Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In catena-poly­[[(di-2-pyridyl­amine-κ2N,N′)silver(I)]-μ-nico­tinato-κ2N:O], [Ag(C6H4NO2)(C10H9N3)]n, the AgI atom is tetracoordinated by two N atoms from the di-2-pyridyl­amine (BPA) ligand [Ag—N = 2.3785 (18) and 2.3298 (18) Å] and by one N atom and one carboxyl­ate O atom from nicotinate ligands [Ag—N = 2.2827 (15) Å and Ag—O = 2.3636 (14) Å]. Bridging by nicotinate N and O atoms generates a polymeric chain structure, which extends along [100]. The carboxyl O atom not bonded to the Ag atom takes part in an intrachain C—H...O hydrogen bond, further stabilizing the chain. Pairs of chains are linked by N—H...O hydrogen bonds to generate ribbons. There are no π–π interactions in this complex. In catena-poly­[[(di-2-pyridyl­amine-κ2N,N′)silver(I)]-μ-2,6-di­hydroxy­benzoato-κ2O1:O2], [Ag(C7H5O4)(C10H9N3)]n, the AgI atom has a distorted tetrahedral coordination, with three strong bonds to two pyridine N atoms from the BPA ligand [Ag—N = 2.286 (5) and 2.320 (5) Å] and to one carboxyl­ate O atom from the 2,6-di­hydroxy­benzoate ligand [Ag—O = 2.222 (4) Å]; the fourth, weaker, Ag-atom coordination is to one of the phenol O atoms [Ag...O = 2.703 (4) Å] of an adjacent moiety, and this interaction generates a polymeric chain along [100]. Pairs of chains are linked about inversion centers by N—H...O hydrogen bonds to form ribbons, within which there are π–π interactions. The ribbons are linked about inversion centers by pairs of C—H...O hydrogen bonds and additional π–π interactions between inversion-related pairs of 2,6-di­hydroxy­benzoate ligands to generate a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104026502/fg1780sup1.cif
Contains datablocks I, global, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104026502/fg1780Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104026502/fg1780IIsup3.hkl
Contains datablock II

CCDC references: 251901; 259008

Comment top

Silver(I) complexes with Ag—N bonds have been found to show effective antimicrobial activity (Spadaro et al., 1974; Nomiya et al., 1997) and silver compounds with pyridine or its derivatives have attracted attention recently (Zhu et al., 2001; Zhu et al., 2003; Bi et al., 2002; Kristiansson, 2000). Among the compounds containing a pyridine ring, nicotinic acid (3-pyridinecarboxylic acid; niacin; vitamin B; henceforth NA) plays important roles in metabolism. Dihydroxybenzoic acids are known to be strong antioxidants (Maoka et al., 1997). As one example, 2,6-dihydroxybenzoic acid (2,6-DHB) is known to have a cytotoxic effect on tumor cells at low pH values when mixed with acetylsalicylic acid (Kreutz, 1998). Moreover 2,6-DHB always shows versatile coordination modes in its complexes. We report here the structures of two complexes of AgI, viz. compound (I) with NA and a bidentate pyridine-based ligand, 2,2'-bipyridylamine (BPA) [Ag(NA)(BPA)]n, and compound (II) with 2,6-DHB and BPA [Ag(2,6-DHB)(BPA)]n.

In (I) there is a one-dimensional polymer chain (Fig. 1), with each AgI atom coordinated to two N atoms from a BPA ligand, one N atom from a nicotinate ligand and one carboxylate O atom from another nicotinate ligand [at (1 + x,y,z)] as shown in Fig. 1; geometric details are given in Table 1. The coordination geometry of the AgI ion is best described as distorted tetrahedral. The carboxyl atom (O1) that is not bonded to the Ag atom takes part in an intrachain C—H···O hydrogen bond, further stabilizing the chain (Table 2).

The coordination mode of (I) can be compared with some previous findings for the silver(I)–nicotinic acid system. In catena-[pyridine-3-carboxylato-(O,O')]silver(I) (Smith & Reddy, 1994), the AgI ion has a trigonal coordination geometry, being connected to three nicotinate residues, two via carboxylate O atoms and the third through the pyridine N atom [Ag—O = 2.258 (8) and 2.280 (8) Å, and Ag—N = 2.362 (10) Å]; in ammonium bis[pyridine-3-carboxylato-(O,N,N')]silver(I) monohydrate (Smith & Reddy, 1994), the AgI ion also has three-coordinate distorted trigonal planar geometry and is bonded to two pyridine N atoms and one carboxylate O atom from three independent nicotinate ligands [Ag—N = 2.248 (3) and 2.269 (3) Å, and Ag—O = 2.342 (2) Å]. The AgI coordination mode in (I) is also different from that reported in catena-bis[pyridine-3-carboxylato-(N,N')]silver(I) (Käll et al., 2001), where the AgI ion has distorted octahedral coordination geometry lies on an inversion centre with the N atoms in axial positions (Ag—N = 2.234 Å and N—Ag—N 180°) and is bonded weakly to four carboxylate O atoms from four independent nicotinate molecules (Ag—O = 2.803 and 2.821 Å). The Ag—N distances in (I) are slightly longer than those in silver complexes of other pyridine derivatives, such as bis(3-amino-2-chloropyridine-κN)silver(I) perchlorate [2.197 (4)–2.199 (4) Å; Li et al., 2002], bis(2-aminopyridine-κN1)(benzoate-κO)silver(I) [2.205 (4)–2.230 (3) Å; Zhu et al., 2003] and catena-poly[silver(I)-µ-4,4'-bipyridine]nitrate [2.211 (4) Å; Bi et al., 2002].

In the nicotinate ligand, the carboxyl group plane (C3/C7/O1/O2) is rotated 10.7 (1)° around the exocyclic C3—C7 bond out of the N1/C2–C7 plane. The two pyridine rings in the BPA ligand have an interplanar angle of 9.7 (1)°, and the six-membered Ag1/N11/C12/N3/C22/N21 ring has a slightly deformed envelope conformation, with atom Ag1 as the flap.

In the crystal structure (Fig. 2), pairs of inversion related chains are linked by N—H···O hydrogen bonds (Table 2) to generate ribbons extending along [100]. Calculations with PLATON (Spek, 2003) show that there are only van der Waals interactions between the ribbons.

In complex (II) (Fig. 3), atom AgI has a distorted tetrahedral coordination, with three strong bonds to two pyridine N atoms from the BPA ligand and one carboxylate O atom from the 2,6-dihydroxybenzoate group; the fourth, weaker, Ag-atom coordination is to one of the phenol O atoms (O61) of an adjacent moiety (Table 3), thus generating a polymeric chain along [100]. BPA atoms N11 and N12 together with carboxyl atom O2 are the atoms that are strongly bonded to atom Ag1; these atoms define a trigonal plane, with atom Ag1 0.319 (2) Å from the plane.

In the 2,6-DHB ligand, the carboxyl group plane (C3/C7/O1/O2) is rotated 2.4 (3)° around the exocyclic C1—C7 bond out of the C1–C7 plane. Both phenol OH groups form intramolecular O—H···O hydrogen bonds (Table 4) with adjacent carboxyl O atoms. The two pyridine rings in the BPA ligand have an interplanar angle of 5.2 (2)°, and as in (I), the six-membered Ag1/N11/C12/N3/C22/N21 ring has a slightly deformed envelope conformation, with atom Ag1 as the flap. With the participation of the BPA ligand, the Ag coordination environment in (II) is (as expected) completely different from the dimer-bridged coordination mode reported for the 2,6-DHB ligand in bis(µ2-2,6-dihydroxybenzoato-O,O')disilver(I) (Smith et al., 1988).

In the crystal structure of (II), inversion-related chains are linked [as in (I)] by N—H···O hydrogen bonds involving the BPA N3/H3 group and carboxyl atom O1 of an adjacent moiety (Table 1), thus generating ribbons extending along [100], as shown in Fig. 4. Also present in these ribbons are ππ interactions between inversion-related BPA ligands. The distance between the ring centroids of the N11/c12–C16 and N21/c22–C26 BPA pyridine rings [at (1 − x,1 − y,1 − z)] is 3.616 Å and the shortest atom–atom separation is 3.466 (9) Å, between atoms C12 and C22 [at (1 − x,1 − y,1 − z)]. This ring overlap can be seen clearly in Fig. 5, which also shows that the ribbons are linked by an inter-ribbon C—H···O hydrogen bond involving the C25/H25 group and phenol atom O21(x,y − 1,z), which is not involved in any Ag contact (see Table 4). There are in addition a second set of ππ interactions between inversion-related 2,6-DHB ligands. The centroid of the C1–C6 aromatic ring at (x,y,z) is 3.763 Å from the centroid of the same ring at (2 − x,2 − y,-z); the distance between these parallel rings is 3.425 Å and the shortest C···C contact is 3.413 (3) Å, between atoms C2 and C6 [at (2 − x,2 − y,-z)]. The overall effect of all these interactions is to generate a three-dimensional network.

Experimental top

Thin colorless needle-shaped crystals of (I) were obtained by slow evaporation of an aqueous solution (containing a small amount of methanol) of a mixture of nicotinic acid acid, 2,2'-bipyridineamine and AgNO3 (molar ratio 1:1:1) at room temperature. Colorless prismatic crystals of (II) were obtained by slow evaporation of a mixture of 2,6-dihydroxybenzoic acid, 2,2'-bipyridineamine and AgNO3 (molar ratio 4:4:1) in methanol/water (80%) at room temperature.

Refinement top

For both (I) and (II), all H atoms were clearly visible in difference Fourier maps. H atoms were allowed for as riding atoms in the refinements, with C—H distances of 0.93 Å, N—H distance of 0.86 Å and O—H distances of 0.82 Å, and with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2003) for (I); CrystalStructure (Rigaku/MSC, 2004) and CRYSTALS (Watkin et al., 1996) for (II). Cell refinement: RAPID-AUTO (Rigaku, 2003) for (I); Crystal Structure and CRYSTALS for (II). Data reduction: CrystalStructure (Rigaku/MSC, 2004) and CRYSTALS (Watkin et al., 1996) for (I); CrystalStructure and CRYSTALS for (II). For both compounds, program(s) used to solve structure: SIR97 (Altomare et al., 1999) and DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) and WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: WORDPERFECT.

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) drawing of part of the polymeric chain in (I), with the atomic numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. [Symmetry codes: (a) x − 1,y,z; (b) 1 + x,y,z.]
[Figure 2] Fig. 2. A view of a pair of inversion-related chains linked by N—H···O hydrogen bonds to generate a ribbon extending in the a direction. Hydrogen bonds are indicated by broken lines. [Symmetry codes: (#) −x,-y,1 − z; (*) 1 + x,y,z.]
[Figure 3] Fig. 3. An ORTEP-3 (Farrugia, 1997) drawing of part of the polymeric chain in (II), with the atomic numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. [Symmetry codes: (a) x − 1,y,z; (b) 1 + x,y,z.]
[Figure 4] Fig. 4. A view of a pair of inversion-related chains linked by N—H···O hydrogen bonds to generate a ribbon extending in the a direction. The weak Ag···O contact and hydrogen bonds are indicated by broken lines. [Symmetry codes: (#) 1 − x,1 − y,1 − z; (*) 1 + x,y,z; (dollar) x − 1,y,z.]
[Figure 5] Fig. 5. A stereoview along the a direction of part of the structure of (II), showing ππ interactions between inversion-related pairs of BPA ligands and between inversion-related pairs of 2,6-DHB ligands.
(I) catena-Poly[[(di-2-pyridylamine-κ2N,N')silver(I)]-µ-nicotinato- κ2N:O] top
Crystal data top
[Ag(C6H4NO2)(C10H9N3)]F(000) = 800
Mr = 401.17Dx = 1.718 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 12577 reflections
a = 7.9623 (1) Åθ = 3.0–27.5°
b = 8.9487 (1) ŵ = 1.31 mm1
c = 21.887 (1) ÅT = 296 K
β = 96.000 (1)°Prism, colorless
V = 1550.95 (8) Å30.30 × 0.10 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3530 independent reflections
Radiation source: fine-focus sealed tube2779 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 10.0 pixels mm-1θmax = 27.6°, θmin = 3.4°
ω scansh = 1010
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1111
Tmin = 0.649, Tmax = 0.877l = 2828
15058 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0291P)2]
where P = (Fo2 + 2Fc2)/3
3530 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Ag(C6H4NO2)(C10H9N3)]V = 1550.95 (8) Å3
Mr = 401.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.9623 (1) ŵ = 1.31 mm1
b = 8.9487 (1) ÅT = 296 K
c = 21.887 (1) Å0.30 × 0.10 × 0.10 mm
β = 96.000 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3530 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2779 reflections with I > 2σ(I)
Tmin = 0.649, Tmax = 0.877Rint = 0.017
15058 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 0.90Δρmax = 0.47 e Å3
3530 reflectionsΔρmin = 0.27 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.233689 (19)0.17553 (2)0.385416 (8)0.05460 (7)
O10.58654 (18)0.3494 (2)0.29926 (7)0.0700 (5)
O20.47617 (17)0.22560 (18)0.38149 (7)0.0622 (4)
N10.00773 (19)0.29422 (18)0.33394 (8)0.0467 (4)
N30.3099 (2)0.06456 (17)0.51457 (7)0.0467 (4)
H30.36300.11190.54490.056*
N110.1748 (3)0.1666 (2)0.48968 (8)0.0602 (5)
N210.2491 (2)0.07973 (19)0.40620 (8)0.0514 (4)
C20.1497 (2)0.2719 (2)0.34789 (9)0.0423 (4)
H20.16480.20610.37980.051*
C30.2906 (2)0.3390 (2)0.31856 (8)0.0359 (4)
C40.2683 (2)0.4402 (2)0.27226 (10)0.0493 (5)
H40.36030.48850.25120.059*
C50.1082 (3)0.4676 (2)0.25825 (10)0.0561 (6)
H50.08950.53690.22800.067*
C60.0257 (2)0.3920 (2)0.28912 (9)0.0493 (5)
H60.13370.41010.27820.059*
C70.4660 (2)0.3029 (2)0.33416 (9)0.0403 (4)
C120.2511 (2)0.0737 (2)0.53106 (9)0.0425 (4)
C130.2755 (3)0.1092 (3)0.59323 (11)0.0627 (6)
H130.33310.04360.62100.075*
C140.2148 (4)0.2403 (3)0.61315 (12)0.0811 (8)
H140.22960.26500.65460.097*
C150.1310 (4)0.3362 (3)0.57117 (14)0.0843 (9)
H150.08600.42570.58360.101*
C160.1162 (4)0.2960 (3)0.51124 (13)0.0807 (8)
H160.06190.36200.48290.097*
C220.3019 (2)0.1433 (2)0.45989 (9)0.0442 (5)
C230.3547 (3)0.2930 (2)0.46413 (12)0.0635 (6)
H230.39080.33510.50210.076*
C240.3522 (4)0.3759 (3)0.41163 (14)0.0801 (8)
H240.38710.47510.41350.096*
C250.2974 (4)0.3114 (3)0.35561 (14)0.0797 (8)
H250.29590.36580.31930.096*
C260.2462 (3)0.1671 (3)0.35497 (12)0.0679 (7)
H260.20670.12490.31740.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.04412 (10)0.06451 (12)0.05617 (12)0.01111 (8)0.01003 (7)0.02146 (8)
O10.0346 (7)0.1119 (14)0.0626 (10)0.0128 (8)0.0011 (7)0.0200 (10)
O20.0381 (8)0.0809 (11)0.0685 (10)0.0042 (8)0.0100 (7)0.0295 (9)
N10.0337 (8)0.0546 (10)0.0520 (10)0.0026 (7)0.0049 (7)0.0160 (8)
N30.0566 (10)0.0436 (10)0.0398 (9)0.0098 (8)0.0044 (8)0.0071 (7)
N110.0784 (13)0.0554 (12)0.0482 (10)0.0244 (10)0.0131 (9)0.0060 (9)
N210.0602 (11)0.0498 (11)0.0444 (10)0.0031 (8)0.0063 (8)0.0002 (8)
C20.0372 (10)0.0471 (11)0.0431 (11)0.0006 (8)0.0059 (8)0.0133 (9)
C30.0347 (9)0.0367 (10)0.0365 (9)0.0021 (8)0.0040 (8)0.0026 (8)
C40.0416 (11)0.0566 (13)0.0485 (12)0.0079 (10)0.0011 (9)0.0121 (10)
C50.0496 (12)0.0642 (14)0.0545 (13)0.0011 (11)0.0053 (10)0.0270 (11)
C60.0377 (10)0.0594 (13)0.0515 (12)0.0046 (10)0.0074 (9)0.0131 (10)
C70.0358 (9)0.0418 (11)0.0435 (11)0.0043 (8)0.0050 (8)0.0072 (9)
C120.0429 (10)0.0408 (11)0.0450 (11)0.0000 (9)0.0094 (9)0.0034 (9)
C130.0869 (18)0.0531 (13)0.0467 (12)0.0054 (12)0.0008 (12)0.0002 (11)
C140.123 (2)0.0655 (17)0.0541 (16)0.0063 (17)0.0071 (15)0.0153 (13)
C150.117 (2)0.0584 (17)0.0791 (19)0.0260 (15)0.0191 (17)0.0127 (14)
C160.109 (2)0.0640 (17)0.0697 (18)0.0372 (15)0.0125 (16)0.0073 (13)
C220.0436 (11)0.0411 (11)0.0493 (12)0.0001 (8)0.0112 (9)0.0018 (9)
C230.0767 (16)0.0488 (13)0.0663 (15)0.0089 (12)0.0142 (13)0.0040 (12)
C240.099 (2)0.0517 (15)0.094 (2)0.0061 (14)0.0294 (17)0.0123 (15)
C250.098 (2)0.0718 (19)0.0720 (19)0.0135 (16)0.0202 (16)0.0269 (15)
C260.0793 (17)0.0761 (19)0.0484 (14)0.0081 (14)0.0066 (12)0.0058 (12)
Geometric parameters (Å, º) top
Ag1—N12.2827 (15)C4—H40.93
Ag1—N112.3785 (18)C5—C61.378 (3)
Ag1—N212.3298 (18)C5—H50.93
Ag1—O2i2.3636 (14)C6—H60.93
O1—C71.235 (2)C12—C131.391 (3)
O2—C71.255 (2)C13—C141.358 (4)
O2—Ag1ii2.3636 (14)C13—H130.93
N1—C61.334 (2)C14—C151.378 (4)
N1—C21.336 (2)C14—H140.93
N3—C121.384 (2)C15—C161.353 (4)
N3—C221.385 (2)C15—H150.93
N3—H30.86C16—H160.93
N11—C121.329 (2)C22—C231.405 (3)
N11—C161.351 (3)C23—C241.366 (3)
N21—C221.333 (3)C23—H230.93
N21—C261.365 (3)C24—C251.384 (4)
C2—C31.372 (3)C24—H240.93
C2—H20.93C25—C261.354 (3)
C3—C41.385 (3)C25—H250.93
C3—C71.507 (3)C26—H260.93
C4—C51.364 (3)
N1—Ag1—N21125.12 (6)O1—C7—O2125.66 (19)
N1—Ag1—O2i128.08 (5)O1—C7—C3117.81 (18)
N21—Ag1—O2i99.28 (6)O2—C7—C3116.52 (17)
N1—Ag1—N11105.36 (6)N11—C12—N3121.65 (18)
N21—Ag1—N1177.97 (6)N11—C12—C13122.08 (19)
O2i—Ag1—N11109.43 (6)N3—C12—C13116.27 (18)
C7—O2—Ag1ii106.39 (12)C14—C13—C12119.6 (2)
C6—N1—C2116.24 (16)C14—C13—H13120.2
C6—N1—Ag1121.92 (12)C12—C13—H13120.2
C2—N1—Ag1121.83 (13)C13—C14—C15119.2 (2)
C12—N3—C22133.95 (17)C13—C14—H14120.4
C12—N3—H3113.0C15—C14—H14120.4
C22—N3—H3113.0C16—C15—C14117.9 (2)
C12—N11—C16116.6 (2)C16—C15—H15121.1
C12—N11—Ag1123.57 (14)C14—C15—H15121.1
C16—N11—Ag1114.61 (15)N11—C16—C15124.6 (2)
C22—N21—C26117.15 (19)N11—C16—H16117.7
C22—N21—Ag1126.55 (14)C15—C16—H16117.7
C26—N21—Ag1113.90 (15)N21—C22—N3121.78 (17)
N1—C2—C3124.66 (17)N21—C22—C23122.0 (2)
N1—C2—H2117.7N3—C22—C23116.22 (19)
C3—C2—H2117.7C24—C23—C22119.0 (2)
C2—C3—C4117.90 (17)C24—C23—H23120.5
C2—C3—C7122.16 (17)C22—C23—H23120.5
C4—C3—C7119.93 (16)C23—C24—C25119.6 (3)
C5—C4—C3118.44 (18)C23—C24—H24120.2
C5—C4—H4120.8C25—C24—H24120.2
C3—C4—H4120.8C26—C25—C24118.3 (3)
C4—C5—C6119.69 (19)C26—C25—H25120.9
C4—C5—H5120.2C24—C25—H25120.9
C6—C5—H5120.2C25—C26—N21124.0 (2)
N1—C6—C5123.04 (18)C25—C26—H26118.0
N1—C6—H6118.5N21—C26—H26118.0
C5—C6—H6118.5
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O2iii0.862.032.894 (2)177
C6—H6···O1i0.932.293.096 (2)144
Symmetry codes: (i) x+1, y, z; (iii) x, y, z+1.
(II) catena-poly[[(di-2-pyridylamine-κ2N,N')silver(I)]-µ-2,6-dihydroxybenzoato- κ2O1:O2] top
Crystal data top
[Ag(C7H5O4)(C10H9N3)]Z = 2
Mr = 432.18F(000) = 432
Triclinic, P1Dx = 1.822 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.56 (1) ÅCell parameters from 6495 reflections
b = 9.23 (1) Åθ = 3.1–27.6°
c = 12.01 (2) ŵ = 1.31 mm1
α = 71.29 (5)°T = 296 K
β = 82.87 (5)°Block, colorless
γ = 87.44 (5)°0.30 × 0.15 × 0.10 mm
V = 787.6 (19) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3567 independent reflections
Radiation source: fine-focus sealed tube2402 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1111
Tmin = 0.672, Tmax = 0.878l = 1515
7753 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0754P)2]
where P = (Fo2 + 2Fc2)/3
3567 reflections(Δ/σ)max = 0.002
228 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 1.28 e Å3
Crystal data top
[Ag(C7H5O4)(C10H9N3)]γ = 87.44 (5)°
Mr = 432.18V = 787.6 (19) Å3
Triclinic, P1Z = 2
a = 7.56 (1) ÅMo Kα radiation
b = 9.23 (1) ŵ = 1.31 mm1
c = 12.01 (2) ÅT = 296 K
α = 71.29 (5)°0.30 × 0.15 × 0.10 mm
β = 82.87 (5)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3567 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2402 reflections with I > 2σ(I)
Tmin = 0.672, Tmax = 0.878Rint = 0.033
7753 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.02Δρmax = 0.61 e Å3
3567 reflectionsΔρmin = 1.28 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.39227 (5)0.77082 (4)0.27238 (4)0.0583 (2)
O10.7839 (5)0.8451 (4)0.2814 (3)0.0560 (10)
O20.5810 (4)0.9525 (4)0.1610 (3)0.0530 (9)
O210.6521 (4)1.1868 (4)0.0185 (3)0.0538 (9)
H210.58871.12260.03200.065*
O611.0975 (5)0.9485 (5)0.2350 (3)0.0539 (9)
H611.01080.90080.27600.065*
N30.2798 (6)0.4296 (4)0.5126 (3)0.0466 (10)
H30.27440.34900.57380.056*
N110.2361 (5)0.7001 (4)0.4604 (3)0.0412 (9)
N210.3765 (5)0.5133 (5)0.3060 (4)0.0442 (10)
C10.8659 (6)1.0629 (5)0.1166 (4)0.0334 (10)
C20.8178 (6)1.1811 (5)0.0155 (4)0.0384 (10)
C30.9351 (7)1.2925 (6)0.0495 (5)0.0508 (13)
H3A0.90011.37030.11410.061*
C41.1044 (7)1.2905 (6)0.0201 (5)0.0550 (14)
H41.18331.36830.06350.066*
C51.1586 (6)1.1733 (6)0.0738 (5)0.0474 (12)
H51.27531.17050.09150.057*
C61.0421 (6)1.0615 (5)0.1407 (4)0.0368 (10)
C70.7341 (7)0.9444 (5)0.1910 (4)0.0403 (11)
C120.2176 (6)0.5590 (5)0.5400 (4)0.0372 (10)
C130.1382 (7)0.5354 (6)0.6549 (4)0.0529 (14)
H130.12600.43680.70810.063*
C140.0788 (8)0.6563 (7)0.6891 (5)0.0605 (15)
H140.02530.64180.76580.073*
C150.0985 (8)0.8027 (6)0.6082 (5)0.0574 (15)
H150.06050.88830.62960.069*
C160.1752 (7)0.8163 (6)0.4970 (4)0.0481 (13)
H160.18590.91410.44240.058*
C220.3491 (6)0.3994 (5)0.4090 (4)0.0369 (10)
C230.3820 (7)0.2460 (6)0.4187 (5)0.0501 (13)
H230.35750.16990.49120.060*
C240.4492 (8)0.2099 (7)0.3226 (6)0.0626 (16)
H240.47350.10840.32810.075*
C250.4822 (8)0.3231 (8)0.2158 (6)0.0630 (16)
H250.52910.29960.14830.076*
C260.4447 (7)0.4705 (7)0.2108 (5)0.0533 (14)
H260.46710.54650.13810.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0601 (3)0.0467 (3)0.0552 (3)0.0118 (2)0.0100 (2)0.0027 (2)
O10.063 (2)0.047 (2)0.044 (2)0.0049 (18)0.0059 (18)0.0013 (16)
O20.0394 (19)0.050 (2)0.061 (2)0.0119 (15)0.0042 (17)0.0072 (17)
O210.0390 (18)0.061 (2)0.052 (2)0.0015 (16)0.0109 (17)0.0032 (18)
O610.051 (2)0.065 (2)0.041 (2)0.0104 (18)0.0134 (17)0.0081 (17)
N30.065 (3)0.033 (2)0.033 (2)0.0002 (19)0.0001 (19)0.0004 (16)
N110.049 (2)0.036 (2)0.034 (2)0.0022 (17)0.0029 (18)0.0049 (16)
N210.047 (2)0.043 (2)0.037 (2)0.0033 (18)0.0014 (18)0.0065 (18)
C10.036 (2)0.036 (2)0.028 (2)0.0008 (18)0.0012 (18)0.0102 (18)
C20.041 (2)0.040 (3)0.033 (2)0.003 (2)0.005 (2)0.0095 (19)
C30.053 (3)0.048 (3)0.040 (3)0.000 (2)0.002 (2)0.001 (2)
C40.049 (3)0.057 (3)0.049 (3)0.017 (3)0.006 (3)0.005 (3)
C50.036 (2)0.063 (3)0.050 (3)0.004 (2)0.006 (2)0.025 (3)
C60.039 (2)0.046 (3)0.027 (2)0.004 (2)0.0060 (19)0.0140 (19)
C70.050 (3)0.032 (2)0.036 (2)0.003 (2)0.008 (2)0.0107 (19)
C120.039 (2)0.037 (2)0.034 (2)0.0029 (19)0.005 (2)0.0080 (19)
C130.073 (4)0.043 (3)0.033 (3)0.005 (3)0.009 (3)0.004 (2)
C140.071 (4)0.066 (4)0.039 (3)0.000 (3)0.008 (3)0.014 (3)
C150.075 (4)0.052 (3)0.051 (3)0.018 (3)0.016 (3)0.022 (3)
C160.067 (3)0.033 (3)0.040 (3)0.005 (2)0.013 (2)0.004 (2)
C220.037 (2)0.040 (2)0.033 (2)0.0028 (19)0.0058 (19)0.0088 (19)
C230.060 (3)0.042 (3)0.047 (3)0.001 (2)0.006 (3)0.013 (2)
C240.065 (4)0.061 (4)0.071 (4)0.002 (3)0.009 (3)0.033 (3)
C250.059 (4)0.078 (4)0.063 (4)0.000 (3)0.001 (3)0.040 (3)
C260.054 (3)0.069 (4)0.031 (3)0.002 (3)0.006 (2)0.009 (2)
Geometric parameters (Å, º) top
Ag1—N112.320 (5)C3—H3A0.93
Ag1—N212.286 (5)C4—C51.378 (8)
Ag1—O22.222 (4)C4—H40.93
Ag1—O61i2.703 (4)C5—C61.364 (7)
O1—C71.262 (6)C5—H50.93
O2—C71.247 (6)C12—C131.388 (7)
O21—C21.358 (6)C13—C141.348 (8)
O21—H210.82C13—H130.93
O61—C61.366 (6)C14—C151.390 (8)
O61—H610.82C14—H140.93
N3—C121.385 (6)C15—C161.358 (7)
N3—C221.396 (6)C15—H150.93
N3—H30.86C16—H160.93
N11—C161.327 (6)C22—C231.396 (7)
N11—C121.346 (6)C23—C241.337 (8)
N21—C221.342 (6)C23—H230.93
N21—C261.361 (7)C24—C251.372 (9)
C1—C61.396 (7)C24—H240.93
C1—C21.422 (6)C25—C261.361 (8)
C1—C71.496 (6)C25—H250.93
C2—C31.359 (7)C26—H260.93
C3—C41.367 (8)
O2—Ag1—N21133.99 (15)O61—C6—C1119.4 (4)
O2—Ag1—N11138.13 (16)O2—C7—O1124.3 (4)
N11—Ag1—N2180.97 (15)O2—C7—C1117.7 (4)
O2—Ag1—O61i95.21 (16)O1—C7—C1117.9 (5)
N21—Ag1—O61i120.49 (15)N11—C12—N3122.1 (4)
N11—Ag1—O61i78.52 (14)N11—C12—C13121.8 (5)
C7—O2—Ag1116.2 (3)N3—C12—C13116.2 (4)
C2—O21—H21109.5C14—C13—C12119.6 (5)
C6—O61—H61109.5C14—C13—H13120.2
C12—N3—C22134.9 (4)C12—C13—H13120.2
C12—N3—H3112.5C13—C14—C15119.2 (5)
C22—N3—H3112.5C13—C14—H14120.4
C16—N11—C12117.0 (4)C15—C14—H14120.4
C16—N11—Ag1114.6 (3)C16—C15—C14117.7 (5)
C12—N11—Ag1128.0 (3)C16—C15—H15121.2
C22—N21—C26115.6 (4)C14—C15—H15121.2
C22—N21—Ag1129.2 (3)N11—C16—C15124.7 (5)
C26—N21—Ag1113.2 (3)N11—C16—H16117.6
C6—C1—C2116.7 (4)C15—C16—H16117.6
C6—C1—C7122.2 (4)N21—C22—N3120.7 (4)
C2—C1—C7121.1 (4)N21—C22—C23122.8 (4)
O21—C2—C3118.0 (4)N3—C22—C23116.4 (4)
O21—C2—C1120.9 (4)C24—C23—C22119.2 (5)
C3—C2—C1121.2 (5)C24—C23—H23120.4
C2—C3—C4120.2 (5)C22—C23—H23120.4
C2—C3—H3A119.9C23—C24—C25119.8 (6)
C4—C3—H3A119.9C23—C24—H24120.1
C3—C4—C5120.2 (5)C25—C24—H24120.1
C3—C4—H4119.9C26—C25—C24118.6 (5)
C5—C4—H4119.9C26—C25—H25120.7
C6—C5—C4120.4 (5)C24—C25—H25120.7
C6—C5—H5119.8N21—C26—C25123.9 (5)
C4—C5—H5119.8N21—C26—H26118.1
C5—C6—O61119.4 (5)C25—C26—H26118.1
C5—C6—C1121.2 (4)
N21—Ag1—O2—C767.5 (4)C6—C1—C7—O2178.2 (4)
N11—Ag1—O2—C771.1 (4)C2—C1—C7—O20.4 (7)
O61i—Ag1—O2—C7149.7 (4)C6—C1—C7—O13.3 (7)
O2—Ag1—N11—C1636.7 (5)C2—C1—C7—O1178.1 (4)
N21—Ag1—N11—C16172.1 (4)C16—N11—C12—N3178.5 (5)
O61i—Ag1—N11—C1648.2 (4)Ag1—N11—C12—N36.7 (7)
O2—Ag1—N11—C12135.3 (4)C16—N11—C12—C130.2 (7)
N21—Ag1—N11—C1215.9 (4)Ag1—N11—C12—C13172.0 (4)
O61i—Ag1—N11—C12139.8 (4)C22—N3—C12—N119.0 (9)
O2—Ag1—N21—C22132.2 (4)C22—N3—C12—C13172.2 (5)
N11—Ag1—N21—C2221.3 (4)N11—C12—C13—C140.6 (8)
O61i—Ag1—N21—C2292.2 (4)N3—C12—C13—C14178.2 (5)
O2—Ag1—N21—C2631.2 (4)C12—C13—C14—C150.1 (9)
N11—Ag1—N21—C26175.3 (4)C13—C14—C15—C161.0 (9)
O61i—Ag1—N21—C26104.5 (4)C12—N11—C16—C150.8 (8)
C6—C1—C2—O21176.5 (4)Ag1—N11—C16—C15172.1 (5)
C7—C1—C2—O212.1 (7)C14—C15—C16—N111.4 (9)
C6—C1—C2—C34.1 (7)C26—N21—C22—N3179.9 (5)
C7—C1—C2—C3177.3 (5)Ag1—N21—C22—N316.9 (7)
O21—C2—C3—C4178.9 (5)C26—N21—C22—C232.1 (7)
C1—C2—C3—C41.7 (8)Ag1—N21—C22—C23165.1 (4)
C2—C3—C4—C51.7 (9)C12—N3—C22—N213.8 (8)
C3—C4—C5—C62.4 (8)C12—N3—C22—C23174.3 (5)
C4—C5—C6—O61178.5 (5)N21—C22—C23—C242.2 (8)
C4—C5—C6—C10.3 (8)N3—C22—C23—C24179.7 (5)
C2—C1—C6—C53.4 (7)C22—C23—C24—C251.0 (9)
C7—C1—C6—C5178.0 (4)C23—C24—C25—C260.1 (9)
C2—C1—C6—O61178.4 (4)C22—N21—C26—C250.9 (8)
C7—C1—C6—O610.2 (7)Ag1—N21—C26—C25166.7 (5)
Ag1—O2—C7—O12.9 (6)C24—C25—C26—N210.2 (9)
Ag1—O2—C7—C1178.7 (3)
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O21—H21···O20.821.812.538 (6)146
O61—H61···O10.821.802.525 (6)147
N3—H3···O1ii0.862.082.927 (6)170
C25—H25···O21iii0.932.603.519 (8)171
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y1, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Ag(C6H4NO2)(C10H9N3)][Ag(C7H5O4)(C10H9N3)]
Mr401.17432.18
Crystal system, space groupMonoclinic, P21/nTriclinic, P1
Temperature (K)296296
a, b, c (Å)7.9623 (1), 8.9487 (1), 21.887 (1)7.56 (1), 9.23 (1), 12.01 (2)
α, β, γ (°)90, 96.000 (1), 9071.29 (5), 82.87 (5), 87.44 (5)
V3)1550.95 (8)787.6 (19)
Z42
Radiation typeMo KαMo Kα
µ (mm1)1.311.31
Crystal size (mm)0.30 × 0.10 × 0.100.30 × 0.15 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Rigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Multi-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.649, 0.8770.672, 0.878
No. of measured, independent and
observed [I > 2σ(I)] reflections
15058, 3530, 2779 7753, 3567, 2402
Rint0.0170.033
(sin θ/λ)max1)0.6510.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.055, 0.90 0.050, 0.153, 1.02
No. of reflections35303567
No. of parameters208228
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.270.61, 1.28

Computer programs: RAPID-AUTO (Rigaku, 2003), CrystalStructure (Rigaku/MSC, 2004) and CRYSTALS (Watkin et al., 1996), Crystal Structure and CRYSTALS, CrystalStructure and CRYSTALS, SIR97 (Altomare et al., 1999) and DIRDIF99 (Beurskens et al., 1999), SHELXL97 (Sheldrick, 1997) and WinGX (Farrugia, 1999), PLATON (Spek, 2003), WORDPERFECT.

Selected geometric parameters (Å, º) for (I) top
Ag1—N12.2827 (15)Ag1—N212.3298 (18)
Ag1—N112.3785 (18)Ag1—O2i2.3636 (14)
N1—Ag1—N21125.12 (6)N1—Ag1—N11105.36 (6)
N1—Ag1—O2i128.08 (5)N21—Ag1—N1177.97 (6)
N21—Ag1—O2i99.28 (6)O2i—Ag1—N11109.43 (6)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O2ii0.862.032.894 (2)176.9
C6—H6···O1i0.932.293.096 (2)144.2
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1.
Selected geometric parameters (Å, º) for (II) top
Ag1—N112.320 (5)Ag1—O22.222 (4)
Ag1—N212.286 (5)Ag1—O61i2.703 (4)
O2—Ag1—N21133.99 (15)O2—Ag1—O61i95.21 (16)
O2—Ag1—N11138.13 (16)N21—Ag1—O61i120.49 (15)
N11—Ag1—N2180.97 (15)N11—Ag1—O61i78.52 (14)
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O21—H21···O20.821.812.538 (6)146.3
O61—H61···O10.821.802.525 (6)146.5
N3—H3···O1ii0.862.082.927 (6)170.4
C25—H25···O21iii0.932.603.519 (8)170.5
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds