Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of N,N′-bis­(2-methyl­phenyl)-2,2′-thio­dibenz­amide, C28H24N2O2S, (Ia), N,N′-bis­(2-ethyl­phenyl)-2,2′-thio­dibenzamide, C30H28N2O2S, (Ib), and N,N′-bis­(2-bromo­phenyl)-2,2′-thio­dibenzamide, C26H18Br2N2O2S, (Ic), are com­pared with each other. For the 19 atoms of the consistent thiodibenzamide core, the r.m.s. deviations of the mol­ecules in pairs are 0.29, 0.90 and 0.80 Å for (Ia)/(Ib), (Ia)/(Ic) and (Ib)/(Ic), respectively. The conformations of the central parts of mol­ecules (Ia) and (Ib) are similar due to an intra­molecular N—H...O hydrogen-bonding inter­action. The mol­ecules of (Ia) are further linked into infinite chains along the c axis by inter­molecular N—H...O inter­actions, whereas the mol­ecules of (Ib) are linked into chains along b by an inter­molecular N—H...π contact. The conformation of (Ic) is quite different from those of (Ia) and (Ib), since there is no intra­molecular N—H...O hydrogen bond, but instead there is a possible intra­molecular N—H...Br hydrogen bond. The mol­ecules are linked into chains along c by inter­molecular N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112035962/fg3262sup1.cif
Contains datablocks global, Ia, Ic, Ib

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112035962/fg3262Iasup2.hkl
Contains datablock 1a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112035962/fg3262Ibsup3.hkl
Contains datablock Ib

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112035962/fg3262Icsup4.hkl
Contains datablock Ic

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270112035962/fg3262sup5.pdf
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112035962/fg3262Iasup6.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112035962/fg3262Ibsup7.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112035962/fg3262Icsup8.cml
Supplementary material

CCDC references: 906572; 906573; 906574

Comment top

Diaryl sulfides have attracted much attention because of their synthesis (Eichman & Stambuli, 2011), reactivity (Kondo & Mitsudo, 2000) and biological importance (Jiang et al., 2003). They also constitute an important class of pharmaceutical agents (Goordazi et al., 2010; Fernando-Gomez et al., 1995; Girault et al., 2001; Stump et al., 2007). The three-dimensional structures of some diaryl sulfides have been determined by X-ray crystallography (Muhammad et al., 2008) and were found to adopt equatorial, planar or skew conformations (Kucsman et al., 1984). In the present study, three 2,2'-thiodibenzamides were synthesized by the reaction of 2,2'-thiodibenzoic acid chloride with three anilines, 2-methylbenzeneamine, 2-ethylbenzeneamine and 2-bromobenzeneamine, namely N,N'-bis(2-methylphenyl)-2,2'-thiodibenzamide, (Ia), N,N'-bis(2-ethylphenyl)-2,2'-thiodibenzamide, (Ib), and N,N'-bis(2-bromophenyl)-2,2'-thiodibenzamide, (Ic) (Fig. 1). A paper describing these amides and other related substances, and their biological properties, has been accepted for publication elsewhere (Moosun et al., 2013). X-ray diffraction analyses have now been carried out to ascertain the constitution of the molecules, as well as to determine the effect of different substituents on the conformation and configuration of the synthesized molecules.

Considering first the diaryl sulfide units in the three structures, the C9—S1—C14 angles vary little, being 104.92 (6), 103.04 (6) and 103.9 (1)° for (Ia), (Ib) and (Ic), respectively. The relative orientations of the two benzene rings around S are described by two dihedral angles, C10—C9—S1—C14 and C15—C14—S1—C9, where `C—C' are two C atoms of one ring with the second attached to S and `C' is the first C atom of the other ring, attached to S. Thus, for (Ia), the values are -48.9 (1) and 39.0 (1)°, for (Ib) -42.7 (1) and -57.5 (1)°, and for (Ic) -16.0 (3) and -86.8 (3)°. These dihedral angles measure the extent to which the benzene rings are not coplanar with the C—S—C plane.

Moving away from the S atom, the orientation of the amide carbonyl groups with respect to the their attached benzene rings is measured by the torsion angle O—C—C—C, where O—C is the carbonyl group and the last two C atoms are in the benzene ring. There are two such angles, O1—C7—C8—C13 and O2—C20—C15—C14, for each of the three amides: for (Ia) these are -45.4 (2) and -49.0 (2)°, for (Ib) -45.4 (2) and -51.3 (2)°, and for (Ic) -111.7 (5) and 45.3 (3)°. Thus, in each case, there is considerably reduced overlap between the carbonyl π-system and that of the attached benzene ring, i.e. little conjugation.

The sums of the angles at the N atoms are 360.0 and 359.1° for (Ia), 360.0 and 359.6° for (Ib), and 360.5 and 359.5° for (Ic). Clearly, the six amide N atoms are all essentially planar. This allows one to measure the extent of amide resonance by the torsion angles C—N—C—O, where the first C atom is the benzene ring C atom to which the N atom is attached. There are thus two torsion angles for each compound, viz. C1—N1—C7—O1 and C21—N2—C20—O2: -10.4 (2) and 2.6 (2)° for (Ia), -9.4 (2) and 3.4 (2)° for (Ib), and -0.8 (7) and 0.7 (5)° for (Ic), respectively. Each of the six amide units is very close to being planar, which is ideal for amide resonance.

At the extremities of the three structures, it is relevant to ask to what extent the nitrogen p-orbital interacts with the π system of the attached benzene ring, especially remembering that that ring has an ortho substituent. This can be measured from the C—N—C—C torsion angles (where the first C is the carbonyl C atom and the last two are the attached C atoms of the benzene ring), i.e. C7—N1—C1—C6 and C20—N2—C21—C22: -36.5 (2) and -62.5 (2)° for (Ia), -43.9 (2) and -92.0 (2)° for (Ib), and -0.6 (7) and 142.6 (3)° for (Ic), respectively. These torsion angles show that in only one amide out of six is there good overlap between the nitrogen lone pair and the attached benzene ring, namely, the amide containing atom N1 in (Ic).

We have also estimated the similarity between these three structures by overlaying them with one another (Fig. 2). Structures (Ia) and (Ib) are quite similar, with an r.m.s. difference of 0.29 Å when fitting the S, N, O and C7–C20 atoms (the terminal benzene rings were omitted; see figure in Supplementary Materials). This finding is in accord with the comparison of torsion angles starting at the central S1 atom and working out to the extremities of the molecules shown above, i.e. that the conformations of the central portions of molecules (Ia) and (Ib) are similar and that the molecules only deviate from one another by a large amount in the C20—N2—C21—C22 torsion angle. The bromine-containing diamide, (Ic), is much less similar with either (Ia) or (Ib), with r.m.s. differences for the same atoms of 0.90 and 0.80 Å, respectively (see figure in Supplementary Materials). This is consistent with the fact that all the torsion angles of (Ic) are quite different from those of (Ia) and (Ib)..

The differences in the conformations of the three molecules can be rationalized in terms of the similarities and differences in their hydrogen-bonding interactions. The central parts of molecules (Ia) and (Ib) are similar due to the intramolecular N1—H1···O2 hydrogen bond seen in both structures (Figs. 1a, 1b, 3a and 3b). In (Ic), this intramolecular interaction does not occur, but instead a possible intramolecular N1—H1···Br1 bond is observed (Figs. 1c and 3c). The geometry of this hydrogen bond, with an N1—H1···Br1 angle of 120 (4)°, indicates that its stabilization energy is low and therefore it may not be significant (Wood et al. 2009).

Due to the differing intramolecular hydrogen bonding observed for (Ic) compared with (Ia) and (Ib), the conformation of the central portion of the molecule of (Ic) is not similar to those of (Ia) and (Ib). The hydrogen-bonding patterns otherwise differ in all three molecules. In (Ia), an intermolecular N2—H2···O1 hydrogen bond [symmetry code (x, -y + 3/2, z - 1/2)] links the molecules into chains along c (Fig. 3a). In (Ib), the molecules are linked into chains along b by an intermolecular N—H···π contact, N2—H2N···Cg1 [Cg1 is the centroid of the C1–C6 benzene ring; symmetry code (-x + 3/2, y - 1/2, -z + 3/2)] (Fig. 3b). In (Ic), the molecules are linked into chains along c by an intermolecular hydrogen bond N2—H2N···O2(x, -y + 3/2, z - 1/2) (Fig. 3c).

Related literature top

For related literature, see: Eichman & Stambuli (2011); Fernando-Gomez, Moutiez, Aumercier, Bthegnies, Luyckx, Ouaissi, Tartar & Sergheraert (1995); Girault et al. (2001); Goordazi et al. (2010); Jiang et al. (2003); Kondo & Mitsudo (2000); Kucsman et al. (1984); Moosun et al. (2013); Muhammad et al. (2008); Stump et al. (2007); Wood et al. (2009).

Experimental top

The general method used for the synthesis of the amides was as follows. Thionyl chloride (2 ml) was added to 2,2'-thiodibenzoic acid (0.49 g, 1.8 mM mmol?) dissolved in dichloromethane (20 ml) and the resulting solution was heated at reflux for 2 h. The excess thionyl chloride was removed by distillation and the resulting double acid chloride used without further purification. The aniline (2-methylbenzenamine, 2-ethylbenzenamine or 2-bromobenzenamine) (3.6 mM mmol?) was added to the freshly prepared 2,2'-thiodibenzoic acid chloride. The mixture was heated at reflux for 2 h and then stirred at room temperature for 24 h. The resulting precipitate was filtered off, washed with water and ethanol, dissolved in warm acetonitrile (15 ml), filtered, and the filtrate cooled and left in the dark. After two weeks, crystals of the anilides had deposited.

Analysis for N,N'-bis(2-methylphenyl)-2,2'-thiodibenzamide, (Ia): long brown needles; yield 55%; m.p. 437 K; IR (solid, ν, cm-1): 3249, 1716, 1642, 740; 1H NMR (250 MHz, DMSO-d6, δ, p.p.m.): 2.22 (6H, s, 2CH3), 7.25–7.09 (9H, m, ArH), 7.40–7.35 (6H, m, ArH), 7.65–7.62 (2H, t, J = 5 Hz, ArH), 9.89 (2H, s, NH); 13C NMR (62.5 MHz, DMSO-d6, δ, p.p.m.): 18.5, 126.4, 127.7, 128.6, 130.9, 131.0, 134.1, 134.6, 136.6, 139.6, 167.0. Analysis calculated for C28H24N2O2S: C 74.3, H 5.35, N 6.19, S 7.09%; found: C 73.8, H 5.40, N 5.85, S 7.82%.

Analysis for N,N'-bis(2-ethylphenyl)-2,2'-thiodibenzamide, (Ib): colourless crystals; yield 70%; m.p. 436 K; IR (solid, ν, cm-1): 3363, 1664, 1650, 1529, 1305, 1252, 734, 730; 1H NMR (250 MHz, DMSO-d6, δ, p.p.m.): 1.09–1.03 (6H, t, J = 8 Hz, 2CH3), 2.64–2.55 (4H, q, J = 11 Hz, 2CH2), 7.17–7.14 (4H, m, ArH), 7.24–7.20 (6H, m, ArH), 7.40–7.37 (4H, t, J = 4 Hz, ArH), 7.61–7.57 (2H, t, J = 5 Hz, ArH), 9.90 (2H, s, NH). 13C NMR (62.5 MHz, DMSO-d6, δ, p.p.m.): 14.1, 23.8, 125.9, 126.4, 127.0, 127.2, 127.9, 128.7, 130.5, 132.6, 134.0, 135.2, 139.1, 139.3, 166.7. Analysis calculated for C30H34N2O2S: C 75.0, H 5.87, N 5.83, S 6.67%; found: C 75.0, H 5.87, N 6.26, S 6.67%.

Analysis for N,N'-bis(2-bromophenyl)-2,2'-thiodibenzamide, (Ic): shiny white needles; yield 30%; m.p. 421 K; IR (solid, ν, cm-1): 3376, 1662, 1651, 1520, 1301, 1248, 734, 730; 1H NMR (250 MHz, DMSO-d6, δ, p.p.m.): 7.24–7.13 (4H, m, ArH), 7.45–7.31 (8H, m, ArH), 7.65–7.32 (4H, d, J = 5 Hz, ArH), 10.0 (2H, s, NH); 13C NMR (62.5 MHz, DMSO-d6, δ, p.p.m.): 119.5, 127.3, 127.9, 128.0, 130.8, 132.6, 132.8, 134.4, 135.9, 137.8, 166.6. Analysis calculated for C26H18BrN2O2S: C 53.6, H 3.12, N 4.81, S 5.51%; found: C 53.6, H 3.12, N 4.18, S 5.51%.

Refinement top

H atoms bonded to C atoms were included in calculated positions using the riding model (C—H = 0.93–0.97 Å), with Uiso(H) = 1.2 or 1.5Ueq(C). H atoms bonded to N atoms were found by difference Fourier methods and refined isotropically [N—H = 0.79 (5)–0.86 (2) Å].

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008). Software used to prepare material for publication: SHELXTL (Sheldrick, 2008) for (Ia), (Ic); SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009) for (Ib).

Figures top
[Figure 1] Fig. 1. Plots of (a) (Ia), (b) (Ib) and (c) (Ic). Displacement ellipsoids are drawn at the 30% probability level and intramolecular hydrogen-bonding interactions are shown as double-dashed lines.
[Figure 2] Fig. 2. Overlay of the three molecules, with (Ia) shown with dashed bonds, (Ib) with solid bonds and (Ic) with double-dashed bonds (blue, green and red, respectively, in the electronic version of the paper). H atoms have been omitted for clarity.
[Figure 3] Fig. 3. Packing arrangements of the molecules. (a) (Ia), viewed down a [symmetry codes: (i) x, 3/2 - y, z - 1/2; (ii) x, 3/2 - y, z + 1/2]. (b) (Ib), viewed down a [symmetry codes: (i) 3/2 - x, -1/2 + y, -z + 3/2; (ii) 3/2 - x, 1/2 + y, -z + 3/2]. (c) (Ic), viewed approximately down a [symmetry codes: (i) x, 3/2 - y, z - 1/2; (ii) x, 3/2 - y, z + 1/2]. Only H atoms involved in hydrogen-bonding or N—H···π interactions are shown, and these interactions are shown as dashed lines.
(Ia) N,N'-bis(2-methylphenyl)-2,2'-thiodibenzamide top
Crystal data top
C28H24N2O2SF(000) = 952
Mr = 452.55Dx = 1.283 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P2ybcCell parameters from 7594 reflections
a = 14.9815 (1) Åθ = 5.1–71.0°
b = 10.9355 (1) ŵ = 1.44 mm1
c = 15.5490 (2) ÅT = 296 K
β = 113.107 (1)°Rod, colourless
V = 2343.03 (4) Å30.35 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4396 independent reflections
Radiation source: fine-focus sealed tube3811 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 71.9°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1818
Tmin = 0.646, Tmax = 0.754k = 1313
15959 measured reflectionsl = 1518
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.448P]
where P = (Fo2 + 2Fc2)/3
4396 reflections(Δ/σ)max = 0.001
308 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C28H24N2O2SV = 2343.03 (4) Å3
Mr = 452.55Z = 4
Monoclinic, P21/cCu Kα radiation
a = 14.9815 (1) ŵ = 1.44 mm1
b = 10.9355 (1) ÅT = 296 K
c = 15.5490 (2) Å0.35 × 0.10 × 0.08 mm
β = 113.107 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4396 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3811 reflections with I > 2σ(I)
Tmin = 0.646, Tmax = 0.754Rint = 0.028
15959 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.19 e Å3
4396 reflectionsΔρmin = 0.27 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.85477 (3)0.50561 (3)0.54750 (2)0.04865 (12)
O10.86223 (7)0.58452 (9)0.81303 (6)0.0457 (2)
O20.70288 (7)0.73150 (9)0.50785 (7)0.0455 (2)
N10.73949 (8)0.57946 (11)0.66898 (8)0.0405 (3)
N20.75647 (9)0.86725 (10)0.42861 (8)0.0423 (3)
C10.67265 (10)0.50389 (12)0.68909 (9)0.0413 (3)
C20.57365 (10)0.53057 (15)0.64768 (10)0.0502 (3)
C30.51029 (12)0.45191 (19)0.66640 (13)0.0680 (5)
H30.44400.46780.63960.082*
C40.54286 (14)0.35197 (19)0.72316 (14)0.0726 (5)
H40.49880.30110.73420.087*
C50.64001 (14)0.32653 (16)0.76369 (13)0.0659 (5)
H50.66200.25890.80260.079*
C60.70530 (12)0.40168 (14)0.74657 (11)0.0525 (4)
H60.77130.38400.77350.063*
C70.83001 (9)0.60733 (12)0.72885 (9)0.0368 (3)
C80.89203 (9)0.67572 (12)0.68895 (9)0.0378 (3)
C90.90482 (9)0.64316 (12)0.60761 (9)0.0393 (3)
C100.96419 (10)0.71513 (15)0.57788 (11)0.0514 (4)
H100.97400.69320.52450.062*
C111.00829 (11)0.81805 (17)0.62671 (12)0.0620 (4)
H111.04620.86670.60520.074*
C120.99656 (12)0.84954 (17)0.70762 (12)0.0632 (4)
H121.02660.91910.74080.076*
C130.94015 (10)0.77758 (15)0.73896 (10)0.0507 (3)
H130.93420.79760.79460.061*
C140.80373 (10)0.54675 (13)0.42760 (9)0.0427 (3)
C150.75404 (9)0.65510 (12)0.39024 (9)0.0390 (3)
C160.71566 (11)0.67116 (14)0.29364 (10)0.0488 (3)
H160.68350.74360.26840.059*
C170.72433 (14)0.58191 (18)0.23446 (11)0.0649 (5)
H170.69770.59380.17010.078*
C180.77235 (15)0.47602 (19)0.27149 (13)0.0730 (5)
H180.77810.41540.23200.088*
C190.81246 (13)0.45825 (16)0.36714 (12)0.0618 (4)
H190.84570.38620.39140.074*
C200.73615 (9)0.75368 (12)0.44878 (9)0.0376 (3)
C210.74673 (11)0.97692 (12)0.47378 (9)0.0436 (3)
C220.65718 (12)1.01548 (14)0.47036 (11)0.0532 (4)
C230.65551 (17)1.12731 (17)0.51404 (14)0.0726 (5)
H230.59721.15430.51530.087*
C240.7364 (2)1.19767 (17)0.55472 (14)0.0819 (6)
H240.73231.27180.58230.098*
C250.82331 (18)1.15974 (17)0.55508 (13)0.0777 (6)
H250.87831.20820.58210.093*
C260.82896 (13)1.04846 (15)0.51494 (12)0.0591 (4)
H260.88821.02170.51560.071*
C270.53535 (12)0.63948 (19)0.58554 (13)0.0678 (5)
H27A0.46760.64970.57260.102*
H27B0.54370.62730.52800.102*
H27C0.57020.71130.61630.102*
C280.56627 (13)0.94523 (19)0.41900 (15)0.0734 (5)
H28A0.56310.87630.45590.110*
H28B0.56620.91710.36050.110*
H28C0.51110.99710.40760.110*
H2N0.7868 (11)0.8730 (15)0.3922 (11)0.047 (4)*
H1N0.7198 (11)0.6080 (15)0.6130 (11)0.046 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0662 (2)0.03604 (19)0.0476 (2)0.00710 (15)0.02661 (18)0.00063 (14)
O10.0455 (5)0.0561 (6)0.0383 (5)0.0040 (4)0.0194 (4)0.0031 (4)
O20.0546 (6)0.0437 (5)0.0496 (5)0.0082 (4)0.0327 (5)0.0111 (4)
N10.0388 (6)0.0470 (7)0.0375 (6)0.0035 (5)0.0169 (5)0.0034 (5)
N20.0545 (7)0.0382 (6)0.0453 (6)0.0003 (5)0.0314 (6)0.0023 (5)
C10.0458 (7)0.0435 (7)0.0397 (7)0.0075 (6)0.0223 (6)0.0065 (5)
C20.0440 (7)0.0611 (9)0.0465 (8)0.0084 (7)0.0188 (6)0.0040 (7)
C30.0490 (9)0.0850 (13)0.0714 (11)0.0191 (9)0.0252 (8)0.0025 (10)
C40.0733 (12)0.0748 (12)0.0801 (12)0.0285 (10)0.0413 (10)0.0027 (10)
C50.0846 (12)0.0496 (9)0.0726 (11)0.0102 (9)0.0406 (10)0.0050 (8)
C60.0570 (9)0.0469 (8)0.0590 (9)0.0027 (7)0.0285 (7)0.0006 (7)
C70.0386 (6)0.0362 (6)0.0397 (7)0.0043 (5)0.0200 (5)0.0006 (5)
C80.0319 (6)0.0414 (7)0.0402 (7)0.0015 (5)0.0143 (5)0.0020 (5)
C90.0346 (6)0.0423 (7)0.0418 (7)0.0041 (5)0.0157 (5)0.0034 (5)
C100.0419 (7)0.0691 (10)0.0486 (8)0.0008 (7)0.0235 (6)0.0068 (7)
C110.0458 (8)0.0766 (12)0.0623 (10)0.0193 (8)0.0198 (7)0.0104 (9)
C120.0567 (9)0.0639 (10)0.0615 (10)0.0254 (8)0.0152 (8)0.0056 (8)
C130.0472 (8)0.0568 (9)0.0458 (8)0.0092 (7)0.0158 (6)0.0069 (7)
C140.0471 (7)0.0408 (7)0.0448 (7)0.0024 (6)0.0231 (6)0.0067 (6)
C150.0408 (6)0.0395 (7)0.0414 (7)0.0069 (5)0.0211 (6)0.0027 (5)
C160.0528 (8)0.0518 (8)0.0422 (7)0.0119 (6)0.0189 (6)0.0022 (6)
C170.0794 (11)0.0723 (12)0.0425 (8)0.0181 (9)0.0235 (8)0.0137 (8)
C180.0973 (14)0.0674 (12)0.0589 (10)0.0084 (10)0.0356 (10)0.0290 (9)
C190.0778 (11)0.0498 (9)0.0615 (10)0.0053 (8)0.0314 (9)0.0139 (8)
C200.0387 (6)0.0390 (7)0.0380 (7)0.0032 (5)0.0180 (5)0.0045 (5)
C210.0628 (9)0.0347 (7)0.0396 (7)0.0043 (6)0.0268 (6)0.0065 (5)
C220.0707 (10)0.0452 (8)0.0548 (9)0.0143 (7)0.0365 (8)0.0150 (7)
C230.1105 (15)0.0501 (10)0.0806 (12)0.0278 (11)0.0629 (12)0.0177 (9)
C240.147 (2)0.0432 (9)0.0725 (12)0.0037 (12)0.0608 (14)0.0031 (9)
C250.1140 (17)0.0480 (10)0.0657 (11)0.0159 (10)0.0295 (11)0.0054 (8)
C260.0717 (10)0.0465 (8)0.0592 (9)0.0045 (8)0.0256 (8)0.0023 (7)
C270.0448 (8)0.0837 (13)0.0678 (11)0.0002 (8)0.0143 (8)0.0128 (9)
C280.0588 (10)0.0724 (12)0.0944 (14)0.0171 (9)0.0360 (10)0.0187 (10)
Geometric parameters (Å, º) top
S1—C141.7732 (14)C12—H120.9300
S1—C91.7743 (14)C13—H130.9300
O1—C71.2300 (15)C14—C191.391 (2)
O2—C201.2289 (15)C14—C151.399 (2)
N1—C71.3445 (17)C15—C161.3928 (19)
N1—C11.4244 (16)C15—C201.5014 (18)
N1—H1N0.861 (16)C16—C171.382 (2)
N2—C201.3448 (17)C16—H160.9300
N2—C211.4259 (17)C17—C181.366 (3)
N2—H2N0.856 (16)C17—H170.9300
C1—C61.394 (2)C18—C191.382 (3)
C1—C21.396 (2)C18—H180.9300
C2—C31.394 (2)C19—H190.9300
C2—C271.499 (2)C21—C261.386 (2)
C3—C41.369 (3)C21—C221.387 (2)
C3—H30.9300C22—C231.404 (2)
C4—C51.369 (3)C22—C281.493 (3)
C4—H40.9300C23—C241.363 (3)
C5—C61.381 (2)C23—H230.9300
C5—H50.9300C24—C251.365 (3)
C6—H60.9300C24—H240.9300
C7—C81.5032 (17)C25—C261.385 (3)
C8—C131.387 (2)C25—H250.9300
C8—C91.3976 (18)C26—H260.9300
C9—C101.3953 (19)C27—H27A0.9600
C10—C111.373 (2)C27—H27B0.9600
C10—H100.9300C27—H27C0.9600
C11—C121.380 (2)C28—H28A0.9600
C11—H110.9300C28—H28B0.9600
C12—C131.376 (2)C28—H28C0.9600
C14—S1—C9104.92 (6)C16—C15—C14118.81 (12)
C7—N1—C1125.77 (12)C16—C15—C20117.83 (12)
C7—N1—H1N118.1 (10)C14—C15—C20123.31 (12)
C1—N1—H1N116.2 (10)C17—C16—C15121.48 (15)
C20—N2—C21125.84 (11)C17—C16—H16119.3
C20—N2—H2N116.7 (11)C15—C16—H16119.3
C21—N2—H2N116.6 (11)C18—C17—C16119.32 (15)
C6—C1—C2120.33 (13)C18—C17—H17120.3
C6—C1—N1120.38 (13)C16—C17—H17120.3
C2—C1—N1119.24 (13)C17—C18—C19120.51 (16)
C3—C2—C1117.51 (15)C17—C18—H18119.7
C3—C2—C27120.35 (15)C19—C18—H18119.7
C1—C2—C27122.14 (13)C18—C19—C14120.87 (17)
C4—C3—C2121.86 (17)C18—C19—H19119.6
C4—C3—H3119.1C14—C19—H19119.6
C2—C3—H3119.1O2—C20—N2123.50 (12)
C5—C4—C3120.32 (16)O2—C20—C15122.19 (12)
C5—C4—H4119.8N2—C20—C15114.28 (11)
C3—C4—H4119.8C26—C21—C22121.14 (14)
C4—C5—C6119.74 (17)C26—C21—N2117.26 (13)
C4—C5—H5120.1C22—C21—N2121.41 (14)
C6—C5—H5120.1C21—C22—C23116.55 (17)
C5—C6—C1120.24 (15)C21—C22—C28121.97 (15)
C5—C6—H6119.9C23—C22—C28121.42 (16)
C1—C6—H6119.9C24—C23—C22122.34 (19)
O1—C7—N1123.97 (12)C24—C23—H23118.8
O1—C7—C8119.48 (11)C22—C23—H23118.8
N1—C7—C8116.48 (11)C23—C24—C25120.21 (18)
C13—C8—C9119.08 (12)C23—C24—H24119.9
C13—C8—C7115.95 (12)C25—C24—H24119.9
C9—C8—C7124.97 (12)C24—C25—C26119.5 (2)
C10—C9—C8119.20 (13)C24—C25—H25120.3
C10—C9—S1119.75 (11)C26—C25—H25120.3
C8—C9—S1120.86 (10)C25—C26—C21120.23 (18)
C11—C10—C9120.66 (14)C25—C26—H26119.9
C11—C10—H10119.7C21—C26—H26119.9
C9—C10—H10119.7C2—C27—H27A109.5
C10—C11—C12120.17 (14)C2—C27—H27B109.5
C10—C11—H11119.9H27A—C27—H27B109.5
C12—C11—H11119.9C2—C27—H27C109.5
C13—C12—C11119.70 (15)H27A—C27—H27C109.5
C13—C12—H12120.1H27B—C27—H27C109.5
C11—C12—H12120.1C22—C28—H28A109.5
C12—C13—C8121.12 (14)C22—C28—H28B109.5
C12—C13—H13119.4H28A—C28—H28B109.5
C8—C13—H13119.4C22—C28—H28C109.5
C19—C14—C15119.00 (14)H28A—C28—H28C109.5
C19—C14—S1114.71 (12)H28B—C28—H28C109.5
C15—C14—S1126.24 (10)
C7—N1—C1—C636.53 (19)C9—S1—C14—C19143.53 (12)
C7—N1—C1—C2145.95 (14)C9—S1—C14—C1539.00 (13)
C6—C1—C2—C30.2 (2)C19—C14—C15—C160.5 (2)
N1—C1—C2—C3177.71 (14)S1—C14—C15—C16177.92 (10)
C6—C1—C2—C27179.92 (15)C19—C14—C15—C20176.85 (13)
N1—C1—C2—C272.6 (2)S1—C14—C15—C200.52 (19)
C1—C2—C3—C40.0 (3)C14—C15—C16—C171.1 (2)
C27—C2—C3—C4179.69 (18)C20—C15—C16—C17176.48 (13)
C2—C3—C4—C50.1 (3)C15—C16—C17—C180.6 (2)
C3—C4—C5—C60.5 (3)C16—C17—C18—C190.4 (3)
C4—C5—C6—C10.7 (3)C17—C18—C19—C140.9 (3)
C2—C1—C6—C50.6 (2)C15—C14—C19—C180.4 (2)
N1—C1—C6—C5178.07 (14)S1—C14—C19—C18177.26 (15)
C1—N1—C7—O110.4 (2)C21—N2—C20—O22.6 (2)
C1—N1—C7—C8172.55 (12)C21—N2—C20—C15179.54 (13)
O1—C7—C8—C1345.41 (17)C16—C15—C20—O2128.45 (14)
N1—C7—C8—C13131.75 (13)C14—C15—C20—O248.97 (19)
O1—C7—C8—C9133.77 (14)C16—C15—C20—N249.40 (16)
N1—C7—C8—C949.07 (18)C14—C15—C20—N2133.17 (13)
C13—C8—C9—C101.2 (2)C20—N2—C21—C26122.49 (15)
C7—C8—C9—C10179.68 (12)C20—N2—C21—C2262.50 (19)
C13—C8—C9—S1173.71 (10)C26—C21—C22—C232.6 (2)
C7—C8—C9—S15.44 (18)N2—C21—C22—C23177.47 (13)
C14—S1—C9—C1048.92 (12)C26—C21—C22—C28174.44 (15)
C14—S1—C9—C8136.24 (11)N2—C21—C22—C280.4 (2)
C8—C9—C10—C111.2 (2)C21—C22—C23—C242.5 (2)
S1—C9—C10—C11176.11 (12)C28—C22—C23—C24174.56 (17)
C9—C10—C11—C121.9 (3)C22—C23—C24—C250.8 (3)
C10—C11—C12—C130.3 (3)C23—C24—C25—C260.9 (3)
C11—C12—C13—C82.1 (3)C24—C25—C26—C210.8 (3)
C9—C8—C13—C122.8 (2)C22—C21—C26—C251.1 (2)
C7—C8—C13—C12177.94 (14)N2—C21—C26—C25176.12 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.861 (16)2.058 (17)2.8747 (15)158.1 (15)
N2—H2N···O1i0.856 (16)2.024 (17)2.8728 (14)170.6 (15)
Symmetry code: (i) x, y+3/2, z1/2.
(Ib) N,N'-bis(2-ethylphenyl)-2,2'-thiodibenzamide top
Crystal data top
C30H28N2O2SF(000) = 1016
Mr = 480.60Dx = 1.278 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P2ynCell parameters from 9904 reflections
a = 7.8786 (1) Åθ = 4.8–71.2°
b = 17.3269 (2) ŵ = 1.38 mm1
c = 18.3960 (2) ÅT = 293 K
β = 95.787 (1)°Rod, colourless
V = 2498.47 (5) Å30.40 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4817 independent reflections
Radiation source: fine-focus sealed tube4541 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 72.0°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 79
Tmin = 0.632, Tmax = 0.754k = 2120
23191 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.5935P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4817 reflectionsΔρmax = 0.18 e Å3
327 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0039 (2)
Crystal data top
C30H28N2O2SV = 2498.47 (5) Å3
Mr = 480.60Z = 4
Monoclinic, P21/nCu Kα radiation
a = 7.8786 (1) ŵ = 1.38 mm1
b = 17.3269 (2) ÅT = 293 K
c = 18.3960 (2) Å0.40 × 0.25 × 0.20 mm
β = 95.787 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4817 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
4541 reflections with I > 2σ(I)
Tmin = 0.632, Tmax = 0.754Rint = 0.031
23191 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.18 e Å3
4817 reflectionsΔρmin = 0.19 e Å3
327 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.74753 (4)0.153849 (18)0.581843 (16)0.04065 (11)
O10.56505 (13)0.37544 (6)0.61944 (6)0.0588 (3)
O20.86606 (13)0.16248 (5)0.74962 (5)0.0486 (2)
N10.77801 (14)0.30569 (7)0.67962 (7)0.0444 (3)
H1N0.7989 (19)0.2638 (9)0.7007 (8)0.047 (4)*
N20.69702 (16)0.07604 (7)0.79770 (6)0.0456 (3)
H2N0.651 (2)0.0344 (10)0.7922 (10)0.063 (5)*
C10.90841 (16)0.36277 (7)0.68273 (8)0.0444 (3)
C21.00947 (17)0.37522 (8)0.74851 (9)0.0496 (3)
C31.13859 (19)0.43086 (9)0.74777 (11)0.0648 (5)
H31.20730.44100.79080.078*
C41.1671 (2)0.47087 (10)0.68575 (13)0.0718 (5)
H41.25410.50730.68720.086*
C51.0671 (2)0.45701 (10)0.62178 (11)0.0671 (5)
H51.08660.48370.57950.080*
C60.9372 (2)0.40328 (8)0.62022 (9)0.0544 (4)
H60.86870.39420.57690.065*
C70.62031 (16)0.31427 (7)0.64470 (7)0.0408 (3)
C80.50655 (15)0.24423 (7)0.64185 (6)0.0378 (3)
C90.54993 (15)0.17066 (7)0.61843 (6)0.0372 (3)
C100.43014 (17)0.11136 (8)0.61725 (9)0.0517 (3)
H100.45790.06260.60090.062*
C110.27108 (18)0.12406 (10)0.63992 (10)0.0599 (4)
H110.19380.08350.64040.072*
C120.22635 (17)0.19648 (10)0.66184 (9)0.0567 (4)
H120.11830.20520.67640.068*
C130.34204 (17)0.25611 (8)0.66216 (8)0.0473 (3)
H130.31030.30520.67610.057*
C140.80635 (15)0.06033 (7)0.61526 (7)0.0384 (3)
C150.82712 (15)0.04101 (7)0.68965 (7)0.0380 (3)
C160.88308 (17)0.03256 (8)0.71047 (8)0.0493 (3)
H160.89510.04590.75970.059*
C170.9212 (2)0.08614 (9)0.65869 (10)0.0609 (4)
H170.96130.13480.67320.073*
C180.8995 (2)0.06723 (9)0.58577 (10)0.0646 (4)
H180.92430.10330.55100.078*
C190.84090 (19)0.00521 (9)0.56393 (8)0.0526 (3)
H190.82450.01710.51440.063*
C200.79803 (15)0.09890 (7)0.74767 (6)0.0369 (3)
C210.65255 (17)0.12530 (7)0.85554 (7)0.0409 (3)
C220.75010 (18)0.12515 (8)0.92267 (7)0.0475 (3)
C230.6978 (2)0.17315 (9)0.97682 (9)0.0621 (4)
H230.76130.17431.02230.075*
C240.5567 (3)0.21850 (10)0.96531 (10)0.0683 (5)
H240.52540.25021.00250.082*
C250.4603 (2)0.21744 (10)0.89884 (11)0.0673 (5)
H250.36300.24800.89100.081*
C260.5088 (2)0.17052 (9)0.84339 (9)0.0546 (4)
H260.44440.16960.79820.066*
C270.9826 (2)0.32938 (9)0.81598 (9)0.0623 (4)
H27A1.04010.28020.81300.075*
H27B0.86160.31880.81550.075*
C281.0436 (3)0.36621 (13)0.88849 (11)0.0861 (6)
H28A1.16550.37130.89250.129*
H28B1.01140.33440.92760.129*
H28C0.99260.41630.89140.129*
C290.9075 (2)0.07640 (10)0.93881 (10)0.0676 (4)
H29A0.89830.03110.90760.081*
H29B0.91400.05890.98910.081*
C301.0694 (2)0.11914 (14)0.92706 (12)0.0853 (6)
H30A1.06980.13130.87620.128*
H30B1.16610.08740.94250.128*
H30C1.07510.16600.95500.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.04085 (18)0.04641 (19)0.03570 (17)0.00041 (12)0.00877 (12)0.00206 (12)
O10.0541 (6)0.0446 (5)0.0748 (7)0.0039 (4)0.0077 (5)0.0120 (5)
O20.0614 (6)0.0438 (5)0.0411 (5)0.0156 (4)0.0070 (4)0.0010 (4)
N10.0431 (6)0.0354 (6)0.0522 (6)0.0006 (4)0.0072 (5)0.0013 (5)
N20.0549 (7)0.0416 (6)0.0420 (6)0.0126 (5)0.0130 (5)0.0034 (5)
C10.0378 (6)0.0353 (6)0.0598 (8)0.0040 (5)0.0031 (6)0.0085 (6)
C20.0382 (7)0.0402 (7)0.0681 (9)0.0068 (5)0.0050 (6)0.0117 (6)
C30.0421 (8)0.0506 (8)0.0984 (13)0.0015 (6)0.0088 (8)0.0192 (9)
C40.0446 (8)0.0515 (9)0.1210 (16)0.0064 (7)0.0159 (9)0.0094 (10)
C50.0604 (10)0.0537 (9)0.0915 (13)0.0017 (7)0.0296 (9)0.0006 (8)
C60.0548 (8)0.0484 (8)0.0614 (9)0.0003 (6)0.0124 (7)0.0060 (7)
C70.0422 (7)0.0409 (6)0.0388 (6)0.0027 (5)0.0011 (5)0.0002 (5)
C80.0345 (6)0.0437 (6)0.0341 (6)0.0029 (5)0.0018 (5)0.0031 (5)
C90.0310 (6)0.0440 (6)0.0355 (6)0.0002 (5)0.0012 (4)0.0020 (5)
C100.0386 (7)0.0459 (7)0.0693 (9)0.0031 (6)0.0009 (6)0.0017 (6)
C110.0339 (7)0.0607 (9)0.0838 (11)0.0085 (6)0.0003 (7)0.0111 (8)
C120.0315 (6)0.0712 (10)0.0678 (9)0.0066 (6)0.0071 (6)0.0130 (8)
C130.0385 (7)0.0537 (8)0.0494 (7)0.0105 (6)0.0032 (5)0.0049 (6)
C140.0308 (6)0.0436 (6)0.0418 (6)0.0011 (5)0.0088 (5)0.0035 (5)
C150.0301 (5)0.0408 (6)0.0436 (6)0.0022 (5)0.0060 (5)0.0006 (5)
C160.0441 (7)0.0451 (7)0.0590 (8)0.0019 (6)0.0069 (6)0.0060 (6)
C170.0560 (9)0.0440 (8)0.0848 (12)0.0108 (6)0.0169 (8)0.0007 (7)
C180.0665 (10)0.0531 (9)0.0782 (11)0.0083 (7)0.0263 (8)0.0174 (8)
C190.0525 (8)0.0573 (8)0.0503 (8)0.0024 (7)0.0173 (6)0.0097 (6)
C200.0360 (6)0.0397 (6)0.0341 (6)0.0021 (5)0.0004 (5)0.0043 (5)
C210.0459 (7)0.0388 (6)0.0391 (6)0.0047 (5)0.0101 (5)0.0029 (5)
C220.0545 (8)0.0432 (7)0.0446 (7)0.0006 (6)0.0032 (6)0.0016 (5)
C230.0849 (12)0.0586 (9)0.0428 (8)0.0005 (8)0.0065 (7)0.0057 (7)
C240.0874 (12)0.0556 (9)0.0672 (11)0.0017 (9)0.0332 (9)0.0084 (8)
C250.0571 (9)0.0536 (9)0.0947 (13)0.0122 (7)0.0257 (9)0.0072 (9)
C260.0505 (8)0.0563 (8)0.0565 (8)0.0015 (7)0.0028 (6)0.0103 (7)
C270.0659 (10)0.0534 (8)0.0624 (9)0.0056 (7)0.0188 (8)0.0065 (7)
C280.0929 (14)0.0887 (13)0.0705 (12)0.0031 (11)0.0226 (10)0.0186 (10)
C290.0728 (11)0.0605 (9)0.0655 (10)0.0142 (8)0.0131 (8)0.0010 (8)
C300.0600 (11)0.1153 (17)0.0790 (13)0.0179 (11)0.0009 (9)0.0041 (12)
Geometric parameters (Å, º) top
S1—C141.7779 (13)C14—C151.4023 (17)
S1—C91.7813 (12)C15—C161.3899 (18)
O1—C71.2198 (16)C15—C201.4990 (17)
O2—C201.2241 (15)C16—C171.384 (2)
N1—C71.3481 (17)C16—H160.9300
N1—C11.4230 (17)C17—C181.375 (3)
N1—H1N0.831 (16)C17—H170.9300
N2—C201.3361 (16)C18—C191.383 (2)
N2—C211.4346 (17)C18—H180.9300
N2—H2N0.810 (18)C19—H190.9300
C1—C61.386 (2)C21—C261.377 (2)
C1—C21.397 (2)C21—C221.3872 (19)
C2—C31.403 (2)C22—C231.392 (2)
C2—C271.506 (2)C22—C291.505 (2)
C3—C41.373 (3)C23—C241.361 (3)
C3—H30.9300C23—H230.9300
C4—C51.370 (3)C24—C251.373 (3)
C4—H40.9300C24—H240.9300
C5—C61.382 (2)C25—C261.388 (2)
C5—H50.9300C25—H250.9300
C6—H60.9300C26—H260.9300
C7—C81.5064 (18)C27—C281.513 (2)
C8—C91.3990 (17)C27—H27A0.9700
C8—C131.3998 (18)C27—H27B0.9700
C9—C101.3937 (18)C28—H28A0.9600
C10—C111.378 (2)C28—H28B0.9600
C10—H100.9300C28—H28C0.9600
C11—C121.375 (2)C29—C301.509 (3)
C11—H110.9300C29—H29A0.9700
C12—C131.377 (2)C29—H29B0.9700
C12—H120.9300C30—H30A0.9600
C13—H130.9300C30—H30B0.9600
C14—C191.3890 (18)C30—H30C0.9600
C14—S1—C9103.04 (6)C18—C17—C16119.82 (14)
C7—N1—C1124.72 (11)C18—C17—H17120.1
C7—N1—H1N116.6 (11)C16—C17—H17120.1
C1—N1—H1N118.7 (11)C17—C18—C19120.32 (14)
C20—N2—C21122.79 (11)C17—C18—H18119.8
C20—N2—H2N118.0 (13)C19—C18—H18119.8
C21—N2—H2N118.8 (13)C18—C19—C14120.60 (14)
C6—C1—C2120.94 (13)C18—C19—H19119.7
C6—C1—N1119.79 (13)C14—C19—H19119.7
C2—C1—N1119.24 (13)O2—C20—N2122.41 (12)
C1—C2—C3116.64 (15)O2—C20—C15121.69 (11)
C1—C2—C27121.15 (13)N2—C20—C15115.89 (11)
C3—C2—C27122.19 (14)C26—C21—C22121.23 (13)
C4—C3—C2122.35 (17)C26—C21—N2118.46 (13)
C4—C3—H3118.8C22—C21—N2120.29 (12)
C2—C3—H3118.8C21—C22—C23117.30 (14)
C5—C4—C3119.81 (15)C21—C22—C29123.24 (13)
C5—C4—H4120.1C23—C22—C29119.46 (14)
C3—C4—H4120.1C24—C23—C22122.02 (16)
C4—C5—C6119.78 (17)C24—C23—H23119.0
C4—C5—H5120.1C22—C23—H23119.0
C6—C5—H5120.1C23—C24—C25120.05 (15)
C5—C6—C1120.48 (16)C23—C24—H24120.0
C5—C6—H6119.8C25—C24—H24120.0
C1—C6—H6119.8C24—C25—C26119.59 (15)
O1—C7—N1123.62 (12)C24—C25—H25120.2
O1—C7—C8119.90 (11)C26—C25—H25120.2
N1—C7—C8116.38 (11)C21—C26—C25119.81 (15)
C9—C8—C13118.53 (12)C21—C26—H26120.1
C9—C8—C7125.58 (11)C25—C26—H26120.1
C13—C8—C7115.85 (12)C2—C27—C28116.46 (15)
C10—C9—C8119.37 (12)C2—C27—H27A108.2
C10—C9—S1119.33 (10)C28—C27—H27A108.2
C8—C9—S1121.02 (9)C2—C27—H27B108.2
C11—C10—C9120.85 (14)C28—C27—H27B108.2
C11—C10—H10119.6H27A—C27—H27B107.3
C9—C10—H10119.6C27—C28—H28A109.5
C12—C11—C10120.16 (14)C27—C28—H28B109.5
C12—C11—H11119.9H28A—C28—H28B109.5
C10—C11—H11119.9C27—C28—H28C109.5
C11—C12—C13119.79 (13)H28A—C28—H28C109.5
C11—C12—H12120.1H28B—C28—H28C109.5
C13—C12—H12120.1C22—C29—C30112.81 (15)
C12—C13—C8121.25 (13)C22—C29—H29A109.0
C12—C13—H13119.4C30—C29—H29A109.0
C8—C13—H13119.4C22—C29—H29B109.0
C19—C14—C15119.19 (12)C30—C29—H29B109.0
C19—C14—S1116.98 (10)H29A—C29—H29B107.8
C15—C14—S1123.76 (9)C29—C30—H30A109.5
C16—C15—C14119.36 (12)C29—C30—H30B109.5
C16—C15—C20118.99 (11)H30A—C30—H30B109.5
C14—C15—C20121.59 (11)C29—C30—H30C109.5
C17—C16—C15120.68 (14)H30A—C30—H30C109.5
C17—C16—H16119.7H30B—C30—H30C109.5
C15—C16—H16119.7
C7—N1—C1—C643.91 (19)C19—C14—C15—C160.52 (18)
C7—N1—C1—C2138.25 (14)S1—C14—C15—C16176.26 (10)
C6—C1—C2—C30.66 (19)C19—C14—C15—C20177.71 (12)
N1—C1—C2—C3178.48 (12)S1—C14—C15—C200.93 (16)
C6—C1—C2—C27177.86 (13)C14—C15—C16—C171.2 (2)
N1—C1—C2—C270.05 (19)C20—C15—C16—C17176.11 (13)
C1—C2—C3—C40.8 (2)C15—C16—C17—C181.6 (2)
C27—C2—C3—C4177.75 (15)C16—C17—C18—C190.4 (3)
C2—C3—C4—C50.2 (2)C17—C18—C19—C141.3 (2)
C3—C4—C5—C60.5 (2)C15—C14—C19—C181.7 (2)
C4—C5—C6—C10.6 (2)S1—C14—C19—C18175.27 (12)
C2—C1—C6—C50.0 (2)C21—N2—C20—O23.4 (2)
N1—C1—C6—C5177.80 (13)C21—N2—C20—C15178.15 (11)
C1—N1—C7—O19.4 (2)C16—C15—C20—O2125.95 (13)
C1—N1—C7—C8174.37 (12)C14—C15—C20—O251.25 (17)
O1—C7—C8—C9132.17 (14)C16—C15—C20—N252.53 (16)
N1—C7—C8—C951.44 (17)C14—C15—C20—N2130.27 (13)
O1—C7—C8—C1345.39 (17)C20—N2—C21—C2689.90 (17)
N1—C7—C8—C13131.01 (13)C20—N2—C21—C2292.03 (16)
C13—C8—C9—C101.15 (18)C26—C21—C22—C230.7 (2)
C7—C8—C9—C10178.65 (12)N2—C21—C22—C23178.72 (13)
C13—C8—C9—S1172.69 (9)C26—C21—C22—C29179.59 (15)
C7—C8—C9—S14.81 (17)N2—C21—C22—C291.6 (2)
C14—S1—C9—C1042.67 (12)C21—C22—C23—C240.3 (2)
C14—S1—C9—C8143.48 (10)C29—C22—C23—C24179.97 (16)
C8—C9—C10—C111.1 (2)C22—C23—C24—C250.4 (3)
S1—C9—C10—C11175.00 (12)C23—C24—C25—C260.7 (3)
C9—C10—C11—C122.2 (2)C22—C21—C26—C250.5 (2)
C10—C11—C12—C131.0 (2)N2—C21—C26—C25178.52 (13)
C11—C12—C13—C81.2 (2)C24—C25—C26—C210.2 (2)
C9—C8—C13—C122.32 (19)C1—C2—C27—C28156.28 (15)
C7—C8—C13—C12179.95 (13)C3—C2—C27—C2825.3 (2)
C9—S1—C14—C19125.61 (10)C21—C22—C29—C3094.42 (19)
C9—S1—C14—C1557.54 (11)C23—C22—C29—C3085.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.831 (16)2.020 (17)2.8490 (15)176.0 (15)
N2—H2N···Cg1i0.810 (18)2.587 (17)3.3591 (14)160.1 (16)
Symmetry code: (i) x+3/2, y1/2, z+3/2.
(Ic) N,N'-bis(2-bromophenyl)-2,2'-thiodibenzamide top
Crystal data top
C26H18Br2N2O2SF(000) = 1160
Mr = 582.30Dx = 1.634 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P2ybcCell parameters from 3941 reflections
a = 20.6504 (3) Åθ = 3.6–72.5°
b = 15.3378 (2) ŵ = 5.39 mm1
c = 7.5101 (1) ÅT = 296 K
β = 95.520 (1)°Plate, colourless
V = 2367.66 (6) Å30.30 × 0.30 × 0.01 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4681 independent reflections
Radiation source: fine-focus sealed tube3752 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 74.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 2524
Tmin = 0.454, Tmax = 0.754k = 1814
17010 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0644P)2 + 1.9041P]
where P = (Fo2 + 2Fc2)/3
4681 reflections(Δ/σ)max = 0.001
306 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
C26H18Br2N2O2SV = 2367.66 (6) Å3
Mr = 582.30Z = 4
Monoclinic, P21/cCu Kα radiation
a = 20.6504 (3) ŵ = 5.39 mm1
b = 15.3378 (2) ÅT = 296 K
c = 7.5101 (1) Å0.30 × 0.30 × 0.01 mm
β = 95.520 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4681 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3752 reflections with I > 2σ(I)
Tmin = 0.454, Tmax = 0.754Rint = 0.049
17010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.83 e Å3
4681 reflectionsΔρmin = 0.66 e Å3
306 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.59962 (3)0.45743 (5)0.74372 (9)0.1004 (2)
Br20.74240 (2)0.95912 (3)0.61736 (7)0.07080 (17)
S10.87768 (4)0.52798 (5)0.52702 (10)0.04400 (19)
O10.81248 (15)0.3434 (2)0.4746 (5)0.0814 (9)
O20.79907 (12)0.64694 (15)0.7654 (3)0.0523 (6)
N10.72734 (16)0.3972 (3)0.6097 (5)0.0626 (8)
H1N0.719 (2)0.424 (3)0.695 (6)0.061 (13)*
N20.77499 (13)0.76491 (18)0.5901 (4)0.0454 (6)
H2N0.7879 (19)0.796 (3)0.512 (5)0.050 (10)*
C10.67429 (18)0.3799 (2)0.4819 (5)0.0573 (9)
C20.6122 (2)0.4043 (3)0.5202 (6)0.0690 (11)
C30.5583 (2)0.3907 (4)0.4028 (8)0.0901 (15)
H30.51730.40720.43210.108*
C40.5659 (3)0.3518 (4)0.2388 (8)0.0936 (17)
H40.52990.34330.15620.112*
C50.6264 (3)0.3262 (3)0.1991 (7)0.0813 (14)
H50.63100.29870.09060.098*
C60.6808 (2)0.3406 (3)0.3185 (6)0.0696 (11)
H60.72170.32380.28900.084*
C70.79066 (17)0.3796 (2)0.6005 (5)0.0499 (8)
C80.83342 (15)0.41127 (19)0.7605 (5)0.0438 (7)
C90.87627 (14)0.48091 (17)0.7433 (4)0.0381 (6)
C100.91476 (15)0.5100 (2)0.8919 (4)0.0433 (6)
H100.94310.55640.88160.052*
C110.91124 (17)0.4705 (2)1.0551 (5)0.0510 (8)
H110.93720.49081.15450.061*
C120.86999 (19)0.4014 (2)1.0736 (5)0.0568 (9)
H120.86810.37491.18450.068*
C130.83159 (18)0.3719 (2)0.9266 (5)0.0551 (8)
H130.80390.32490.93830.066*
C140.91761 (15)0.62996 (19)0.5697 (4)0.0397 (6)
C150.88383 (14)0.70553 (19)0.6110 (4)0.0378 (6)
C160.91694 (16)0.7839 (2)0.6217 (4)0.0453 (7)
H160.89500.83460.64730.054*
C170.98240 (17)0.7883 (2)0.5951 (5)0.0510 (8)
H171.00400.84150.60420.061*
C181.01526 (16)0.7141 (2)0.5553 (5)0.0527 (8)
H181.05920.71670.53740.063*
C190.98259 (16)0.6355 (2)0.5420 (5)0.0477 (7)
H191.00480.58540.51390.057*
C200.81513 (15)0.70130 (19)0.6599 (4)0.0401 (6)
C210.70995 (15)0.7783 (2)0.6296 (4)0.0468 (7)
C220.68653 (17)0.8626 (3)0.6428 (5)0.0537 (8)
C230.6230 (2)0.8777 (3)0.6746 (6)0.0739 (12)
H230.60760.93450.68090.089*
C240.5824 (2)0.8085 (4)0.6968 (7)0.0875 (16)
H240.53930.81840.71740.105*
C250.6051 (2)0.7253 (4)0.6887 (7)0.0826 (14)
H250.57760.67880.70660.099*
C260.66868 (19)0.7090 (3)0.6542 (6)0.0638 (10)
H260.68360.65190.64760.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0610 (3)0.1508 (6)0.0891 (4)0.0117 (3)0.0063 (3)0.0293 (4)
Br20.0735 (3)0.0497 (2)0.0894 (3)0.00888 (17)0.0093 (2)0.0086 (2)
S10.0565 (4)0.0365 (4)0.0390 (4)0.0021 (3)0.0046 (3)0.0030 (3)
O10.0671 (18)0.087 (2)0.090 (2)0.0041 (15)0.0079 (16)0.0401 (18)
O20.0592 (14)0.0455 (12)0.0553 (13)0.0062 (10)0.0215 (11)0.0105 (11)
N10.0478 (17)0.079 (2)0.0602 (19)0.0008 (15)0.0024 (14)0.0157 (18)
N20.0439 (14)0.0446 (14)0.0487 (14)0.0044 (11)0.0097 (12)0.0088 (12)
C10.054 (2)0.058 (2)0.058 (2)0.0106 (15)0.0014 (16)0.0008 (17)
C20.055 (2)0.082 (3)0.068 (2)0.0128 (19)0.0011 (18)0.001 (2)
C30.059 (3)0.118 (4)0.090 (4)0.012 (3)0.008 (2)0.003 (3)
C40.071 (3)0.125 (5)0.079 (3)0.030 (3)0.019 (2)0.001 (3)
C50.092 (4)0.082 (3)0.068 (3)0.025 (3)0.004 (2)0.010 (2)
C60.071 (3)0.075 (3)0.062 (2)0.013 (2)0.0009 (19)0.004 (2)
C70.0506 (18)0.0343 (15)0.065 (2)0.0050 (12)0.0063 (15)0.0028 (14)
C80.0421 (16)0.0345 (14)0.0550 (18)0.0033 (11)0.0052 (13)0.0005 (13)
C90.0408 (14)0.0288 (12)0.0446 (15)0.0053 (10)0.0043 (12)0.0015 (11)
C100.0432 (15)0.0389 (15)0.0473 (16)0.0008 (12)0.0018 (13)0.0012 (13)
C110.0495 (18)0.0566 (19)0.0459 (17)0.0094 (14)0.0012 (14)0.0016 (15)
C120.060 (2)0.058 (2)0.0524 (19)0.0124 (16)0.0101 (16)0.0183 (17)
C130.057 (2)0.0404 (16)0.068 (2)0.0022 (14)0.0096 (17)0.0105 (16)
C140.0453 (16)0.0371 (14)0.0368 (14)0.0013 (11)0.0049 (12)0.0043 (12)
C150.0433 (15)0.0368 (14)0.0333 (13)0.0025 (11)0.0042 (11)0.0043 (11)
C160.0533 (18)0.0353 (14)0.0468 (16)0.0002 (12)0.0034 (13)0.0026 (13)
C170.0503 (18)0.0444 (17)0.057 (2)0.0105 (13)0.0009 (15)0.0082 (15)
C180.0389 (16)0.059 (2)0.060 (2)0.0008 (14)0.0049 (14)0.0144 (16)
C190.0464 (17)0.0451 (16)0.0521 (17)0.0080 (13)0.0083 (13)0.0087 (14)
C200.0477 (16)0.0346 (14)0.0384 (14)0.0017 (11)0.0072 (12)0.0024 (12)
C210.0387 (15)0.0581 (19)0.0436 (16)0.0004 (13)0.0043 (12)0.0021 (14)
C220.0457 (17)0.065 (2)0.0500 (18)0.0106 (15)0.0034 (14)0.0019 (16)
C230.056 (2)0.094 (3)0.072 (3)0.022 (2)0.0087 (19)0.006 (2)
C240.042 (2)0.132 (5)0.089 (3)0.010 (2)0.012 (2)0.008 (3)
C250.047 (2)0.111 (4)0.091 (3)0.016 (2)0.010 (2)0.008 (3)
C260.051 (2)0.069 (2)0.071 (2)0.0059 (17)0.0055 (17)0.006 (2)
Geometric parameters (Å, º) top
Br1—C21.906 (5)C10—H100.9300
Br2—C221.898 (4)C11—C121.375 (5)
S1—C91.780 (3)C11—H110.9300
S1—C141.783 (3)C12—C131.373 (6)
O1—C71.219 (5)C12—H120.9300
O2—C201.218 (4)C13—H130.9300
N1—C71.344 (5)C14—C191.380 (4)
N1—C11.410 (5)C14—C151.403 (4)
N1—H1N0.79 (5)C15—C161.382 (4)
N2—C201.353 (4)C15—C201.501 (4)
N2—C211.418 (4)C16—C171.387 (5)
N2—H2N0.82 (4)C16—H160.9300
C1—C61.385 (6)C17—C181.373 (5)
C1—C21.393 (6)C17—H170.9300
C2—C31.368 (6)C18—C191.380 (5)
C3—C41.391 (8)C18—H180.9300
C3—H30.9300C19—H190.9300
C4—C51.370 (8)C21—C261.386 (5)
C4—H40.9300C21—C221.388 (5)
C5—C61.387 (6)C22—C231.376 (5)
C5—H50.9300C23—C241.373 (8)
C6—H60.9300C23—H230.9300
C7—C81.502 (5)C24—C251.364 (8)
C8—C131.390 (5)C24—H240.9300
C8—C91.401 (4)C25—C261.385 (6)
C9—C101.381 (4)C25—H250.9300
C10—C111.376 (5)C26—H260.9300
C9—S1—C14103.86 (14)C12—C13—C8121.0 (3)
C7—N1—C1128.5 (4)C12—C13—H13119.5
C7—N1—H1N115 (3)C8—C13—H13119.5
C1—N1—H1N116 (3)C19—C14—C15119.6 (3)
C20—N2—C21125.5 (3)C19—C14—S1117.8 (2)
C20—N2—H2N118 (3)C15—C14—S1122.2 (2)
C21—N2—H2N117 (3)C16—C15—C14118.6 (3)
C6—C1—C2118.0 (4)C16—C15—C20119.8 (3)
C6—C1—N1123.3 (4)C14—C15—C20121.3 (3)
C2—C1—N1118.7 (4)C15—C16—C17121.2 (3)
C3—C2—C1122.3 (5)C15—C16—H16119.4
C3—C2—Br1117.5 (4)C17—C16—H16119.4
C1—C2—Br1120.2 (3)C18—C17—C16120.0 (3)
C2—C3—C4118.8 (5)C18—C17—H17120.0
C2—C3—H3120.6C16—C17—H17120.0
C4—C3—H3120.6C17—C18—C19119.4 (3)
C5—C4—C3119.9 (4)C17—C18—H18120.3
C5—C4—H4120.0C19—C18—H18120.3
C3—C4—H4120.0C18—C19—C14121.3 (3)
C4—C5—C6120.9 (5)C18—C19—H19119.4
C4—C5—H5119.6C14—C19—H19119.4
C6—C5—H5119.6O2—C20—N2123.4 (3)
C1—C6—C5120.0 (5)O2—C20—C15120.8 (3)
C1—C6—H6120.0N2—C20—C15115.6 (3)
C5—C6—H6120.0C26—C21—C22118.8 (3)
O1—C7—N1124.5 (4)C26—C21—N2121.6 (3)
O1—C7—C8122.3 (3)C22—C21—N2119.6 (3)
N1—C7—C8113.2 (3)C23—C22—C21120.9 (4)
C13—C8—C9119.1 (3)C23—C22—Br2119.1 (3)
C13—C8—C7120.8 (3)C21—C22—Br2120.0 (3)
C9—C8—C7120.1 (3)C24—C23—C22119.7 (5)
C10—C9—C8119.4 (3)C24—C23—H23120.2
C10—C9—S1123.2 (2)C22—C23—H23120.2
C8—C9—S1117.4 (2)C25—C24—C23120.1 (4)
C11—C10—C9120.2 (3)C25—C24—H24120.0
C11—C10—H10119.9C23—C24—H24120.0
C9—C10—H10119.9C24—C25—C26121.0 (5)
C12—C11—C10121.1 (3)C24—C25—H25119.5
C12—C11—H11119.5C26—C25—H25119.5
C10—C11—H11119.5C25—C26—C21119.5 (4)
C13—C12—C11119.2 (3)C25—C26—H26120.3
C13—C12—H12120.4C21—C26—H26120.3
C11—C12—H12120.4
C7—N1—C1—C60.6 (7)C9—S1—C14—C19100.2 (3)
C7—N1—C1—C2179.9 (4)C9—S1—C14—C1586.8 (3)
C6—C1—C2—C30.0 (7)C19—C14—C15—C160.3 (4)
N1—C1—C2—C3179.3 (5)S1—C14—C15—C16172.6 (2)
C6—C1—C2—Br1179.2 (3)C19—C14—C15—C20173.9 (3)
N1—C1—C2—Br11.4 (6)S1—C14—C15—C2013.2 (4)
C1—C2—C3—C40.5 (9)C14—C15—C16—C170.9 (5)
Br1—C2—C3—C4179.8 (4)C20—C15—C16—C17173.4 (3)
C2—C3—C4—C51.4 (9)C15—C16—C17—C180.7 (5)
C3—C4—C5—C61.8 (9)C16—C17—C18—C190.0 (5)
C2—C1—C6—C50.3 (7)C17—C18—C19—C140.6 (5)
N1—C1—C6—C5179.6 (4)C15—C14—C19—C180.4 (5)
C4—C5—C6—C11.2 (8)S1—C14—C19—C18173.7 (3)
C1—N1—C7—O10.8 (7)C21—N2—C20—O20.7 (5)
C1—N1—C7—C8177.5 (4)C21—N2—C20—C15174.4 (3)
O1—C7—C8—C13111.7 (4)C16—C15—C20—O2128.8 (3)
N1—C7—C8—C1369.9 (4)C14—C15—C20—O245.3 (4)
O1—C7—C8—C967.7 (5)C16—C15—C20—N246.5 (4)
N1—C7—C8—C9110.6 (4)C14—C15—C20—N2139.4 (3)
C13—C8—C9—C101.2 (4)C20—N2—C21—C2637.9 (5)
C7—C8—C9—C10179.3 (3)C20—N2—C21—C22142.6 (3)
C13—C8—C9—S1179.0 (2)C26—C21—C22—C231.9 (6)
C7—C8—C9—S10.4 (4)N2—C21—C22—C23177.6 (4)
C14—S1—C9—C1016.0 (3)C26—C21—C22—Br2178.0 (3)
C14—S1—C9—C8163.7 (2)N2—C21—C22—Br22.4 (5)
C8—C9—C10—C110.4 (5)C21—C22—C23—C241.2 (7)
S1—C9—C10—C11179.9 (2)Br2—C22—C23—C24178.7 (4)
C9—C10—C11—C120.4 (5)C22—C23—C24—C250.5 (8)
C10—C11—C12—C130.3 (5)C23—C24—C25—C261.4 (8)
C11—C12—C13—C80.6 (6)C24—C25—C26—C210.8 (8)
C9—C8—C13—C121.3 (5)C22—C21—C26—C250.9 (6)
C7—C8—C13—C12179.2 (3)N2—C21—C26—C25178.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O2i0.82 (4)2.08 (4)2.873 (4)162 (4)
N1—H1N···Br10.79 (5)2.58 (5)3.055 (4)120 (4)
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

(Ia)(Ib)(Ic)
Crystal data
Chemical formulaC28H24N2O2SC30H28N2O2SC26H18Br2N2O2S
Mr452.55480.60582.30
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/nMonoclinic, P21/c
Temperature (K)296293296
a, b, c (Å)14.9815 (1), 10.9355 (1), 15.5490 (2)7.8786 (1), 17.3269 (2), 18.3960 (2)20.6504 (3), 15.3378 (2), 7.5101 (1)
β (°) 113.107 (1) 95.787 (1) 95.520 (1)
V3)2343.03 (4)2498.47 (5)2367.66 (6)
Z444
Radiation typeCu KαCu KαCu Kα
µ (mm1)1.441.385.39
Crystal size (mm)0.35 × 0.10 × 0.080.40 × 0.25 × 0.200.30 × 0.30 × 0.01
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Bruker APEXII CCD area-detector
diffractometer
Bruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Multi-scan
(SADABS; Bruker, 2003)
Multi-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.646, 0.7540.632, 0.7540.454, 0.754
No. of measured, independent and
observed [I > 2σ(I)] reflections
15959, 4396, 3811 23191, 4817, 4541 17010, 4681, 3752
Rint0.0280.0310.049
(sin θ/λ)max1)0.6160.6170.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 1.04 0.035, 0.092, 1.06 0.048, 0.140, 1.04
No. of reflections439648174681
No. of parameters308327306
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.270.18, 0.190.83, 0.66

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (Ia) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.861 (16)2.058 (17)2.8747 (15)158.1 (15)
N2—H2N···O1i0.856 (16)2.024 (17)2.8728 (14)170.6 (15)
Symmetry code: (i) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) for (Ib) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.831 (16)2.020 (17)2.8490 (15)176.0 (15)
N2—H2N···Cg1i0.810 (18)2.587 (17)3.3591 (14)160.1 (16)
Symmetry code: (i) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) for (Ic) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O2i0.82 (4)2.08 (4)2.873 (4)162 (4)
N1—H1N···Br10.79 (5)2.58 (5)3.055 (4)120 (4)
Symmetry code: (i) x, y+3/2, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds