Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of the title compound, C23H35NO4, contains a unique penta­cyclic ring system wherein one cyclo­hexyl ring adopts a chair conformation, two cyclo­hexyl rings are in boat conformations, and a six-membered heterocyclic ring and a cyclo­pentyl ring are in envelope conformations. The structures of the lycoctamones, α,β-unsaturated aldehydes produced by acid-catalyzed degradation of lactams of lycoctonine-type alkaloids, previously deduced from the results of extensive chemical investigations have been proven to be correct by the determination of the crystal structure of this compound.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106011620/fg3014sup1.cif
Contains datablocks global, 9

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106011620/fg30149sup2.hkl
Contains datablock 9

CCDC reference: 609427

Comment top

During early work on the structure of the norditerpenoid alkaloid lycoctonine (1) it was discovered that the action of strong acids on the lactam derivative (2) induced the loss of two methanol units and its transformation into a product named lycoctamone (Edwards et al., 1954). Later studies revealed that lycoctamone was actually an αβ-unsaturated aldehyde and, after extensive investigations on this compound and some congeners, resulted in the proposed structure (3) (Benn et al. 1971). As shown here, this structure incorporates a revision of the stereochemistry at C-1 required (Pelletier et al., 1981; Edwards & Przybylska, 1982) as a result of an error in the original assignment in the X-ray crystallography of the derivative of (1), which had established the skeleton of these alkaloids (Przybylska & Marion, 1954; Przybylska, 1961); the same correction needs to be made to all other structures of Benn et al. (1971). The absolute structure of the lycoctonine series of compounds has been established previously (Przybylska & Marion, 1959).

The remarkable reorganization needed to produce (3) from (2) was rationalized as proceeding via a cascade of reactions, viz. a pinacolic rearrangement of (2) to (4), followed by a ring contraction of the protonated ketone via another acid-catalyzed 1,2-alkyl shift of the C-8,9 bond, to generate a carbocation that underwent a retro-Prins reaction with ring cleavage and loss of methanol forming an aldehyde, which finally underwent an acid catalyzed 1,2-elimination of another molecule of methanol. An alternative structure, (5), which would result from a fragmentation of protonated (4) induced by migration of the C-8,17 bond to generate a C-8 carbocation, appeared to be improbable because under the reaction conditions its exocyclic double bond would be expected to migrate to form a conjugated dienal system (Benn et al., 1971).

We now report the result of an X-ray crystallographic study which establishes the carbon skeleton of the lycoctamone system, and confirms the conclusions reached from the chemical investigations.

Sodium borohydride reduction of 18-deoxylycoctamone, (6), prepared from 18-deoxylycoctonam, (7) (Benn et al. 1971), gave the corresponding allylic alcohol (8), which was then subjected to hydrogenation over palladium, a process known to result in hydrogenolysis as well as reduction of the endocyclic double bond, (Edwards et al., 1954; Benn et al. 1971) to afford in good yield 18-deoxy-13β,14-dihydrolycoctam, (9), as a crystalline product. X-ray crystallography of this established the structure reported in this paper. This confirmed its molecular skeleton as that of (3), and not (5), and additionally showed that as expected hydrogenation had occurred from the β-face. Thus the structures assigned to lycoctamone and its analogues have been confirmed.

The structure of (9) contains a unique pentacyclic ring system (Fig. 1) that has not been reported in any stucture contained in the latest version of Cambridge Structural Database (2006 Release, Allen, 2002). The six-membered rings C1—C5/C11 (ring A), C5–C7/C9–C11 (ring B), C7–C11/C17 (ring C) and C4/C5/C11/C17/C19/N1 (ring D) adopt chair, boat, boat and C11-envelope conformations, respectively. The five membered ring, C9/C10/C12–C14 (ring E) exhibits a C13-envelope conformation. The puckering parameters (Cremer & Pople, 1975) for ring A are Q = 0.562 (4) Å, θ = 167.7 (4)° and ϕ = 8(2)°. In ring B, atoms C7 and C11 lie 0.735 (5) and 0.709 (5) Å, respectively, out of the plane formed by the remaining four atoms of the ring, the maximum deviation of any of these fours atoms from the plane being 0.052 (2) Å. Similarly, in ring C, atoms C7 and C11 lie 0.735 (5) and 0.709 (5) Å, respectively, out of the plane formed by the remaining four atoms of the ring, with a maximum deviation of 0.082 (2) Å. In the heterocyclic ring D, atom C11 lies 0.720 (5) Å out of the plane formed by the remaining five atoms, which show large deviations from planarity [between 0.120 (2) and 0.146 (3) Å].

The molecular dimensions in (9) are as expected and the structure is stabilized by strong intermolecular hydrogen bonds of the type O—H···O, linking the molecules into spirals along the b direction; details of hydrogen-bonding geometry have been provided in Table 2.

Experimental top

NMR spectra were recorded of samples dissolved in CDCl3 (1H at 400 MHz, with residual CHCl3 as ref. δH 7.25 p.p.m.; 13C at 100 MHz, with the center line of the solvent resonance δC 77.0 p.p.m. as ref.) EIMS were measured using 70 eV sample bombardment. 18-Deoxylycoctamol, (8), m.p. 500–505 K (from Me2CO–hexanes); EIMS m/z 403.2352, C23H33NO5 requires 403.2359; 1H NMR: δH 5.38 (1H, br s, H-14), 5.12 (1H, br s, H-15A) and 5.14 (1H, br s, H-15B), 4.19 (1H, d, J = 2 Hz, H-17), 4.13 (2H, br s, H-16), 3.93 (1H, dq, J = 14.1 and 7.1 Hz, H-20A), 3.57 (3H, s, OCH3), 3.38 (1H, br m), 3.30 (3H, s, OCH3), 3.21 (1H, d, J = 4.1 Hz, H-6), 3.07 (1H, br m), 2.97 (1H, dq, J = 14.1 and 7.1 Hz, H-20B), 2.39 (3H, m), 1.99 (1H, m), 1.94 (1H, m), 1.58 (1H, dd, J = 4.1 and 2.1 Hz, H-5), 1.31 (2H, m), 1.27 (3H, s, H-18), and 1.12 (3H, t, J = 7.1 Hz, H-21); 13C NMR: δC 172.6 (s), 149.1 (s), 143.9 (s), 121.5 (d), 113.0 (t), 85.4 (d), 83.3 (d), 61.7 (t), 60.3 (q), 56.9 (d), 56.5 (q), 53.2 (d), 47.7 (d), 39.0 (t), 36.3 (t), 36.0 (t), 25.2 (t), 22.2 (q), and 11.7 (q). 18-Deoxydihydrolycoctamone (9), m.p. 484–486 K (from Me2CO–hexanes); EIMS m/z 389.2565, C23H35NO4 requires 389.2566; 1H NMR: δH 5.27 (1H, br s, H-15A), 5.25 (1H, br s, H-15B), 4.08 (1H, d, J = 1.5 Hz, H-17), 3.99 (1H, dq, H-20A), 3.55 (3H, s, OCH3), 3.28 (3H, s, OCH3), 3.22 (1H, d, J = 4 Hz, H-6), 3.01 (1H, m), 2.99 (1H, dq, H-20B), 2.76 (1H, m), 2.1–1.8 (4H, m), 1.75–1.55 (4H, m), 1.49 (1H, dd, J = 1.5 and 4 Hz, H-5), 1.26 (3H, s, H-18), 1.13 (3H, t, J = 7.1 Hz, H-21), 0.96 (3H, d, J = (?)Hz, H-15) and 0.94 (1H, m); 13C NMR: δC 172.7 (s), 144.1 (s), 112.9 (t), 84.5 (d), 83.5 (d), 78.4 (s), 60.2 (q), 56.3 (d), 56.2 (q), 54.1 (d), 50.9 (q), 42.8 (s), 39.2 (t), 39.1 (d), 38.6 (t), 38.5 (s), 36.5 (t), 34.6 (d), 33.3 (t), 25.4 (t), 22.1 (q), 18.8 (q), and 11.7 (q).

Refinement top

The H atoms were located in difference Fourier syntheses and were included in the refinements at idealized positions (C—H = 0.96 Å) with isotropic displacement parameters equal to 1.5 (hydroxy atom) and 1.2 (the rest) times the equivalent displacement parameters of the atoms to which they were bonded. The final difference map was free of any chemically significant features. An absolute structure was not established in this analysis; Friedel pairs of reflections were merged.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97).

Figures top
[Figure 1] Fig. 1. An ORTEPII (Johnson, 1976) drawing of (9), with the crystallographic numbering scheme; displacement ellipsoids have been plotted at the 25% probability level.
18-deoxy-13β,14-dihydrolycoctam top
Crystal data top
C23H35NO4F(000) = 424
Mr = 389.52Dx = 1.244 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4396 reflections
a = 9.675 (5) Åθ = 3.8–27.5°
b = 10.401 (6) ŵ = 0.08 mm1
c = 11.063 (7) ÅT = 295 K
β = 110.86 (3)°Needle, colorless
V = 1040.3 (10) Å30.12 × 0.04 × 0.03 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
2486 independent reflections
Radiation source: fine-focus sealed tube1390 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ω and ϕ scansθmax = 27.5°, θmin = 3.8°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1212
Tmin = 0.990, Tmax = 0.997k = 1213
4396 measured reflectionsl = 1414
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.057P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.124(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.17 e Å3
2486 reflectionsΔρmin = 0.20 e Å3
255 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.048 (8)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Secondary atom site location: difference Fourier map
Crystal data top
C23H35NO4V = 1040.3 (10) Å3
Mr = 389.52Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.675 (5) ŵ = 0.08 mm1
b = 10.401 (6) ÅT = 295 K
c = 11.063 (7) Å0.12 × 0.04 × 0.03 mm
β = 110.86 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2486 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
1390 reflections with I > 2σ(I)
Tmin = 0.990, Tmax = 0.997Rint = 0.060
4396 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0511 restraint
wR(F2) = 0.124H-atom parameters constrained
S = 1.01Δρmax = 0.17 e Å3
2486 reflectionsΔρmin = 0.20 e Å3
255 parametersAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7998 (3)0.2269 (3)0.3992 (3)0.0557 (8)
O20.5504 (3)0.0570 (3)0.0709 (2)0.0531 (7)
O30.2990 (3)0.1443 (3)0.2343 (3)0.0531 (7)
O40.5389 (3)0.3278 (2)0.3259 (3)0.0533 (7)
H40.51470.35770.25270.080*
N10.6941 (3)0.0023 (3)0.1308 (3)0.0406 (8)
C10.6472 (4)0.2025 (3)0.3249 (4)0.0451 (10)
H10.58910.23510.37260.054*
C20.6044 (4)0.2709 (4)0.1956 (4)0.0524 (11)
H2A0.67530.25120.15580.063*
H2B0.60400.36190.21010.063*
C30.4533 (4)0.2288 (4)0.1045 (4)0.0520 (10)
H3A0.43160.26560.02010.062*
H3B0.38100.25710.13970.062*
C40.4413 (4)0.0809 (4)0.0909 (3)0.0421 (9)
C50.4646 (4)0.0220 (4)0.2231 (3)0.0390 (9)
H50.39570.06400.25460.047*
C60.4379 (4)0.1243 (4)0.2183 (4)0.0416 (9)
H60.43220.15550.13500.050*
C70.5658 (4)0.1939 (4)0.3221 (3)0.0406 (9)
C80.7075 (4)0.1644 (4)0.2980 (3)0.0410 (9)
C90.5828 (4)0.1356 (4)0.4537 (4)0.0469 (9)
H90.48820.14030.46330.056*
C100.6290 (4)0.0078 (4)0.4550 (3)0.0421 (9)
H100.56320.05830.48330.051*
C110.6205 (4)0.0550 (4)0.3196 (3)0.0389 (8)
C120.7788 (4)0.0156 (4)0.5672 (4)0.0537 (11)
H12A0.79120.09960.60550.064*
H12B0.85560.00010.53300.064*
C130.7708 (5)0.0860 (5)0.6598 (4)0.0689 (13)
H130.70690.05630.70340.083*
C140.6988 (5)0.1980 (4)0.5721 (4)0.0567 (11)
H14A0.76710.24480.54350.068*
H14B0.65110.25610.61220.068*
C150.8104 (4)0.2519 (4)0.3088 (4)0.0537 (11)
H15A0.89910.23040.29310.064*
H15B0.79480.33840.33160.064*
C160.9141 (5)0.1143 (5)0.7692 (4)0.0814 (16)
H16A0.89820.18140.82240.098*
H16B0.98820.14100.73530.098*
H16C0.94670.03790.82010.098*
C170.7249 (4)0.0230 (3)0.2719 (3)0.0380 (9)
H170.82510.00270.31880.046*
C180.2909 (4)0.0477 (5)0.0095 (4)0.0561 (11)
H18A0.28270.04400.01930.067*
H18B0.21320.07930.01750.067*
H18C0.28250.08630.09060.067*
C190.5656 (4)0.0415 (4)0.0441 (3)0.0410 (9)
C200.8143 (4)0.0370 (4)0.0855 (4)0.0519 (11)
H20A0.78000.02770.00690.062*
H20B0.84140.12490.10820.062*
C210.9517 (5)0.0440 (5)0.1429 (5)0.0787 (15)
H21A1.02590.01630.10960.094*
H21B0.92750.13240.12020.094*
H21C0.98890.03520.23540.094*
C220.8241 (5)0.3500 (5)0.4584 (5)0.0790 (15)
H22A0.92760.36270.50580.095*
H22B0.78830.41700.39520.095*
H22C0.77100.35230.51690.095*
C230.2121 (4)0.2467 (5)0.1608 (5)0.0688 (13)
H23A0.12200.25450.17810.083*
H23B0.18910.23150.07020.083*
H23C0.26810.32470.18550.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0521 (16)0.0482 (18)0.0597 (17)0.0058 (14)0.0115 (13)0.0007 (14)
O20.0666 (17)0.0563 (18)0.0412 (15)0.0020 (14)0.0252 (13)0.0066 (14)
O30.0454 (14)0.0602 (18)0.0593 (16)0.0057 (14)0.0256 (13)0.0040 (15)
O40.0697 (17)0.0387 (16)0.0509 (16)0.0062 (13)0.0207 (15)0.0018 (13)
N10.0403 (17)0.0438 (19)0.0425 (17)0.0004 (14)0.0207 (15)0.0021 (15)
C10.045 (2)0.040 (2)0.050 (2)0.0006 (18)0.0170 (18)0.0025 (18)
C20.070 (3)0.035 (2)0.054 (3)0.0012 (19)0.025 (2)0.0026 (19)
C30.062 (2)0.046 (2)0.048 (2)0.010 (2)0.019 (2)0.005 (2)
C40.0408 (19)0.045 (2)0.040 (2)0.0005 (17)0.0139 (16)0.0016 (18)
C50.0395 (19)0.042 (2)0.0386 (19)0.0039 (16)0.0176 (15)0.0012 (17)
C60.045 (2)0.046 (2)0.0370 (19)0.0007 (18)0.0188 (16)0.0002 (17)
C70.046 (2)0.041 (2)0.038 (2)0.0015 (17)0.0188 (17)0.0036 (18)
C80.045 (2)0.042 (2)0.036 (2)0.0025 (18)0.0147 (16)0.0011 (17)
C90.053 (2)0.048 (2)0.044 (2)0.0056 (19)0.0230 (18)0.0019 (19)
C100.050 (2)0.042 (2)0.037 (2)0.0063 (18)0.0188 (17)0.0013 (17)
C110.0423 (19)0.039 (2)0.0374 (19)0.0016 (17)0.0163 (15)0.0001 (17)
C120.065 (2)0.053 (3)0.041 (2)0.003 (2)0.0157 (19)0.0039 (19)
C130.081 (3)0.058 (3)0.054 (3)0.002 (2)0.006 (2)0.007 (2)
C140.069 (3)0.055 (3)0.044 (2)0.001 (2)0.018 (2)0.009 (2)
C150.055 (2)0.051 (2)0.057 (3)0.008 (2)0.023 (2)0.005 (2)
C160.090 (3)0.074 (4)0.057 (3)0.004 (3)0.002 (3)0.012 (3)
C170.0383 (19)0.040 (2)0.0346 (19)0.0007 (16)0.0116 (15)0.0009 (16)
C180.047 (2)0.070 (3)0.049 (2)0.002 (2)0.0137 (18)0.016 (2)
C190.047 (2)0.039 (2)0.037 (2)0.0046 (18)0.0155 (16)0.0016 (18)
C200.054 (2)0.056 (3)0.058 (3)0.007 (2)0.034 (2)0.003 (2)
C210.056 (3)0.086 (4)0.104 (4)0.014 (3)0.042 (3)0.010 (3)
C220.077 (3)0.060 (3)0.087 (4)0.014 (3)0.014 (3)0.007 (3)
C230.058 (2)0.066 (3)0.081 (3)0.015 (3)0.022 (2)0.004 (3)
Geometric parameters (Å, º) top
O1—C221.419 (6)C10—C121.538 (5)
O1—C11.434 (4)C10—C111.551 (5)
O2—C191.238 (4)C10—H100.9599
O3—C231.420 (5)C11—C171.529 (5)
O3—C61.432 (4)C12—C131.493 (6)
O4—C71.420 (4)C12—H12A0.9601
O4—H40.8200C12—H12B0.9600
N1—C191.350 (4)C13—C161.509 (6)
N1—C201.466 (4)C13—C141.517 (6)
N1—C171.497 (5)C13—H130.9600
C1—C21.517 (6)C14—H14A0.9600
C1—C111.553 (5)C14—H14B0.9600
C1—H10.9600C15—H15A0.9600
C2—C31.515 (5)C15—H15B0.9600
C2—H2A0.9600C16—H16A0.9602
C2—H2B0.9600C16—H16B0.9600
C3—C41.547 (5)C16—H16C0.9598
C3—H3A0.9600C17—H170.9600
C3—H3B0.9600C18—H18A0.9600
C4—C181.523 (5)C18—H18B0.9600
C4—C191.525 (5)C18—H18C0.9601
C4—C51.527 (5)C20—C211.510 (6)
C5—C61.541 (5)C20—H20A0.9599
C5—C111.544 (5)C20—H20B0.9599
C5—H50.9599C21—H21A0.9601
C6—C71.537 (5)C21—H21B0.9599
C6—H60.9599C21—H21C0.9600
C7—C81.518 (5)C22—H22A0.9600
C7—C91.532 (5)C22—H22B0.9601
C8—C151.323 (5)C22—H22C0.9599
C8—C171.521 (5)C23—H23A0.9600
C9—C141.533 (5)C23—H23B0.9600
C9—C101.555 (5)C23—H23C0.9600
C9—H90.9600
C22—O1—C1113.1 (3)C10—C11—C1109.0 (3)
C23—O3—C6115.4 (3)C13—C12—C10104.6 (3)
C7—O4—H4109.5C13—C12—H12A111.8
C19—N1—C20118.8 (3)C10—C12—H12A109.8
C19—N1—C17125.5 (3)C13—C12—H12B112.9
C20—N1—C17115.7 (3)C10—C12—H12B108.2
O1—C1—C2109.7 (3)H12A—C12—H12B109.5
O1—C1—C11108.7 (3)C12—C13—C16115.5 (4)
C2—C1—C11116.2 (3)C12—C13—C14103.2 (4)
O1—C1—H1107.9C16—C13—C14116.4 (4)
C2—C1—H1109.6C12—C13—H13108.4
C11—C1—H1104.4C16—C13—H13103.4
C3—C2—C1111.5 (3)C14—C13—H13109.8
C3—C2—H2A108.1C13—C14—C9104.5 (3)
C1—C2—H2A109.5C13—C14—H14A112.8
C3—C2—H2B109.6C9—C14—H14A108.3
C1—C2—H2B108.7C13—C14—H14B111.9
H2A—C2—H2B109.5C9—C14—H14B109.6
C2—C3—C4111.9 (3)H14A—C14—H14B109.5
C2—C3—H3A110.9C8—C15—H15A121.0
C4—C3—H3A108.6C8—C15—H15B119.0
C2—C3—H3B108.1H15A—C15—H15B120.0
C4—C3—H3B107.7C13—C16—H16A109.3
H3A—C3—H3B109.5C13—C16—H16B110.1
C18—C4—C19110.9 (3)H16A—C16—H16B109.5
C18—C4—C5112.6 (3)C13—C16—H16C109.0
C19—C4—C5110.6 (3)H16A—C16—H16C109.5
C18—C4—C3108.4 (3)H16B—C16—H16C109.5
C19—C4—C3105.0 (3)N1—C17—C8110.0 (3)
C5—C4—C3109.0 (3)N1—C17—C11111.9 (3)
C4—C5—C6113.4 (3)C8—C17—C11108.4 (3)
C4—C5—C11110.4 (3)N1—C17—H17108.2
C6—C5—C11110.7 (3)C8—C17—H17109.0
C4—C5—H5106.3C11—C17—H17109.3
C6—C5—H5109.4C4—C18—H18A109.1
C11—C5—H5106.4C4—C18—H18B110.3
O3—C6—C7112.4 (3)H18A—C18—H18B109.5
O3—C6—C5107.0 (3)C4—C18—H18C109.1
C7—C6—C5111.0 (3)H18A—C18—H18C109.5
O3—C6—H6109.5H18B—C18—H18C109.5
C7—C6—H6108.3O2—C19—N1121.1 (3)
C5—C6—H6108.6O2—C19—C4119.6 (3)
O4—C7—C8113.0 (3)N1—C19—C4119.2 (3)
O4—C7—C9108.6 (3)N1—C20—C21113.9 (4)
C8—C7—C9106.8 (3)N1—C20—H20A108.9
O4—C7—C6112.2 (3)C21—C20—H20A108.1
C8—C7—C6108.1 (3)N1—C20—H20B108.7
C9—C7—C6108.0 (3)C21—C20—H20B107.7
C15—C8—C7122.9 (4)H20A—C20—H20B109.5
C15—C8—C17123.5 (3)C20—C21—H21A109.7
C7—C8—C17113.4 (3)C20—C21—H21B109.1
C7—C9—C14116.3 (3)H21A—C21—H21B109.5
C7—C9—C10108.8 (3)C20—C21—H21C109.6
C14—C9—C10106.1 (3)H21A—C21—H21C109.5
C7—C9—H9107.5H21B—C21—H21C109.5
C14—C9—H9108.7O1—C22—H22A110.1
C10—C9—H9109.3O1—C22—H22B111.2
C12—C10—C11118.3 (3)H22A—C22—H22B109.5
C12—C10—C9104.1 (3)O1—C22—H22C107.0
C11—C10—C9112.3 (3)H22A—C22—H22C109.5
C12—C10—H10104.6H22B—C22—H22C109.5
C11—C10—H10109.2O3—C23—H23A110.1
C9—C10—H10107.8O3—C23—H23B110.1
C17—C11—C5104.3 (3)H23A—C23—H23B109.5
C17—C11—C10110.6 (3)O3—C23—H23C108.2
C5—C11—C10107.5 (3)H23A—C23—H23C109.5
C17—C11—C1114.5 (3)H23B—C23—H23C109.5
C5—C11—C1110.7 (3)
C22—O1—C1—C278.3 (4)C6—C5—C11—C1179.8 (3)
C22—O1—C1—C11153.6 (4)C12—C10—C11—C1760.3 (4)
O1—C1—C2—C3169.7 (3)C9—C10—C11—C1760.9 (4)
C11—C1—C2—C345.9 (4)C12—C10—C11—C5173.5 (3)
C1—C2—C3—C452.4 (4)C9—C10—C11—C552.3 (4)
C2—C3—C4—C18175.8 (3)C12—C10—C11—C166.4 (4)
C2—C3—C4—C1957.3 (4)C9—C10—C11—C1172.4 (3)
C2—C3—C4—C561.2 (4)O1—C1—C11—C1753.5 (4)
C18—C4—C5—C653.3 (4)C2—C1—C11—C1770.8 (4)
C19—C4—C5—C671.4 (4)O1—C1—C11—C5171.0 (3)
C3—C4—C5—C6173.6 (3)C2—C1—C11—C546.7 (4)
C18—C4—C5—C11178.1 (3)O1—C1—C11—C1071.0 (4)
C19—C4—C5—C1153.4 (4)C2—C1—C11—C10164.8 (3)
C3—C4—C5—C1161.5 (4)C11—C10—C12—C13154.6 (4)
C23—O3—C6—C794.5 (4)C9—C10—C12—C1329.3 (4)
C23—O3—C6—C5143.4 (3)C10—C12—C13—C16170.2 (4)
C4—C5—C6—O3105.6 (3)C10—C12—C13—C1442.0 (4)
C11—C5—C6—O3129.8 (3)C12—C13—C14—C938.0 (4)
C4—C5—C6—C7131.4 (3)C16—C13—C14—C9165.6 (4)
C11—C5—C6—C76.8 (4)C7—C9—C14—C13140.6 (4)
O3—C6—C7—O455.9 (4)C10—C9—C14—C1319.6 (4)
C5—C6—C7—O4175.7 (3)C19—N1—C17—C899.5 (4)
O3—C6—C7—C8178.9 (3)C20—N1—C17—C878.6 (4)
C5—C6—C7—C859.1 (4)C19—N1—C17—C1121.1 (5)
O3—C6—C7—C963.7 (4)C20—N1—C17—C11160.7 (3)
C5—C6—C7—C956.1 (4)C15—C8—C17—N180.3 (4)
O4—C7—C8—C1514.3 (5)C7—C8—C17—N1104.7 (3)
C9—C7—C8—C15104.9 (4)C15—C8—C17—C11157.0 (3)
C6—C7—C8—C15139.1 (4)C7—C8—C17—C1118.0 (4)
O4—C7—C8—C17170.6 (3)C5—C11—C17—N151.2 (4)
C9—C7—C8—C1770.1 (4)C10—C11—C17—N1166.4 (3)
C6—C7—C8—C1745.9 (4)C1—C11—C17—N170.0 (4)
O4—C7—C9—C1454.3 (4)C5—C11—C17—C870.4 (3)
C8—C7—C9—C1467.8 (4)C10—C11—C17—C844.8 (4)
C6—C7—C9—C14176.2 (3)C1—C11—C17—C8168.5 (3)
O4—C7—C9—C10174.0 (3)C20—N1—C19—O22.7 (5)
C8—C7—C9—C1051.9 (4)C17—N1—C19—O2179.2 (3)
C6—C7—C9—C1064.2 (3)C20—N1—C19—C4178.6 (3)
C7—C9—C10—C12120.2 (3)C17—N1—C19—C43.4 (5)
C14—C9—C10—C125.6 (4)C18—C4—C19—O239.3 (5)
C7—C9—C10—C118.9 (4)C5—C4—C19—O2165.0 (3)
C14—C9—C10—C11134.7 (3)C3—C4—C19—O277.6 (4)
C4—C5—C11—C1769.8 (4)C18—C4—C19—N1144.8 (3)
C6—C5—C11—C1756.6 (4)C5—C4—C19—N119.1 (5)
C4—C5—C11—C10172.8 (3)C3—C4—C19—N198.3 (4)
C6—C5—C11—C1060.8 (4)C19—N1—C20—C21117.1 (4)
C4—C5—C11—C153.9 (4)C17—N1—C20—C2164.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.822.082.900 (4)177
Symmetry code: (i) x+1, y1/2, z.

Experimental details

Crystal data
Chemical formulaC23H35NO4
Mr389.52
Crystal system, space groupMonoclinic, P21
Temperature (K)295
a, b, c (Å)9.675 (5), 10.401 (6), 11.063 (7)
β (°) 110.86 (3)
V3)1040.3 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.12 × 0.04 × 0.03
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.990, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
4396, 2486, 1390
Rint0.060
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.124, 1.01
No. of reflections2486
No. of parameters255
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.20
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881

Computer programs: COLLECT (Nonius, 1998), HKL DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SAPI91 (Fan, 1991), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97).

Selected geometric parameters (Å, º) top
O1—C221.419 (6)O4—C71.420 (4)
O1—C11.434 (4)N1—C191.350 (4)
O2—C191.238 (4)N1—C201.466 (4)
O3—C231.420 (5)N1—C171.497 (5)
O3—C61.432 (4)
C22—O1—C1113.1 (3)C19—N1—C17125.5 (3)
C23—O3—C6115.4 (3)C20—N1—C17115.7 (3)
C19—N1—C20118.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.822.082.900 (4)177
Symmetry code: (i) x+1, y1/2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds