Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C4H11NO6P2, reveals a two-dimensional network of P—O—H...O=P and N—H...O=P hydrogen-bond interactions, forming molecular slabs parallel with the (010) plane. One O—H...O interaction is distinct within these sets: whilst forming the shortest intermolecular hydrogen bond, it possesses a short P—O(H) bond of 1.5291 (10) Å. Weak C—H...O contacts link individual stacks to produce a three-dimensional array. The compound is zwitterionic: one H atom from a P—O—H group has transferred to the pyrrolidine ring N atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100003929/fg1586sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100003929/fg1586Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100003929/fg1586IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100003929/fg1586IIIsup4.hkl
Contains datablock III

CCDC references: 146072; 146073; 146074

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

(I) pyrrolidin-2,2-diylbis(phosphonic acid) top
Crystal data top
C4H11NO6P2Z = 2
Mr = 231.08F(000) = 240
Triclinic, P1Dx = 1.845 Mg m3
Dm = 1.85 (2) Mg m3
Dm measured by flotation
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7397 (2) ÅCell parameters from all reflections
b = 7.7777 (3) Åθ = 2.4–28.0°
c = 8.5184 (3) ŵ = 0.52 mm1
α = 78.5397 (14)°T = 100 K
β = 85.6376 (19)°Plate, colourless
γ = 71.8947 (18)°0.44 × 0.19 × 0.12 mm
V = 415.91 (2) Å3
Data collection top
Nonius Kappa CCD area detector
diffractometer
1897 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.033
Graphite monochromatorθmax = 28.0°, θmin = 2.4°
φ scans with κ at 0° and ω scansh = 88
9553 measured reflectionsk = 1010
2003 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0216P)2 + 0.3871P]
where P = (Fo2 + 2Fc2)/3
2003 reflections(Δ/σ)max = 0.001
162 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.40 e Å3
Special details top

Experimental. The same crystal was measured at three temperatures, 293 K, 150 K and 100 K. For each data set, intensities were measured with a Nonius KappaCCD diffractometer. The initial orientation matrix and cell parameters were obtained by indexing, integrating and refinement of spots on each image using DENZO (Otwinowski & Minor, 1997), and were used to calculate an optimal strategy for data collection. The final unit-cell parameters are obtained by reindexing the collected images using their kappa-geometry orientation matrices as a basis without interframe scaling refinement. Cell parameters were determined by SCALEPACK (Otwinowski & Minor, 1997) using the positions of measured reflections (with θ values varying from 2 to 28°). At 100 K the dataset was 99.7% complete out to 28° in two-theta; at 150 K the completeness was 99.8% out to 27.5° in two-theta, and at 293 K, the data were 99.7% complete out to 27.5° in two-theta.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.19669 (5)0.16132 (4)0.51457 (4)0.00660 (10)
P20.26610 (5)0.05738 (4)0.85366 (4)0.00657 (10)
O30.30580 (15)0.29037 (13)0.41067 (12)0.0097 (2)
H30.397 (5)0.247 (5)0.329 (4)0.080 (11)*
O40.26060 (15)0.02999 (13)1.02530 (11)0.0093 (2)
O50.26564 (15)0.03287 (13)0.48525 (11)0.00861 (19)
O60.04345 (15)0.25196 (14)0.49810 (12)0.0098 (2)
H60.107 (4)0.179 (4)0.496 (3)0.048 (8)*
O70.06574 (15)0.09909 (14)0.81328 (12)0.0095 (2)
H70.037 (4)0.054 (4)0.870 (3)0.050 (8)*
O80.45994 (15)0.20120 (13)0.81226 (11)0.0100 (2)
N90.45901 (18)0.20112 (16)0.73174 (14)0.0085 (2)
H9A0.532 (3)0.131 (3)0.820 (2)0.014 (4)*
H9B0.542 (3)0.168 (3)0.644 (3)0.021 (5)*
C100.2503 (2)0.16582 (18)0.72339 (15)0.0073 (2)
C110.0891 (2)0.33095 (18)0.78713 (16)0.0095 (3)
H11A0.005 (3)0.419 (2)0.700 (2)0.010 (4)*
H11B0.006 (3)0.288 (3)0.867 (2)0.014 (4)*
C120.2207 (2)0.4254 (2)0.85727 (18)0.0134 (3)
H12A0.263 (3)0.365 (3)0.966 (2)0.017 (5)*
H12B0.151 (3)0.551 (3)0.853 (2)0.017 (5)*
C130.4123 (2)0.39927 (19)0.74764 (18)0.0133 (3)
H13A0.383 (3)0.475 (3)0.641 (2)0.016 (5)*
H13B0.531 (3)0.415 (3)0.789 (2)0.019 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.00618 (16)0.00669 (17)0.00613 (16)0.00083 (12)0.00034 (12)0.00105 (12)
P20.00683 (17)0.00682 (16)0.00554 (16)0.00156 (13)0.00043 (11)0.00094 (11)
O30.0109 (5)0.0094 (4)0.0080 (4)0.0027 (4)0.0022 (4)0.0009 (4)
O40.0091 (4)0.0121 (5)0.0059 (4)0.0022 (4)0.0002 (3)0.0017 (4)
O50.0079 (4)0.0084 (4)0.0092 (4)0.0012 (3)0.0000 (3)0.0026 (3)
O60.0072 (5)0.0091 (5)0.0125 (5)0.0009 (4)0.0020 (4)0.0027 (4)
O70.0088 (5)0.0117 (5)0.0093 (5)0.0039 (4)0.0013 (4)0.0038 (4)
O80.0091 (5)0.0093 (4)0.0089 (4)0.0002 (4)0.0014 (4)0.0007 (4)
N90.0077 (5)0.0094 (5)0.0084 (5)0.0028 (4)0.0004 (4)0.0015 (4)
C100.0067 (6)0.0078 (6)0.0073 (6)0.0024 (5)0.0001 (4)0.0011 (5)
C110.0097 (6)0.0079 (6)0.0097 (6)0.0003 (5)0.0005 (5)0.0027 (5)
C120.0157 (7)0.0098 (6)0.0144 (7)0.0010 (5)0.0023 (5)0.0054 (5)
C130.0148 (7)0.0085 (6)0.0178 (7)0.0050 (5)0.0020 (6)0.0021 (5)
Geometric parameters (Å, º) top
P1—O51.5018 (10)N9—C101.5236 (16)
P1—O31.5291 (10)N9—H9A0.91 (2)
P1—O61.5563 (10)N9—H9B0.93 (2)
P1—C101.8511 (13)C10—C111.5637 (18)
P2—O81.5036 (10)C11—C121.5313 (19)
P2—O41.5150 (10)C11—H11A0.980 (18)
P2—O71.5602 (10)C11—H11B0.978 (19)
P2—C101.8423 (13)C12—C131.520 (2)
O3—H30.93 (3)C12—H12A0.97 (2)
O6—H60.81 (3)C12—H12B0.94 (2)
O7—H70.84 (3)C13—H13A0.97 (2)
N9—C131.5058 (17)C13—H13B0.95 (2)
O5—P1—O3115.34 (6)C11—C10—P2112.56 (9)
O5—P1—O6112.31 (6)N9—C10—P1110.35 (8)
O3—P1—O6108.44 (6)C11—C10—P1111.82 (9)
O5—P1—C10110.50 (6)P2—C10—P1110.54 (7)
O3—P1—C10104.92 (6)C12—C11—C10105.22 (11)
O6—P1—C10104.54 (6)C12—C11—H11A109.1 (11)
O8—P2—O4113.18 (6)C10—C11—H11A111.1 (11)
O8—P2—O7111.01 (6)C12—C11—H11B112.4 (11)
O4—P2—O7111.48 (5)C10—C11—H11B110.8 (11)
O8—P2—C10109.62 (6)H11A—C11—H11B108.2 (15)
O4—P2—C10107.24 (6)C13—C12—C11102.71 (11)
O7—P2—C10103.81 (6)C13—C12—H12A109.4 (11)
P1—O3—H3119 (2)C11—C12—H12A111.9 (11)
P1—O6—H6113.4 (19)C13—C12—H12B110.5 (12)
P2—O7—H7112.2 (19)C11—C12—H12B111.4 (12)
C13—N9—C10107.20 (10)H12A—C12—H12B110.7 (16)
C13—N9—H9A107.3 (12)N9—C13—C12101.71 (11)
C10—N9—H9A111.6 (12)N9—C13—H13A107.9 (11)
C13—N9—H9B115.0 (13)C12—C13—H13A112.6 (11)
C10—N9—H9B109.6 (13)N9—C13—H13B108.9 (12)
H9A—N9—H9B106.2 (17)C12—C13—H13B115.7 (12)
N9—C10—C11103.81 (10)H13A—C13—H13B109.6 (16)
N9—C10—P2107.47 (8)
C13—N9—C10—C1116.74 (13)O6—P1—C10—N9143.82 (8)
C13—N9—C10—P2136.18 (9)O5—P1—C10—C11149.86 (9)
C13—N9—C10—P1103.22 (10)O3—P1—C10—C1185.22 (10)
O8—P2—C10—N951.09 (10)O6—P1—C10—C1128.82 (10)
O4—P2—C10—N972.15 (9)O5—P1—C10—P223.60 (8)
O7—P2—C10—N9169.74 (8)O3—P1—C10—P2148.52 (6)
O8—P2—C10—C11164.77 (9)O6—P1—C10—P297.44 (7)
O4—P2—C10—C1141.54 (10)N9—C10—C11—C1210.85 (13)
O7—P2—C10—C1176.57 (10)P2—C10—C11—C12105.06 (11)
O8—P2—C10—P169.39 (8)P1—C10—C11—C12129.80 (10)
O4—P2—C10—P1167.38 (6)C10—C11—C12—C1333.98 (13)
O7—P2—C10—P149.27 (8)C10—N9—C13—C1237.99 (13)
O5—P1—C10—N995.14 (9)C11—C12—C13—N943.88 (13)
O3—P1—C10—N929.78 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O8i0.93 (3)1.51 (3)2.4427 (13)173 (3)
O6—H6···O5ii0.81 (3)1.77 (3)2.5737 (14)172 (3)
O7—H7···O4iii0.84 (3)1.70 (3)2.5401 (14)174 (3)
N9—H9A···O4iv0.91 (2)1.87 (2)2.7501 (15)161.6 (17)
N9—H9B···O5i0.93 (2)1.84 (2)2.7392 (15)161.4 (19)
C12—H12B···O7v0.94 (2)2.56 (2)3.4666 (18)163.3 (18)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x, y, z+2; (iv) x+1, y, z+2; (v) x, y+1, z.
(II) pyrrolidin-2,2-diylbis(phosphonic acid) top
Crystal data top
C4H11NO6P2Z = 2
Mr = 231.08F(000) = 240
Triclinic, P1Dx = 1.842 Mg m3
Dm = 1.85 (2) Mg m3
Dm measured by flotation
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7451 (2) ÅCell parameters from all reflections
b = 7.7855 (3) Åθ = 2.4–27.5°
c = 8.5197 (3) ŵ = 0.52 mm1
α = 78.5651 (14)°T = 150 K
β = 85.6151 (19)°Plate, colourless
γ = 71.8678 (19)°0.44 × 0.19 × 0.12 mm
V = 416.69 (3) Å3
Data collection top
Nonius Kappa CCD area detector
diffractometer
1800 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.034
Graphite monochromatorθmax = 27.5°, θmin = 2.4°
φ scans with κ at 0° and ω scansh = 88
9229 measured reflectionsk = 1010
1910 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.023P)2 + 0.3498P]
where P = (Fo2 + 2Fc2)/3
1910 reflections(Δ/σ)max = 0.001
162 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.36 e Å3
Special details top

Experimental. The same crystal was measured at three temperatures, 293 K, 150 K and 100 K. For each data set, intensities were measured with a Nonius KappaCCD diffractometer. The initial orientation matrix and cell parameters were obtained by indexing, integrating and refinement of spots on each image using DENZO (Otwinowski & Minor, 1997), and were used to calculate an optimal strategy for data collection. The final unit-cell parameters are obtained by reindexing the collected images using their kappa-geometry orientation matrices as a basis without interframe scaling refinement. Cell parameters were determined by SCALEPACK (Otwinowski & Minor, 1997) using the positions of measured reflections (with θ values varying from 2 to 28°). At 100 K the dataset was 99.7% complete out to 28° in two-theta; at 150 K the completeness was 99.8% out to 27.5° in two-theta, and at 293 K, the data were 99.7% complete out to 27.5° in two-theta.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.19666 (5)0.16114 (5)0.51466 (4)0.00876 (10)
P20.26603 (5)0.05715 (5)0.85369 (4)0.00869 (10)
O30.30545 (16)0.28997 (14)0.41063 (12)0.0127 (2)
O40.26058 (15)0.02988 (14)1.02531 (11)0.0120 (2)
O50.26545 (15)0.03272 (13)0.48536 (12)0.0111 (2)
O60.04329 (16)0.25157 (14)0.49850 (12)0.0127 (2)
O70.06601 (16)0.09877 (14)0.81336 (12)0.0125 (2)
O80.45972 (15)0.20064 (14)0.81226 (12)0.0129 (2)
N90.45904 (19)0.20084 (17)0.73163 (15)0.0108 (2)
C100.2503 (2)0.16564 (18)0.72343 (16)0.0092 (3)
C110.0894 (2)0.33072 (19)0.78710 (17)0.0124 (3)
C120.2210 (3)0.4251 (2)0.85696 (19)0.0181 (3)
C130.4122 (3)0.3986 (2)0.7477 (2)0.0176 (3)
H11A0.005 (3)0.419 (2)0.699 (2)0.012 (4)*
H13A0.382 (3)0.474 (3)0.641 (2)0.021 (5)*
H11B0.005 (3)0.288 (3)0.868 (2)0.019 (5)*
H12A0.263 (3)0.363 (3)0.967 (2)0.021 (5)*
H12B0.151 (3)0.550 (3)0.853 (2)0.024 (5)*
H13B0.529 (3)0.415 (3)0.790 (2)0.023 (5)*
H70.037 (4)0.055 (4)0.870 (3)0.047 (7)*
H60.105 (4)0.178 (4)0.496 (3)0.051 (8)*
H30.396 (5)0.247 (5)0.330 (4)0.085 (11)*
H9A0.532 (3)0.130 (3)0.819 (2)0.016 (4)*
H9B0.542 (3)0.167 (3)0.643 (3)0.024 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.00831 (18)0.00905 (18)0.00778 (17)0.00113 (13)0.00033 (12)0.00131 (12)
P20.00889 (18)0.00918 (18)0.00724 (17)0.00206 (13)0.00077 (12)0.00118 (12)
O30.0140 (5)0.0121 (5)0.0105 (5)0.0033 (4)0.0027 (4)0.0010 (4)
O40.0113 (5)0.0161 (5)0.0077 (5)0.0033 (4)0.0004 (4)0.0021 (4)
O50.0102 (5)0.0112 (5)0.0117 (5)0.0019 (4)0.0000 (4)0.0036 (4)
O60.0093 (5)0.0124 (5)0.0158 (5)0.0008 (4)0.0025 (4)0.0042 (4)
O70.0116 (5)0.0156 (5)0.0118 (5)0.0054 (4)0.0017 (4)0.0049 (4)
O80.0118 (5)0.0121 (5)0.0112 (5)0.0002 (4)0.0019 (4)0.0007 (4)
N90.0099 (5)0.0125 (6)0.0103 (6)0.0038 (4)0.0008 (4)0.0015 (5)
C100.0080 (6)0.0106 (6)0.0090 (6)0.0026 (5)0.0002 (5)0.0019 (5)
C110.0129 (7)0.0107 (6)0.0118 (6)0.0006 (5)0.0010 (5)0.0033 (5)
C120.0213 (8)0.0128 (7)0.0199 (8)0.0013 (6)0.0028 (6)0.0077 (6)
C130.0193 (8)0.0121 (7)0.0235 (8)0.0073 (6)0.0036 (6)0.0025 (6)
Geometric parameters (Å, º) top
P1—O51.5004 (10)N9—C101.5249 (17)
P1—O31.5285 (10)N9—H9A0.91 (2)
P1—O61.5558 (10)N9—H9B0.93 (2)
P1—C101.8512 (14)C10—C111.5627 (19)
P2—O81.5023 (10)C11—C121.531 (2)
P2—O41.5148 (10)C11—H11A0.986 (18)
P2—O71.5589 (10)C11—H11B0.98 (2)
P2—C101.8416 (14)C12—C131.516 (2)
O3—H30.93 (3)C12—H12A0.98 (2)
O6—H60.81 (3)C12—H12B0.93 (2)
O7—H70.84 (3)C13—H13A0.98 (2)
N9—C131.5045 (18)C13—H13B0.94 (2)
O5—P1—O3115.35 (6)C11—C10—P2112.59 (9)
O5—P1—O6112.28 (6)N9—C10—P1110.31 (9)
O3—P1—O6108.47 (6)C11—C10—P1111.80 (9)
O5—P1—C10110.47 (6)P2—C10—P1110.58 (7)
O3—P1—C10104.99 (6)C12—C11—C10105.25 (11)
O6—P1—C10104.49 (6)C12—C11—H11A109.1 (10)
O8—P2—O4113.13 (6)C10—C11—H11A111.0 (11)
O8—P2—O7111.05 (6)C12—C11—H11B112.1 (11)
O4—P2—O7111.49 (6)C10—C11—H11B110.9 (11)
O8—P2—C10109.56 (6)H11A—C11—H11B108.4 (15)
O4—P2—C10107.31 (6)C13—C12—C11102.75 (12)
O7—P2—C10103.80 (6)C13—C12—H12A109.6 (11)
P1—O3—H3119 (2)C11—C12—H12A111.1 (12)
P1—O6—H6113.0 (19)C13—C12—H12B111.0 (13)
P2—O7—H7112.5 (18)C11—C12—H12B111.3 (12)
C13—N9—C10107.14 (11)H12A—C12—H12B110.9 (17)
C13—N9—H9A107.7 (12)N9—C13—C12101.85 (12)
C10—N9—H9A111.6 (12)N9—C13—H13A107.8 (12)
C13—N9—H9B115.4 (13)C12—C13—H13A112.5 (11)
C10—N9—H9B109.6 (13)N9—C13—H13B109.4 (12)
H9A—N9—H9B105.5 (17)C12—C13—H13B114.6 (12)
N9—C10—C11103.78 (10)H13A—C13—H13B110.2 (17)
N9—C10—P2107.47 (9)
C13—N9—C10—C1116.64 (14)O6—P1—C10—N9143.89 (9)
C13—N9—C10—P2136.10 (10)O5—P1—C10—C11149.91 (9)
C13—N9—C10—P1103.26 (11)O3—P1—C10—C1185.12 (10)
O8—P2—C10—N951.02 (10)O6—P1—C10—C1128.95 (11)
O4—P2—C10—N972.16 (10)O5—P1—C10—P223.60 (9)
O7—P2—C10—N9169.69 (8)O3—P1—C10—P2148.56 (7)
O8—P2—C10—C11164.69 (9)O6—P1—C10—P297.37 (7)
O4—P2—C10—C1141.50 (11)N9—C10—C11—C1210.82 (14)
O7—P2—C10—C1176.64 (10)P2—C10—C11—C12105.08 (11)
O8—P2—C10—P169.44 (8)P1—C10—C11—C12129.71 (10)
O4—P2—C10—P1167.38 (6)C10—C11—C12—C1333.90 (14)
O7—P2—C10—P149.23 (8)C10—N9—C13—C1237.89 (14)
O5—P1—C10—N995.15 (9)C11—C12—C13—N943.79 (14)
O3—P1—C10—N929.82 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O8i0.93 (3)1.52 (3)2.4447 (14)173 (3)
O6—H6···O5ii0.81 (3)1.77 (3)2.5754 (15)171 (3)
O7—H7···O4iii0.84 (3)1.70 (3)2.5406 (14)175 (3)
N9—H9A···O4iv0.91 (2)1.88 (2)2.7523 (16)161.5 (17)
N9—H9B···O5i0.93 (2)1.84 (2)2.7395 (16)162.0 (19)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x, y, z+2; (iv) x+1, y, z+2.
(III) pyrrolidin-2,2-diylbis(phosphonic acid) top
Crystal data top
C4H11NO6P2Z = 2
Mr = 231.08F(000) = 240
Triclinic, P1Dx = 1.827 Mg m3
Dm = 1.85 (2) Mg m3
Dm measured by flotation
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7703 (2) ÅCell parameters from all reflections
b = 7.8135 (2) Åθ = 2.4–27.5°
c = 8.5263 (2) ŵ = 0.52 mm1
α = 78.7105 (12)°T = 293 K
β = 85.5530 (16)°Plate, colourless
γ = 71.7958 (14)°0.44 × 0.19 × 0.12 mm
V = 420.11 (2) Å3
Data collection top
Nonius Kappa CCD area detector
diffractometer
1824 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.033
Graphite monochromatorθmax = 27.5°, θmin = 2.4°
φ scans with κ at 0° and ω scansh = 88
9911 measured reflectionsk = 1010
1921 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0229P)2 + 0.2908P]
where P = (Fo2 + 2Fc2)/3
1921 reflections(Δ/σ)max = 0.001
162 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.33 e Å3
Special details top

Experimental. The same crystal was measured at three temperatures, 293 K, 150 K and 100 K. For each data set, intensities were measured with a Nonius KappaCCD diffractometer. The initial orientation matrix and cell parameters were obtained by indexing, integrating and refinement of spots on each image using DENZO (Otwinowski & Minor, 1997), and were used to calculate an optimal strategy for data collection. The final unit-cell parameters are obtained by reindexing the collected images using their kappa-geometry orientation matrices as a basis without interframe scaling refinement. Cell parameters were determined by SCALEPACK (Otwinowski & Minor, 1997) using the positions of measured reflections (with θ values varying from 2 to 28°). At 100 K the dataset was 99.7% complete out to 28° in two-theta; at 150 K the completeness was 99.8% out to 27.5° in two-theta, and at 293 K, the data were 99.7% complete out to 27.5° in two-theta.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.19660 (5)0.16050 (5)0.51496 (4)0.01549 (10)
P20.26546 (5)0.05611 (5)0.85366 (4)0.01546 (10)
O30.30427 (17)0.28855 (15)0.41073 (13)0.0223 (2)
H30.397 (5)0.244 (5)0.332 (4)0.105 (12)*
O40.26057 (16)0.02884 (15)1.02497 (12)0.0209 (2)
O50.26518 (15)0.03264 (14)0.48567 (12)0.0191 (2)
O60.04250 (16)0.25044 (15)0.49981 (13)0.0227 (2)
H60.104 (4)0.181 (4)0.497 (3)0.057 (8)*
O70.06655 (17)0.09761 (15)0.81399 (13)0.0220 (2)
H70.042 (4)0.052 (4)0.872 (3)0.064 (8)*
O80.45858 (16)0.19934 (14)0.81232 (13)0.0231 (2)
N90.45868 (19)0.19983 (17)0.73142 (15)0.0184 (2)
H9A0.532 (3)0.128 (3)0.821 (2)0.026 (5)*
H9B0.540 (3)0.167 (3)0.642 (3)0.032 (5)*
C100.2504 (2)0.16550 (18)0.72352 (16)0.0152 (3)
C110.0909 (2)0.3308 (2)0.78708 (18)0.0219 (3)
H11A0.006 (3)0.417 (3)0.701 (2)0.024 (4)*
H11B0.001 (3)0.289 (3)0.869 (3)0.035 (5)*
C120.2222 (3)0.4246 (2)0.8559 (2)0.0321 (4)
H12A0.153 (3)0.549 (3)0.850 (3)0.038 (6)*
H12B0.261 (3)0.366 (3)0.966 (3)0.039 (6)*
C130.4128 (3)0.3965 (2)0.7476 (2)0.0314 (4)
H13A0.383 (3)0.471 (3)0.639 (3)0.037 (6)*
H13B0.530 (4)0.411 (3)0.790 (3)0.042 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01479 (18)0.01618 (18)0.01367 (18)0.00214 (13)0.00064 (12)0.00251 (13)
P20.01612 (19)0.01666 (18)0.01263 (18)0.00439 (14)0.00150 (12)0.00199 (13)
O30.0249 (6)0.0211 (5)0.0184 (5)0.0061 (4)0.0046 (4)0.0015 (4)
O40.0196 (5)0.0284 (6)0.0133 (5)0.0057 (4)0.0004 (4)0.0034 (4)
O50.0173 (5)0.0196 (5)0.0197 (5)0.0030 (4)0.0003 (4)0.0064 (4)
O60.0158 (5)0.0220 (5)0.0287 (6)0.0012 (4)0.0047 (4)0.0067 (4)
O70.0209 (5)0.0282 (6)0.0207 (5)0.0110 (4)0.0029 (4)0.0085 (4)
O80.0215 (5)0.0213 (5)0.0197 (5)0.0005 (4)0.0034 (4)0.0006 (4)
N90.0175 (6)0.0214 (6)0.0170 (6)0.0070 (5)0.0007 (5)0.0032 (5)
C100.0140 (6)0.0166 (6)0.0147 (6)0.0042 (5)0.0006 (5)0.0029 (5)
C110.0217 (7)0.0197 (7)0.0212 (7)0.0007 (6)0.0017 (6)0.0066 (6)
C120.0383 (10)0.0223 (8)0.0356 (9)0.0028 (7)0.0058 (8)0.0141 (7)
C130.0350 (9)0.0213 (8)0.0417 (10)0.0135 (7)0.0060 (8)0.0042 (7)
Geometric parameters (Å, º) top
P1—O51.4990 (10)N9—C101.5239 (17)
P1—O31.5262 (11)N9—H9A0.93 (2)
P1—O61.5547 (11)N9—H9B0.94 (2)
P1—C101.8529 (14)C10—C111.5619 (19)
P2—O81.5016 (11)C11—C121.526 (2)
P2—O41.5133 (10)C11—H11A0.975 (19)
P2—O71.5554 (11)C11—H11B0.98 (2)
P2—C101.8426 (14)C12—C131.511 (3)
O3—H30.92 (4)C12—H12A0.93 (2)
O6—H60.78 (3)C12—H12B0.98 (2)
O7—H70.87 (3)C13—H13A0.99 (2)
N9—C131.501 (2)C13—H13B0.94 (2)
O5—P1—O3115.38 (6)C11—C10—P2112.72 (9)
O5—P1—O6112.30 (6)N9—C10—P1110.35 (9)
O3—P1—O6108.46 (6)C11—C10—P1111.80 (9)
O5—P1—C10110.45 (6)P2—C10—P1110.54 (7)
O3—P1—C10105.08 (6)C12—C11—C10105.35 (12)
O6—P1—C10104.37 (6)C12—C11—H11A109.4 (11)
O8—P2—O4112.88 (6)C10—C11—H11A111.4 (11)
O8—P2—O7111.12 (6)C12—C11—H11B111.2 (12)
O4—P2—O7111.52 (6)C10—C11—H11B110.8 (12)
O8—P2—C10109.48 (6)H11A—C11—H11B108.6 (16)
O4—P2—C10107.38 (6)C13—C12—C11102.93 (13)
O7—P2—C10104.00 (6)C13—C12—H12A110.5 (13)
P1—O3—H3118 (2)C11—C12—H12A111.2 (13)
P1—O6—H6114.0 (19)C13—C12—H12B110.3 (13)
P2—O7—H7113.7 (18)C11—C12—H12B111.3 (13)
C13—N9—C10107.15 (11)H12A—C12—H12B110.3 (18)
C13—N9—H9A107.7 (12)N9—C13—C12102.05 (13)
C10—N9—H9A111.1 (12)N9—C13—H13A106.8 (12)
C13—N9—H9B115.0 (12)C12—C13—H13A112.6 (12)
C10—N9—H9B108.9 (12)N9—C13—H13B109.1 (14)
H9A—N9—H9B107.1 (17)C12—C13—H13B115.1 (14)
N9—C10—C11103.66 (11)H13A—C13—H13B110.5 (18)
N9—C10—P2107.48 (9)
C13—N9—C10—C1116.50 (14)O6—P1—C10—N9144.15 (9)
C13—N9—C10—P2136.05 (11)O5—P1—C10—C11150.24 (10)
C13—N9—C10—P1103.35 (12)O3—P1—C10—C1184.72 (11)
O8—P2—C10—N950.80 (10)O6—P1—C10—C1129.34 (11)
O4—P2—C10—N972.08 (10)O5—P1—C10—P223.80 (9)
O7—P2—C10—N9169.62 (9)O3—P1—C10—P2148.85 (7)
O8—P2—C10—C11164.40 (10)O6—P1—C10—P297.10 (8)
O4—P2—C10—C1141.51 (11)N9—C10—C11—C1210.66 (15)
O7—P2—C10—C1176.79 (11)P2—C10—C11—C12105.24 (13)
O8—P2—C10—P169.68 (8)P1—C10—C11—C12129.52 (12)
O4—P2—C10—P1167.43 (6)C10—C11—C12—C1333.57 (16)
O7—P2—C10—P149.13 (8)C10—N9—C13—C1237.56 (16)
O5—P1—C10—N994.95 (10)C11—C12—C13—N943.43 (16)
O3—P1—C10—N930.09 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O8i0.92 (4)1.54 (4)2.4550 (15)171 (4)
O6—H6···O5ii0.78 (3)1.80 (3)2.5838 (16)172 (3)
O7—H7···O4iii0.87 (3)1.67 (3)2.5414 (15)176 (3)
N9—H9A···O4iv0.93 (2)1.87 (2)2.7661 (16)160.6 (17)
N9—H9B···O5i0.94 (2)1.84 (2)2.7409 (16)160.8 (19)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x, y, z+2; (iv) x+1, y, z+2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds