Buy article online - an online subscription or single-article purchase is required to access this article.
The supramolecular architectures of three dicarboxylic acid–biimidazole compounds, namely, 2,2′-biimidazolium malonate, C
6H
8N
42+·C
3H
2O
42−, (I), 2,2′-bi(1
H-imidazole) succinic acid, C
6H
6N
4·C
4H
6O
4, (II), and 2,2′-biimidazolium 2,2′-iminiodiacetate chloride, C
6H
8N
42+·C
4H
6NO
4−·Cl
−, (III), are reported. The crystal structures are assembled by the same process, namely double conventional N—H
O or O—H
N hydrogen bonds link the dicarboxylates and biimidazoles to form tapes, which are stacked in parallel through lone-pair–aromatic interactions between carbonyl O atoms and biimidazole groups and are further linked
via weak C—H
O interactions. The C=O
π interactions involved in stacking the tapes in (II) and the C—H
O interactions involved in linking the tapes in (II) and (III) demonstrate the crucial role of these interactions in the crystal packing. There is crystallographically imposed symmetry in all three structures. In (I), two independent malonate anions have their central C atoms on twofold axes and two biimidazolium dications each lie about independent inversion centres; in (II), the components lie about inversion centres, while in (III), the unique cation lies about an inversion centre and the iminiodiacetate and chloride anions lie across and on a mirror plane, respectively.
Supporting information
CCDC references: 730085; 730086; 730087
Diimizazole (1 mmol) and malonic, succinic or iminodiacetic acid (1 mmol) were
dissolved in 10 ml of water by adding 0.7–0.9 ml of 2M HCl while
stirring. The solutions were left standing at room temperature, and several
days later, colorless crystals (I), (II) and (III) were obtained.
For compound (III), the systematic absences permitted P21 or
P21/m as possible space groups; P21/m was
selected, and confirmed by the structure analysis. H atoms attached to C atoms
of (I), (II), and (III) were placed in geometrically idealized positions and
refined with Uiso(H) values of 1.2Ueq(C). H atoms attached
to N and O atoms were located from difference Fourier maps and refined using a
riding model, with Uiso(H) values of 1.2Ueq(N) or
1.5Ueq(O) of their parent atoms.
For all compounds, data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Version 6.10; Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Version 6.10; Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997).
(I) 2,2'-biimidazol-1-ium malonate
top
Crystal data top
C6H8N42+·C3H2O42− | F(000) = 496 |
Mr = 238.21 | Dx = 1.518 Mg m−3 |
Monoclinic, P2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yc | Cell parameters from 2156 reflections |
a = 15.663 (5) Å | θ = 2.6–26.6° |
b = 4.4319 (14) Å | µ = 0.12 mm−1 |
c = 18.221 (4) Å | T = 298 K |
β = 124.517 (18)° | Block, colorless |
V = 1042.2 (5) Å3 | 0.40 × 0.40 × 0.40 mm |
Z = 4 | |
Data collection top
SMART 1K CCD area detector diffractometer | 1841 independent reflections |
Radiation source: fine-focus sealed tube | 1519 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
ω scans | θmax = 25.0°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | h = −18→17 |
Tmin = 0.845, Tmax = 0.953 | k = −4→5 |
4027 measured reflections | l = −13→21 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0737P)2 + 0.1574P] where P = (Fo2 + 2Fc2)/3 |
1841 reflections | (Δ/σ)max < 0.001 |
155 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
Crystal data top
C6H8N42+·C3H2O42− | V = 1042.2 (5) Å3 |
Mr = 238.21 | Z = 4 |
Monoclinic, P2/c | Mo Kα radiation |
a = 15.663 (5) Å | µ = 0.12 mm−1 |
b = 4.4319 (14) Å | T = 298 K |
c = 18.221 (4) Å | 0.40 × 0.40 × 0.40 mm |
β = 124.517 (18)° | |
Data collection top
SMART 1K CCD area detector diffractometer | 1841 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | 1519 reflections with I > 2σ(I) |
Tmin = 0.845, Tmax = 0.953 | Rint = 0.014 |
4027 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.28 e Å−3 |
1841 reflections | Δρmin = −0.23 e Å−3 |
155 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
N1 | 0.38756 (10) | −0.0994 (3) | 0.50257 (10) | 0.0448 (4) | |
H1 | 0.4077 | −0.2324 | 0.5436 | 0.054* | |
N2 | 0.38848 (10) | 0.2261 (3) | 0.41376 (9) | 0.0447 (4) | |
H2A | 0.4095 | 0.3369 | 0.3882 | 0.054* | |
C1 | 0.44579 (11) | 0.0313 (4) | 0.47993 (10) | 0.0376 (4) | |
C2 | 0.29033 (12) | 0.0153 (5) | 0.44903 (12) | 0.0526 (5) | |
H2 | 0.2336 | −0.0370 | 0.4502 | 0.063* | |
C3 | 0.29036 (13) | 0.2176 (4) | 0.39402 (13) | 0.0524 (5) | |
H3 | 0.2340 | 0.3308 | 0.3506 | 0.063* | |
N3 | 0.11051 (10) | −0.0743 (3) | 0.61516 (10) | 0.0477 (4) | |
H3A | 0.0908 | −0.2065 | 0.6372 | 0.057* | |
N4 | 0.10929 (10) | 0.2374 (3) | 0.52270 (10) | 0.0467 (4) | |
H4 | 0.0886 | 0.3394 | 0.4753 | 0.056* | |
C4 | 0.05320 (11) | 0.0398 (4) | 0.53333 (11) | 0.0403 (4) | |
C5 | 0.20623 (13) | 0.0560 (5) | 0.65788 (13) | 0.0557 (5) | |
H5 | 0.2619 | 0.0181 | 0.7161 | 0.067* | |
C6 | 0.20550 (13) | 0.2493 (4) | 0.60057 (13) | 0.0547 (5) | |
H6 | 0.2605 | 0.3691 | 0.6119 | 0.066* | |
O1 | −0.07742 (9) | 0.4454 (3) | 0.29230 (8) | 0.0592 (4) | |
O2 | 0.08014 (10) | 0.6000 (4) | 0.39643 (9) | 0.0658 (4) | |
C7 | 0.00159 (12) | 0.5995 (4) | 0.31838 (11) | 0.0408 (4) | |
C8 | 0.0000 | 0.7940 (5) | 0.2500 | 0.0447 (6) | |
H8A | 0.0609 | 0.9224 | 0.2789 | 0.054* | 0.50 |
H8B | −0.0609 | 0.9224 | 0.2211 | 0.054* | 0.50 |
O3 | 0.58047 (9) | 0.4586 (3) | 0.37051 (9) | 0.0566 (4) | |
O4 | 0.42010 (10) | 0.5977 (4) | 0.31770 (10) | 0.0686 (5) | |
C9 | 0.49928 (12) | 0.6059 (4) | 0.31758 (11) | 0.0407 (4) | |
C10 | 0.5000 | 0.8000 (5) | 0.2500 | 0.0434 (6) | |
H10A | 0.5608 | 0.9285 | 0.2800 | 0.052* | 0.50 |
H10B | 0.4392 | 0.9285 | 0.2200 | 0.052* | 0.50 |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
N1 | 0.0378 (7) | 0.0500 (8) | 0.0458 (8) | −0.0010 (6) | 0.0232 (7) | 0.0005 (7) |
N2 | 0.0378 (7) | 0.0511 (8) | 0.0404 (8) | 0.0052 (6) | 0.0194 (6) | 0.0035 (6) |
C1 | 0.0323 (8) | 0.0425 (9) | 0.0350 (8) | −0.0004 (6) | 0.0172 (7) | −0.0048 (6) |
C2 | 0.0336 (9) | 0.0674 (12) | 0.0551 (11) | −0.0027 (8) | 0.0241 (8) | −0.0051 (9) |
C3 | 0.0334 (8) | 0.0626 (11) | 0.0480 (10) | 0.0092 (8) | 0.0151 (8) | 0.0009 (9) |
N3 | 0.0406 (8) | 0.0572 (9) | 0.0433 (8) | −0.0044 (6) | 0.0226 (7) | −0.0001 (7) |
N4 | 0.0391 (7) | 0.0549 (9) | 0.0469 (8) | −0.0069 (6) | 0.0249 (7) | −0.0025 (7) |
C4 | 0.0351 (8) | 0.0472 (9) | 0.0411 (9) | −0.0023 (7) | 0.0231 (8) | −0.0062 (7) |
C5 | 0.0365 (9) | 0.0726 (13) | 0.0455 (10) | −0.0029 (8) | 0.0157 (8) | −0.0012 (9) |
C6 | 0.0373 (9) | 0.0652 (12) | 0.0571 (12) | −0.0119 (8) | 0.0240 (9) | −0.0062 (9) |
O1 | 0.0486 (7) | 0.0735 (9) | 0.0468 (8) | −0.0200 (6) | 0.0218 (6) | −0.0017 (6) |
O2 | 0.0457 (7) | 0.0886 (10) | 0.0462 (8) | −0.0187 (7) | 0.0160 (6) | 0.0089 (7) |
C7 | 0.0361 (8) | 0.0439 (9) | 0.0435 (10) | −0.0018 (7) | 0.0232 (8) | −0.0071 (7) |
C8 | 0.0434 (13) | 0.0409 (12) | 0.0472 (14) | 0.000 | 0.0241 (11) | 0.000 |
O3 | 0.0428 (7) | 0.0682 (8) | 0.0576 (8) | 0.0090 (6) | 0.0277 (6) | 0.0194 (7) |
O4 | 0.0509 (8) | 0.0927 (11) | 0.0728 (10) | 0.0197 (7) | 0.0414 (8) | 0.0330 (8) |
C9 | 0.0383 (8) | 0.0430 (9) | 0.0381 (9) | −0.0016 (7) | 0.0200 (7) | −0.0069 (7) |
C10 | 0.0429 (12) | 0.0403 (12) | 0.0457 (14) | 0.000 | 0.0243 (11) | 0.000 |
Geometric parameters (Å, º) top
N1—C1 | 1.328 (2) | C4—C4ii | 1.443 (3) |
N1—C2 | 1.359 (2) | C5—C6 | 1.346 (3) |
N1—H1 | 0.8600 | C5—H5 | 0.9300 |
N2—C1 | 1.333 (2) | C6—H6 | 0.9300 |
N2—C3 | 1.366 (2) | O1—C7 | 1.248 (2) |
N2—H2A | 0.8600 | O2—C7 | 1.246 (2) |
C1—C1i | 1.445 (3) | C7—C8 | 1.504 (2) |
C2—C3 | 1.345 (3) | C8—C7iii | 1.504 (2) |
C2—H2 | 0.9300 | C8—H8A | 0.9700 |
C3—H3 | 0.9300 | C8—H8B | 0.9700 |
N3—C4 | 1.330 (2) | O3—C9 | 1.258 (2) |
N3—C5 | 1.366 (2) | O4—C9 | 1.242 (2) |
N3—H3A | 0.8600 | C9—C10 | 1.508 (2) |
N4—C4 | 1.330 (2) | C10—C9iv | 1.508 (2) |
N4—C6 | 1.365 (2) | C10—H10A | 0.9700 |
N4—H4 | 0.8600 | C10—H10B | 0.9700 |
| | | |
C1—N1—C2 | 107.55 (15) | C6—C5—N3 | 107.65 (16) |
C1—N1—H1 | 126.2 | C6—C5—H5 | 126.2 |
C2—N1—H1 | 126.2 | N3—C5—H5 | 126.2 |
C1—N2—C3 | 107.50 (15) | C5—C6—N4 | 107.51 (15) |
C1—N2—H2A | 126.3 | C5—C6—H6 | 126.2 |
C3—N2—H2A | 126.3 | N4—C6—H6 | 126.2 |
N1—C1—N2 | 109.53 (14) | O2—C7—O1 | 124.07 (17) |
N1—C1—C1i | 125.16 (19) | O2—C7—C8 | 119.12 (14) |
N2—C1—C1i | 125.31 (19) | O1—C7—C8 | 116.81 (14) |
C3—C2—N1 | 108.11 (16) | C7—C8—C7iii | 110.04 (19) |
C3—C2—H2 | 125.9 | C7—C8—H8A | 109.7 |
N1—C2—H2 | 125.9 | C7iii—C8—H8A | 109.7 |
C2—C3—N2 | 107.31 (15) | C7—C8—H8B | 109.7 |
C2—C3—H3 | 126.3 | C7iii—C8—H8B | 109.7 |
N2—C3—H3 | 126.3 | H8A—C8—H8B | 108.2 |
C4—N3—C5 | 107.68 (16) | O4—C9—O3 | 124.07 (16) |
C4—N3—H3A | 126.2 | O4—C9—C10 | 119.19 (14) |
C5—N3—H3A | 126.2 | O3—C9—C10 | 116.74 (13) |
C4—N4—C6 | 107.78 (15) | C9—C10—C9iv | 110.39 (19) |
C4—N4—H4 | 126.1 | C9—C10—H10A | 109.6 |
C6—N4—H4 | 126.1 | C9iv—C10—H10A | 109.6 |
N3—C4—N4 | 109.38 (14) | C9—C10—H10B | 109.6 |
N3—C4—C4ii | 125.1 (2) | C9iv—C10—H10B | 109.6 |
N4—C4—C4ii | 125.5 (2) | H10A—C10—H10B | 108.1 |
| | | |
C2—N1—C1—N2 | 0.15 (19) | C6—N4—C4—N3 | −0.1 (2) |
C2—N1—C1—C1i | −179.1 (2) | C6—N4—C4—C4ii | −180.0 (2) |
C3—N2—C1—N1 | 0.01 (19) | C4—N3—C5—C6 | −0.1 (2) |
C3—N2—C1—C1i | 179.2 (2) | N3—C5—C6—N4 | 0.0 (2) |
C1—N1—C2—C3 | −0.3 (2) | C4—N4—C6—C5 | 0.0 (2) |
N1—C2—C3—N2 | 0.3 (2) | O2—C7—C8—C7iii | 113.09 (17) |
C1—N2—C3—C2 | −0.2 (2) | O1—C7—C8—C7iii | −66.74 (13) |
C5—N3—C4—N4 | 0.1 (2) | O4—C9—C10—C9iv | −110.35 (17) |
C5—N3—C4—C4ii | 180.0 (2) | O3—C9—C10—C9iv | 69.08 (14) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y, −z+1; (iii) −x, y, −z+1/2; (iv) −x+1, y, −z+1/2. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3i | 0.86 | 1.78 | 2.612 (2) | 163 |
N2—H2A···O4 | 0.86 | 1.80 | 2.646 (2) | 166 |
N3—H3A···O1ii | 0.86 | 1.77 | 2.609 (2) | 166 |
N4—H4···O2 | 0.86 | 1.79 | 2.626 (2) | 164 |
C2—H2···O2v | 0.93 | 2.58 | 3.401 (2) | 148 |
C3—H3···O1iii | 0.93 | 2.41 | 3.292 (2) | 158 |
C5—H5···O4vi | 0.93 | 2.70 | 3.317 (2) | 125 |
C6—H6···O3vii | 0.93 | 2.45 | 3.345 (2) | 162 |
C7—O1···Cg2viii | 1.25 (1) | 3.49 (1) | 3.714 (3) | 90 |
C9—O3···Cg1vii | 1.26 (1) | 3.54 (1) | 3.796 (2) | 92 |
C9—O4···Cg1ix | 1.24 (1) | 3.68 (1) | 4.538 (3) | 127 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y, −z+1; (iii) −x, y, −z+1/2; (v) x, y−1, z; (vi) x, −y+1, z+1/2; (vii) −x+1, −y+1, −z+1; (viii) −x, −y+1, −z+1; (ix) x, y+1, z. |
(II) 2,2'-bi(1
H-imidazole) succinic acid
top
Crystal data top
C6H6N4·C4H6O4 | F(000) = 264 |
Mr = 252.24 | Dx = 1.457 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 903 reflections |
a = 4.906 (3) Å | θ = 2.8–23.3° |
b = 13.887 (8) Å | µ = 0.12 mm−1 |
c = 8.468 (5) Å | T = 298 K |
β = 94.839 (8)° | Block, colorless |
V = 574.9 (6) Å3 | 0.30 × 0.30 × 0.27 mm |
Z = 2 | |
Data collection top
SMART 1K CCD area detector diffractometer | 1055 independent reflections |
Radiation source: fine-focus sealed tube | 868 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ω scans | θmax = 25.5°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | h = −5→3 |
Tmin = 0.845, Tmax = 0.970 | k = −15→16 |
2390 measured reflections | l = −9→10 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.054P)2 + 0.1478P] where P = (Fo2 + 2Fc2)/3 |
1055 reflections | (Δ/σ)max < 0.001 |
82 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.15 e Å−3 |
Crystal data top
C6H6N4·C4H6O4 | V = 574.9 (6) Å3 |
Mr = 252.24 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 4.906 (3) Å | µ = 0.12 mm−1 |
b = 13.887 (8) Å | T = 298 K |
c = 8.468 (5) Å | 0.30 × 0.30 × 0.27 mm |
β = 94.839 (8)° | |
Data collection top
SMART 1K CCD area detector diffractometer | 1055 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | 868 reflections with I > 2σ(I) |
Tmin = 0.845, Tmax = 0.970 | Rint = 0.026 |
2390 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.19 e Å−3 |
1055 reflections | Δρmin = −0.15 e Å−3 |
82 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
N1 | 0.7906 (3) | 0.39353 (12) | 0.44355 (19) | 0.0466 (5) | |
N2 | 1.1535 (3) | 0.39751 (11) | 0.61309 (19) | 0.0447 (5) | |
H2B | 1.2933 | 0.4191 | 0.6704 | 0.054* | |
C1 | 0.9846 (3) | 0.44912 (13) | 0.5131 (2) | 0.0390 (5) | |
C2 | 0.8420 (4) | 0.30310 (15) | 0.5024 (3) | 0.0569 (6) | |
H2A | 0.7393 | 0.2486 | 0.4740 | 0.068* | |
C3 | 1.0633 (4) | 0.30485 (15) | 0.6073 (3) | 0.0557 (6) | |
H3 | 1.1398 | 0.2529 | 0.6646 | 0.067* | |
O1 | 0.4082 (3) | 0.54988 (10) | 0.17524 (16) | 0.0513 (4) | |
O2 | 0.3784 (3) | 0.39482 (10) | 0.23405 (17) | 0.0573 (5) | |
H2 | 0.5124 | 0.4025 | 0.3028 | 0.086* | |
C4 | 0.2966 (4) | 0.47178 (14) | 0.1573 (2) | 0.0401 (5) | |
C5 | 0.0499 (4) | 0.45539 (14) | 0.0442 (2) | 0.0425 (5) | |
H5A | −0.0967 | 0.4305 | 0.1026 | 0.051* | |
H5B | 0.0929 | 0.4067 | −0.0321 | 0.051* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
N1 | 0.0446 (10) | 0.0426 (10) | 0.0494 (10) | −0.0011 (7) | −0.0151 (8) | 0.0019 (7) |
N2 | 0.0421 (9) | 0.0427 (10) | 0.0460 (9) | 0.0028 (7) | −0.0160 (7) | 0.0019 (7) |
C1 | 0.0364 (10) | 0.0419 (10) | 0.0371 (10) | 0.0029 (8) | −0.0068 (8) | 0.0017 (8) |
C2 | 0.0585 (13) | 0.0397 (12) | 0.0678 (14) | −0.0041 (9) | −0.0214 (11) | 0.0030 (10) |
C3 | 0.0614 (13) | 0.0385 (11) | 0.0630 (13) | 0.0026 (9) | −0.0202 (10) | 0.0072 (10) |
O1 | 0.0479 (9) | 0.0457 (9) | 0.0559 (9) | −0.0044 (6) | −0.0222 (7) | −0.0007 (7) |
O2 | 0.0549 (9) | 0.0490 (9) | 0.0620 (9) | −0.0050 (6) | −0.0301 (7) | 0.0089 (7) |
C4 | 0.0361 (10) | 0.0440 (11) | 0.0388 (10) | 0.0009 (8) | −0.0047 (8) | −0.0006 (8) |
C5 | 0.0389 (10) | 0.0453 (11) | 0.0412 (10) | −0.0030 (8) | −0.0097 (8) | 0.0009 (8) |
Geometric parameters (Å, º) top
N1—C1 | 1.324 (2) | C3—H3 | 0.9300 |
N1—C2 | 1.366 (3) | O1—C4 | 1.219 (2) |
N2—C1 | 1.341 (2) | O2—C4 | 1.297 (2) |
N2—C3 | 1.360 (3) | O2—H2 | 0.8475 |
N2—H2B | 0.8603 | C4—C5 | 1.497 (3) |
C1—C1i | 1.440 (4) | C5—C5ii | 1.507 (4) |
C2—C3 | 1.344 (3) | C5—H5A | 0.9700 |
C2—H2A | 0.9300 | C5—H5B | 0.9700 |
| | | |
C1—N1—C2 | 105.66 (15) | N2—C3—H3 | 126.8 |
C1—N2—C3 | 107.51 (16) | C4—O2—H2 | 115.5 |
C1—N2—H2B | 126.2 | O1—C4—O2 | 123.67 (17) |
C3—N2—H2B | 126.3 | O1—C4—C5 | 123.09 (17) |
N1—C1—N2 | 110.60 (17) | O2—C4—C5 | 113.24 (16) |
N1—C1—C1i | 125.76 (19) | C4—C5—C5ii | 113.81 (19) |
N2—C1—C1i | 123.6 (2) | C4—C5—H5A | 108.8 |
C3—C2—N1 | 109.78 (18) | C5ii—C5—H5A | 108.8 |
C3—C2—H2A | 125.1 | C4—C5—H5B | 108.8 |
N1—C2—H2A | 125.1 | C5ii—C5—H5B | 108.8 |
C2—C3—N2 | 106.44 (17) | H5A—C5—H5B | 107.7 |
C2—C3—H3 | 126.8 | | |
| | | |
C2—N1—C1—N2 | −0.4 (2) | N1—C2—C3—N2 | −0.6 (3) |
C2—N1—C1—C1i | 179.5 (2) | C1—N2—C3—C2 | 0.4 (2) |
C3—N2—C1—N1 | 0.0 (2) | O1—C4—C5—C5ii | −0.6 (3) |
C3—N2—C1—C1i | −179.9 (2) | O2—C4—C5—C5ii | 179.2 (2) |
C1—N1—C2—C3 | 0.6 (3) | | |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x, −y+1, −z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···N1 | 0.85 | 1.74 | 2.575 (2) | 169 |
N2—H2B···O1i | 0.86 | 1.93 | 2.779 (2) | 170 |
C3—H3···O2iii | 0.93 | 2.41 | 3.309 (3) | 162 |
C4—O1···Cg1iv | 1.22 (1) | 3.37 (1) | 3.720 (3) | 97 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (iii) x+1, −y+1/2, z+1/2; (iv) −x+1, −y+1, −z+1. |
(III) 2,2'-biimidazol-1-ium 2,2'-iminiodiacetate chloride
top
Crystal data top
C6H8N42+·C4H6NO4−·Cl− | F(000) = 316 |
Mr = 303.71 | Dx = 1.526 Mg m−3 |
Monoclinic, P21/m | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yb | Cell parameters from 1551 reflections |
a = 5.3095 (13) Å | θ = 3.6–26.6° |
b = 22.941 (6) Å | µ = 0.31 mm−1 |
c = 5.7023 (14) Å | T = 298 K |
β = 107.930 (3)° | Block, yellow |
V = 660.8 (3) Å3 | 0.40 × 0.40 × 0.40 mm |
Z = 2 | |
Data collection top
SMART 1K CCD area detector diffractometer | 1158 independent reflections |
Radiation source: fine-focus sealed tube | 1027 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
ω scans | θmax = 25.0°, θmin = 3.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | h = −6→5 |
Tmin = 0.747, Tmax = 0.886 | k = −20→26 |
3079 measured reflections | l = −6→6 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.064 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.180 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0925P)2 + 0.8396P] where P = (Fo2 + 2Fc2)/3 |
1158 reflections | (Δ/σ)max < 0.001 |
94 parameters | Δρmax = 0.69 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
Crystal data top
C6H8N42+·C4H6NO4−·Cl− | V = 660.8 (3) Å3 |
Mr = 303.71 | Z = 2 |
Monoclinic, P21/m | Mo Kα radiation |
a = 5.3095 (13) Å | µ = 0.31 mm−1 |
b = 22.941 (6) Å | T = 298 K |
c = 5.7023 (14) Å | 0.40 × 0.40 × 0.40 mm |
β = 107.930 (3)° | |
Data collection top
SMART 1K CCD area detector diffractometer | 1158 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | 1027 reflections with I > 2σ(I) |
Tmin = 0.747, Tmax = 0.886 | Rint = 0.017 |
3079 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.064 | 0 restraints |
wR(F2) = 0.180 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.69 e Å−3 |
1158 reflections | Δρmin = −0.32 e Å−3 |
94 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
N1 | 0.2023 (5) | 0.49819 (11) | 0.2887 (5) | 0.0385 (7) | |
H1 | 0.2387 | 0.5310 | 0.2527 | 0.046* | |
N2 | 0.0893 (5) | 0.42347 (11) | 0.4647 (5) | 0.0416 (7) | |
H2A | 0.0247 | 0.4029 | 0.5492 | 0.050* | |
C1 | 0.0703 (5) | 0.48133 (12) | 0.4398 (5) | 0.0346 (7) | |
C2 | 0.2378 (7) | 0.40320 (14) | 0.3255 (6) | 0.0469 (8) | |
H2 | 0.2823 | 0.3645 | 0.3091 | 0.056* | |
C3 | 0.3078 (6) | 0.44979 (14) | 0.2159 (6) | 0.0445 (8) | |
H3 | 0.4100 | 0.4491 | 0.1096 | 0.053* | |
O1 | 0.3315 (5) | 0.59463 (9) | 0.1183 (5) | 0.0482 (7) | |
O2 | 0.1026 (6) | 0.65277 (10) | 0.2873 (6) | 0.0662 (9) | |
N3 | 0.2625 (12) | 0.7500 | 0.1448 (11) | 0.0686 (15) | |
H3A | 0.3034 | 0.7500 | 0.3101 | 0.082* | |
H3B | 0.0848 | 0.7500 | 0.0820 | 0.082* | |
C4 | 0.3658 (8) | 0.69548 (13) | 0.0673 (8) | 0.0532 (10) | |
H4A | 0.5576 | 0.6952 | 0.1294 | 0.064* | |
H4B | 0.3131 | 0.6934 | −0.1111 | 0.064* | |
C5 | 0.2559 (7) | 0.64376 (13) | 0.1683 (6) | 0.0442 (8) | |
Cl1 | 0.7269 (4) | 0.7500 | 0.6775 (3) | 0.0716 (6) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
N1 | 0.0461 (14) | 0.0283 (13) | 0.0448 (14) | −0.0015 (10) | 0.0197 (11) | −0.0002 (10) |
N2 | 0.0540 (16) | 0.0257 (13) | 0.0506 (15) | 0.0004 (11) | 0.0241 (12) | 0.0024 (11) |
C1 | 0.0385 (15) | 0.0265 (14) | 0.0396 (15) | −0.0005 (11) | 0.0132 (12) | −0.0016 (11) |
C2 | 0.0575 (19) | 0.0282 (16) | 0.059 (2) | 0.0077 (14) | 0.0236 (16) | −0.0040 (14) |
C3 | 0.0507 (18) | 0.0394 (18) | 0.0483 (18) | 0.0012 (14) | 0.0226 (15) | −0.0063 (14) |
O1 | 0.0655 (15) | 0.0243 (11) | 0.0662 (15) | 0.0022 (10) | 0.0370 (12) | 0.0005 (9) |
O2 | 0.097 (2) | 0.0305 (12) | 0.101 (2) | 0.0020 (12) | 0.0743 (18) | 0.0044 (12) |
N3 | 0.108 (4) | 0.0205 (19) | 0.115 (4) | 0.000 | 0.088 (3) | 0.000 |
C4 | 0.077 (2) | 0.0213 (17) | 0.081 (2) | 0.0016 (14) | 0.053 (2) | −0.0007 (14) |
C5 | 0.0587 (19) | 0.0276 (16) | 0.0560 (19) | −0.0009 (14) | 0.0318 (16) | 0.0001 (13) |
Cl1 | 0.1025 (12) | 0.0356 (7) | 0.0912 (11) | 0.000 | 0.0512 (9) | 0.000 |
Geometric parameters (Å, º) top
N1—C1 | 1.324 (4) | O1—C5 | 1.258 (4) |
N1—C3 | 1.365 (4) | O2—C5 | 1.227 (4) |
N1—H1 | 0.8192 | N3—C4 | 1.486 (4) |
N2—C1 | 1.335 (4) | N3—C4ii | 1.486 (4) |
N2—C2 | 1.361 (4) | N3—H3A | 0.9000 |
N2—H2A | 0.8209 | N3—H3B | 0.9000 |
C1—C1i | 1.442 (6) | C4—C5 | 1.512 (4) |
C2—C3 | 1.347 (5) | C4—H4A | 0.9700 |
C2—H2 | 0.9300 | C4—H4B | 0.9700 |
C3—H3 | 0.9300 | | |
| | | |
C1—N1—C3 | 108.0 (2) | C4—N3—C4ii | 114.6 (4) |
C1—N1—H1 | 130.1 | C4—N3—H3A | 108.6 |
C3—N1—H1 | 121.4 | C4ii—N3—H3A | 108.6 |
C1—N2—C2 | 108.4 (3) | C4—N3—H3B | 108.6 |
C1—N2—H2A | 127.0 | C4ii—N3—H3B | 108.6 |
C2—N2—H2A | 124.6 | H3A—N3—H3B | 107.6 |
N1—C1—N2 | 108.8 (3) | N3—C4—C5 | 109.0 (3) |
N1—C1—C1i | 126.3 (3) | N3—C4—H4A | 109.9 |
N2—C1—C1i | 124.9 (3) | C5—C4—H4A | 109.9 |
C3—C2—N2 | 106.9 (3) | N3—C4—H4B | 109.9 |
C3—C2—H2 | 126.5 | C5—C4—H4B | 109.9 |
N2—C2—H2 | 126.5 | H4A—C4—H4B | 108.3 |
C2—C3—N1 | 107.9 (3) | O2—C5—O1 | 126.1 (3) |
C2—C3—H3 | 126.1 | O2—C5—C4 | 118.5 (3) |
N1—C3—H3 | 126.1 | O1—C5—C4 | 115.4 (3) |
| | | |
C3—N1—C1—N2 | 0.0 (3) | N2—C2—C3—N1 | 0.0 (4) |
C3—N1—C1—C1i | 179.6 (4) | C1—N1—C3—C2 | 0.0 (3) |
C2—N2—C1—N1 | 0.0 (4) | C4ii—N3—C4—C5 | 177.2 (3) |
C2—N2—C1—C1i | −179.6 (4) | N3—C4—C5—O2 | 1.5 (5) |
C1—N2—C2—C3 | 0.0 (4) | N3—C4—C5—O1 | −179.1 (4) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, −y+3/2, z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.82 | 1.79 | 2.592 (3) | 167 |
N2—H2A···O2i | 0.82 | 1.83 | 2.643 (3) | 171 |
N3—H3A···Cl1 | 0.90 | 2.56 | 3.271 (7) | 137 |
N3—H3B···Cl1iii | 0.90 | 2.50 | 3.244 (7) | 141 |
C2—H2···Cl1iv | 0.93 | 2.63 | 3.520 (3) | 161 |
C3—H3···O1v | 0.93 | 2.38 | 3.253 (4) | 156 |
C5—O1···Cg1vi | 1.26 (1) | 3.33 (1) | 3.816 (4) | 103 |
C5—O1···Cg1vii | 1.26 (1) | 3.50 (1) | 4.029 (4) | 106 |
Symmetry codes: (i) −x, −y+1, −z+1; (iii) x−1, y, z−1; (iv) −x+1, y−1/2, −z+1; (v) −x+1, −y+1, −z; (vi) −x, −y+1, −z; (vii) −x+1, −y+1, −z+1. |
Experimental details
| (I) | (II) | (III) |
Crystal data |
Chemical formula | C6H8N42+·C3H2O42− | C6H6N4·C4H6O4 | C6H8N42+·C4H6NO4−·Cl− |
Mr | 238.21 | 252.24 | 303.71 |
Crystal system, space group | Monoclinic, P2/c | Monoclinic, P21/c | Monoclinic, P21/m |
Temperature (K) | 298 | 298 | 298 |
a, b, c (Å) | 15.663 (5), 4.4319 (14), 18.221 (4) | 4.906 (3), 13.887 (8), 8.468 (5) | 5.3095 (13), 22.941 (6), 5.7023 (14) |
β (°) | 124.517 (18) | 94.839 (8) | 107.930 (3) |
V (Å3) | 1042.2 (5) | 574.9 (6) | 660.8 (3) |
Z | 4 | 2 | 2 |
Radiation type | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 0.12 | 0.12 | 0.31 |
Crystal size (mm) | 0.40 × 0.40 × 0.40 | 0.30 × 0.30 × 0.27 | 0.40 × 0.40 × 0.40 |
|
Data collection |
Diffractometer | SMART 1K CCD area detector diffractometer | SMART 1K CCD area detector diffractometer | SMART 1K CCD area detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2000) | Multi-scan (SADABS; Sheldrick, 2000) | Multi-scan (SADABS; Sheldrick, 2000) |
Tmin, Tmax | 0.845, 0.953 | 0.845, 0.970 | 0.747, 0.886 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4027, 1841, 1519 | 2390, 1055, 868 | 3079, 1158, 1027 |
Rint | 0.014 | 0.026 | 0.017 |
(sin θ/λ)max (Å−1) | 0.595 | 0.606 | 0.595 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.122, 1.07 | 0.046, 0.117, 1.05 | 0.064, 0.180, 1.05 |
No. of reflections | 1841 | 1055 | 1158 |
No. of parameters | 155 | 82 | 94 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.23 | 0.19, −0.15 | 0.69, −0.32 |
Hydrogen-bond geometry (Å, º) for (I) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3i | 0.86 | 1.78 | 2.612 (2) | 163.0 |
N2—H2A···O4 | 0.86 | 1.80 | 2.646 (2) | 165.7 |
N3—H3A···O1ii | 0.86 | 1.77 | 2.609 (2) | 165.8 |
N4—H4···O2 | 0.86 | 1.79 | 2.626 (2) | 164.0 |
C2—H2···O2iii | 0.93 | 2.58 | 3.401 (2) | 148 |
C3—H3···O1iv | 0.93 | 2.41 | 3.292 (2) | 158 |
C5—H5···O4v | 0.93 | 2.70 | 3.317 (2) | 125 |
C6—H6···O3vi | 0.93 | 2.45 | 3.345 (2) | 162 |
C7—O1···Cg2vii | 1.248 (2) | 3.488 (2) | 3.714 (3) | 90 |
C9—O3···Cg1vi | 1.258 (2) | 3.543 (2) | 3.796 (2) | 92 |
C9—O4···Cg1viii | 1.242 (2) | 3.680 (2) | 4.538 (3) | 127 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y, −z+1; (iii) x, y−1, z; (iv) −x, y, −z+1/2; (v) x, −y+1, z+1/2; (vi) −x+1, −y+1, −z+1; (vii) −x, −y+1, −z+1; (viii) x, y+1, z. |
Hydrogen-bond geometry (Å, º) for (II) top
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···N1 | 0.85 | 1.74 | 2.575 (2) | 169 |
N2—H2B···O1i | 0.86 | 1.93 | 2.779 (2) | 170 |
C3—H3···O2ii | 0.93 | 2.41 | 3.309 (3) | 162 |
C4—O1···Cg1iii | 1.219 (2) | 3.373 (3) | 3.720 (3) | 97 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x+1, −y+1/2, z+1/2; (iii) −x+1, −y+1, −z+1. |
Hydrogen-bond geometry (Å, º) for (III) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.82 | 1.79 | 2.592 (3) | 167 |
N2—H2A···O2i | 0.82 | 1.83 | 2.643 (3) | 171 |
N3—H3A···Cl1 | 0.90 | 2.56 | 3.271 (7) | 137 |
N3—H3B···Cl1ii | 0.90 | 2.50 | 3.244 (7) | 141 |
C2—H2···Cl1iii | 0.93 | 2.63 | 3.520 (3) | 161 |
C3—H3···O1iv | 0.93 | 2.38 | 3.253 (4) | 156 |
C5—O1···Cg1v | 1.258 (4) | 3.334 (3) | 3.816 (4) | 103 |
C5—O1···Cg1vi | 1.258 (4) | 3.498 (3) | 4.029 (4) | 106 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1, y, z−1; (iii) −x+1, y−1/2, −z+1; (iv) −x+1, −y+1, −z; (v) −x, −y+1, −z; (vi) −x+1, −y+1, −z+1. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.
Noncovalent weak interactions, such as C—H···O and C═O···π, have attracted much interest. These weak interactions have been widely discussed in realtion to the crystal packing of organic molecules and the determination of the folded structures of biological molecules (Derewenda et al., 1995; Desiraju, 1996; 2005; Khurram et al., 2006; Jain et al., 2007; Lu et al., 2007; Wan et al., 2008). However, self-assembled supramolecular architectures are often stabilized as a result of the synergy of a variety of weak interactions (Khurram et al., 2006; Shukla et al., 2007; Wan et al., 2008). It is difficult to distinguish the effect of an individual weak interaction. Desiraju (2005) suggested that weak interactions can be classified as innocuous, supportive or intrusive. We describe here the decisive role of carbonyl–π and C—H···O interactions in the assembly of the supramolecular architectures of three dicarboxylic acid–biimidazole compounds.
The asymmetric unit of (I) contains two independent malonate anions with their central C atoms on twofold axes and two biimidazolium cations each lying about independent inversion centres (Fig. 1). Strong N—H···O and hydrogen bonds (Fig. 1 and Table 1) link the malonate and biimidazolium moieties to form two distinct units, which further assemble into two different zigzag tapes designated as A and B respectively, as shown as Fig. 2. Four C—H···O interactions (Fig. 2 and Table 1) link two tapes into a three-dimensional network, and concomitantly there are three possible C═ O···π(imidazole ring) interactions, one of which takes part in the stacking of tapes A while the the other two link tapes B, as described in Table 1 (Cg1 and Cg2 are the centroids of the N1/C1/N2/C3/C2 and N3/C4/N4/C6/C5 rings, respectively) and shown as Fig. 3.
In (II), there is crystallographically imposed inversion symmetry with the succinic acid and biimidazole neutral molecules lying about inversion centres. The succinic acid and biimidazole molecules are linked by pairs of O—H···N and N—H···O hydrogen bonds (Fig. 4 and Table 2), leading to linear tapes which are further linked to form sheets in the (102) plane by a C3—H3···O2(x + 1, -y + 1/2, z + 1/2) interaction (Fig. 5 and Table 2). The sheets assemble into a three-dimensional structure by a C4═O1···π(imidazole ring)(-x + 1, -y + 1, -z + 1) interaction (Fig.6 and Table 2, where Cg3 is the centroid of the N1/C1/N2/C3/C2 ring).
In (III) (Fig. 7), the biimidazolium cation lies about an inversion centre, the iminodiacetate ion lies across a mirror plane and the chloride ion lies on a mirror plane. Iminodiacetate anions and biimidazolium cations are linked to form wave-like tapes by pairs of N—H···O hydrogen bonds (Fig. 8 and Table 3). These tapes are linked to form sheets by C3—H3···O1(1 - x,1 - y,-z) weak interactions (Fig. 8 and Table 3). The sheets are packed to form a three-dimensional network via two N—H···Cl hydrogen bonds and two C5═O1···π interactions to imidazole rings at (-x, -y + 1, -z) and (-x + 1, -y + 1, -z +1) (Fig. 9 and Table 3, where Cg4 is the centroid of the N1/C1/N2/C2/C3 ring).
The supramolecular structures of (I), (II) and (III) reveal that they are assembled by same process, namely that pairs of N—H···O or O—H···N hydrogen bonds link the dicarboxylates and biimidazoles to form tapes, which are stacked in parallel through lone-pair–aromatic interactions between carbonyl O atoms and biimidazole groups and are further linked via weak C—H···O interaction.