···A |
(I) | N2-H2···O1i | 0.88 | 2.05 | 2.921 (4) | 170 |
| C12-H12···S3i | 0.95 | 2.83 | 3.606 (4) | 139 |
| C12-H12···O1i | 0.95 | 2.51 | 3.192 (5) | 129 |
| C16-H16···S3ii | 0.95 | 2.86 | 3.576 (5) | 134 |
(II) | N2-H2···O1iii | 0.88 | 2.03 | 2.896 (3) | 167 |
| C12-H12···O1iii | 0.95 | 2.32 | 3.075 (3) | 136 |
(III) | C32-H32B···Cg1iv | 0.99 | 2.62 | 3.554 (5) | 158 |
(IV) | C13-H13···O1v | 0.95 | 2.45 | 3.345 (4) | 156 |
Cg1 represents the centroid of the ring C11–C16.
Symmetry codes:
(i) -1/2 + x, 3/2 - y, z;
(ii) 3/2 - x, 1/2 + y, -1/2 + z;
(iii) x, 3/2 - y, -1/2 + z;
(iv) 1 - x, 1 - y, 1 - z;
(v) -1 + x, y, z. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.
O,S-Dialkyl aroyliminothiocarbonates are structural analogues of S,S-dialkyl aroyliminothiocarbonates, which have been widely used as synthetic starting materials (Augustín et al., 1980; Sato et al., 1981; Fukada et al., 1985, 1986, 1990; Insuasty et al., 2006, 2008). We report here the structures of two O-ethyl aroylthiocarbamates, (I) and (II) (Fig. 1a and b), and two O,S-diethyl aroylimidothiocarbonates, (III) and (IV) (Fig. 1c and d), and we compare these structures with those of the closely related S-ethyl aroyldithiocarbamates, (V) and (VI) (see scheme) (Low et al., 2004, 2005). The structure of (I) has been briefly reported previously [Cambridge Strutural Database (Allen, 2002) refcode GIFSUK; Arslan et al., 2007)], but the authors' primary concern was the comparison of the experimental geometry and vibrational frequencies with those calculated from first principles at various levels of theory. The hydrogen bonding was described extremely briefly, in terms of only an N—H···O interaction, and no structure factors were deposited. Accordingly, we have thought it worthwhile to report here a more complete description of the hydrogen bonding in (I).
Compounds (I) and (II) were prepared by the addition of ethanol to the corresponding intermediate aroylisothiocyanate, (B) (see scheme), itself prepared by reaction of potassium thiocyanate with the aroyl chloride, (A). Deprotonation of the O-ethyl aroylthiocarbamates yields the ionic intermediate, (C), reaction of which with bromoethane gives (III) and (IV). The corresponding reactions of the appropriate aroylisothiocyanate, (B), with ethanethiol rather than with ethanol produces the dithiocarbamate esters (V) and (VI) (Low et al., 2004, 2005). It is interesting to note that in the conversion of (A) to (B), the thiocyanate anion reacts with the aroyl chloride exclusively via the harder N-terminus, while in the formation of (III) and (IV) from (C), this anionic component of (C) reacts with bromoethane exclusively at the softer S centre.
Despite the close pairwise similarities between the molecular constitutions within the pairs of compounds (I) and (II), (III) and (IV), and (V) and (VI), and the overall similarities within the group (I), (II), (V) and (VI), no two of these compounds are isomorphous. Thus, for example, while compounds (I) and (II) crystallize in the space groups Pna21 and P21/c, respectively, both with Z' = 1, their close analogues (V) and (VI) crystallize in, respectively, C2/c with Z' = 2, and P21/c with Z' = 1. The unit-cell dimensions of (II) and (VI), which could well have been isomorphous and isostructural are, in fact, significantly different, particularly for the cell repeat distance a and the cell angle β. In addition, (III) and (IV), which might plausibly have been expected to be isomorphous, crystallize with triclinic cells in which the real and reduced cell angles are very different: the cell angles in (III) are all significantly greater than 90°, while those in (IV) are all well below 90°. Hence the unit cell for (III) can be assigned as belonging to type II, designation 4R (Buerger, 1956), while that of (IV) can be assigned as type I, designation 1R.
In the thiocarbamate esters, (I) and (II), the molecular skeletons adopt chain-extended conformations which, apart from the aryl substituents, are close to planarity, as shown by the leading torsion angles (Table 1). The most striking feature of the conformations of the thiocarbonates, (III) and (IV), is the orientation of the S-ethyl groups (Figs. 1c and d). Whereas in (III) this ethyl group is almost coplanar with the rest of the skeleton, in (IV) this unit is almost orthogonal to the rest of the molecule (Table 1). In addition, whereas in the thiocarbamate esters, (I) and (II), the formal double bonds C═O and C═S are mutually cisoid, in the dithiocarbamate esters, (V) and (VI) (Low et al., 2004, 2005), these units adopt a transoid arrangement (cf. scheme).
In each of compounds (I)–(IV), the C—O bond distances involving atom O3, namely C3—O4 in (I) and (II), and C3—O41 in (III) and (IV), are all the same within experimental uncertainty. In addition, the N2—C3 bonds in (I) and (II) are long for their type (Allen et al., 1997a). These observations, taken together, indicate that in (I) and (II) there is very little electronic delocalization from atoms N2 and O4 onto atom S3. By contrast, in (V) and (VI), the C═S bond distances are 1.6586 (18) and 1.6552 (18) Å in (V), where Z' = 2 (Low et al., 2004), and 1.631 (3) Å in (VI) (Low et al., 2005), typical of such distances in compounds containing >N—C(═S)—S– fragments (Allen et al., 1997a) and consistent with the occurrence of conjugative delocalization. In (III) and (IV) the C—N distances provide a clear distinction between the formal single bonds C1—N2 and the formal double bonds N2═C3. Despite the apparent lack of any significant polarization of the electronic structures in (I) and (II), the bond angles at atoms C1, N2 and C3 are certainly consistent with a strongly repulsive non-bonded interaction between atom O1 and S3. A similar pattern of bond angles is apparent in (III) and (IV).
The supramolecular aggregation in (I) and (II) is dominated by a combination of N—H···O and C—H···O hydrogen bonds, utilizing the same acceptor atom O1 in each compound (Table 2). These interactions are augmented, in the case of (I) only, by two C—H···S interactions. In (I), molecules related by the a-glide plane at y = 3/4 are linked by a combination of a two-centre N—H···O hydrogen bond and a weaker three-centre C—H···(O,S) hydrogen bond to form a ribbon containing alternating R21(6) (Bernstein et al., 1995) and R12(7) rings and running parallel to the [100] direction (Fig. 2). A second C—H···S interaction links molecules related by the n-glide plane at x = 3/4 into a simple C(7) chain running parallel to the [011] direction (Fig. 3). The combination of the ribbon along [100] and the chain along [011] generates a hydrogen-bonded sheet parallel to (011), but there are no direction-specific interactions between adjacent sheets. In particular, both C—H···π(arene) hydrogen bonds and aromatic π–π stacking interactions are absent from the crystal structure of (I).
In (II), a combination of N—H···O and C—H···O hydrogen bonds, similar to the corresponding combination in (I), links molecules related by the c-glide plane at y = 3/4 into a chain of R12(7) rings running parallel to the [001] direction (Fig. 4). The closest intermolecular contacts between atom S3 and the H atoms in (II) corresponding to the C—H···S interactions in (I) all have H···S distances well in excess of 3 Å, and hence they cannot be regarded as structurally significant. Although significant C—H···S interactions are absent from the crystal structure of (II), the hydrogen-bonded chains are linked by an aromatic π–π stacking interaction. The aryl rings in the molecules at (x, y, z) and (1 - x, 1 - y, 1 - z) are parallel by symmetry, with an interplanar spacing of 3.479 (2) Å. The corresponding ring-centroid separation is 3.746 (2) Å and the ring-centroid offset (slippage) is 1.389 (2) Å. The effect of this stacking interaction is to link the hydrogen-bonded chains into a sheet parallel to (100) (Fig. 5).
Since no N—H bonds are present in (III) and (IV), the modes of supramolecular aggregation in these compounds necessarily differ substantially from those observed in (I) and (II). In (III), a single C—H···π(arene) hydrogen bond links pairs of molecules into centrosymmetric dimers (Fig. 6). However, π–π stacking interactions are absent and there are no direction-specific interactions between the dimeric units. By contrast, the crystal structure of (IV) contains no C—H···π(arene) hydrogen bonds, but instead chains built from C—H···O hydrogen bonds are linked in pairs to form a ladder-type structure, in which molecules related by translation form C(6) chains running parallel to the [100] direction. The aryl rings of the molecules at (x, y, z) and (1 - x, 1 - y, 1 - z) are strictly parallel, with an interplanar spacing of 3.428 (2) Å. The ring-centroid separation and offset are 3.787 (2) and 1.609 (2) Å, respectively, so that pairs of antiparallel C(6) chains are weakly linked (Fig. 7).
It is of interest briefly to compare the supramolecular aggregation in (V) and (VI) (Low et al., 2004, 2005) with that in (I)–(IV). Compound (V) crystallizes with Z' = 2 in space group C2/c (Low et al., 2004) and each type of molecule independently forms a cyclic R22(8) dimer. These dimers are built using two symmetry-related N—H···S hydrogen bonds, with the thione-type S atoms as the acceptors in both types of dimer. One type of dimer contains molecules related by inversion and the other contains molecules related by a twofold rotation axis, and the two independent types of dimer are linked into chains by a single C—H···π(arene) hydrogen bond. It is striking that there is no participation by the amidic O atom in the hydrogen bonding in (V). In compound (VI), on the other hand, where Z' = 1 (Low et al., 2005), a combination of N—H···O and C—H···O hydrogen bonds generates a chain of R12(7) rings along [001], and chains of this type are linked into a sheet by a single aromatic π–π stacking interaction. Thus, while (II) and (VI) are not isomorphous, and while their molecules adopt different conformations, nonetheless their crystal structures exhibit very similar patterns of intermolecular interaction.
The only hydrogen bonds in this series of compounds, (I)–(VI), which involve S atoms as the acceptors utilize the thione-type S atoms in (I) and (V), but the two-coordinate S atoms in compounds (III)–(VI) do not participate in any hydrogen-bond formation. This observation is certainly consistent with the deductions drawn from database analyses (Allen et al., 1997a,b) that, while thione-type S atoms can in some circumstances act as effective hydrogen-bond acceptors, two-coordinate S atoms are, in general, very poor acceptors.